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DISPERSAL BY FLIGHT! 
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Insect dispersal is a confused subject and lacks system. This confusion 
is not entirely the result of the diversity of insects but of the ill-defined con
cept of dispersal. Insects move in different ways, resulting in different pat
terns of dispersion which can be characteristic of the species within a habitat 
(151). For example, adult insects gather together temporarily to rest, feed, 
mate, lay eggs, or to hibernate; the immature stages are also spatially dis
tributed in certain ways (151). These patterns periodically disintegrate and 
reform. Within wide areas populations mix rather than disperse. This peri
odic disintegration of the population pattern in its breeding habitat is the 
process of dispersal and migration, and more of it is adaptive and less acci
dental than has been thought. 

It cannot be assumed that insects released artificially from point sources 
simulate natural populations; and until the natural sources, the populations, 
the physiological states of individuals, and the areas are defined, there is 
little chance of making a system which describes how biological and ecolog
ical processes, and the statistical distributions they cause, are associated in 
nature. 

Most entomologists work with a few closely related species, and many 
general assumptions about dispersal (and "migration" with which it is 
linked) stress features which, though spectacular, are specialized rather than 
general. A multitude of terms has resulted (vagrancy, nomadism, dissemi
nation, etc.) that confuse rather than clarify the subject (17, 69, 155). A gen
eral system for dispersal seems to be needed; such a system must first de
lineate the working of the process and seek to identify the main and the sub
sidiary processes whose effects on distribution might later be expressed 
mathematically. This is the aim of this article, which also tries to character
ize migration and adaptive dispersal physiologically and ecologically, as well 
as behaviourally. 

THE MAIN THESIS 

With few exceptions, it is primarily winged adults, especially females, 
that redistribute populations adaptively and periodically beyond the breed
ing place. It is their main function. 

The primary source is the breeding population, and the main dispersal 
flight (or flights) usually begin with young, sexually immature females at 
their birthplace or nearby. These insects seem particularly adapted to flights, 
lengthy for the species, and are relatively undistracted by the need to rest, 

1 The survey of literature pertaining to this review was concluded in February 
1965. 
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234 JOHNSON 

feed, or lay eggs. At exodus, and later, orientation is adapted to. get them 
out and beyond the birthplace to another oviposition site. As the need to 
lay eggs grows, flight often seems to be more local, and presumably less 
widely dispersive (83). Dispersal by other stages is, in general , subsidiary 
to this. There are, however, important exceptions which will be discussed. 

BACKGROUND AND PRESENT APPROACH. 

Different people have seen migration and dispersal as distinct, processes, 
twice reviewed in these volumes. Williams reviewed a special class of adap
tive flight, namely, when insects move unidirectionally en masse, seemingly 
able to control their direction for relatively long distances (168). He called 

these migrations. By contrast , he saw dispersal mainly as a passive and ac
cidental process as when insects are scattered by wind. This view is still com
mon. 

A broader view of migration expounded by Kennedy was recognized, 
though not completely accepted, in the second review by Schneider (136). 
This view regards mass flights, like those of aphids (formerly regarded as 

passive), as active and adapted to displace populations by wind which con
trols the direction of travel; it characterizes migration behaviourally as an 
accentuation ·of locomotor function with a depression of vegetative function. 
Many classical migrants once thought able to control the direction of their 
migration, such as locusts and some butterflies, now come into this category 
of adaptive wind-borne travellers, and when wind takes control it usually 
disperses, swarm locusts being a notable exception. Also, dispersal occurs 
as insects drop out en route (153, 156). In this review, therefore, migration 
and flight adapted for dispersal per se are regarded as synonymous. 

Nevertheless, insects do disperse accidentally, or (presumably) inciden
tally while obtaining food or mates, or by other activities, in a quiet, con
tinuous and humdrum way that Elton thought general among animals. An
drewartha & Birch accepted this but thought animals also had an innate ten
dency to disperse though they did not specify how; with insects, that ten
dency was phased with the other activities of adult life (4). 

I t is extremely difficult to measure how much dispersion occurs acci
dentally, incidentally, or adaptively, for such movements are usually indis 

tinguishable in nature. But the mass movements, usually called migra
tory, stand out as probably the most important. Therefore if a general, valid, 
and functional system for all of these movements can be made; it may show 
up effects of incidental and accidental movements in clearer perspective (I 
suggest that these are small by comparison with those of adaptive move
ments) .  

PERSPECTIVES OF THE SYSTEM 

The system starts at the birthplace of adults ; it is concerned mainly with 
females, and migratory or dispersive performance is governed considerably 
by the life span of the adult. 
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ADAPTIVE DISPERSAL BY FLIGHT 235 

MIGRATION BY MALES AND FEMALES 

It is often assumed that males and females migrate similarly. However, 
they do not. Migratory populations always contain females from the begin
ning to the end of a migration. Males perform more variably. 

With some species both sexes migrate from source to destination while 
sexually immature, maturing together and mating at the end of the journey 
(Schistocerca gregaria Forskal) (118, 119). With others, like Eurygaster in
tegriceps Putnam, sexually immature males and females fly from the birth
place to hibernation sites but males mature and mate after hibernating, with 
immature females that mature more slowly and migrate back to breeding 
areas (20). Males of Danaus plexippus mature soon after beginning to mi
grate but nevertheless accompany immature females hundreds of miles, mat

ing with them before hibernating (43). Males of Aedes taeniorhynchus (Wie
demann) mate at exodus and fly only a very short distance, leaving the im
mature females to migrate alone for many more miles (63, 122). The females 
of the moth Rhyacionia buoliana (Schiffermueller) do not normally migrate 
until fertilized soon after emergence (59). Parthenogenetic aphids need no 
male. 

The main migratory role thus belongs, generally, to the female. It is her 
function to lay eggs when she gets to a new habitat. This timing is ensured 
generally by her sexual immaturity at exodus, though this is modified in some 
species. The role of the male is merely to fertilize the female; and that can 
be arranged anywhere. Thus, generalizations are more applicable to females, 

whereas males present special problems. 

MIGRATION IN RELATION TO ADULT LIFE-SPAN 

All types of migration or adaptive dispersal can be classified into three 
types, on the basis of the adult life-span. 

Type I: short-lived adults that emigrate and die within a season .-Most of 
these insects fly from the birthplace, lay eggs elsewhere and die without re
turning. This is achieved by many types of migratory flight. For example, 
the long distance, wind-borne, speedy flight of locusts; the short, weak flight 
of termites; the slow, wind-borne flight of thrips and aphids; and the classical 
linear migration flights of many butterflies. The majority of such emigra
tions are dispersive. 

Type II: short-lived adults that emigrate and return .-Females fly from the 
birthplace to feeding and oogenesis sites, mature eggs there and then fly back 
to the former (or nearby) places to oviposit. The to and fro journey may 
be repeated more than once by the same individual. Examples are Melolon
tha melolontha (L.) and many Odonata (34, 135). 

