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Abstract

Deep rooting is critical for access to water and nutrients found in subsoil. However,

damage to soil structure and the natural increase in soil strength with depth, often

impedes root penetration. Evidence suggests that roots use macropores (soil cavities

greater than 75 μm) to bypass strong soil layers. If roots have to exploit structures, a

key trait conferring deep rooting will be the ability to locate existing pore networks; a

trait called trematotropism. In this study, artificial macropores were created in

repacked soil columns at bulk densities of 1.6 g cm−3 and 1.2 g cm−3, representing

compact and loose soil. Near isogenic lines of wheat, Rht‐B1a and Rht‐B1c, were

planted and root–macropore interactions were visualized and quantified using X‐ray

computed tomography. In compact soil, 68.8% of root–macropore interactions

resulted in pore colonization, compared with 12.5% in loose soil. Changes in root

growth trajectory following pore interaction were also quantified, with 21.0% of roots

changing direction (±3°) in loose soil compared with 76.0% in compact soil. These

results indicate that colonization of macropores is an important strategy of wheat

roots in compacted subsoil. Management practices to reduce subsoil compaction

and encourage macropore formation could offer significant advantage in helping

wheat roots penetrate deeper into subsoil.
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1 | INTRODUCTION

Wheat yields are often restricted by water availability in the summer

months leading to post‐anthesis drought (Foulkes, DeSilva, Gaju, &

Carvalho, 2016). In water limited environments, yield gains from access

to subsoil water sources have been estimated at an average of 30–

40 kg grain ha−1 mm−1 of subsoil water used (Kirkegaard, Lilley, Howe,

& Graham, 2007; Lilley & Kirkegaard, 2008; Manschadi, Christopher,

deVoil, & Hammer, 2006). Access to deeper water sources in the sub-

soil by improved root growth has been suggested as a method to com-

bat these yield losses in water‐limited environments such as wheat

growing regions in India and Australia (Richards, 2006; Wasson et al.,

2012). In wheat growing regions of the southeast of England, where

the soil normally reaches field capacity in winter, the soil can be close

to saturation at depths of 0.5 m in the middle of the driest summers

(e.g., Dodd, Whalley, Ober, & Parry, 2011; Whalley et al., 2006).
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Deep, metabolically cheap roots are viewed as an ideotype for opti-

mum water and nitrogen uptake in most cereals (King et al., 2003;

Lynch, 2013; Thorup‐Kristensen, Salmerón Cortasa, & Loges, 2009).

Several studies have suggested that deep rooting is related to root angle

or growth rate (Christopher et al., 2013; Manschadi, Hammer, Christo-

pher, & deVoil, 2008; Richard et al., 2015; Wasson et al., 2012). How-

ever, these phenotypes fail to consider the effect of soil structure and

strength on root behaviour, which can have a significant impact on the

growth and distribution of plant roots in the soil.

Soil structure is defined as the size, shape, and arrangement of

solids and pores, their continuity and their capacity to retain and

transmit fluids and organic and inorganic substances (Bronick & Lal,

2005; Lal, 1991). The spaces in between soil particles are defined as

pores and can be classified by size. Macropores, the main focus of this

study, are commonly regarded as pores larger than 75 μm in diameter

(Soil Sciences Glossary Terms Committee, 2008). Pores formed by bio-

logical activity such as plant roots or earthworms are termed biopores

(Kautz et al., 2014).

There have been numerous studies into the effects of pores on

root behaviour. Dexter (1986) conducted model experiments to esti-

mate the probability of roots entering a macropore in an impenetrable

subsoil after elongation in an aggregated layer and found in a well‐

aerated soil; pore location could be described by a probability func-

tion, whereas in poorly aerated soil, it was not possible to rule out

active growth of roots towards biopores (termed by Dexter as

trematotropism).

>Lampurlanés and Cantero‐Martínez (2003) found higher root

density in subsoil under no‐till than compared with conventional till-

age. They speculated roots could follow biopores to deeper soil layers.

Biopores are often associated with earthworm abundance or old root

channels. Ehlers, Köpke, Hesse, and Böhm (1983) reported that oat

roots were able to exploit earthworm channels present in a no‐tillage

system. Wheat roots have been observed to grow in pores created by

previous crop roots, earthworm channels, or cracks in the compacted

subsoil layer (Barraclough & Weir, 1988; Hodgkinson et al., 2017;

White & Kirkegaard, 2010). Experiments described by Stirzaker,

Passioura, and Wilms (1996) suggested that few, large pores were

not a favourable environment for roots, although they did find that

barley plants grew better in a network of narrow biopores made by

lucerne and ryegrass. Colombi, Braun, Keller, & Walter (2017)

reported, from pot experiments, that the early growth of wheat seed-

lings was correlated with the number of axial roots. In the field, Bai

et al. (2019) found that deep rooting appeared to be more likely in

wheat with a greater amount of surface roots. This supports the

hypothesis that the exploitation of the soil structural pore space by

roots is in part related to the probability of a root finding a pore by

chance. Although there are many observations that roots can bypass

compacted soil by elongating in biopores or other pore networks, it

is unclear whether the ability of roots to locate pores is a trait with

a biological basis. Continuous macropores have distinct water, gas,

and mechanical properties compared with the soil matrix in compacted

soil (Kuncoro, Koga, Satta, & Muto, 2014; Lipiec & Hatano, 2003).

