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Abstract6

Predicting the response of biological communities to changes in the environment or management7

is a fundamental pursuit of community ecology. Meeting this challenge requires the integration8

of multiple processes: habitat filtering, niche differentiation, biotic interactions, competitive ex-9

clusion, and stochastic demographic events. Most approaches to this long-standing problem focus10

either on the role of the environment, using trait-based filtering approaches, or on quantifying bi-11

otic interactions with process-based community dynamics models. We introduce a novel approach12

that uses functional traits to parametrise a process-based model. By combining the two approaches13

we make use of the extensive literature on traits and community filtering as a convenient means14

of reducing the parametrisation requirements of a complex population dynamics model whilst re-15

taining the power to capture the processes underlying community assembly. Using arable weed16

communities as a case study, we demonstrate that this approach results in predictions that show17

realistic distributions of traits and that trait selection predicted by our simulations is consistent18

with in-field observations. We demonstrate that trait-based filtering approaches can be combined19

with process-based models to derive the emergent distribution of traits. While initially developed20

to predict the impact of crop management on functional shifts in weed communities, our approach21

has the potential to be applied to other annual plant communities if the generality of relationships22

between traits and model parameters can be confirmed.23

Key words: arable weeds, annual plants, community dynamics, ecological function, environmental fil-24

tering, functional diversity, functional traits, population dynamics modelling25
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Introduction26

Predicting the assembly of biological communities and their resulting ecological function in dif-27

ferent environments is a fundamental pursuit of community ecologists and has been characterised28

as the Holy Grail of ecology (Lavorel & Garnier, 2002). As society increasingly recognises the29

ecosystem services the biosphere contributes to human survival and well-being (Carpenter et al.,30

2006) the need to understand the impact of changes in environment, land-use, or management31

on biological communities has become more urgent. Within this ecosystem service framework,32

it is more important to predict the impact of change on the functioning of the emergent biolog-33

ical community than on taxonomic composition (Fig. 1 A; Dı́az et al., 2007a). Meeting this34

challenge requires a unified approach that combines the theories of 1) habitat filtering and niche35

differentiation, 2) biotic interactions and competitive exclusion, and 3) stochastic demographic36

events (neutral theory). These processes, together with historical and evolutionary factors (which37

determine the regional species pool) all play a role in determining the local ecological community38

in a given environment (D’Amen et al., 2017). Most approaches to this long-standing problem of39

predicting community composition at a given location focus either on the role of the environment,40

using trait-based filtering approaches (Fig. 1 B), or instead focus on quantifying biotic interactions41

with process-based community dynamics models (Fig. 1 C).42

Trait-based filtering approaches that identify the abiotic and biotic filters acting on regionally43

available pools of species and determine those with favourable combinations of traits that can per-44

sist in a given habitat (Keddy, 1992) have now been applied across several taxa (e.g. plants (da45

Silveira Pontes et al., 2010), arthropods (Braaker et al., 2017), and bees (Hoiss et al., 2012)),46

in a range of environments (e.g. tropics (Lebrija–Trejos et al., 2010), streams (Poff, 1997), and47

rangelands (Bernard–Verdier et al., 2012)) and across a number of different gradients (e.g. grazing48

(Dı́az et al., 2007b), geo-morphological (Gilardelli et al., 2015), and aridity (Gross et al., 2013)).49

However, all these studies rely on fitting statistical models to empirical relationships between envi-50

ronmental gradients and functional trait metrics and are, therefore, limited in their power to predict51

responses to environments with a novel combination of environmental variables. These models52
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typically predict a convergence of trait attributes, as only species which are functionally similar53

will pass through successive filters on plant traits.54

An alternative approach that avoids these limitations is to build process-based models of the55

responses of multiple interacting species to the environment. This more mechanistic approach56

involves describing key life-cycle processes mathematically, often from first principles, and can57

include spatially explicit individual based modelling approaches. Such process-based community58

dynamics models have also been widely developed to predict the community composition of a59

