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Abstract

Genetic studies increasingly rely on high-throughput phenotyping, but the resulting longitudinal data pose analytical 
challenges. We used canopy height data from an automated field phenotyping platform to compare several approaches 
to scanning for quantitative trait loci (QTLs) and performing genomic prediction in a wheat recombinant inbred line 
mapping population based on up to 26 sampled time points (TPs). We detected four persistent QTLs (i.e. expressed for 
most of the growing season), with both empirical and simulation analyses demonstrating superior statistical power of 
detecting such QTLs through functional mapping approaches compared with conventional individual TP analyses. In 
contrast, even very simple individual TP approaches (e.g. interval mapping) had superior detection power for transient 
QTLs (i.e. expressed during very short periods). Using spline-smoothed phenotypic data resulted in improved genomic 
predictive abilities (5–8% higher than individual TP prediction), while the effect of including significant QTLs in predic-
tion models was relatively minor (<1–4% improvement). Finally, although QTL detection power and predictive ability 
generally increased with the number of TPs analysed, gains beyond five or 10 TPs chosen based on phenological in-
formation had little practical significance. These results will inform the development of an integrated, semi-automated 
analytical pipeline, which will be more broadly applicable to similar data sets in wheat and other crops.

Keywords:   Data smoothing, dimensionality reduction, dynamic QTLs, factor-analytic model, function-valued traits, genomic 
selection, phenomics.

Introduction

In recent years, field-based high-throughput plant phenotyping 
(HTPP) tools have been used extensively in crop trials, aiming 

to reduce or eliminate manual measurements, increase the 
amount and quality of data for temporally dynamic phenotypes, 
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and, ultimately, translate ‘big data’ collected using various sensors 
into knowledge (Rebetzke et  al., 2016; Sadeghi-Tehran et  al., 
2017; Virlet et al., 2017; Araus et al., 2018). However, even with 
rapidly increasing computational power and efficiency, image 
post-processing (i.e. alignment, calibration, and segmentation) 
is demanding, and the collection of data throughout the crop 
growth cycle of large trials remains onerous (Araus and Cairns, 
2014; Haghighattalab et al., 2016; Pauli et al., 2016). Thus, col-
lecting measurements at excessively frequent intervals may not 
be cost-efficient (Araus and Kefauver, 2018; Reynolds et  al., 
2019) and can even result in poorer overall quality of the data set, 
as certain phenological stages (e.g. reproductive) are particularly 
prone to data collection errors (Dreccer et al., 2019; Rebetzke 
et al., 2019). Because of these limitations and the critical import-
ance of manual or automated data cleaning (Tardieu et al., 2017), 
the number of time points (TPs) for which HTPP data are to 
be extracted and analysed is an important consideration, as is the 
distribution of these data TPs throughout the growing period of 
the crop (Rutkoski et al., 2016; Dreccer et al., 2019).

The opportunities created by the availability of HTPP data 
also pose significant analytical challenges in genetic studies 
aimed at identifying quantitative trait loci (QTLs) in map-
ping families (Li and Sillanpaa, 2015; Sun and Wu, 2015) and 
genomic prediction of complex phenotypic traits in breeding 
populations (Cabrera-Bosquet et al., 2012; van Eeuwijk et al., 
2019). Functional mapping based on maximum likelihood 
(Ma et al., 2002) was originally proposed to enhance conven-
tional QTL mapping approaches by capturing the additional 
dynamic information in longitudinal phenotypic data using 
mathematical functions [i.e. treating time series as ‘function-
valued traits’ (Stinchcombe et  al., 2012)]. Over the last two 
decades, this methodology has been applied across a range of 
experimental systems (Wu and Lin, 2006; Li et al., 2010; Jiang 
et al., 2015; Xu et al., 2016). However, when implemented in 
its original version, functional mapping is computationally 
inefficient, particularly when large numbers of TPs and/or 
markers are analysed (Wang et al., 2017). In an attempt to over-
come these limitations, while retaining or further increasing 
statistical power, Moore et  al. (2013) and Kwak et  al. (2014) 
proposed more computationally efficient regression-based 
methods. These approaches were refined further by Kwak et al. 
(2016), who replaced the original observed trait data with a 
smoothed approximation (i.e. reducing phenotype noise) and 
then applied a dimensionality reduction technique to reduce 
the number of tests.

Previous studies of wheat plant height, an important agro-
nomic trait, have identified several dynamic QTLs (Wang et al., 
2010; Wu et al., 2010; Zhang et al., 2017). In addition, func-
tional mapping approaches have generated empirical evidence 
that QTLs can be expressed (i) during very short periods 
(hereafter referred to as ‘transient’ QTLs); (ii) during specific 
phenological stages; or (iii) throughout the growing season 
(hereafter referred to as ‘persistent’ QTLs) (Bac-Molenaar et al., 
2015; Al-Tamimi et al., 2016; Campbell et al., 2017; Feldman 
et al., 2017; Muraya et al., 2017; Ward et al., 2019). Recently, 
Camargo et  al. (2018) used longitudinal data from a glass-
house HTPP facility to characterize several physiological and 
morphometric wheat traits in much greater detail. However, 

similar mapping studies of wheat grown under field conditions 
are currently lacking.