Therefore, the direction of root growth when encountering a

macropore might be affected by multiple factors including soil

mechanical impedance, water status, and oxygen stresses (Tracy,

Black, Roberts, & Mooney, 2011). Direct study of root–macropore

interactions has been technically difficult until the very recent applica-

tion of X‐ray micro‐computed tomography (CT) in plant and soil sci-

ences, which can visualize and quantify the root–macropore

interaction non‐destructively and quickly (Colombi et., 2017; Tracy

et al., 2011).

The purpose of this study was to investigate pore location by roots

elongating in loose and dense soil. Artificial macropores formed in the

subsoil and exploitation of these pores by roots was monitored with

X‐ray CT. We used two near isogenic wheat lines, Rht‐B1a (tall) and

Rht‐B1c (dwarf), for the experiment. In field conditions, we have pre-

viously found that Rht‐B1c tends to have deeper roots than Rht‐B1a

(Hodkinson et al. 2017; Bai et al., 2019). We sought to confirm if roots

can exploit pores to bypass strong layers of soil. We also aimed see if

observations with X‐ray CT could actually confirm accounts that roots

actively grow towards pores.

2 | MATERIALS AND METHODS

2.1 | Soil column design

Field soil was collected from Warren Field at Woburn experimental

farm, Bedfordshire, United Kingdom (52°01′11.2″N; 0°35′30.4″W).

The field was prepared for cultivation with a mouldboard plough to

a depth of 23 cm and is subject to intensive cultivation approaches

during establishment of experimental field trails. The soil in the 0–

40 cm layer collected for these experiments is a sandy clay loam

(Eversley series). Further details of the soil properties can be found

in Table 1. This soil was air‐dried and sieved to an aggregate size of

<2 mm. Sieved soil was packed to two layers in a polyvinyl chloride

column (referred as outer column) with an internal diameter of

64 mm and a height of 170 mm. The bottom 55 mm of the column

was packed to simulate subsoil at a bulk density of either 1.2 g cm−3

to represent a loose subsoil or 1.6 g cm−3 to represent a compacted

subsoil. Above the subsoil layer, soil was loosely packed at a bulk den-

sity of 1.1 g cm−3 to simulate a topsoil layer. In the subsoil layer, nine

equally spaced vertical pores (diameter 0.8 mm and length 45 mm)

were artificially made by individually inserting and then carefully

removing a brass rod into the bottom of the column. A jig was used

to ensure identical pore placement and length, and the tip of the brass

rod was filed to a cone shape to allow easier passage through the soil.

This pore length was selected to leave 10 mm of soil between the top

of the artificial pores and the bottom of the topsoil. This allowed roots

to grow undisturbed in the upper part of the subsoil layer before

interacting with a pore. In the topsoil layer, an inner polyvinyl chloride

column (diameter 20 mm and length 120 mm) was vertically placed

before filling in the central part of the outer column to restrict root

growth to the centre of the soil core. The bottom edge of the inner

column was bevelled, allowing it to slightly press into the subsoil layer.

The inner column was placed before on top of the subsoil layer before
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the topsoil layer was added to prevent compaction of the topsoil. A

detailed schematic of the mesocosm design is shown in Figure 1. This

precise experimental design followed several pilot scale studies to

optimize the design including the use of X‐ray imaging to confirm

the structural integrity of the artificial macropores.

The packed soil columns were saturated slowly by wetting from

the base for 48 hr and then allowed to drain freely for a further

48 hr before weighing. Soil water content was maintained throughout

the experiment to this weight by weighing and watering every three

days. The artificial pores were created after saturating the columns

to field capacity to prevent pore collapse during the saturation step.

2.2 | Plant material and growth conditions

Two wheat near isogenic lines, Rht‐B1a (tall) and Rht‐B1c (dwarf), in a

Mercia background were used for this study. Seeds were sieved

through a set of calibrated graduated sieves (Scientific Laboratory Sup-

plies Ltd, Hessle, UK) and collected from the 2.8–3.35 mm mesh sizes.