number of taxa (e.g. fish (Shin and Cury, 2001), coral (Langmead and Sheppard, 2004. ), and60

trees (Purves et al., 2008)), in a range of environments (e.g. tundra (Gilg et al., 2003), freshwater61

lakes (van Nes et al., 2002), and forests (Botkin, 1993)) and across a number of different envi-62

ronmental gradients (e.g. disturbance (Matsinos and Troumbis, 2002), fire (Thonickeet al., 2001),63

and nutrient limitation (Moore et al., 2004)). In contrast to the trait-based filtering approach, these64

process-based community dynamics models often focus on biotic interactions which can be de-65

scribed mathematically and aim to predict relative species abundances in a more mechanistic way.66

By focussing on competitive processes, these models tend to select for species with divergent trait67

attributes in order to minimise overlapping resource use and competition, although practically this68

may not always be the observed outcome (Mayfield and Levine, 2010). Process-based community69

dynamics models often require extensive parametrisation to capture all the ecologically impor-70

tant processes. Each aspect of the life-cycle must be described mathematically for each simulated71

species, and where there is asymmetric competition for multiple resources this must also be quan-72

tified. As such, these models tend to be limited to a small pool of species and to a particular73

environment in which the parametrisation has been conducted (da Silveira Pontes et al., 2010).74

Ecological communities lie on a continuum: from those with strong biotic interactions to those75

where local interactions between individuals are weak and few (Cornell and Lawton, 1992) and76

models that aim to predict community dynamics should ideally avoid making prior assumptions77

on the dominant processes shaping that community. Several attempts have been made to include78

biotic processes into trait-based filtering models in order to simulate both the convergence and79
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divergence of traits, and eliminate the need for a-priori knowledge of the dominant processes80

driving community dynamics at a given location. For example, Shipley et al. (Maxent, 2006) and81

later Laughlin et al. (Traitspace, 2012), developed generic models based on the trait-based filtering82

approach but limited convergence by selecting the community with the maximum Shannon index83

of all possible outcomes based on the environmental filtering step. Whilst these two models go84

some way to reconciling the role of trait-based filtering and competition in predicting community85

composition, they are both based on empirical relationships between observed trait distributions86

and environmental gradients. A valuable addition to these approaches would be to derive models87

that predict shifts in trait distributions in a changing environment from first principles (Laughlin &88

Laughlin, 2013).89

Here we introduce a model which uses functional traits to parametrise a process-based model90

(Fig. 1 D), using arable weed communities as a case study. The immediate questions the model91

is designed to address are to do with an impact of a change in crop management on the functional92

composition of weed communities. However, the model structure is generic to any annual plant93

community. By combining the two approaches we make use of the extensive literature on traits94

and community filtering as a convenient means of reducing the parametrisation requirements of95

a complex population dynamics model whilst retaining the power to capture the processes under-96

lying community assembly. In so doing, we aimed for the optimal balance between complexity97

and tractability. Weeds are dominated by annual species making the generic life cycle model more98

tractable and, because of their economic importance, are highly studied with a rich literature of99

population dynamics models parametrised at the species level. The parameters of the system are100

also clearly defined by the management operations in the arena of a cropped field. The arable101

species pool is also sufficiently large to demonstrate the usefulness of a trait-based approach for102

model parametrisation (including a range of ecological strategies (Bourgeois et al., 2019)), and,103

because it is dominated by annual species, responds to change on relatively short time scales. In ad-104

dition, the traits of arable weeds have been well-studied in recent years and trait-based approaches105

have quantified functional responses of weed communities to management filters (e.g. Fried et al.,106
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2009, Gardarin et al., 2010, Gunton et al., 2011, Fried et al., 2012, Colbach et al., 2014, Armengot107

et al., 2016).108

We used functional traits and groups to parametrise the species specific mechanistic processes109

within our model (Fig. 1 D). We wanted to keep the model parsimonious and so chose only four110

continuous traits (sensu Violle et al., 2007): seed mass, maximum height, date of first flowering111

and specific leaf area. These four traits are readily available for many annual plants and have been112