Several decades of linkage mapping studies have resulted in 
the identification of thousands of QTLs across a wide variety of 
traits and crops, but the rate of translation of these QTLs into 
marker-assisted selection in breeding programmes has generally 
been very poor (Bernardo, 2016; Wallace et al., 2018). With the 
gradual realization that genomic selection is the only viable op-
tion of using marker–trait associations in breeding programmes 
(Crossa et  al., 2017), the interest of geneticists working with 
HTPP function-valued data is increasingly shifting towards 
genomic prediction (Rutkoski et al., 2016; Aguate et al., 2017; 
Campbell et al., 2017, 2018; Montesinos-Lopez et al., 2017a, b, 
2018; Sun et al., 2017, 2019; Watanabe et al., 2017; Crain et al., 
2018; Juliana et al., 2019; Krause et al., 2019; van Eeuwijk et al., 
2019). However, despite several methodological developments 
in this field, many questions remain. For example, it is not cur-
rently clear if increasing the number of TPs consistently helps 
to increase the predictive ability for temporally dynamic traits, 
or how to most efficiently extract simple, genetically mean-
ingful parameters from highly dimensional data (van Eeuwijk 
et al., 2019). Most studies so far have focused on multitrait and 
random regression models (Sun et  al., 2017; Campbell et  al., 
2018; Crain et al., 2018), but a number of potentially more ef-
fective approaches (e.g. functional regression analysis) have not 
yet been fully explored (Montesinos-Lopez et al., 2017a, 2018).

In this study, we used a high-throughput Field Scanalyzer 
(Virlet et  al., 2017) to collect a dense time series of height 
measurements in a wheat mapping population. Our goals 
were to (i) combine individual TP and functional mapping 
approaches for the detection of transient, stage-specific, and 
persistent QTLs; (ii) explore various approaches for using lon-
gitudinal data for genomic prediction; and (iii) compare results 
between different sampling intensities (i.e. number of TPs) and 
sampling strategies (i.e. systematically interspersed versus in-
formed by phenology).

Materials and methods

Mapping population and field experiment
A recombinant inbred line (RIL) population (F7 generation) comprising 
197 lines derived from crossing the Chinese Spring (CS) and Paragon 
(PAR) genotypes was used in this study (Allen et al., 2017; Wingen et al., 
2017). The field trials were conducted on the Field Scanalyzer phenotyping 
platform (LemnaTec GmbH) (Virlet et al., 2017) during the 2015–2016 
(hereafter referred to as the 2016 data set) and 2016–2017 (hereafter re-
ferred to as the 2017 data set) growing seasons (from November to June) at 
Rothamsted Research, Harpenden, UK (51°48'34.56''N, 0°21'22.68''W). 
The experimental scheme was laid out in augmented blocks consisting of 
RILs, as well as one (2016; Crusoe) and five (2017; CS, PAR, Crusoe, and 
two RILs) check genotypes. Plots of 1.0×1.0 m were used in 2016 and 
0.8×1.0 m in 2017. They were spaced 0.2 m apart, and the within-plot 
inter-row distance was 0.15 m. In 2016, RILs were grown in individual 
rows (six different RILs per plot) and, in 2017, RILs were grown in three 
consecutive rows (two RILs per plot). Both experiments were grown 
under conventional fertilization, weed, and pest control.
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High-throughput data collection and image processing
A fully automated, high-throughput, and fixed-site phenotyping platform 
was used to acquire all data (Virlet et al., 2017). The twin lasers within the 
camera bay were used to collect data on multiple days throughout the 
growing season, from tillering through flowering (growth stages 20–69) 
(Zadoks, 1974; Tottman, 1987), and canopy height was extracted from the 
point clouds. Briefly, the main steps of the method consisted of merging 
the two point clouds, cropping the RIL of interest, and then splitting 
it into sub-regions (Supplementary Fig. S1 at JXB online, step 2 to 3). 
Subsequently, an average canopy height was estimated for each sub-region 
of the RIL and then averaged together to obtain the plot canopy height 
(Supplementary Fig. S1, step 4 and 5). A detailed description of the steps 
is given in the text preceding Supplementary Fig. S1. In total, data for 22 
TPs [between 90 and 251 days after sowing (DAS)] for 2016 and 26 TPs 
(between 23 and 228 DAS) for 2017 were automatically extracted for each 
plot. In addition, canopy height of each RIL was measured manually on 
five representative plants at four TPs in 2016 and 2017 (Supplementary 
Fig. S2). For the latter data set, the coefficient of determination (R2) be-
tween manual and automatic measurements was 0.59, 0.78, 0.85, and 0.81 
for 70, 155, 208, and 233 DAS, respectively (Supplementary Fig. S2B). 
However, we observed reduced data quality in the 2016 data set after 196 
DAS due to a strong overlap between RILs as each row was planted with 
a different RIL (i.e. R2 of 0.66, 0.66, 0.35, and 0.55 for 115, 196, 216, and 
239 DAS, respectively) (Supplementary Fig. S2C). Thus, we used the 2016 
data set only for validation of the 2017 QTL mapping analyses.