Seeds were placed crease‐side down on moistened germination paper

and incubated at 4°C for 5 days to synchronize germination. Following

the cold treatment, seeds were transferred to a light‐impermeable box

for 24 hr to complete germination. The germinated seeds were planted

20 mm below the soil surface within the inner column. Plants were

FIGURE 1 3D reconstruction of the
experimental column design with outer
column and soil removed (left) and outer

column and soil cut away (right). [Colour
figure can be viewed at wileyonlinelibrary.
com]

TABLE 1 Selected properties of the experimental soil

Location Woburn Expt. Farm Beds.

Grid reference GB National Grid SP968364

Longitude 00:35:30W

Latitude 52:01:06N

Soil type SSEW groupa Alluvial gley soil

SSEW seriesb Eversley

FAOa Dystric cambisol

Land use Arable; cereals;beans

Sand (2,000–63 μm) g g−1 dry soil 0.538

Silt (63–2 μm) g g−1 dry soil 0.203

Clay (<2 μm) g g−1 dry soil 0.260

Texture SSEW classa sandy clay loam

Particle density g cm−3 2.587

Organic matter g g−1 dry soil 0.038

Optimum water content for packing g g−1 dry soil 0.27

aAvery (1980).
bClayden and Hollis (1984).

SSEW, Soil Survey of England and Wales.
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grown in a glasshouse at an average temperature of 22.5°C with sup-

plemental lighting on a 14 hr/10 hr day/night cycle. Soil water content

was maintained at field capacity by weighing and watering every three

days.

X‐ray μCT scanning was conducted 20 days post‐seed transplanta-

tion to maximize the opportunity for root–macropore interactions,

despite the probability that some seminal root axes would reach the

bottom of the pot in this time. Ten replicates were grown per genotype

per soil compaction treatment, giving a total of 40 experimental

columns.

2.3 | CT scanning, image analysis, and data collection

All soil columns were scanned using a v|tome|x M 240 kV X‐ray μCT

scanner (GE Sensing & InspectionTechnologies GmbH, Wunstorf, Ger-

many) at the Hounsfield Facility at the University of Nottingham, using

an electron acceleration energy of 160 kV, current 140 mA, and a res-

olution of 45 μm. A total of 2,520 projection images were collected

during each scan. Reconstruction was performed using Datos|Rec

software (GE Sensing and Inspection Technologies GmbH, Wunsdorf,

Germany), and 2,000 images were collected for each sample. Consid-

ering the time needed for the scanning (44 min), cold treatment, plant-

ing, and X‐ray μCT scanning were staggered using a random block

design over 6 days to ensure plants were at the same growth stage

at the time of scanning.

Image visualisation, soil pore, and root segmentation was con-

ducted using VG Studio MAX (Volume Graphics GmbH, Heidelberg,

Germany). The “Region Growing” tool in VG Studio MAX was used

to interactively extract roots and artificial pores from the slices as

has been described in Helliwell, Sturrock, Miller, Whalley, and Mooney

(2019). As we only required segmentation of the artificial pore

network and the unconnected roots, no further pre‐ or post‐image

processing steps were required.

Following segmentation, root–macropore interactions were

analysed. A root–pore interaction was defined as a root meeting a

pore, with their maximum distance of separation being 1 voxel.

Root–macropore interactions were classified as either “crossing” or

“colonizing” the pore following an interaction. Colonizing was defined

as evidence of the root growing inside the pore for at least >15 mm

following interaction, whereas crossing was defined as when a root

continued its growth across or away from the pore within 15 mm of

initial interaction. Examples of crossing and colonizing are shown in

Figure 2.

To further explore the effect of macropores on wheat root growth,

the root growth trajectory after each root–macropore interaction was

classified as either “change direction” or “no change.” No change in

direction was defined as the root continuing at the same growth tra-

jectory as identified at 20 mm pre‐ and post‐pore interaction ±3°,

whereas those that exceeded this range were defined as change

direction. In cases of pore colonization, by the definition used in this

paper, there was a change in growth trajectory. However, in cases

where a root crosses a pore, it is possible the root growth trajectory

after leaving the pore was different or the same from its initial trajec-

tory before entering the pore. The number of root–macropore interac-

tions was counted and measured.

2.4 | Penetrometer readings

A further six cores (3 of each treatment, 1.2 and 1.6 g cm−3) were pre-

pared for measurement of penetration resistance. Soil cores were pre-

pared by compacting the soil in four separate layers at a pressure of

20 kPa in stainless steel rings of an approximate diameter of 40 mm

and height of 36 mm. A needle penetrometer with a cone base diam-

eter of 2 mm and a cone angel of 60° was pushed into the soil core at

a speed of 60 mm min−1 with an Instron 5940 series load frame fitted

with a 100N load. In addition, we investigated the effect of artificial

FIGURE 2 3D reconstruction of segmented
root material (white) and artificially generated
pores (red). (a) Roots colonizing pores in
1.6 g cm−3 soil. (b) A root crossing a pore in
1.2 g cm−3 soil [Colour figure can be viewed at
wileyonlinelibrary.com]
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macropores on the strength of the surrounding soils. A vertical hole

was made in the soil core using a stainless steel 2 mm drill bit, and

the distance between the edge of the hole and the edge of the cone

was be measured with a set of callipers. Following the penetrometer

measurements, the soil samples were oven dried for 24 hr at 105°C

to confirm soil dry bulk density and water content.