shown to relate to many life-cycle process (Table 1). For example increasing seed mass is known113

to be associated with decreased seed production (Henery & Westoby, 2003). In addition we also114

assigned species to functional groups according to i) Ellenberg N number to model the impact115

of soil fertility on community dynamics, ii) emergence periodicity to model responses to changes116

in management timings, iii) seedbank type to model persistence in the soil, and iv) phylogeny:117

whether they were grasses or broadleaves as many of the relationships between other traits and the118

model parameters varied between these two groups.119

We selected these traits based not only on their relationship with various life cycle processes,120

making them suitable predictors of our model parameters but also due to their availability within121

the literature. We chose to use only ‘soft traits’ (sensu Dı́az et al., 2004) which are more easily122

measured than ‘hard traits’ (which may be more directly related to the life-cycle process) and are123

well documented for a large range of annual plant species across a number of databases (e.g. TRY124

plant trait database (Kattge et al., 2020), Seed Information Database (SID, 2018), Ecoflora (Fitter125

and Peat, 1994), and LEDA traitbase (Kleyer et al., 2008)).126

The quantification of relationships between functional groups, traits and model parameters is127

based on a series of experiments screening ecophysiological parameters for 21 annual weed species128

summarised in Storkey (2006).129

Methods130

We developed a model of the annual plant life cycle based on transitions between seedlings, ma-131

ture plants, fresh seed and seed in the seedbank (Fig. 1 C). Some of the processes governing the132
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transitions between these four life stages are influenced by biotic interactions as well as habitat fil-133

tering. For each transition (except for fresh seed to seedbank) there are one or more response traits134

that we anticipate will be selected for or against by environmental or management filters (Table135

1). These response traits (highlighted in bold throughout the methods section) are integrated into136

the simulation of mechanistic processes within the annual plant life cycle by quantifying relation-137

ships between traits and model parameters (see Appendix S1, Box S1 for a summary of the data138

sources used to parametrise our trait-response relationships). We fitted linear models to describe139

the relationships between the life cycle parameters of the simulation model and the weed traits140

(or functional groups) using GenSTAT. In each case this results in parameter estimates {a, b} and141

an associated covariance function C that captures the uncertainty in the estimates. The data we142

used to fit the models came from a series of experiments screening ecophysiological parameters143

for 21 annual weed species summarised in Storkey (2006). In our simulation model, we explic-144

itly account for the uncertainty in the relationships between the traits and life-cycle parameters by145

stochastically sampling the parameters values from multivariate normal distributions with mean146

{a, b} and covariance C.147

The weed life-cycle model proceeds as follows. For each weed species, the number of weed148

seedlings that emerge from the seedbank is calculated and this is converted to an initial estimate149

of green area. The green area increases as a function of thermal time up until the canopy reaches150

closure (which is defined as the total green area index, GAI, equalling 0.75). Thereafter the plants151

are assumed to grow in competition and both plant height and green area are monitored up until152

the crop matures to calculate partitioning of light in the canopy. At this stage, we calculate the153

total biomass for each species and use this to estimate seed production, a proportion of which is154

returned to the seedbank.155

We integrated our model within an existing model of the agricultural landscape — the Rotham-156

sted Landscape Model (RLM, Coleman et al., 2017) to define the environmental and management157

context of the simulation arena. RLM simulates soil processes, including water and nutrient flows,158

and the growth of arable crops. We use the soil and crop variables generated by the RLM as inputs159
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into our life-cycle model. This allows us to simulate the response of the weed community to vari-160

ous environmental factors (such as light and nutrient availability) as well as management (timings161

of cultivation and application of herbicides). The model runs on a daily time step driven by daily162

weather variables.163

Seedbank → Seedlings164

Seedling Emergence The model is initialised by ‘planting’ a number of seeds per species in165

each of two layers of the seedbank (a shallow layer from which seeds can readily emerge and166

a deeper layer from which emergence is reduced). On the day on which the crop is ‘sown’ in167