Phenotypic analysis

Factor-analytic (time series) analysis
We used the ASReml package (Butler et al., 2009) within R (R Core 
Team, 2018)  to obtain the best linear unbiased predictions (BLUPs) 
for the RIL genotypes across all TPs by fitting the following mixed 
linear model:

y = Xβ + Cw+ Zg+ ε� (1)

where y was a matrix of phenotypic values of genotypes across TPs; β 
was a vector of the fixed effects of TPs, w was a vector of the fixed 
effects of check genotypes, g was a vector of the random-effect geno-
typic values of individuals across TPs, and ε was a vector of random 
residuals. The incidence matrices for β, w, and g were X, C, and Z, re-
spectively. A  factor-analytic (FA, order 1)  variance–covariance struc-
ture (VCOV) was used for the genotype effects (Meyer, 2009). Thus, 
we assumed g~MVN(0,σ 2g⊗I), with covariance matrix σ 2g=Var(g)Σ⊗
A, where Σ=ΛΛ T + Ψ (Λ was a t TP × k loadings matrix, and Ψ was 
a t×t diagonal matrix with a specific variance for each TP), A was the 
numerator relationship matrix (we used the I identity matrix), ⊗was 
the Kronecker product, and MVN was the multivariate normal distri-
bution. For the residual term, we assumed heterogeneous variances be-
tween TPs (block-diagonal structure) jointly with a two-dimensional 
separable autoregressive (AR1) matrix to fit the row and column ef-
fects (i.e. spatial correction). Thus, the vector of errors was partitioned 
into ε=ξ+η, where ξ and η refer to the spatially correlated and inde-
pendent errors, respectively. The variance of residuals was assumed to be 

Var ( ε ) = var (ξ+ η ) = R = σ2
ξ

ï∑
c
(Φc)⊗

∑
r
(Φr)

ò
+ (I ⊗Dη ) , 

where σ 2ξ was the variance due to local tendency and Dη was a t×t diag-
onal VCOV matrix, with each TP having a specific spatially independent 

variance component. Matrices 
∑
c
(Φc) and 

∑
r
(Φr) formed the AR1 ma-

trix with auto-correlation parameters Φ c and Φ r and order given by the 
number of columns (c) and rows (r), respectively (Gilmour et al., 1997). 
The significance of random and fixed effects was estimated for each TP 
using likelihood ratio and Wald tests at α=0.01 using the reml.lrt.asreml 
and wald functions from the asremlPlus R (Brien, 2019) and ASReml-R 
packages, respectively (Supplementary Table S1).

In order to visualize genetic parameters, we generated a surface quad-
ratic plot of covariance matrix of TPs as follows: 

Var (g) = Σ⊗ A =



λ211 +Ψ1· · · λ11λ1t
...

. . .
...

λ11λ1t · · · λ211 +Ψt


⊗ A, where 

Λ =



λ11
...

λ1t



 

and Ψ =



Ψ10 0

0
. . .0

0 0 Ψt


 (Meyer, 2009). In addition, we calculated the 

genetic correlations (rg) among traits (i.e. heights at different TPs) 

(Supplementary Fig. S3), following the equation: rg = COV12/
»
σ2
g1σ

2
g2 ,  

where COV12 was the genetic covariance between two traits; σ 2g1 and 
σ 2g2 were the genetic variances associated with each trait. The VCOV and 
genetic correlations were extracted from the ASReml-R output using 
the function met.corr2 from the AAfun set of additional functions for 
ASReml-R (https://github.com/yzhlinscau/AAfun/). Finally, broad-
sense heritability (h2) was estimated based on an entry-mean for each 
TP, following the equation: h2=σ 2g/(σ 2g+σ 2ε), where σ 2g=Vg and σ 2ε=Vε 
were the genetic and residual variances (V), respectively. The SEs of her-
itability estimates were estimated using the ‘delta’ method (Venables and 
Ripley, 2000) using the pin R function (http://www.homepages.ed.ac.
uk/iwhite/asreml/uop).

Smoothing and dimensionality reduction
We applied data smoothing followed by dimensionality reduction of 
genotype BLUPs across all TPs following the approach described by 
Kwak et al. (2016). First, we smoothed the data for each individual geno-
type using B-splines, choosing the number of basis splines to be used 
for all genotypes by minimizing the sum of squared errors from 10-fold 
cross-validation. Secondly, we applied functional principal component 
analysis (PCA) of the smoothed data to reduce their dimensionality. We 
used the funqtl (Kwak et al., 2014) and fda (Ramsay et al., 2009, 2018) 
R packages for these analyses. The resulting coefficients of B-splines and 
functional principal components (PCs) were used for functional QTL 
mapping and genomic prediction (see below).

Time point selection
We compared two approaches for selecting five or 10 TPs from the 26 
TPs available for the 2017 data by sampling TPs in two different ways 
(Table 1). In the systematic (SY) approach, TPs were selected as equally 
spaced as possible (scenarios R1, R2, R5, and R6 in Table 1). This corres-
ponds to a situation in which the image data are collected and processed 
throughout the growing season, without using previous knowledge about 
variability in different phenological stages. In contrast, in the growth stage 
(GS) approach, TPs were allocated preferentially to later stages (scenarios 
R3, R4, R7, and R8 in Table  1) as phenotypic variation for height is 
known to increase over the course of the growing season (Holman et al., 
2016). This corresponds to a situation in which data collection and pro-
cessing efforts are allocated based on previous knowledge and periodic 
inspection of the predominant phenological stage in the population.

Molecular markers
The 197 RILs were genotyped using the 35K Affymetrix Axiom® HD 
wheat single nucleotide polymorphism (SNP) array (Allen et al., 2017). 
Markers with significant segregation distortion and >20% missing data 
were removed, and a genetic linkage map was constructed as described 
previously by Allen et al. (2017). Briefly, the map included 9434 SNPs, 
covering a total of ~6632.3 cM of the wheat genome (21 linkage groups).