2.5 | Statistical analysis

Statistical analysis was performed using Genstat 19th Edition (VSNI,

Hemel Hempstead, UK). The Shapiro–Wilk test was used to check

data normality before performing analysis of variance as a randomized

block design experiment and plotted the mean data together with the

least significant difference for p = .05.

3 | RESULTS

3.1 | Total root–macropore interactions in the
subsoil

The mean number of root–macropore interactions per column was

1.78 ranging between 0 and 7, with no significant difference between

genotypes (p = .42) or soil treatments (p = .84).

3.2 | Wheat roots colonize and cross macropores

Root response to macropores, that is, colonizing or crossing, showed

no significant differences between genotypes for either compacted

or loose soil (Figure 3a,b). However, compaction significantly affected

root response to macropores for both genotypes (Figure 3a,b). There

were significantly more colonizations in the compacted soil than in

the loose soil (p < .01, Figure 3a). For the Rht‐B1a, 80.0% of root–

macropore interactions resulted in colonization compared with

62.5% for the Rht‐B1c. No roots were observed exiting a pore follow-

ing colonization. In contrast to this, significantly more root crossing a

pore was found in non‐compacted soil than in the compacted soil

(p = .011, Figure 3b), with only 7.7% and 15% root–macropore interac-

tions resulting in colonization for the Rht‐B1a and Rht‐B1c, respec-

tively. The root–macropore interaction data for both genotypes were

combined for further analysis because no significant difference was

found between genotypes. For the combined data, 68.8% of root–

macropore interactions resulted in pore colonization in the compacted

soil, whereas only 12.5% resulted in colonization in the loose soil

(Figure 3c).

3.3 | Wheat root growth trajectory after
root‐macropore interaction

No significant differences in root growth trajectory were found

between genotypes in either loose (p = .257, Figure 4a) or compacted

soil (p = .750, Figure 4b). In the loose soil, 20% of Rht‐B1a and 25% of

Rht‐B1c roots changed direction following pore interaction. In the

compacted soil, root–macropore interactions resulted in a lower per-

centage of trajectory changes in Rht‐B1c roots (78.6%) compared with

Rht‐B1a (92.9%), but this difference was not significant (p = .406). The

root growth trajectory data of the two genotypes were also combined.

For the combined data, significant differences between root direction

changes between soil treatments were found (p < .001). In compact

soil, 76.0% of roots changed direction after root–macropore interac-

tions, whereas only 21.0% changed direction in the loose soil

(Figure 4c).

4 | DISCUSSION

Our data shows that in compacted soil, roots are able to exploit pores

to bypass layers of strong soil. Furthermore, imaging showed roots

appear to modify their direction of growth to intercept pores. We

found that most wheat roots colonized macropores in the compacted

subsoil used in our experiment. This is consistent with field studies

reporting that at depth (below 0.6 m), wheat roots are predominantly

found in macropores (Hodgkinson et al., 2017; White & Kirkegaard,

2010). A study by White and Kirkegaard (2010) found that approxi-

mately 50% of root material was found in large pores or cracks at a

depth of 0.3 m, increasing to 100% of the root material found in pores

below 1 m. In the loose soil, roots did not tend to follow pores but

grew across them without any deflection.

Colombi et al. (2017) found wheat roots predominantly crossed

macropores without deflection at 1.6 g cm−3 but in their soil, this

corresponded to a relatively low penetration resistance of approxi-

mate 1 MPa, which should not greatly impede root elongation (Yapa,

Fritton, & Willatt, 1988). In a similar recent study in Barley that also

utilized X‐ray CT, it was possible to directly observe roots leaving

1 mm diameter artificial pores (Pfeifer, Kirchgessner, & Walter,

2014), often pushing from the opposite pore wall to exert the required

force to break through. Here, the penetration resistance was 1.4 MPa,

and although it was greater than the 1 MPa used by Colombi et al.

(2017), it is still low enough for roots to elongate by deforming soil

(Bengough & Mullins, 1991). In the present study, penetration resis-

tance was 2.9 MPa in the compact treatment (Table 2), explaining

the roots inability to leave the artificial pores. Furthermore, the

elongation of roots is particularly sensitive to axial pressure, while

somewhat insensitive to radial pressure (Bengough, 2012). This obser-

vation explains why roots might preferentially exploit existing pore

networks, even if they are smaller than the diameter of the root. In

the loose soil, the axial pressure is not high, and roots can proliferate

without being influenced pore networks (Figure 2).