These flights may not be migratory in the sense that the insects are un
distracted in flight (as many migrants characteristically are) and normally 
they tend to concentrate rather than to disperse the population. But occa
sionally longer flights beyond the habitat occur [e.g., "beeliners" among Phyl
lopertha horticola (L.) (107, 108)] and most migratory flights of dragonflies 
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236 JOHNSON 

are probably extensions of the post-teneral exodus flight (34, 82); both of 
these seem to be truly migratory in the ecological and behavioural senses 
and eventually are dispersive. 

Type III: long-lived adults that hibernate or aestivate.-Flights from birth
place to hibernation or aestivation sites usually end, not in dispersion but 
in aggregation ; but when the process is continued with so-called "return mi
gration" in the next season, it is usually dispersive. Examples are many 
Coleoptera, e.g., Hippodamia convergens Guerin (64) and D. plexippus (156), 
and many Noctuidae, e.g., Agrotis infusa Boisduval (30). Some do most of 
the migrating before hibernation [as with Leptinotarsa decemlineata Say in 
North America and some parts of Europe (154, 166)], others mostly after
wards. Among the latter, some even hibernate where they become adult, dis
persing only afterwards [Conophthorus coniperda (Schwarz) (71)]. 

Also, the distinction between Types I and II is sometimes blurred, de
pending on whether most flying is done before or after feeding and oogenesis; 
thus, some mosquitoes fly three or four miles after emergence and only 
then feed and redisperse--some apparently even returning from whence t hey 
came [e.g., Mansonia perturbans (Walker) (141)]. Little seems to be known 
about relative distances travelled by many insects before and after ovipo
sition, or between egg laying by the same individuals; but the emigration 
after pupal emergence (often characterized by a relatively prolonged and 
undistracted flight), is often the most noticeable with recognized migrants. 
This is the typical "migratory" flight, during which many responses, es
pecially those of feeding and oviposition, are diminished temporarily. 

PARTS OF THE SYSTEM 

PLACE OF ORIGIN 

There are two fundamentally different types of "populated place " (4) 
from which dispersal occurs adaptively. Most important is the site where 
new adults develop. There, during their development, the insects make de
mands on the habitat and change it. These changes, and those caused by the 
seasons affect the insects' ontogeny and apparently determine whether or 
not, or in what proportions, adults will become migrants, and hence the ex
tent and amount of dispersal. 

The second type of "place" is of secondary importance. It is not a birth
place but some other site where adults assemble. If Type II movements are 
migratory in the senses defined earlier (and this is debatable), feeding and 
oogenesis sites are among these. Otherwise the principle ones are hiberna� 
tion and aestivation sites. In t hese sites the adults are already migrant hav
ing come from a breeding site; they merely remain there temporarily, making 
few or no demands on the place and ultimately move from it dispersively. 

It is therefore with the adult's birthplace that a functional system be
gins; thereafter follows the sequence of events in the adult's life leading to 
its death elsewhere. 
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ADAPTIVE DISPERSAL BY FLIGHT 237 

EXODUS 

There are a few observations of the beginnings of "classical" migrations 
especially of butterflies and dragonflies; rather more exist for migratory in
sects in the wider sense, including wind-borne dispersants formerly consid
ered to be "passive." But, of the vast majority of even well known and com
mon species, nothing is known about exodus behaviour though it is very im
portant for dispersal. Most commonly recognized mass dispersals begin not 
only at the adult's birthplace or nearby, but relatively soon after the adult 
emerges, and on an early, often the first, flight (82). The prime function of 
such flights is departure, sometimes for long distances, as soon as the insects 
become fully flight-mature. References to this type of dispersal, or in sup
port of it in various orders, are made in the following: Odonata (34); Or
thoptera (62, 124); Isoptera (77); Psocoptera (114); Homoptera: Aphididae 
(80,91) Cicadellidae (31, 97, 112), Psyllidae (167); Heteroptera (10,20,50, 
86, 147, 160); Lepidoptera (1, 14, 16, 59, 110, 113, 130, 139, 153, 156, 161, 
162); Trichoptera (36); Coleoptera (27, 53, 108, 125, 128, 140, 154, 158); 
Diptera (38, 63, 134, 146): Hymenoptera (8,106, 148). 

There are more references it seems to the positive act of exodus (few 
though these are) than to others showing that adults do not leave, and it 
would be instructive to search out the latter. Some examples, from various 
orders, of insects that do not disperse widely after emerging are as follows: 
Odonata (34); Lepidoptera (49, 137); Coleoptera (107, 108); Hemiptera (92); 
Orthoptera (9). 

It is recognized that, although winged adults almost invariably fly soon 
after becoming adult, such flight does not necessarily imply an adaptive dis
persal (88). The point made here is that migratory flights or the sudden dis
appearance of large adult populations do not usually happen after the alates 
have already spent part of their lives flying about inside the habitat or ter
ritory. Significant dispersal, when it begins, is usually an early, even the first, 
main act. 

Drosophila pseudoobscura Frolowa populations gradually diffuse (42), 
though a migratory phase has been claimed for other species (44). The non
migratory form of the butterfly Ascia monuste L. diffuses gradually, never
theless largely by the young (110) 

Clearly, the system is graded. Adaptive dispersants or migrants however, 
do not have a "natural resistance ... to any movement away from their 
food and shelter habitat" (24) if that is the place where they were born, 
until some adverse factor drives them out. A major problem is to obtain more 
information on exodus behaviour both with migrant and so-called nonmi
grant forms of the same species. 

The exodus fiight.-Descriptions of flights at exodus. of several widely dif
fering species (often accepted migrants) indicate a characteristic behaviour, 
different from what would be expected if exodus was casual. Flight is often 
almost vertical or at a steep angle and often spiral until between 20 and 
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238 JOHNSON 

40 ft above the ground; after this the insects depart either in a linear, ori
entated flight (which may later become wind-directed) , or they become 
immediately wind-borne. Examples of the initial upward and then linear 
flight have been described for the following: 

Odonata 
Coleoptera 

Lepidoptera 
Heteroptera 

Diptera 

Anax imperator Leach (32). 

Limonius californicus (Mann.) (138); Melolontha hippocastani 
Fabricius and M. vulgaris Fabricius (35, 135); Phyllopertha 
horticola (107, 108); Conophthorus coniperda (72); Trypo
dendron lineatum (Olive]') (58); Hippodamia convergens (64); 
Priacma serrata (Lecomte) (5). 

Hemileuca oliviae Cockerell (3); Agrotis infusa Boisduval (30), 
Corixa geo.ffroyi Leach and C. fabricius (Fieber) (95, 104); 

Dysdercus sidae Montr. (10). 
Aedes taeniorhynchus (63); Aedes cataphylta Dyar (94). 

Examples of insects becoming wind-borne after the elevating flight a.re: 
H. convergens (64); Oscinella frit (L) . ( 146); A phis fabae Scopoli and Myzus 
persicae (Sulzer) (91); Limathrips cerea.lium Haliday (100); Choristoneura 
fumiferana Clemens (14); Plusia gamma L. (2,96, 142); Rhyacionia buoliana 
(60). In some of the above insects, such flights can occur also after hiberna
tion or aestivation. 