RLM the weed-seedling emergence function is triggered. This function calculates the number of168

seedlings that emerge for each species. Firstly, we calculate the proportion of the total seedbank169

that can potentially emerge rt. We model this as a generic, stochastic process across all species170

by drawing from a censored Weibull distribution (Eq. 1 with parameters a = 1.52 and b =171

0.21). This distribution was chosen as it gave a good description of data on seedling emergence172

observed at 5 sites over three years for three contrasting weed species (Appendix S1 Fig. S1.). This173

is a pragmatic approach that deliberately avoids the need to model interactions between season,174

induced dormancy and soil microclimate in determining emergence in any given year.175

f (rt) = min

(

a

b
r a−1
t exp

(

−
r a
t

b

)

, 1

)

for rt > 0

= 0 elsewhere. (1)

Weeds are adapted to emerge at different times of the year. We use an emergence calendar176

for each species to describe this, and select the proportion of seeds (re) predicted to emerge in the177

time period between sowing and when germination is inhibited by the crop canopy (45 days and178

30 days after sowing for autumn and spring sown crops respectively). It would be extremely costly179

to parameterise an emergence calendar for each species in turn. Instead, we use the functional180
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groupings according to emergence periodicity. Here, each species is assigned to one of three181

groups: spring emergers, autumn emergers or generalists. We fitted bimodal normal probability182

distributions to each group using data from Storkey et al. (2015), see Fig. 2.183

We assume that the seeds in the deep layer of the seedbank have a reduced probability of184

emergence. This is described by scaling the emergence of seeds from the bottom later by185

rd =
1

2

(

D − 2

8

)

. (2)

where D is the maximum depth from which seeds of that species can germinate. The maximum186

depth from which seeds of a given species can emerge (D) is estimated using the seed mass trait187

(Sm). The linear relationship188

D = c ln (Sm) + d (3)

was derived using data from Storkey et al. (2015) for 18 weed species (see Appendix S1, Figure189

S2).190

The number of seedlings that emerge for each species Sem is then given by:191

Sem = (SBrd + ST ) rtre (4)

where SB and ST are the seeds in the deep and shallow layers of the seedbank respectively.192

Seedling mortality and seedbank decay The numbers of seeds that persist in the deep and

shallow layers of the seedbank from one year (k) to the next (k + 1) are given by

SB (k + 1) = ∆ [SB (k)− SB (k) rdrt (rm + re)− lg] (5)

ST (k + 1) = ∆ [ST (k)− ST (k) rt (rm + re)] , (6)

where rm is the proportion of seedlings that are removed by pre-emergence control methods (either193

through herbicides or cultivation). Here we use the emergence calendar for each species according194
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to its emergence periodicity and assume rm is the proportion of seeds emerging between the 1st195

of January (September) and the date the crop is sown in the Spring (Autumn). We assume that196

15% (Benvenuti et al., 2001), of the seeds in the bottom layer that are above the maximum depth197

for emergence lethally germinate (lg):198

lg = 0.15SB

(

D − 2

8

)

. (7)

We also account for the fact that a certain proportion of seeds 1 − ∆ are lost due to seed-199

bank decay. The survival rate of seeds in the seedbank, ∆, is associated with the seedbank type200

functional grouping. Following Thompson et al (1997) each species is assigned to one of three201

seedbank types: transient, short-term persistent, or long-term persistent. Using data from Lutman202

et al (2002) on the seedbank survival rates for 20 species (3 transient, 11 short-term persistent, 6203

long-term persistent) we calculated the average survival rate for each of the three groups: ∆transient204