In our loose subsoil, root growth in wheat was largely unaffected

by the presence of macropores. Of the observed pore interactions in

the subsoil with a bulk density of 1.2 g cm−3, 87.5% resulted in roots

crossing the pore with 76.7% not changing growth trajectory, as illus-

trated in Figure 5. This suggests that the predetermined root angle is

overriding the thigmotropic and trematopic response of the root to

the soil matrix and macropore in determining elongation and growth.

ATKINSON ET AL. 5



However, in the field, it is important to realize that subsoils are

almost always strong because of the effects of the weight of the soil,

termed the overburden pressure. The effects of overburden pressure

on penetration resistance are well‐understood by civil engineers,

who mainly use penetrometer measurements to infer material con-

stants of soil. To do this effectively, they need to account for the

effect of depth. Gao, Whalley, Tian, Liu, and Ren (2016) have shown

that a relatively simple model for penetrometer resistance can be used

FIGURE 3 Root–pore interaction data. (a) Mean number pore colonizations. (b) Mean number of pore crosses. (c) Percentage of colonizations/
crosses for combined genotype data. Error bars = LSD for p = .05

6 ATKINSON ET AL.



FIGURE 4 Root trajectory response following pore interaction. (a) Ratio of root response type for each genotype in loose soil (1.2 g cm−3).
(b) Ratio of root response type for each genotype in compact soil (1.6 g cm−3). (c) Ratio of root response type using combined genotype data.
Error bars = LSD for p = .05
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TABLE 2 Mean penetrometer resistance readings of the loose 1.2 g cm−3 and compact 1.6 g cm−3 soil layers at the bottom of the experimental
columns

Packed bulk density (g cm−3) Moisture content (g g−1) SD Measured bulk density (g cm−3) SD Penetrometer resistance (MPa) SD

1.2 0.246 0.029 1.196 0.0106 1.088 0.204

1.6 0.253 0.004 1.567 0.0364 2.876 0.1325

Note. Penetrometer details can be found in Section 2.

Abbreviation: SD, standard deviation.

FIGURE 5 Example ZX 2D X‐ray computer tomography image of segmented roots (white) crossing an artificial pore (black) without changing
growth trajectory. Scale bar = 5 mm [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Example XY 2D X‐ray computer tomography images travelling down the column showing (a) root growth towards a pore and (b) root
growth past a pore. The pore is shown in black, the root is highlighted in blue, and the growth path is shown by the red arrow. Scale bars = 2 mm
[Colour figure can be viewed at wileyonlinelibrary.com]
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to describe the effects of bulk density, soil drying, and depth. The rel-

evant point to this study is that increased pressure with depth (due to

the weight of soil above) also increases penetration resistance, even if

the soil density is the same. The consequence of this is that at rela-

tively shallow depths, for example 0.5 m, penetration resistance can

exceed 2.5 MPa, the value at which the elongation of roots by soil

deformation is severely restricted (Bengough & Mullins, 1991). Previ-

ous measurements in the field from which the experimental soil was

collected reported penetration resistance increasing dramatically with

depth before any soil drying by roots had occurred (Hodgkinson et al.,

2017). Thus, the loose subsoil used in this experiment represents the

top soil in the field, and the compact subsoil represents subsoils below

0.5 m (Table 2).

There has been much speculation with respect to the preferential

growth of roots towards macropores in compacted soils (Colombi et

al., 2017; Pfeifer et al., 2014; Stirzaker et al., 1996). Stirzaker et al.

(1996) explained this phenomenon as roots simply following the path

of least resistance towards small weaknesses in the soil preceding a

larger pore. However, as noted in Pfeifer et al. (2014), in experiments

where artificial pores are created by inserting a rod (such as this

study), the soil bulk density would be expected to increase around

the pore. Currently, it is thought that oxytropism is one possible

explanation, particularly at higher bulk densities where oxygen levels

might be significantly higher in and around a macropore than in the

bulk soil (Colombi & Walter, 2017; Pfeifer et al., 2014). In this study,

evidence of this phenomenon can be seen in both Figure 2, where

two roots appear to change the direction of elongation when they

are near a pore, and also in Figure 6A. However, as illustrated by fig-

ure 6B, this observation was not consistent even within the same

experimental column. Although it is possible that gradients in oxygen

are responsible for preferential root growth towards micropores,

another potential explanation is a reduction in penetration resistance

in the vicinity of a pore. Figure 7 shows measurements of penetra-

tion resistance at different distances from a 2 mm hole made in a soil

core. Penetration resistance decreases near the hole because of a

reduction in the radial confining pressure. It seems reasonable to

speculate that this results in a passive redirection of elongation.