There is often a preliminary aggregation fairly high in the air in which 
many insects "mill around" in flight before migrating. This occurs charac
teristically and dramatically with swarm locusts (62), A .  taeniarhynchus (63), 
and also with A scia monuste L. (110), Corixa geoffroyi Leach (104), D. plex
ippus ( 156), M. melalontha (135), Myrmica emeryana Fore! (106) and prob
ably Simulium Vf3nustum Say, and S. vitta,tum Zetterstedt (74) . It is not to be 
confused with mating swarms (though mating accompanies it at least in 
Aedes and Myrmica). This behaviour might account for the belief that insects 
"assemble" like birds before migrating. Actually, this is not so, the mass 
exodus being primarily a consequence of mass emergence, (or secondarily 
after aggregation at hibernation or aestivation sites with some species) .  

"Post-teneral" and other types of  exodus.-There has been some criticism 
of the idea that post-teneral migration i:, general ( 136) , principally because 
insects migrate also after hibernating, or because migration is said to be de
layed beyond the end of the so-called "teneral period" (20) , or because some 
migratory flights continue long after primary exodus as among locusts. These 
criticisms do not invalidate the general importance of post-teneral migra
tion, which is very widespread and usually occurs also among insects that 
hibernate (Type III) , though in an extreme instance like Canophtharus mi
gration is suspended until after hibernation which actually occurs at the 
emergence site (71). Most insects that migrate inter-reproductively or con
tinually, like frit flies, also begin "post-tenerally," 

The term, "teneral" ( = tender) is not to be taken too literally in this con
text. Dragonflies migrate while the cuticle is still soft and the abdomen 
droops (32) . Locusts continue to develop pigment after exodus ( 124, 163) . 
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ADAPTIVE DISPERSAL BY FLIGHT 239 

Pierids can fly two hours after emerging but the cuticle is not at its maxi
mum hardness. Eurygaster integriceps needs several days to fill the fat body 
before migrating (20). The hardening of cuticle, pigmentation, filling of fat 
body, integration of enzyme systems in flight muscles [metachemogenesis 
(129»), are variably phased, and the term "teneral" is vague and arbitrary. 
The fact remains, that most migrations normally begin as soon as the insect 
is flight-mature; and apparently not after the insect has had a lengthy pe
riod of other kinds of flying. 

Synchronization of e xodus.--Most mass migrations (especially of Type I) 
are synchronized at primary exodus following mass emergence. Some syn
chronization of return flights from oogenesis sites occurs in Type II, notably 
with aggregated flights of dragonflies returning to oviposit (34), or after hi
bernation or aestivation (30, 145). 

Primary exodus from birthplace can be synchronized seasonally in sev
eral ways. The population can "pile up" in the last, diapausing instar so that 
a large proportion of adults emerge more or less together. Synchronized emer
gence could also occur if successive instars each had successively higher de
velopment temperature thresholds, and, as weather became warmer, adults 
emerged over a short period (34). Adults develop synchronously from eggs 
laid locally by passing migrants (10); some emerge to pile up inside a gall 
or termitarium until they are released by suitable weather, as with species 
of Adelgesand with termites. 

Within the seasonal curve, synchronized diel flight periodicities are of 
many types. Recently, 400 taxa have been exhaustively classified, and an
alyzed. Normally at exodus, flight periodicity is controlled by the periodicity 
of emergence (which may be affected by endogenous factors), the length of 
the teneral period as affected by temperature and the operation of light and 
temperature thresholds for takeoff, endogenous processes being obscured 
(102). The system has been worked out in great detail for Aphis fabae (84). 
Normally, with most day-flying insects, temperature controls the start of 
takeoff in the morning (light being already permissive) and light cuts off 
flight in the evening while temperature is still permissive (102). The reverse 
tends to occur for crepuscular and nocturnal fliers. 

Sudden mass flights occur for several reasons. Most day-fliers (the most 
widely dispersing species) develop into flight-mature adults at a lower tem
perature than that permitting flight, and a cold period causes more adults 
to mature than can fly. When warm, these take off en masse. Supraoptimal 
temperatures have a similar effect. These delays have been described for A. 
fabae (84), dragonflies (34), the beet leafhopper, Circuli fer tenellus (Baker) 
(97), Aleyrodes brassicae (Walker) (92), and Limothrips cerealium (101). Some 
hibernating insects also need a temperature-dependent flight maturation pe
riod [thrips (100); Dendroctonus pseudotsugae (7)] but are released only when 
the temperature rises above the takeoff threshold, causing sudden mass 
flights over wide areas of country (145). 

Flying insects that are normally high in the air may become concentrated 
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240 JOHNSON 

in dense swarms near the ground by the atmospheric stability in inversions 
(81 ) ,  by downdrafts associated with the passage of cold fronts (61 ,  70), or 
by convergent winds as at the Inter Tropical Convergence Zone ( 124) . This 
can be the reverse of dispersal, but nevertheless part of the same process. 
All such flights give a subjective but erroneous impression of a sudden r'e
sponse to goals or to adversity. 

FACTORS AFFECTING THE NUMBERS OF INSECTS 

FLYING, ESPECIALLY IN RELATION 

TO WEATHER 

"Flight activity" is a universal term among entomologists. However, the 
concept is dubious and misleading, and the term is used to describe several 
different, and even opposite things, namely, total insects in the air ( 170); 
the proportion of a population flying (169); the rate of takeoff (67) or of land
ing per unit time (both of different and of the same individuals); and of the 
duration of flight ( 131 ,  132). The last three alone are conflicting, more of 
one causing less of the other, and therefore not related to external causes in 
the same way. 

"Activity," conceived as changes in proportion of a population flying, 
caused by differences in the flight response of its individual members harks 
back to a metabolic concept when temperature was thought to affect aerial 

numbers reversibly more or less through the metabolism of insects obeying 
the van t'Hoff Law (131, 132). This concept is partly responsible for the use 
of linear regression analysis of field data, a quite inappropriate approach for 
anything but empirical prediction ; for the individuals themselves do not re
spond kinetically in a simple, reversible way, apart from complications aris
ing from their adaptation to stimuli (40, 41 ,  67) and from the collective ex
pression of their responses in nature. 