= 0.3, ∆short−termpersistent = 0.6, and ∆long−termpersistent= 0.8.205

Following emergence, a proportion of the seedlings are removed by post-emergence control206

methods. There is currently no known association between herbicide efficacy and plant traits and207

the response to different herbicides is species specific. To determine the proportion of seedlings of208

each species removed under different post-emergence herbicide programs we followed the method209

used by Benjamin et al. (2009) and categorised post-emergence herbicide control as either low,210

moderate, moderately-high or high cost. Expert knowledge was used to estimate the percentage kill211

of each weed in each crop, given the costing band of the herbicide programme. Cheap programmes212

were assumed to control weeds, which are easy to kill, whereas more expensive programmes are213

needed to kill more resilient weeds.214

Seedlings → Mature plants215

Early growth In the early part of the growing season, before the total green area index (GAI) of216

crop and weeds reaches 0.75, plant growth responds to thermal time (T ) and we assume there is217
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no competition between individuals. The GAI of a single plant grows according to218

WGAI (T (j)) = A exp (RT (j)) (8)

where A is the initial value of the GAI when T = 0, the R is the seedling relative growth rate219

and T (j) is the accumulated thermal time from sowing on day j (see Appendix S1 Box S2). The220

total GAI for a single species is obtained by multiplying the GAI of an individual by the number221

of seedlings of that species which emerged. This is calculated daily until canopy closure.222

There is an allometric relationship between seed mass and relative growth rate (Shipley &223

Peters 1990) that we employ using the intermediate step of relating seed mass to initial green area.224

The initial value of the GAI for a single seedling (A) is estimated from the seed mass trait by225

A = α ln (Sm) + β (9)

where the parameters α and β vary according to two functional groupings; the emergence pe-226

riodicity and the phylogeny (grass/broadleaf). These parameters were derived for each combi-227

nation of these functional groupings using data for 19 species (4 autumn-emerging grasses (AG),228

11 autumn-emerging broadleaved weeds (AB), and 4 spring emergers (SE)) from Storkey (2004)229

(Appendix S1 Fig. S3).230

The seedling relative growth rate R is then estimated from the initial green area (A):231

R = γA+ δ. (10)

Here the parameters γ and δ vary according to the functional groupings of emergence periodicity232

and the phylogeny as well as the season in which the function is called. These parameters were233

derived for each combination of these functional groupings using data for 19 species (4 autumn-234

emerging grasses (AG), 11-autumn emerging broadleaved weeds (AB), and 4 spring emergers235

(SE)) from Storkey (2004) (Appendix S1, Figure S4).236
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In RLM, crop relative growth rate is limited by nitrogen according to a scaling factor (N ).237

We use this factor to also scale the growth rate of the weed species (R). When the Ellenberg N238

number is greater than or equal to that of the crop, the scaling factor N takes the same value used239

in the crop model (this is output from RLM). If the weed species is more sensitive to nitrogen than240

the crop (i.e. its Ellenberg N number is smaller than that of the crop) then N is scaled according241

to242

N (q) = N (p)
B (p)

B (q)
(11)

where q refers to the weed species in question and p refers to the crop. Here, B is the reduction in243

plant biomass (under nitrogen limitation) and is also related to Ellenberg N:244

B = 6.5EN − 14.4 (12)

We derived this relationship using data (Storkey ,2010) on the difference in biomass for 7 weed245

species grown with and without nitrogen limitation (Appendix S1 Figure S5)246

Growth Under Competition Once canopy closure has been achieved plants will compete for247

light. We used the method described in Kropff and van Laar (1993) to determine the share of248

light for each species, and to calculate growth rates using an estimate of light use efficiency (see249

Appendix S1 Box S3). The share of light (s) for a plant of species q on day j is calculated250

using information about its own height (WH) as well as the height (WH) and GAI (WGAI) of the251

competing species (p of n species):252

s (q) = exp

(

−
n
∑

p=1

[

ς (p)WGAI (p, j)
WH (p, j)− 0.5WH (q, j)

WH (p, j)

]

)

when WH (p, j)− 0.5WH (q, j) ≥ 0

(13)

where ς is an extinction coefficient with a value of 0.9 for broadleaves and 0.6 for grasses (Kropff253

and van Laar, 1993).254
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In order to determine s for each species we need to calculate the plant height. Crop height is255

provided by RLM. Weed height is assumed to grow according to256

WH (j) = HI +
HM

1 + exp (−ζ [P (j)− τ ])
(14)

where P (j) is the accumulated photo-thermal time on day j (see Appendix S1 Box S2). HI is257

the initial plant height and HI + HM is the maximum height for a plant of the given species.258