When a root meets a pore, the new direction of root growth direc-

tion depends on the strength of the soil and the penetration force

of root, which are influenced by a variety of factors including plant

species, root type/diameter, soil type, pore wall properties, pore

age, and soil water content (Dexter, 1986a, 1986b, 1986c).

In field experiments, we have observed that Rht‐B1c is deeper

rooting in comparison with Rht‐B1a (Bai et al., 2019; Hodkinson

et al. 2017). It was assumed that the deeper rooting of Rht‐B1c in

the field was related to increased branching, leading to a greater

number of roots locating pores. However, under laboratory

conditions, we were not able to support this hypothesis. This could

be due to the limiting diameter of the soil columns used here, which

would affect root architecture and branching. Future effort

could focus on the use of X‐ray CT to image soil monoliths

extracted from the field. Nevertheless, in this paper, we have

highlighted how soil strength and structure interact to determine

the distribution of roots.

5 | CONCLUSIONS

In this study, we investigated the root–macropore interactions in

compacted and loose subsoils. Two wheat near isogenic lines were

studied, but no significant differences were identified in terms of their

response to the macropores in the subsoil. Roots tended to colonize

pores in compacted subsoil and change root growth direction,

whereas in the loose subsoil, most roots crossed the macropores and

did not change growth direction. This suggests a switch in the domi-

nating mechanism in determining root proliferation occurs between

1.2 and 1.6 g cm−3 soil bulk density or 1.1 and 2.9 MPa penetration

resistance. The precise bulk density and penetration resistance this

occurs at, across a range of soil types, is subject for future study.

Although pore location by roots has been linked to oxygen gradients,

we suggest an alternative mechanism here related to a diminishing

root impedance in the soil around pores.

FIGURE 7 The penetrometer reistance as a function of its distane from a 2 mm hole.

ATKINSON ET AL. 9



ACKNOWLEDGMENTS

We thank Mr Rhys Ashton at Rothamsted Research for making the

penetrometer measurements. We also thank Dr Brian Atkinson

(University of Nottingham) for his help in preparing and running the

experiments and Dr Steve Thomas (Rothamsted Research) for

providing the wheat germplasm. This work was supported by the Bio-

technology and Biological Sciences Research Council Designing Future

Wheat Cross‐Institute Strategic Programme [Grant BB/P016855/1]

and the University of Nottingham Future Food Beacon of Excellence.

FUNDING INFORMATION

This work was supported by the Biotechnology and Biological Sci-

ences Research Council Designing Future Wheat Cross‐Institute Stra-

tegic Programme [Grant BB/P016855/1] to J.A.A., Z.H., S.J.M., M.J.H.,

and W.R.W., and the University of Nottingham Future Food Beacon of

Excellence funding to J.A.A.

ORCID

Jonathan A. Atkinson https://orcid.org/0000-0003-2815-0812

Malcolm J. Hawkesford http://orcid.org/0000-0001-8759-3969

William R. Whalley https://orcid.org/0000-0003-0755-2943

Hu Zhou https://orcid.org/0000-0003-4947-0946

Sacha J. Mooney https://orcid.org/0000-0002-9314-8113

REFERENCES

Avery, B.W. (1980). Soil classification for England andWales (higher categories).

Harpenden, UK: Tech. Monogr. 14. Soil Survey of England and Wales.

Bai, C., Ge, Y., Ashton, R. W., Evans, J., Milne, A., Hawkesford, M. J., …
Bartsch, M. (2019). The relationships between seedling root screens,

root growth in the field and grain yield for wheat. Plant and Soil, 440,

311–326. https://doi.org/10.1007/s11104‐019‐04088‐9

Barraclough, P. B., & Weir, A. H. (1988). Effects of a compacted subsoil

layer on root and shoot growth, water use and nutrient uptake of

winter wheat. The Journal of Agricultural Science, 110, 207–216.
https://doi.org/10.1017/S0021859600081235

Bengough, A. G. (2012). Root elongation is restricted by axial but not by

radial pressures: So what happens in field soil? Plant and Soil, 360,

15–18. https://doi.org/10.1007/s11104‐012‐1428‐8

Bengough, A. G., & Mullins, C. E. (1991). Penetrometer resistance, root

penetration resistance and root elongation rate in two sandy loam soils.

Plant and Soil, 131, 59–66.

Bronick, C. J., & Lal, R. (2005). Soil structure and management: A review.

Geoderma, 124, 3–22.