For example, the minimum temperature needed for takeoff is usually two 
or three degrees higher than that needed to keep the insect flying ; a drop 
in temperature does not always cause an insect to alight (6, 28). Alighting 
depends on the opportunities presented (denied to high-flying insects); 
whether these are seized depends on previous flight experience, age, sexual 
condition, and other internal states, but little on temperature while this is 
above the free-flight threshold. The takeoff response itself in relation to tem
perature, pressure, or light, varies as the insect adapts to these factors and 
the number of takeoffs per unit time is not necessarily related to any of them 
consistently in a population (28). The collective response is even more com
plex. A single species has a certain mean temperature threshold for takeoff 
(often about 17° C); the values for individuals are distributed more or less 
symmetrically, two to three degrees on either side of this mean threshold 
( 152). As temperatures rise from dawn onward through this range, the num
ber of individuals taking off per unit of time increases until the mean tem
perature is reached when this rate diminishes to zero at the maximum in-
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ADAPTIVE DISPERSAL BY FLIGHT 241 

dividual threshold. Provided the insects remain flying (though not nec
essarily remaining in the same locality!) the total numbers airborne increase 
sigmoidally; further increases in temperature do not increase numbers flying 

unless optimal temperatures are surpassed (152, 170). Thus, the relation of 
total numbers flying at any time to temperature is not linear within a day, 
though scattered or transformed raw data may make it appear so. Such ap
parent linearity can be greatly emphasized, especially over a wide tempera
ture range when several species are present, each with a different but over
lapping threshold range. The same principle is also true for light and prob
ably for pressure. 

Apart from all of these effects, however, the greatest factor, often out
weighing changes in individual behaviour, is the effect of population changes. 
Though these changes are well recognized as long-term trends over several 
days and even corrected for (169) , their rapidity from hour to hour (when 
they can simulate the effects of individual responses as far as aerial density 
change is concerned) is not so well recognized. Downdrafts that concentrate 
insects locally have already been mentioned; the reverse happens when in
sects are swept aloft. A locality is constantly changing its general insect 
fauna in this way, even within an hour, so rapid and all-pervading is the 

aerial dispersal system. 
This can happen to individuals of a single species, especially at a source 

where dispersal is most active, and changes in numbers remaining and avail

able for takeoff can change violently from hour to hour as gushes of new 
alatae appear. "Pileups" that develop as temperature falis, disperse sud
denly when it rises, and thus deplete the local population in a way not sus
ceptible to regression analysis with current weather. This process affects the 
shape of the daily flight curve by successive depletion (84). The habit of tac
itly regarding rapid changes in aerial numbers as reflections of immediate 
individual flight-responses dies hard and is not yet abandoned. It sprang 
from a physiological approach and is continued when laboratory work on in

sect cultures, no matter how excellent, is extrapolated to natural populations 
in the field.  

To summarize, aerial numbers may be affected by events at the birth
place of adults where dispersal mostly begins, or at some other place where 
it continues, This leads us to consider the nature of migratory and other 
types of flight and how it affects the displacement of insects. 

THE MIGRATORY FLIGHT 

In 1906 Pearson & Blakeman, following Ronald Ross' work with mos
quitoes, developed a mathematical theory of random migration which de
pended on the supposed existance of two kinds of flight (11S). Relatively 
long "flights" from "locus of origin to breeding ground or again from breed
ing ground to breeding ground if the species reproduced more than once"; 
and "flitters" or mere to and fro movements near the habitat [called major 
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and minor "vicissitudes" by Ross, and migratory and trivial flights by Heape 
(69) and Southwood (144)]. This rough classification is undoubtedly ba�ed 
on fact. 

The characteristics of these long displacement "flights," commonly oc
curring following initial exodus by new adults, are well established by :in
numerable field observations. They are very spectacular, particularly wi.th 
butterflies and locusts because they can be seen, and are characterized by 
a relative persistence and undistractedness compared with other flights 
made by the same species. Stimuli which, at other times would provoke Sl�t
tling, feeding, mating, and egg-laying, have little or no effect. Feeding is of
ten unnecessary for there is usually a plentiful supply of stored fuel; the in
sects have either mated or delay it till much later, and the lack of ripe eggs 

delays oviposition. Settling is brief or absent. The impression is given of 
"flight for flight's sake" "unconsumated" by any other act, "nonappetitive. " 
However, on some very lengthy flights, fuel is replenished by feeding (110, 
163). 

The duration and progress of this Hight away from the birthplace is 
adapted to the needs of particular species, varying from a few yards [ter
mites, white fly (92)] to thousands of miles (locusts; monarch butterflies) can 
be resolved into four components: fuel supply ; duration of single flights; and 
duration of period when such flights are repeatable; and orientation. 

Fuel.-Intrinsic flight duration in terms of fuel has been closely studied 

with many insects in tethered flight (74, 120) . But such studies do not nec

essarily denote performance in nature, where insects are free to orientate in 

different ways or to settle permanently, long before fuel is exhausted. Thus 
A. fabae can make tethered flights as long as 12 hr (29), but in free flight 

rarely flies· for more than 2 or 3 hr (81 ,  89) . Conversely, flights in nature 
may last much longer than that calculated intrinsically ( 159). This suggests 
that a small proportion of extraordinary individuals, with the help of an ab
normal frequency of up-currents are frequently dispersed well beyond the 
expected maximum range. 

The inter-relationship of flight and settting.-The duration of single flights 
depends not so much on fuel as on the neuro physiological state of the insect. 
Flight and settling are functionally inter-related, the duration of the one de
pending on that of the other. Most experimental work on this vital aspect 
of dispersal and migration has been done with free-flying Aphis fabae by 
Kennedy & Booth (89, 90) , and also with nonmigrant saturniid moths by 
Blest ( 1 1 ,  15). 

A. fabae will not normally remain on the plant on which it was born even 
if the plant is suitable. A short flight of a few minutes, long before much 
fuel is used, induces it to settle and to feed. The proportion of aphids S€,t
tling and the duration of rest, increases in direct proportion to the duration 
of the previous flight. Thresholds for stimulating takeoff and flight are low 
at the end of the teneral period, those for settling are high. Flight progres-
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ADAPTIVE DISPERSAL BY FLIGHT 243 

sively lowers the response thresholds for settling until the stimuli that in
duce it override those which stimulate flight (87). A similar, linear relation 
exists in the Saturniidae. The variable waggle-dance of honey bees also is 
linearly related to flight duration (15) ,  thus communicating distances flown 
to other bees. Other responses, principally feeding, egg-laying, and often 
mating, follow settling, and flight is therefore often needed to prime them 
(83) . 

Kennedy (87) conceives of the insect as acting in terms of Sherrington's 
theory of "successive induction" between antagonistic reflex groups ; the 
reflex system concerned with settling is inhibited by that concerned with 
flight until by a reciprocal action the situation is reversed. "Nonappetitive" 
or undistracted flight, in Sherringtonian terms, is the stage before the "vis
ceral effectors take over from skeletal muscle" so that flight is prolonged or 
emphasized at the expense of the antagonistic system beyond the "normal" 
time, and that stimuli which, at other times would provoke settling have 
no effect. A problem then is to discover what tips the balance in  favour of 
a more or less prolonged lowering of flight thresholds with a simultaneous 
raising of settling thresholds, characteristic of insects in the migrant state 
and in contrast to those flying in a so-called "appetitive" state. 