The initial plant height, HI , depends on the phylogenetic grouping as in an analysis of initial259

plant heights (HI) for 16 species (Storkey, 2006) we found significant differences between grasses260

and broadleaves with mean values of (HI (grasses) = 5.204 (SEM = 2.133), HI (broadleaves) =261

0.89 (SEM = 0.738)) (Appendix S1, Figure S6). The ζ parameter describes the rate of growth;262

a common value across species was determined from data for 16 species (Storkey, 2006) to be263

0.0106 (SEM = 0.0011).264

The point of inflection, τ , is related to the day of first flowering trait (WF ):265

τ = λWF + κ (15)

where λ = 1.354 (SE = 0.573), and κ = 501.8 (SE = 68.8) with a correlation between parameters266

of -0.955. These parameters were derived from plant height growth data for 16 species (Storkey,267

2006).268

Once we have calculated the share of light for a given species(sq) and that of the competing269

species (sp) we can calculate the proportion of intercepted light that each species (q) receives on a270

given day (j)271

g (q) =
ςqWGAIq (j) sq

∑n

p=1 ςpWGAIp (j) sp

[

1− exp

(

−
n
∑

p=1

ςpWGAIp (j)

)]

. (16)

In the case of the crop, we returned this parameter to RLM to adjust the PAR available for crop272

growth. Growth continues in this way until the weed species reaches maturity, the Julian date of273
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which is predicted using the day of first flowering trait (WF ):274

WM = 0.314WF + 121.8 (17)

We derived this relationship using data on weed maturation times for 15 weed species (Storkey,275

2006). As data were only available for early flowering species we assumed a constant difference of276

10 days between flowering and maturity for all later flowering species (flowering after Julian day277

163). We would expect this relationship to be sigmoidal rather than linear however due to the lack278

of data and the fact that these species will often flower very close to harvest or even after harvest279

the additional biomass accumulation between flowering and maturity would be unimportant for280

our model.281

During growth under competition, GAI also accumulates. The increase in GAI of a weed282

species from day j to day j + 1 is given by283

WGAI (j + 1) = WGAI (j) + gI (j)Em (1− ρ) (18)

where I is the amount of incoming photosynthetically active radiation (PAR, given by RLM), Em is284

the average light use efficacy (m2 dry matter MJ−1, see Appendix S1, Box S3) and ρ is a reflection285

coefficient (0.08 based on an average solar elevation of 45◦; Kropff and van Laar,1993).286

Mature plants → Fresh seed287

Seed Production The number of seeds produced (Sd) by a given species are related to the plant288

biomass at maturity (WBM, Lutman et al., 2002). We assume this size dependency of reproductive289

allocation remains constant such that the slope of the relationship = 1 (Sugiyama and Bazzaz,290

1998)291

ln (Sd) = υ + ln (WBM) . (19)
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The species dependent parameter υ is estimated from the seed mass trait:292

υ = −0.1177 ln (Sm)
2 − 0.672 lnSm + 5.789. (20)

We fitted this relationship to data on 14 weed species (Storkey et al., 2015) (Appendix S1 Figure293

S7).294

The weed biomass at maturity (WBM (j)) is related to the GAI on the day of maturation295

(WGAI (j)) and the specific leaf area trait(WSLA):296

WBM (j) = ε
WGAI (j)

WSLA (j)
(21)

where ε = 6.121, SE = 0.363 and relates the leaf biomass (GAI/SLA) to total plant biomass on day297

j. We used data on measured green area and dry weights from Storkey (2006) to determine this298

relationship (Appndix S1, Figure S8).299

Fresh seed → Seedbank300

Seed Losses If the weed has not reached maturity on the Julian day when the crop is ”harvested”301

in RLM then no seed is shed. A maximum of 100% seed shed is reached 38 days after matu-302

rity (mean of observed data from the UK for Avena spp (Barosso et al., 2006) and Alopecurus303

myosuroides (R Hull unpublished data) and estimates for Galium aparine (Lutman, 2002) and we304

assume the response is linear. Any unshed seed is lost and not subsequently added to the seedbank.305