Markers with a low call rate (<90%) were removed, and the re-
maining missing SNP data were imputed using Beagle 4.1 (Browning 
and Browning, 2016) within the codeGeno function from the Synbreed 
R package (Wimmer et al., 2012). Furthermore, markers with minor al-
lele frequency (MAF) <0.01 and with redundant genotypes across all 
individuals were removed. The final molecular marker data consisted of 
2330 SNPs, with the number of markers per chromosome ranging from 
14 (chromosome 4D) to 223 (chromosome 5A; Supplementary Fig. S4).
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QTL mapping
QTL scanning was performed using both individual TP and functional 
mapping approaches because we were aiming to detect both transient 
and persistent QTLs. Thus, individual TP analysis was performed for 
each TP using the genotype BLUPs from the FA model utilizing the R/
qtl package (Broman et al., 2003). We performed both interval mapping 
(IM) and composite interval mapping (CIM) via Haley–Knott regression 
(Haley and Knott, 1992). For CIM, the number of marker covariates 
was set at five, with a window size of 10 cM. Logarithm of odds (LOD) 
thresholds for type I error rate (α=0.05) were obtained for each TP based 
on 1000 permutations.

Functional mapping was performed using the non-parametric ap-
proach suggested by Kwak et  al. (2014, 2016) on the functional PCs 
(three, four, and five PCs for five, 10, and 26 TPs, respectively) using the 
funqtl R package. Single and multiple QTL analyses were carried out 
using the multitrait (HKLOD), maximum (MLOD), and average (SLOD) 
score approaches.

For the HKLOD approach, we used the following model:

y = Xβ + ε� (2)

where y is an n×p matrix of derived phenotypes (n genotypes×p func-
tional PCs), X is an n×2 matrix of QTL genotype probabilities, β is 
a 2×p matrix of QTL effects, and ε is an n×p matrix of random re-
siduals following a multivariate normal distribution. At each position λ 
(putative QTL location), a multivariate regression model with a single 

QTL was fitted. Thus, the log10 likelihood ratio of the HK model was 

HKLOD = n
2 log10

¶
|RSS0|

|RSS(λ)|

©
 where RSS was the matrix of sums of 

squares and cross-products of residuals, and |RSS| was its determinant; 
that is, |RSS0| was the matrix determinant for the null model with no 
QTL, and |RSS(λ)| was the matrix determinant for the model with a 
single QTL at position λ.

In contrast, the MLOD and SLOD approaches used the maximum and 
average LOD scores across TPs, respectively: MLOD(λ)=maxtLOD(t,λ), 

and SLOD (λ) = 1
T

T∑
t=1

LOD (t, λ), where T is the number of TPs. LOD 

thresholds corresponding to α=0.05 were obtained for all three methods 
based on 1000 permutations using the scanoneM function of the funqtl 
package.

Finally, for multiple functional mapping (i.e. modelling several marker 
intervals simultaneously), we followed the methodology proposed by 
Kwak et al. (2014, 2016) in which the penalized LOD scores of Broman 
and Speed (2002) and Manichaikul et al. (2009) were used to estimate the 
HKLOD, MLOD, and SLOD scores. Initially, we selected the main effect, 
heavy chain, and light chain penalties obtained from 1000 permutations 
(α=0.05) using the scantwoF function. Then, we used the stepwise model 
search algorithm (Broman and Speed, 2002) to scan the genome using 
forward selection of a model with up to six fixed QTLs, followed by 
backward elimination to the null model using the stepwiseqtlM function.

Table 1.  Systematic (SY) and phenological growth stage (GS) time point (TP) selection approaches for functional QTL mapping and 
genomic prediction in 197 wheat recombinant inbred lines (see the Materials and methods)

No. 
of 
TPs

Approach Scenario Days after sowing 
selected

Growth stagea Multiple QTLsb Genomic heritabilityc

TL SE HF HK ML SL PC1 BS (3, 4, 7) BS (4, 5, 8)