Not much is known about how insects migrating in nature react to known 
stimuli presented to them deliberately. Consequently, any particular insect 
seen flying in the field can only be designated as migratory when this is ex
tremely obvious. There remain many flights which, though appearing to be 
"migratory" (in the behavioural sense of Kennedy) would be terminated if 
the appropriate stimuli were present. Chafers and other insects in Type II 
may come into this category. Until more is known of orientated, mass flights 
of sexually mature insects [e.g. ,  some dragonflies (34)] they cannot be clas
sified as migratory in the behavioural sense. But the whole transfer from 
source to destination includes a terminal "appetitive" phase when the hab
itat is located. Defined ecologically, "migration" could legitimately include 
this phase. 

The duration of the displacement period in adult life.-Experiments on 
tethered flight rarely consider the effects of age or sexual condition on flight 
duration. Sexually immature females of S. gregaria fly best, and very young 
and sexually mature insects fly poorly ( 163) . The maximum duration of sin
gle flights by Drosophila funebris occurred between about the third and tenth 
day of life and declined rapidly thereafter to death, about a month later 
(171) . Female Oscinella frit behave similarly, but also make long flights be
tween laying eggs (134) . With heteroecious aphids, flight is limited to the 
first few days of life after which flight muscles autolyze; several scolytids 
have a limited flight period early in life for the same reason though some can 
fly again after the muscles regenerate. The above are examples of insects 
emerging as sexually immature adults. Several species of moth emerge 
sexually mature but fly best early in life and again lengthily after laying 
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some eggs (45, 59, 60, 61) . Several species of nonmigratory grasshoppers flew 
longest when between three days and three weeks old and when sexually ma
ture but not gravid (126). 

Observations in nature suggest that insects of different orders make the 
most lengthy and undistracted flights when females are sexually immatur·e ; 
and that after the ovaries are fully mature flights are shorter and more local. 
Waloff & Bakker (160) have demonstrated this recently also with several 
Heteroptera. 

Some long distance flights, however, occur between successive egg-laying 
as with the spruce bud-worm (61), locusts (118, 119), frit fly (134), and 
aphids between larviposition. Dragonflies occasionally fly en masse back to 
oviposit (34) and chafers fly back and forth between oviposition and feeding 
sites (135) , though the last two are not examples of dispersal. 

Diptera are especially interesting and probably depart more generally 
from the habit of exclusively prereproductive migration than do other or
ders, for much of their dispersal is also inter-reproductive. Nevertheless, long 
flights and much (perhaps most) dispersal is reported as prereproductive in 
some mosquitoes (121, 122), Prosimulium mixtum (38), Culicoides impunc
tatus (Goetghebuer) (127), and frit fly (134) . These, like muscid flies (105), 
also disperse inter-reproductively, or like some mosquitoes, sometimes fly for 
long distances after a blood-meal following the post-teneral flight (54). Little 
is known of the undistractibility.of such flights, i.e., whether the displace
ment is mainly inadvertent before effective stimuli for settling are encoun
tered, or whether the stimuli are present but ineffectual. 

In general, therefore, the main period of undistracted, lengthy flying spe
cifically adapted for displacement and dispersal of populations, especially 
from the former breeding site, occurs during the first preoviposition period. 
This flight is largely controlled by the length of the preoviposition period 
(even when this is interrupted by hibernation) , and ends when females be
come sexually mature. This has obvious adaptive features associated with the 
distances between possible habitats: thus, S. gregaria and Danaus plexippus, 
with their long preoviposition periods, are geared to flights of hundreds, even 
thousands, of miles. Aphids, with ubiquitously distributed hosts, have a very 
short prereproduction period of some hours. 

Thus, two facets are open to study; the effect of age, per se, on flight:; 
and the effect of sexual condition which is correlated with age. There is no 
doubt that some species (e.g., Ascia monuste) migrate only when sexually 
immature, and that, when insects become sexually mature at the birthplace, 
such flight is prevented (110). Other examples are given elsewhere (83) but 
more are needed. A major problem is to determine how much dispersal of 
an original population occurs at these different stages; a priori, it seems that 
most occurs with young adults (except for insects that hibernate) and pre
reproductively, 

Ovarial development and undistracted flight.-It seems, therefore, that 
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when ovaries are immature, or when their growth is periodically lessened be
tween successive ovipositions, prolonged and undistracted flight occurs. 

Insects with a full fuel load, no eggs to lay, and the mating finished or 
postponed, are left only with the alternatives either to fly or to settle. And 
whether the one or the other occurs depends not only on the balance be
tween opposing reflex systems but also presumably on the absolute strength 
of stimuli required to start and to maintain flight as opposed to settling. 
Little is known of the factors that tip the balance toward one or the other 

. of these activities, but recent work on the hopping of fifth instar locusts, 
though not on flight of adults, suggests a possible mechanism. 

Fifth instar hoppers of S. gregaria are most active about midway be
tween moults, least so prior to moulting when the pro thoracic gland enlarges 
and its hormone, ecdysone, increases in the haemolymph. Ecdysone seems 
to affect the neural response thresholds for jumping. The electrical activity 
on the metathoracic ganglion that controls the jumping muscles decreases 
when the ganglion is bathed in either haemolymph from fifth instar hoppers 
about to moult, or with ecdysone from Bombyx pupae, though haemolymph 
from mid-fifth instar hoppers has no such effect (66) . Even more convincing 
is the finding that the marching activity of hoppers decreases when these 
insects are given extracts of the prothoracic glands of the locusts themselves 
(23) . The prothoracic gland disappears in pterygote insects soon after they 
become adult; this suggests that its permanent removal may be correlated 
with the great flight activity common in young adults. Moreover, it seems 
that migratory flight is permitted only when ovaries are unripe, that is, when 
corpus allatum activity is diminished ; and it ceases when ovaries mature, 
and also when other hormones associated with oviposition begin to operate 
( 109) . 

This hypothesis is open to experiment. But the idea that intense and pro
longed flight or its increased frequency is part of an endocrine deficiency 
syndrome, also agrees with the facts that crowding and day-length, which af
fect activity of the corpus allatum, are also associated with ovarial develop
ment and migration ; and with the fact that the prothoracic gland diminishes 
after imaginal ecdysis. These will be discussed below. 

There are also many other factors that increase the flight efficiency of 
young adults, such as the lowered wing-loading of nongravid females ( 163) , 
the possible effect of diet either acting through taste thresholds (39) or by 
direct effect of potassium ions in the haemolymph (47, 75), and the accu
mulation of fuel reserves and their diversion to the muscles rather than to 
the gonads. Very important also are factors controlling particular kinds of 
orientation which ensure displacement. 

ORIENTATION 

The "problem of orientation" in dispersive and migratory processes, is 
no longer restricted to how, or to what apparent end, an insect keeps to a 
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246 JOHNSON 

linear track over distances that can be followed by the eye, and assumed to 
continue far beyond (168). The problem involves a great variety of orienta
tion behaviour particularly at primary exodus and at successive takeoJIs 
when orientation is adapted to enable the insect to be displaced by air cur
rents. To complete the process, orientation leading to the invasion of habitats 
at the end of displacement flight is also part of the picture which will not be 
discussed here. 