Following a meta-analysis of post-harvest seed losses by Davis (2011), seed predation is ran-306

domly sampled from a normal distribution with mean 0.52 and standard deviation 0.05. This307

portion of the seed shed is not subsequently added to the seedbank.308

Vertical Movement of Seed in the Soil Seeds are moved vertically between the shallow and309

deep soil layers following data described by Moss (1990). In years when the cultivation type is310

“plough” a proportion of seeds from the shallow soil layer are buried into the deep soil layer drawn311
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from a log-normal distribution with mean = −0.0515 and standard deviation = 0.0191, conversely312

some seeds are brought up to the shallow soil layer — this proportion is drawn from a log-normal313

distribution with mean = −1.0570 and standard deviation = 0.1199. For all other cultivation types314

there is no upward movement of seed (from the deep soil layer to the shallow soil layer). For “min315

till” data on cultivations at 10 cm were used to give the proportion of seeds that are buried taken316

from the distribution N (0.2, 0.051). In years where “direct drill” is chosen (data from <5 cm tine)317

no seeds move vertically.318

If the seedbank for a species (in either the top or bottom soil layer) falls below 1 seed (m−2)319

then that species is assumed to have gone extinct locally and is not included in subsequent years320

simulation.321

Model Testing322

To evaluate the performance of our trait-based community model we compared the community323

predicted by our model with the observed weed community (see Appendix S1 Box S4 for methods324

of data collection) in an arable field (Brome Pin, Brooms Barn, Suffolk, UK), for which the weather325

(e-RA, 2018), crops, tillage, and fertiliser input history was available for 30 years (1987–2016).326

We initialised our model with 100 weed seeds in each soil layer of each species in the regional pool327

(101 annual arable weeds - see Appendix S1 Box S5). We simulated the 30 years prior to seedbank328

collection (1987–2016) using the known management information for those years. As we did not329

know the level of herbicide input used in the field we ran the model 20 times for each level of330

herbicide input (none, low, medium, high, and very high) to determine whether this significantly331

altered the number of plants, seeds in the top layer of the seedbank, or seeds per plant in the final332

simulated community (One-Way ANOVA).333

We calculated the functional diversity (sensu Petchey and Gaston, 2002) of each simulated334

community at the end of the 30 year simulation in R 3.5.0 (R Core Team, 2018). We first standard-335

ised the traits data and computed a dissimilarity matrix using the vegan package (Oksanen et al.,336

2019). We then used hierarchical clustering to create a dendogram of the relations between species337
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and computed the functional diversity (total branch length) using the picante package (Kembel338

et al., 2010). We tested to see if the selected communities were functionally different under the339

different herbicide regimes (One-Way ANOVA) and also whether the functional diversity of the340

selected communities differed significantly from the regional species pool (One-Way ANOVA).341

For each model realisation we also compared the resulting density distribution of each trait342

in the simulated community with the initial trait distribution of the regional pool and that of the343

observed weed community in Brome Pin.344

Results345

The weed community in Brome Pin comprised 23 species. The two most abundant species were346

volunteer crops of oats and oilseed rape. Of the remaining 21 weed species, 6 were perennials347

and 15 were annuals (Appendix S2 Table S1). In our subsequent analyses we only considered the348

community of 15 annuals to align with the scope of our model and excluded crop volunteers as349

their population dynamics are driven by repeated reintroduction.350

In our simulations, the abundance of plants varied significantly at different levels of herbicide351