5 SY R1 23/70/128/181/228 3 1 1 5A  
7A

2B 2B 0.23±0.02 0.20±0.02 0.20±0.02

SY R2 23/78/155/193/228 2 2 1 2B 2B 2B 0.23±0.02 0.22±0.02 0.20±0.02
GS R3 70/172/219/223/228 1 1 3 5A  

7A
5A  
7A

5A  
7A

0.29±0.04 0.36±0.03 0.21±0.02

GS R4 181/214/219/223/228 0 1 4 2B  
5A  
7A

7A 7A 0.30±0.04 0.34±0.03 0.20±0.02

10 SY R5 23/44/64/84/119/155/ 
172/187/214/228

5 3 2 2B  
5A  
5B  
7A

5A  
7A

5A 0.26±0.03 0.30±0.04 0.21±0.02

SY R6 37/57/70/98/119/155/ 
172/193/219/228

5 3 2 2B  
5A  
5B  
7A

5A  
7A

5A 0.26±0.04 0.29±0.04 0.24±0.03

GS R7 84/155/166/181/193/ 
209/214/219/223/228

1 5 4 2B  
5A  
7A

5A 5A 0.28±0.04 0.32±0.03 0.24±0.03

GS R8 166/172/181/187/193/
209/214/219/223/228

0 6 4 2B  
5A  
7A

5A 5A 0.28±0.04 0.34±0.04 0.21±0.02

26 – R9 – 14 8 4 2B  
5A  
5B  
7A

2B 5A  
7A

0.28±0.04 0.32±0.02 0.21±0.04

a Number of TPs selected in the tillering (TL), stem elongation (SE), and heading/flowering (HF) growth stages.
b Chromosomes on which QTLs were detected at α=0.05 from the multiple functional QTL model based on multitrait (HKLOD), maximum (MLOD), and 
average (SLOD) score profiles.
c Genomic heritability from the GBLUP model using dimension-reduced (first principal component, PC1) and the last two B-spline coefficients (BS) for five 
(BS 3–4), 10 (BS 4–5), and 26 (BS 7–8) TPs. Values are means ±SE estimated from 50 random cross-validations.
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Power simulations
We performed data perturbation simulations (Yu et al., 2006) to assess the 
statistical power of detecting persistent and transient QTLs using indi-
vidual TP and functional mapping analyses. For each of 1000 iterations of 
the simulations, we randomly chose an SNP from the genotypic data set 
and assigned constant phenotypic effects –α and α (Falconer and Mackay, 
1995) to alternative homozygous genotypes for that SNP (i.e. there were 
no heterozygotes in the data). These effects were then added to BLUPs 
for all TPs (persistent QTLs) or for a single, randomly selected TP (tran-
sient QTLs), and the resulting values were used as phenotypes for QTL 
mapping (i.e. as described above). We varied the additive effects to achieve 
different proportions of variance explained (PVE) using the relationship 

PVE = 1
1+ 1

k2p(1−p)

 (Yu et al., 2006; Slavov et al., 2014), where p is the es-

timated frequency of an arbitrarily chosen allele and k is the simulated 
additive effect divided by the SD of the BLUPs for the respective TP. 
Finally, statistical power was estimated as the proportion of iterations in 
which the simulated additive effects were detected as QTLs at α=0.05 
based on the permutation thresholds used in our analyses of empirical 
data (see above).

Genomic prediction
The phenotypic traits used for prediction were the (i) individual TP 
BLUPs; (ii) the last two B-spline coefficients; and (iii) the first functional 
PCs from analyses of five, 10, and 26 TPs, including different TP selection 
scenarios (R1–R8, Table 1).

We used the additive genomic best linear unbiased prediction 
(GBLUP) model:

ŷ = Xβ + Za+ ε� (3)

where ŷ was a vector of phenotypic values, β was the vector of fixed 
effects, a was the vector of random additive genetic effects of the SNP 
markers, and ε was a vector of random residuals. The incidence matrices 
for β and a were X and Z, respectively. The distributions of random ef-
fects were assumed to be a~N(0,σ 2aGa) and ε~N(0,σ 2εI), where I was the 
identity matrix and Ga was the additive genomic relationship matrix cal-
culated using the first formula proposed by VanRaden (2008).

We also integrated QTL mapping information into the GBLUP model 
(Equation 3). This model is expected to be advantageous assuming that 
height is controlled by relatively few genes of large effect and many genes 
of smaller effect (Sarinelli et  al., 2019). Initially, we performed a single 
HKLOD functional mapping scan to identify significant cofactor SNPs 
at α=0.05 based on the 1000 permutations in each training set (148 indi-
viduals). Then, these cofactor SNPs, if any were detected, were included 
as fixed-effect covariates into the GBLUP model. For this analysis, we 
only used the systematic R1 and R5 scenarios, as well as the full set of 26 
TPs (R9; Table 1).

Predictive ability (r) was calculated as the Pearson correlation between 
adjusted values and genomic estimated breeding values in 50 replications 
from independent validation scenarios (Albrecht et al., 2014), randomly 
sampling 75% of the genotypes (n=148) to form a training set, while the 
remaining 25% (n=49) were used as a validation set. We applied Fisher’s 
Z transformation of the predictive abilities and compared them among 
scenarios using Scott–Knott’s test (Scott and Knott, 1974) at α=0.05. 
All prediction analyses were performed using the Bayesian Generalized 
Linear Regression (BGLR) R package (Perez and de los Campos, 2014), 
using 60  000 Markov Chain Monte Carlo (MCMC) iterations, with 
15 000 iterations for burn-in, and keeping only one from every five con-
secutive iterations to minimize auto-correlation. In addition to predicted 
phenotypes, we extracted genomic estimates of the additive genetic 
(σ 2a=Vga) and residual (σ 2ε=Vgε) variances, enabling the calculation of 
genomic heritability as h2

g=σ 2a/(σ 2a+σ 2ε).

Results

Genetic variances and temporal covariances in height 
increased over time

We generated 3D height images (Fig. 1A) for each plot under 
the robotic Field Scanalyzer over the entire crop growth cycle. 
The mean broad-sense heritability across all TPs was 0.68 for 
the 2017 data. As expected, both variances and covariances 
among TPs increased over the course of the growing season 
(Fig. 1B–D). In the 2016 data set, the mean broad-sense herit-
ability was 0.57 (Supplementary Fig. S5A, B). However, due to 
the low quality of the 2016 data set, particularly during the late 
stages of the growing season (see the Materials and methods), 
most downstream analyses were limited to data from 2017.

To enable comparisons among different TP selection strat-
egies (Table  1), we used B-spline smoothing followed by 
functional PCA of the adjusted values for each scenario. The 
resulting temporal pattern was consistent among scenarios, ini-
tially following an accelerating and then a linear trend, with 
distinct, genotype-specific trajectories, including for the two 
RIL parents (i.e. significant genotype×TP interaction effects, 
P<0.01) (Fig.  1C, E; Supplementary Fig. S6A, B). The pro-
portion of variance explained by the first two PCs was high 
(93–96%) and increased slightly with the number of TPs ana-
lysed (Fig. 1F; Supplementary Fig. S6C, D).