Orientation and penetration of the boundary layer.-Many daytime and 
some crepuscular fliers climb steeply after takeoff with an excess of lift over 
forward flight, and in so doing penetrate their "boundary layer" of air near 
the earth within which they can largely control their track (149) . Once above 
this, wind largely controls the track. 

Aphids orientate particularly to light of short wavelengths, blue and ul
traviolet, to the diffuse light of the sky and to large sources like white clouds 
rather than small ones like the sun (91). Many other insects have a positive 
phototaxis enabling them to penetrate the boundary layer and disperse by 
upper air currents adaptively: e.g., some Scolytidae (58) , frit fly (146), and 
thrips ( 100) Aedes taeniorhynchus and A edes cataphylla orientate to the light
est part of the evening sky and eventually move down wind (63, 94). Many 
insects in the "aerial plankton," including large ones like the moths Plusia 
gamma; Choristoneura fumiferana, undoubtedly do the samel though more 

studies are needed of orientation, especially at first exodus, in order to assess 
the frequency, the time in life and the proportion of individuals behaving in 
this way. 

Orientation during displacement above the boundary layer.-The most 
thorough studies of orientation of dispersing insects are those with aphids 
flying freely in a flight chamber (89, 90). Studies of locusts are more concern
ed with aggregation than dispersal behaviour. Almost nothing is known 
about how other insects high in the air orientate and those flying within the 
boundary layer often cannot be followed far or accurately by eye. 

After aphids take off, their positive phototaxis to light of wavelenghts be
low about 500 mJ,t gradually diminishes, lift is lost and a cruising phase fol
lows which ends in alighting. These responses vary with the kinetic state 
which is also affected by light (18) as it is by flight duration. Kennedy et al. 
(91) inferred that aphids flying near the ground in the "alighting flight" re
sponded to both the bright, short wavelengths of the sky and to the dimmer 
long wavelengths from the green vegetation and were kept in an uneasy bal
ance between them, rather than that they became negatively phototactic. 
Presumably, therefore, many insects high in the air are also in this state, and 
many continue to be displaced until downdrafts bring them near the earth 
and provide opportunities for settling. 

Many other insects exhibit photic reversal, though this has not usually 
been studied especially in relation to adaptive transportation (123). A. 
taeniorhynchus does not enter ultraviolet light traps at initial exodus but does 
so later (121, 122). Spodoptera exempta (Walker) and Cydia pomoneUa (1..) 
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are probably attracted to light during migration while sexually immature, 
but not to bait until older (55, 164). There are many descriptions of the re
versal of photic responses as humidity or temperatu"re alters (116, 1 17) 
which suggest that the positive phototaxis that sometimes occurs at high 
temperatures (or low humidities) is the factor that causes upward flight of 
some migrants in conditions of intense insolation ( 166). Trypodendron is 
positively phototactic only while air pressure in the proventriculus is small, 
but air swallowed during flight reverses the response and the insect becomes 
photonegative (58). Another scolytid, Btastophagus, is positively photo
tactic at temperatures up to 25° C and photonegative above that, the re
action differing in spring and autumn beetles (116) . In some insects, the sign 
of phototaxis is associated with the endocrine balance (12).  The reversal 
trom photonegative to photopositive response is particularly significant in 
the emergence of migrants from hibernation sites ( 100) . Kennedy & Booth 
regard the process as primarily controlled by a central nervous balance mech
anism tipped one way or the other by a variety of inputs (90). 

The orientation of locusts flying in swarms has been intensively studied 
by Rainey. and Waloff and the complex reactions which maintain swarm co
hesion have been succinctly reviewed by Haskell (65). This is, perhaps, not
the place to describe a process which is largely the reverse of dispersal. 

Orientation. within the boundary layer.-Some insects (e.g., M. melolontha) 
(35, 128), scolytids, and dragonflies (32, 58, 72) fly upwards apparently pho
totactically but soon orientate hypsotactically to a distant object, maintain
ing the course even when the distant object is displaced or obscured (35, 
128). The common orientation of butterflies, migrating within the boundary 
layer, is also apparently established visually at exodus ( 1 10) .  All of these in
sects possibly orientate to the sun or to polarized light. though this has not 
been proved with migrants in the field. The exodus of locusts in swarms has 
been well described many times. These insects are greatly influenced by each 
other and adopt a "gregarious alignment" (65) ; but there is no evidence of 
sun compass reactions or of phototaxis, though orientation into wind is 
common. The way in which reflexes of this kind are integrated in nature 
during exodus, dispersal and landing flights has already been briefly men
tioned for aphids. Henson (72) has studied the sequence and attractively 
described it for the scolytid, Conophthorus coniperda; though most of its 
flights seem to occur within the boundary layer this not true for all scolytids 
(21). Pine cones containing pupae fall to the ground and the emerging 
adults remain in the cones thigmokinetically during the winter, (though they 
are positively phototactic when removed) . They do not feed. Warmth, damp
ness, and small changes in day-length cause sudden emergence in spring; the 
full gut consequent to eating their way out eliminates the thigmotaxis and 
allows the insect to fly upwards to diffuse sources of light, but not to point 
sources which disorientate them. Emerging above the tree canopy, they 
therefore, fly horizontally, shun the sun, and fly to dark silhouettes of trees 
on which they land and burrow into cones where the flight muscles degen-
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erate. Thus, the long-lived adults fly for only a very short period in a rather 
well-defined way which is synchronized and controlled very specifically by 
the warmth and dampness of spring days. 

Many insects disperse from the birthplace by flying within their bound
ary layer and seem to control their track in a more or less linear way ap
parently for relatively long distances against or across the wind. This has 
been reported particularly for butterflies, dragonflies, and syrphids; but all of 
these insects (even the same species) have been reported at other times at 
high altitudes and not in control of their track. As with locusts, the sub
jective impression gained at low altitudes for short periods may not tally 
with a synoptic picture. Nevertheless, the orientation mechanism has been 
little studied except with chafers ( 128) though there is much speculation 
about it. Nielsen's ( 1 10) observations wi th A scia monuste suggest that pilotage 
by visible guide markers such as roads, telegraph poles, occurs; the insects 
keep in shelter behind dunes and so control their track in windy weather. 
Many butterflies negotiate vertical obstacles by flying up and over in a 
vertical plane, similar to Melolontha when encountering a barrier, suggesting 
orientation by celestial guides, perhaps polarized light. M. melolontha, on the 
outward prealimentary flight, orientates partly by hypsotaxis, partly by 
reference to the sky, and partly by a process of imprinting (35, 128). 

The return flight.-Many migrants make a return journey either after 
oogenesis or after hibernation or aestivation. But little is known about the 
relative roles played by wind, and by the flight power and orientation of thc 
insect itself, in determining the track. Very probably, such insects as 
Coccinellidae, Noctuidae, and Eurygaster return from mountain hibernation 
sites on seasonal winds (20, 64) . But, with insects flying within the boundary 
layer, a reversal of orientation can determine the direction of the return 
journey. Thus, Melolontha reverses its direction of orientation through 1800 
after it has become sexually mature and the return flight, unlike the preali
mentary flight, is made without reference to visible objects though a sight: of 
the sky is necessary, and a constant course is maintained in spite of obsta
cles. 