Christopher, J., Christopher, M., Jennings, R., Jones, S., Fletcher, S., Borrell, A.,

… Hammer, G. (2013). QTL for root angle and number in a population

developed from bread wheats (Triticum aestivum) with contrasting

adaptation to water‐limited environments. Theoretical and Applied

Genetics, 126, 1563–1574. https://doi.org/10.1007/s00122‐013‐2074‐
0

Clayden, B., & Hollis, J. M. (1984). Criteria for differentiating soil series.

Harpenden, UK: Tech. Monogr. 17. Soil Surv. of England and Wales.

Colombi T., Braun S., Keller T., & Walter A. (2017) Artificial macropores

attract crop roots and enhance plant productivity on compacted soils.

Science of the Total Environment. 574, 1283–1293. http://dx.doi.org/
10.1016/j.scitotenv.2016.07.194

Dexter, A. R. (1986a). Model experiments on the behavior of roots at the

interface between a tilled seed‐bed and a compacted subsoil. 1. Effects

of seed‐bed aggregate size and subsoil strength on wheat roots. Plant

and Soil, 95, 123–133.

Dexter, A. R. (1986b). Model experiments on the behavior of roots at the

interface between a tilled seed‐bed and a compacted subsoil. 2. Entry

of pea and wheat roots into subsoil cracks. Plant and Soil, 95, 135–147.

Dexter, A. R. (1986c). Model experiments on the behavior of roots at the

interface between a tilled seed‐bed and a compacted subsoil. 3. Entry

of pea and wheat roots into cylindrical biopores. Plant and Soil, 95,

149–161.

Dodd, I. C., Whalley, W. R., Ober, E. S., & Parry, M. A. J. (2011). Genetic

and management approaches to boost UK wheat yields by ameliorating

water deficits. Journal of Experimental Botany, 62, 5241–5248.

Ehlers, W., Köpke, U., Hesse, F., & Böhm, W. (1983). Penetration

resistance and root growth of oats in tilled and untilled loess soil. Soil

and Tillage Research, 3, 261–275. https://doi.org/10.1016/0167‐1987
(83)90027‐2

Foulkes, M. J., DeSilva, J., Gaju, O., & Carvalho, P. (2016). Relationships

between δ13C, δ18O and grain yield in bread wheat genotypes under

favourable irrigated and rain‐fed conditions. Field Crops Research, 196,

237–250.

Gao, W., Whalley, W. R., Tian, Z., Liu, J., & Ren, T. (2016). A simple model

to predict soil penetrometer resistance as a function of density, drying

and depth in the field. Soil and Tillage Research, 155, 190–198.

Helliwell, J. R., Sturrock, C. J., Miller, A. J., Whalley, W. R., & Mooney, S. J.

(2019). The role of plant species and soil condition in the structural

development of the rhizosphere. Plant Cell Environ., 42, 1974–1986.
https://doi.org/10.1111/pce.13529

Hodgkinson, L., Dodd, I. C., Binley, A., Ashton, R. W., White, R. P., Watts, C.

W., & Whalley, W. R. (2017). Root growth in field‐grown winter wheat:

Some effects of soil conditions, season and genotype. European Journal

of Agronomy, 91, 74–83. https://doi.org/10.1016/j.eja.2017.09.014

Kautz, T., Lüsebrink, M., Pätzold, S., Vetterlein, D., Pude, R., Athmann, M.,

… Köpke, U. (2014). Contribution of anecic earthworms to biopore for-

mation during cultivation of perennial ley crops. Pedobiologia, 57,

47–52. https://doi.org/10.1016/j.pedobi.2013.09.008

King, J., Gay, A., Sylvester‐Bradley, R., Bingham, I., Foulkes, J., Gregory, P.,

& Robinson, D. (2003). Modelling cereal root systems for water and

nitrogen capture: Towards an economic optimum. Annals of botany,

91, 383–390. https://doi.org/10.1093/aob/mcg033

Kirkegaard, J. A., Lilley, J. M., Howe, G. N., & Graham, J. M. (2007). Impact

of subsoil water use on wheat yield. Australian Journal of Agricultural

Research, 58, 303–315. https://doi.org/10.1071/AR06285

Kuncoro, P. H., Koga, K., Satta, N., & Muto, Y. (2014). A study on the effect

of compaction on transport properties of soil gas and water I: Relative

gas diffusivity, air permeability, and saturated hydraulic conductivity.

Soil and Tillage Research, 143, 172–179.

Lal, R. (1991). Soil structure and sustainability. Journal of Sustainable

Agriculture, 1, 67–92. https://doi.org/10.1300/J064v01n04_06

Lampurlanés, J., & Cantero‐Martínez, C. (2003). Soil bulk density and

penetration resistance under different tillage and crop management

systems and their relationship with barley root growth. Agronomy

Journal, 95, 526–536.