Individual time point analyses detected multiple QTLs 
across all developmental stages

From the IM and CIM scans of the 2017 data (i.e. analysing 
data from each TP separately), we detected a total of six QTLs 
(Fig. 2; Supplementary Figs S7, S8A). Three of these (i.e. on 
chromosomes 2A, 3A, and 6A) were associated with height 
only during the tillering growth stage, whereas one (on 
chromosome 7A) was detected exclusively during late stages. 
In contrast, the QTL on chromosome 2B was detected in 
both the tillering and stem elongation (mid) stages, whereas 
the QTL on chromosome 5A was, surprisingly, detected in 
the tillering and heading stages, but not the intervening stem 
elongation stage.

Based on the 2016 data, we detected one QTL on chromo-
some 2B across multiple TPs, whereas another QTL on chromo-
some 6A was detected in a single TP, in a different growth stage 
from 2017 (Supplementary Figs S8B, S9A). Furthermore, ana-
lyses of the manual plant height data from 2016 resulted in the 
detection of two additional late-stage QTLs on chromosomes 
1A and 2D (Supplementary Fig. S9B–E).

Additional QTLs could be detected using functional 
mapping

Using single functional mapping at five, 10, and 26 TPs based 
on the multivariate LOD test statistic (HKLOD score), we 
identified two, three, and four QTLs, respectively (Fig. 3A–C). 
Results from the MLOD and SLOD approaches were largely 
consistent with this (Fig. 3D–I) as were results from multiple 
functional mapping analyses (Fig.  3J–R). Most importantly, 
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we detected an additional QTL on chromosome 5B that was 
consistently identified based on single and multiple functional 
QTL mapping (Figs 2; 3C, F, I, K, L), but not in scans of in-
dividual TP data (Fig. 2; Supplementary Fig. S7). As with in-
dividual TP approaches, analyses of the 2016 data using single 
QTL mapping only resulted in the detection of the QTL on 
chromosome 2B (Supplementary Fig. S10A–I).

As expected under the presumed genetic model of highly 
complex temporal dynamics of height growth, both absolute ef-
fect sizes and proportions of PVEs varied substantially across the 
growing season, with clear examples of early (5A, 5B), late (7A), 
or persistent (2B) QTLs (Fig. 4A–F). Furthermore, despite some 
variability in the relative performances of HKLOD, MLOD, and 
SLOD models, power simulations demonstrated a slight advan-
tage of functional mapping approaches (i.e. versus conventional 
individual TP analyses) for the detection of persistent QTLs 
(Fig. 5A–C). In contrast, individual TP scans had substantially 
greater power for detecting transient QTLs (Fig. 5D–F).

Individual time point genomic heritability and predictive 
ability were stable across the growing season

Genetic and residual variance components from the GBLUP 
model generally followed the same temporal patterns as those 
from the FA model, with increasing values after the tillering 
growth stage (Fig. 6A). Consequently, the time trend of genomic 
heritability resembled that of broad-sense heritability, stabilizing 
at ~0.25 after the first two TPs (Fig. 6B). As expected, genomic 
predictive ability followed a similar pattern, fluctuating at ~0.30 
and decreasing slightly at the last TP, presumably because of 
lodging, which affected data quality for some genotypes (Figs 1C, 
6C). As expected from the lower quality of the 2016 data set (see 
the Materials and methods), we observed very low individual TP 
predictive abilities (ranging from 0 to 0.1; results not shown).

Fig. 1.  Temporal pattern of canopy height growth in a wheat recombinant mapping population measured from a robotic Field Scanalyzer in 2017. (A) 
3D canopy images at 23, 70, 181, and 228 days after sowing (DAS) from one field plot. (B) Density distributions of the adjusted phenotypic values (best 
linear unbiased predictions, BLUPs) within time points (TPs) over the course of the growing season. (C) Adjusted height values of 197 recombinant inbred 
line genotypes, and both parents Chinese Spring (CS) and Paragon (PAR) from 26 TPs. The dotted line shows the estimated cubic spline curve across 
all genotypes. The mean broad-sense heritability across all TPs was 0.68. The growth stages delineated by dashed lines are tillering (23–128 TP), stem 
elongation (155–209 TP), and heading/flowering (214–228 TP). (D) Temporal genetic variance–covariance structure (VCOV) surface plot. (E) B-spline 
smoothed and (F) dimension-reduced [first (PC1) and second (PC2) functional principal components] height phenotypes based on 26 TPs. Percentages 
in parentheses represent the variance explained by each of the two PCs. (This figure is available in colour at JXB online.)
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Smoothing height phenotypes reduces noise and 
increases predictive ability

The predictive ability for B-spline coefficients of phenotypes that 

had been smoothed was generally higher than that for individual 
TP or PC data (Fig. 7). Based on our evaluation of different TP 
selection strategies, there was a clear advantage (i.e. from ~10% 
to >3-fold) of using phenological information compared with 

Fig. 2.  Summary of individual time point (TP) and functional QTL mapping results in 2017. Growth stages are defined as in Fig. 1. Chr, chromosome on 
which a QTL was detected; FFE, flag leaf fully emerged; FSO, flag leaf sheath opening; SV, first spikelet visible; SE, spike 100% emerged; AC, anthesis 
completed. (This figure is available in colour at JXB online.)