Recent experiments by Birukov and by Geisler (13, 56) on nondispersing 
insects may help to elucidate the orientation of some migrants. The pond
skater, Velia currens (Fabricius) , and the beetle, Geotrupes, do not keep a 
linear course when in a natural habitat, yet they have an inherent mechanism 
for dOing so. Under a blue sky and on dry ground, Velia runs to the south 
constantly, by compensating for the changing position of the sun. Under a 
fixed artificial light it still compensates thereby changing course rhythmi
cally. Geotrupes also has a compass reaction to polarized light unrelated to 
natural goals and in the absence of food scents or landmarks, runs cast in the 
morning, west in the afternoon. Corbet (33) suggests that such a mechanism 
might be used by insects that return to a site they occupied before, as be
tween roosting and feeding sites during the day ; it might explain the ap
parently meaningless linear course of some migrants. But the long distance 
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migrations involving many miles would probably be overridden by synoptic 
winds, unless, like Ascia. the insect also kept to shelter. 

Orientation during migration shows diverse mechanisms adapted to spe
cial conditions and situations, and most of these mechanisms, as yet, have 
not been closely studied in the field. In general, however, the orientation 
(whether the direction is inherent or induced) seems to be adapted for get
ting dispersants away from the birthplace rather than to a goal, This is done 
either by controlling the track or by wind, and is maintained long enough to 
transport the insects a considerable distance. With insects adapted to being 
wind-blown, flight seems to be prenavigational; "goals," distracting at other 
times, have little effect, primarily because of the physiological condition of 
the insects and, secondarily, because of the force of the wind. Navigational 
processes are perhaps used effectively only by insects habitually flying within 
the boundary layer, or at the end of a wind-borne flight. But the one-way 
track after exodus, whether controlled by the insect or by the wind, is the 
best way of ensuring that the birthplace, the former territory. or a temporary 
oviposition site is effectively relinquished. This seems to be the prime func
tion of orientation during the dispersal flight itself, rather than being specif
ically adapted for finding some hidden and mysterious goal. Synchroni�ed 
with seasonal winds, such flights, nevertheless, may take the insects to suit
able habitats. 

AERIAL TRANSPORT 

Adaptive displacement per se depends on the following factors; flight 
speed, duration and frequency of single undistracted flights, the duration of 
the "migratory" period within which single long flights are made, the need 
and opportunity to "refuel, " orientation into or out of the "boundary layer, " 
and the state of the atmosphere. The potentiality for adaptive variation is 
enormous and the integration of factors can be considered only briefly. 

Insects can control their track but only within a "boundary layer" whose 
depth depends on flight speed and wind speed ( 149). Whether an insect 
stays inside it (as all can) or whether it penetrates it adaptively to become 
wind-born, depends on orientation and time of flight, not on flight speed. 

Displacement within the boundary layer.-Some insects normally avoid 
leaving the boundary layer during displacement, either by flying mainly in 
calm periods as at evening, or by specific orientation (M. melolontha) . Others 
sometimes migrate entirely within the boundary layer, using shelter to main
tain track for many miles [Ascia monuste in Florida ( 1 10)], but at other 
times fly high with the wind [A. monuste in Argentina (68)]. Some species are 
thought to control the complete track merely because they are seen only 
when flying low, perhaps in a final appetitive stage after high altitude 
flights [frit fly (85)]. 

Flight within and above the boundary layer.-A complete displacement 
flight often occurs adaptively both within and above the boundary layer. 
Newly emerged A edes cataphylta Dyar, a crepuscular flier, makes a typical, 
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steep exodus into wind to about 12 ft. If blown backwards, optomotor re
sponses cause turning and downwind flight (avoiding the "forbidden course" 
with its backward flow of retinal images) . Fast and turbulent winds do not 
prevent young adults, from flying, though they do with older ones. After a 

longish flight, mosquitoes entered a valley system where slower winds and a 
different orientation caused them to keep to the shelter and fly along it (94) . 
It seems that here are two phases, as flight for A. taeniorhynchus; an early 
flight adapted to dispersal outside, a later one to dispersal i nside the bound
ary layer. 

Gravid females of Rhyacionia buoliana, a mainly crepuscular-flying moth, 
fly within the boundary layer against slow winds, tending to move up out of 
valleys as cold evening air flows into them. There seem to be two kinds of 
gravid females: some, more active than others, rise to SO ft and become con
vectionally transported for many miles; laboratory work shows that the first 
post-teneral flight is the longest (59, 60) . Here, again, transport depends on 
age, orientation, time of day, and atmospheric motion, all of which are geared 
to degrees of adaptiveness either for transport per se or for oviposition near
by. This insect resembles Choristoneura fumiferana in some ways, which is al
so transported for long distances outside the boundary layer; sometimes, 
more or less accidentally, low over the forest canopy in turbulent winds, 
sometimes by flying upward into convective storms which carry populations 
for 100 miles, depositing them en masse by downdrafts and rain associated 
with cold fronts, particularly in certain well-defined topographical areas (61,  
70). 

M uch depends on the geographical scale of displacement, which is deter
mined partly by the duration of the migratory period before (or between) 
egg-laying. Thus, many of the small insects in the aerial plankton are day
fliers with only a few hours or, at most, a day or two, of flying life. In ex
ceptional circumstances a tiny proportion (though still large numerically) , 
of the original population may be transported on a synoptic scale for hun
dreds or thousands of miles in a day or two. Elton's aphids and syrphids in 
Spitzbergen (48), Gressitt's insects caught over the Pacific, are day-fliers 
(102) that are particularly prone to convective and turbulent transport. It is 
not the slow flight speed that makes this likely but rather the upward flight 
at exodus. The majority of these small species, however, fly only for a short 
period before settling when downward currents bring them to earth ; within 
an hour for frit fly, within about three hours for aphids in Britain.  The ver
tical density profile increases in height and decreases in steepness toward 
mid-day as more i nsects are discharged, and subsides, with the flight rhythm 
at exodus, to nothing by evening (81, 85) . 

The shape of the verticle density profile, but not its temporal duration is 
explicable largely in terms of turbulent-·diffusion of particles (81) .  M any in
sects enter this general circulation only three or four feet above the source be
yond which the log density versus log height profile is approximately linear 
to at least hundreds of feet. 
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It is salutory to know that densities can diminish at about the same rate 
between three and six feet (and, with some, in as many inches) as between 
3000 and 6000 ft (22, 150) . But it is a common fallacy to suppose that most 
insects fly close to the ground. Densities may be great near the ground but 
the greatest numbers are found at high altitudes. For example, at mid-day, 
SO per cent of flying frit flies are normally above 1300 ft (85) and this kind of 
relation is generally true (57) : small densities at a great height neglect to 
show the total numbers at all heights, and give the erroneous impression that 
there are few insects high in the air. 