Lilley, J. M., & Kirkegaard, J. A. (2008). Seasonal variation in the value of

subsoil water to wheat: Simulation studies in southern New South

Wales. Australian Journal of Agricultural Research, 58, 1115–1128.

Lipiec, J., & Hatano, R. (2003). Quantification of compaction effects on soil

physical properties and crop growth. Geoderma, 116, 107–136.

10 ATKINSON ET AL.

https://orcid.org/0000-0003-2815-0812
http://orcid.org/0000-0001-8759-3969
https://orcid.org/0000-0003-0755-2943
https://orcid.org/0000-0003-4947-0946
https://orcid.org/0000-0002-9314-8113
https://doi.org/10.1007/s11104-019-04088-9
https://doi.org/10.1017/S0021859600081235
https://doi.org/10.1007/s11104-012-1428-8
https://doi.org/10.1007/s00122-013-2074-0
https://doi.org/10.1007/s00122-013-2074-0
http://dx.doi.org/10.1016/j.scitotenv.2016.07.194
http://dx.doi.org/10.1016/j.scitotenv.2016.07.194
https://doi.org/10.1016/0167-1987(83)90027-2
https://doi.org/10.1016/0167-1987(83)90027-2
https://doi.org/10.1111/pce.13529
https://doi.org/10.1016/j.eja.2017.09.014
https://doi.org/10.1016/j.pedobi.2013.09.008
https://doi.org/10.1093/aob/mcg033
https://doi.org/10.1071/AR06285
https://doi.org/10.1300/J064v01n04_06


Lynch, J. P. (2013). Steep, cheap and deep: An ideotype to optimize water and

N acquisition by maize root systems. Annals of Botany, 112, 347–357.

Manschadi, A. M., Christopher, J., deVoil, P., & Hammer, G. L. (2006). The

role of root architectural traits in adaptation of wheat to water‐
limited environments. Functional Plant Biology, 33, 823–837.

Manschadi, A. M., Hammer, G. L., Christopher, J. T., & deVoil, P. (2008).

Genotypic variation in seedling root architectural traits and implica-

tions for drought adaptation in wheat (Triticum aestivum L.). Plant

and Soil, 303, 115–129.

Pfeifer, J., Kirchgessner, N., & Walter, A. (2014). Artificial pores attract bar-

ley roots and can reduce artifacts of pot experiments. Journal of Plant

Nutrition and Soil Science, 177, 903–913.

Richard, C. A., Hickey, L. T., Fletcher, S., Jennings, R., Chenu, K., &

Christopher, J. T. (2015). High‐throughput phenotyping of seminal root

traits in wheat. Plant Methods, 11, 13.

Richards, R. A. (2006). Physiological traits used in the breeding of new cul-

tivars for water‐scarce environments. Agricultural Water Management,

80, 197–211.

Stirzaker, R. J., Passioura, J. B., & Wilms, Y. (1996). Soil structure and plant

growth: Impact of bulk density and biopores. Plant and Soil, 185,

151–162.

Thorup‐Kristensen, K., Salmerón Cortasa, M., & Loges, R. (2009). Winter

wheat roots grow twice as deep as spring wheat roots, is this important

for N uptake and N leaching losses? Plant and Soil, 322, 101–114.

Tracy, S. R., Black, C. R., Roberts, J. A., & Mooney, S. J. (2011). Soil compac-

tion: A review of past and present techniques for investigating effects

on root growth. Journal of the Science of Food and Agriculture, 91,

1528–1537.

Wasson, A. P., Richards, R. A., Chatrath, R., Misra, S. C., Prasad, S. V. S.,

Rebetzke, G. J., … Watt, M. (2012). Traits and selection strategies to

improve root systems and water uptake in water‐limited wheat crops.

Journal of Experimental Botany, 63, 3485–3498.

Whalley, W. R., Clark, L. J., Gowing, D. J. G., Cope, R. E., Lodge, R. J., &

Leeds‐Harrison, P. B. (2006). Does soil strength play a role in wheat

yield losses caused by soil drying? Plant and Soil, 280, 279–290.

White, R. G., & Kirkegaard, J. A. (2010). The distribution and abundance of

wheat roots in a dense, structured subsoil—Implications for water

uptake. Plant, Cell & Environment, 33, 133–148.

Yapa, L. G. G., Fritton, D. D., & Willatt, S. T. (1988). Effect of soil strength

on root growth under different water conditions. Plant and Soil, 109,

9–16.

How to cite this article: Atkinson JA, Hawkesford MJ,

Whalley WR, Zhou H, Mooney SJ. Soil strength influences

wheat root interactions with soil macropores. Plant Cell Envi-

ron. 2019;1–11. https://doi.org/10.1111/pce.13659

ATKINSON ET AL. 11

https://doi.org/10.1111/pce.13659