Fig. 3.  Functional QTL mapping analysis for five, 10, and 26 time points (TPs) in 2017. (A–I) Single and (J–R) multiple QTL approach based on multitrait 
(HKLOD), maximum (MLOD), and average (SLOD) profiles. The 5 and 10 TP results correspond to the systematic R1 and R5 scenarios (see Table 1). 
Dashed lines indicate the α=0.05 thresholds. Numbers above peaks in the multiple QTL mapping plots represent the positions of the loci on the 
respective chromosomes (Chr). (This figure is available in colour at JXB online.)
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systematically interspersed sampling, particularly when a small 
number of TPs were evaluated (Fig. 7B; Table 1). Interestingly, 
increasing the number of TPs analysed beyond five did not im-
prove predictive abilities (Fig.  7B–D). Finally, including func-
tional QTLs detected in the training population as fixed-effect 
covariates in the GBLUP model tended to increase predictive 
ability slightly, particularly for PC phenotypes (Fig. 8).

Discussion

Genetic variances and temporal covariances in height 
increased over time

Previous longitudinal studies of plant height suggested that both 
genetic and environmental variation tend to increase during the 
growing season, presumably because of the cumulative effects of 
large numbers of interacting genetic loci and environmental cues 
(Wang et al., 2010; Wu et al., 2010; Holman et al., 2016; Davey 
et al., 2017). Consistent with this expectation, we observed higher 
genetic variability in later developmental stages and increasing 
temporal genetic covariance, but also substantially higher re-
sidual (i.e. presumably, to a large extent, environmental) variation 

during the second half of the growing season (Figs 1C–E; 6A). 
Consequently, both broad-sense heritabilities increased steeply 
during the early part of the tillering phase and then fluctuated 
considerably during the stem elongation and flowering phases 
(Fig. 6B). Similar patterns of highly variable heritability during 
crop growth have been reported across a range of complex traits 
by high-throughput phenotyping studies in wheat (Madec et al., 
2017), rice (Campbell et al., 2017), barley (Chen et al., 2014), and 
Setaria (Feldman et al., 2017). Thus, the distribution of sampled 
TPs across developmental and/or phenological stages is an im-
portant practical consideration.

Individual time point analyses detected multiple QTLs 
across all developmental stages

All of the QTLs detected in our study (Figs  2–4) are on 
chromosomes for which QTLs have been reported previously 
(Wu et al., 2010; Griffiths et al., 2012; Bentley et al., 2014; Zanke 
et al., 2014; Gao et al., 2015; Wurschum et al., 2015; Tian et al., 
2017; Guan et  al., 2018). For example, Griffiths et  al. (2012) 
detected meta-QTLs on chromosomes 2A, 2B, 3A, 5A, and 6A 
based on analyses of four mapping populations. Similarly, Gao 
et al. (2015) identified QTLs on chromosomes 2B, 5A, and 7A 
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online.)
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in a set of RILs from a cross between Zhou8425B and CS (i.e. 
one of the parents used in our study). Thus, it seems plausible 
that some of the QTLs detected in our analyses are caused by 
variation in well-known Rht dwarfing genes (Ellis et al., 2005; 
Wu et al., 2010). However, we did not detect any strong signals 
on homoeologous chromosome group 4, presumably because 
the well-characterized Rht-B1 and Rht-D1 loci (Wurschum 
et  al., 2017, 2018) do not segregate in the cross we studied 
(Gao et al., 2015; Kowalski et al., 2016).

Interestingly, our individual TP analyses resulted in the de-
tection of putatively transient QTLs, some of which were 
not detectable using functional mapping approaches (Fig. 2). 
This finding is consistent with a number of recent studies 
that have reported temporally dynamic QTL expression in 
wheat (Zhang et  al., 2017; Camargo et  al., 2018) and other 
crops (Busemeyer et al., 2013; Al-Tamimi et al., 2016; Campbell 
et  al., 2017; Feldman et  al., 2017; Muraya et  al., 2017; Ward 
et al., 2019). However, because transient QTLs are inherently 
more difficult to detect (i.e. due to their typically smaller effect 
sizes and narrow windows of expression) and are more likely 
to be false positives, their overall contribution to the genetic 
architecture of complex traits is currently unclear. Addressing 
this question would require using much larger mapping 

populations and possibly analyses of more TPs. Technological 
advances should make considerable upscaling possible in the 
near future (Roitsch et al., 2019).

Functional analyses increased QTL detection power 
and genomic predictive ability

Our functional mapping analyses resulted in the detection of 
an additional QTL on chromosome 5B (Figs 2–4), which ap-
peared to affect plant height growth primarily during the til-
lering stage (Fig. 4E, F). A QTL has previously been reported 
on the same chromosome, also with effects predominantly in 
early phenological stages (Wang et al., 2010; Wu et al., 2010).

One of the motivating arguments for the development of 
functional mapping approaches was the premise that these 
approaches would have greater statistical power than conven-
tional QTL mapping of data from individual TPs (Ma et  al., 
2002; Wu et  al., 2004; Wu and Lin, 2006). Both our empir-
ical results (Fig. 2) and power simulations (Fig. 5A–C) were 
consistent with this expectation, but only for persistent QTLs. 
In contrast, individual TP analyses resulted in the detection of 
higher numbers of transient or stage-specific QTLs (Fig.  2), 
which was also consistent with our power simulations for 
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transient QTLs (Fig.  5D–F). Therefore, combining both in-
dividual TP and functional mapping approaches may be pref-
erable as these approaches are able to capture different types 

of QTLs (Bac-Molenaar et  al., 2015; Campbell et  al., 2017; 
Muraya et al., 2017; Camargo et al., 2018).