The whole aerial system can be regarded as a large diffusion system 
reaching, on convective days, to thousands of feet, dispersed because of the 
disruptive forces of turbulence and also because individuals are discharged 
consecutively into this system from a source all day. Downward currents 
cause a dispersed "bombardment" over hundreds and thousands of square 
miles, hour after hour, day after day. This is, perhaps, the most effective way 
a speciEs can scan a wide environment (85) . Probably, insects with ubiquitous 
hosts like aphids and frit flies, though most migratory when young, need only 
short prereproductive "'or inter-reproductive flight periods. Their large and 
expendable adult populations with ubiquitous hosts do not need the lengthy 
prereproductive period of locusts or monarch butterflies which have to tra
verse thousands of miles of unsuitable territory between breeding places. 

The longer the flight period, the longer the potential displacement. This 
must be seen in relation to synoptic, not local, weather. More and more mi
grants, once thought to control their major track, are now being associated 
with synoptic weather. Knowing the time and place of arrival of migrants, 
the winds on which the insects arrived can be back-tracked to the probable 
source. Plutella maculipennis (Curtis) entered the western Atlantic area and 
Great Britain from eastern Russia (52) , Laphygma exigua (Hubner) regu
larly invades Britain from Morocco ; both invasions involve nonstop jour
neys of some 2000 miles and several days. Lepidoptera such as Utethesia 
pulchella (Linnaeus) , [tame brunneata (Thunburg) , and Hippotion celerio 
(Linnaeus) arrived in Britain on winds from North Africa, Germany, and 
the Azores, respectively (5 1 ,  76). Locusts arrived in Britairi on a weather 
system remarkably like that carrying L. exigua, accidental only in the sense 
that the direction was unusual. The same kind of system normally trans
ports locusts between breeding areas ; the insect's life history is geared adap
tively to produce adults when convergent winds can carry populations from 
areas of dryness into areas of rainfall where they can survive (124). There 
is good reason to suppose that the normal method of transport for many, 
perhaps most, other species is also by wind. As with early work on locusts, 
subjective impressions are formed for most insects, by watching orientated 
flight over a limited distance. It suggests that major displacements are made 
by insects orientated to ecological goals. Synoptic observation and trapping 
continuously at high altitudes reveals another process, better adapted to 
needs of species in which biology and behaviour are geared to different types 
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of air movement. Insects often accept these uncontrollable forces, and com
promise with them rather than combat them. Most insects in the aeria.l 
plankton probably disperse adaptively rather than accidentally. 

POSSIBLE CAUSES OF ADAPTIVE DISPERSAL 

There are two hypotheses now extant, to explain the causes of adaptive 
dispersal. One supposes, with little evidence and often subjectively, that 
adults respond immediately to adversity by flying away. The other, with 
stronger but mostly circumstantial evidence, supposes that adversity and 
the factors heralding it, act ontogenetically to produce adults that are prone 
to migrate (83) ; that migratory flight is a symptom in an endocrine deficiency 
syndrome concomitant with early adult life and ovarial immaturity, ovari<Li 
diapause, and structural polymorphism. 

THE FIRST HYPOTHESIS 

The following findings support this hypothesis: Orthoptera migrated 
when plants dried up and after rain ( 133, 157) .  Flight in solitary locusts prob
ably was a response to humidity changes (37) . L. cerealium flew en masse 
when grasses dried up, rather in contrast to normal, prereproductive mass 
flights (99) . Leafhopper populations moved from cut vegetation (103) . 
No doubt hunger often causes insects to move but perhaps more to mix than 
to disperse, for starved insects cannot migrate far (74) . That muscles re
spond more to nervous stimuli as the blood potassium concentration falls 
seemed to explain why locusts hopped more when starved or fed on a diet 
poor in potassium (47, 75) , though this was not confirmed in the field (26) . 

THE ONTOGENETIC HYPOTHESIS 

This hypothesis applies, so far, only to females. The fat-body, flight-mus
cle enzyme systems, and wing-loading are peculiar in migrants. But rela
tively undistracted flight might be caused by low neural response thresholds 
for flight, concomitant with lessened activity of the pro thoracic glands and 
also with the presence of food reserves and with sexual immaturity known 
to be induced by food deficiency, by crowding, or by short days mediated 
by the corpus alia tum. Crowding is associated with food shortage and, 
in temperate climates, with later generations and short autumn days. Crowd
ing produces macropterous adults among leafhoppers (93) and alatae (i.l!., 
flight) instead of apterae with some aphids, associated probably with corpus 
allatum activity (98). Locusts bred in crowds are more active and have 
smaller prothoracic glands than do solitaries (46) . Crowded Barethra bras
sica L. larvae produce active adults (73). In large populations of A .  monuste, 
settling thresholds are so high that the insects continue to fly all night (dark
ness usually suppresses flight) and into the second day, scarcely stopping 
more than a few seconds to feed, which prolonged flight makes necessary ; 
this behaviour is associated with delayed ovarial development ( 1 10) . Aley
rodes brassicae emerges with immature ovaries in autumn and migrates 
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beyond the crop, flying during the day and the night, in contrast to earlier, 
nonmigratory day-flying, sexually mature generations (92). 

Danaus plexippus behaves similarly on a geographical scale (156) .  The pre
oviposition flight period of locusts lasts for weeks, refuelling is obligatory, 
and settling response thresholds relatively high. The reasons for ovarial de
lay are obscure but crowding induces it in Locusta migratoria migratorioides 
CR. & F.) though not in S. gregaria and some other insects (78, 1 1 1) .  

The crowding of C. fumiferana larvae creates a diet change which pro
duces sexually immature females that fly upward (14) . Crowding in Calloso
bruchus maculatus (Fabricius) results in sexually immature, flight-worthy 
adult beetles with low wing-loading, while under solitary conditions the bee
tles emerge mature and cannot fly (25). Deficient food delays ovarial de
velopment in many migrants (79) whose flight has not been studied in re
lation to it. 

Temperature and photoperiod affect corpus allatum activity, and macrop
tery and brachyptery are associated with this (19, 143, 165). Short photo
periods delay ovarial development and induce ovarial diapause ( 1 1 1) but its 
concomitant effects on flight behaviour have been almost completely ne
glected in favour of the more obvious morphometric changes. Photoperiod, 
together with the seasonal incidence of periods above the flight threshold 
temperature probably decide, respectively, the length of the preoviposition 
period and how much of it can be used in flying, and therefore how much 
migration occurs before or after hibernation. Ontogenetic, environmental 
factors may affect the numbers and quality of adaptive dispersants at the 
source. At one extreme, alatae, instead of apterae, are born, ranging through 
degrees of brachyptery. But, at the other extreme, perhaps involving most 
species where little structural polymorphism exists, delayed ovarial devel
opment and the associated differences in flight seem to be concomitant symp
toms of the same endocrine deficiency syndrome, and may be far more im
portant, though less obvious than structural differences (83). 
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