Fig. 6.  Genomic prediction of canopy height across 26 individual time points (TPs). (A) Variance estimates for each TP from the phenotypic (factor 
analytic, FA) and genomic (genomic best linear unbiased predictor, GBLUP) model. Growth stages are defined as in Fig. 1. (B) Broad-sense (H2) and 
genomic (h2

g) heritability based on the phenotypic FA and GBLUP models, respectively. Error bars represent SEs. (C) Predictive ability (r) based on the 
GBLUP model. DAS, days after sowing. (This figure is available in colour at JXB online.)
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colour at JXB online.)
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The HKLOD method often outperformed the MLOD and 
SLOD approaches in analyses of both empirical (Fig. 3) and 
simulation data (Fig.  5). However, this pattern was far from 
consistent, in agreement with previous findings about the con-
trasting characteristics of these approaches Kwak et al. (2014, 
2016). Given their relatively low computational cost, we there-
fore recommend using all three functional mapping methods.

Unlike the highly variable conventional estimates of her-
itability (i.e. based exclusively on phenotypic data, Fig.  6A), 
genomic heritability and predictive ability were relatively 
stable throughout the growing season, particularly after the 
early part of the tillering stage (Fig. 6B, C). Thus, genomic pre-
diction based on data from a single, appropriately chosen TP 
would be reasonably accurate. However, we identified three 
factors that can further increase predictive ability. First, predic-
tions of smoothed height phenotypes (i.e. multiple TPs) were 
>20% more accurate than those of phenotypes from individual 
TPs (Fig. 7), presumably as a result of the reduction of meas-
urement error (Kwak et  al., 2016). Consistent with this ex-
planation, genomic heritabilities of the smoothed data were 
on average 7% higher than those of individual TPs (Table 1 
versus Fig. 6B). Second, we observed a slight increase in pre-
dictive ability when including significant QTLs as fixed-effect 
covariates in the GBLUP model (Fig. 8). This is consistent with 
several previous empirical and simulation studies (Bernardo, 
2014; Arruda et al., 2016; Spindel et al., 2016; Bian and Holland, 
2017; McElroy et  al., 2018; Sarinelli et  al., 2019). Finally, as 
expected based on general knowledge about wheat growth 
and development (Fischer, 2011; Fischer and Rebetzke, 2018; 
Dreccer et al., 2019), predictive abilities were up to three times 
higher when TPs were chosen based on phenological growth 
stages compared with a systematically interspersed selection 
of TPs throughout the growing season (Fig. 7). Furthermore, 
as in previous studies (Camargo et  al., 2016; Rutkoski et  al., 
2016), our findings emphasized the importance of sampling 
during the reproductive crop stage (i.e. heading and flowering), 

presumably because of the higher genetic variance captured 
during that stage (Table 1; Figs 6, 7).

Recommendations

The crux of our findings is the existence of a trade-off be-
tween the extraction of data for large numbers of TPs (i.e. to 
detect as many transient or stage-specific QTLs as possible) 
and the additional computational cost (mostly image pro-
cessing but also downstream analyses) that may not necessarily 
translate into improved genomic prediction or more com-
plete understanding of trait architecture. Based on our results, 
we formulated the following two practical recommendations, 
which are naturally only applicable in situations similar to our 
study. First, when the emphasis is on dissecting trait architec-
ture, we recommend using both individual TP and functional 
mapping approaches to maximize the overall number and types 
of QTLs detected. Secondly, for more applied purposes (e.g. 
in breeding), analyses of spline-smoothed phenotypes selected 
based on phenological information may be sufficient to maxi-
mize genomic predictive ability. Further slight improvements 
may be achieved through the inclusion of QTLs as fixed-effect 
covariates, though it is not currently clear if the additional 
complexity (and consequently delay) associated with QTL de-
tection is justified.

Supplementary data

Supplementary data are available at JXB online.
Fig. S1. Illustration of steps for processing of point clouds.
Fig. S2. Manual ground height versus height from the 3D 

point cloud.
Fig. S3. Heatmap of genetic correlations of height between 

26 TPs in 2017.
Fig. S4. Genetic map consisting of 2330 SNPs.
Fig. S5. Temporal pattern of canopy height growth in 2016.
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Fig. 8.  Genomic prediction including functional QTLs as fixed-effect covariates. (A–D) Predictive ability with and without QTLs detected in the training 
population as fixed-effect covariates in the GBLUP model. (A) Results for the ‘best’ (i.e. having the highest predictive ability, DAS=223) and last 
(DAS=228) individual time points (TPs). (B–D) Results for dimension-reduced (first principal component, PC1), and the last two B-spline coefficients (BS) 
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the mean and SE from 50 random cross-validations. Letters above bars indicate significant differences at α=0.05 across all methods. DAS, days after 
sowing. (This figure is available in colour at JXB online.)
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Fig. S6. Smoothed and dimension-reduced height in 2017.
Fig. S7. Interval and composite QTL mapping at 26 TPs 

in 2017.
Fig. S8. Signed LOD scores for each time point in 2017 

and 2016.
Fig. S9. Summary of individual TP mapping results in 2016.
Fig. S10. Functional QTL mapping analysis for five, 10, and 

22 TPs in 2016.
Table S1. Likelihood ratio and Wald tests at 26 TPs in 2017.

Data availability

The phenotypic and genotypic data, as well as the R scripts used for all 
analyses in this study, can be found at Mendeley (Lyra, 2019; https://data.
mendeley.com/datasets/pkxpkw6j43/2).
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