(P<0.001, One-way ANOVA). Plant abundance was highest when herbicide input was low and352

decreased with increasing herbicide input (Fig. 3a). The number of seeds in the top layer of353

the seedbank followed a different pattern. Following 30 years of simulation with no herbicide354

there were few seeds in the seedbank, yet significantly higher seed numbers were simulated at355

all levels of herbicide application (P<0.001, One-way ANOVA). Seed abundance also increased356

with increasing herbicide input (Fig. 3b). This had the interesting effect that the number of seeds357

per plant was significantly altered under different herbicide regimes (P<0.001, One-way ANOVA)358

with an exponential-like increase in seed production at increasing levels of herbicide input (Fig.359

3c). We suggest this is a result of communities being dominated by species with high fecundity,360

allowing them to buffer the effects of herbicide, and a reduction in competition between weed361

individuals.362

The community of weed species selected for by the model was fairly consistent across simula-363
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tions. In the majority of our simulations Sonchus asper was the most abundant species but across364

all simulations there were only nine different species which were ever predicted to be the most365

abundant (P<0.001 compared to random selection of species; Appendix S2 Table S2). The species366

predicted to be the most abundant remained fairly consistent across higher levels of herbicide in-367

put, yet as herbicide input was reduced we saw a greater variety in the most abundant species368

predicted by the simulations (Appendix S2 Table S2). Our model very rarely predicted the local369

extinction of species, however, the abundances of most species remained very low. The species370

which did maintain high abundance were often similar across simulations, with eight species con-371

sistently ranking among the 20 most abundant species (across all 20 simulations for each herbicide372

scenario, see Appendix S2 Table S3). Atriplex patula, Conyza cadensis, Fumaria officinalis and373

Veronica persica were often found amongst the 20 most abundant species when no herbicide was374

applied but markedly less so at any level of herbicide application. Our model had mixed success375

at predicting the species found in Brome Pin with only 8 of the 15 annuals observed in Brome376

Pin ranking among the 20 most abundant species in any simulation. However, as it is not possible377

to separate out environmental filtering from founder effects, and these species were only found in378

small numbers in Brome Pin it could be that these species would not always be abundant at this379

field site given the environmental and management conditions. The model was more succesful at380

predicting the emergent distribution of functional traits.381

There was a significant difference in functional diversity of the resulting simulated communi-382

ties compared to the regional pool (One-way ANOVA, P<0.001), indicating that there has been383

directional selection of functional traits. However, the functional diversity of the simulated com-384

munities were not significantly different under different herbicide regimes (One-Way ANOVA,385

P<0.05) indicating that herbicide input is not a key driver of functional diversity in our model, so386

we only show the trait distributions for the medium herbicide level here.387

For the continuous traits included in our model the distribution of traits observed in Brome Pin388

(yellow distributions in Fig. 4) was a subset of the full regional pool (blue distributions in Fig.389

4). In our model simulations (black distributions in Fig. 4) we saw different levels of selection for390
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the various traits. In our simulations there was a strong selection according to seed mass (Fig. 4a)391

with the simulated communities all showing similar seedmass trait distributions to that observed in392

Brome Pin, whereas for maximum height the trait distribution of the simulated communities was393

not very dissimilar to the regional pool indicating that there is not a strong selection for maximum394

height in our model (Fig. 4b). The distribution of flowering times (Fig. 4c) observed in our395

simulations centres on later flowering species than we observed at Brome Pin, however the latest396

flowering species from our species pool, (first day of flowering in August, Julian day ≥ 213), are397

excluded following our simulations and so there is some limited evidence for directional selection398

based on flowering times in our model. There is little evidence for selection based on SLA in our399

model (Fig. 4d). However, this lack of selection based on SLA is also reflected in the observed400

community in Brome Pin.401

For the discrete functional groups used in our model there was also a distinction between the402

composition of the regional pool (blue bars in Fig. 5) and the community in Brome Pin (yellow bars403

in Fig. 5). Again, the model simulations (black lines in Fig. 5) showed varying levels of selection404

for the different factors. The observed species in Brome Pin all had Ellenberg N values between 6405

and 8 with most individuals having an Ellenberg N of 6. The regional pool instead shows a peak at406

Ellenberg N =7. Many of our simulated communities show a broad spectrum of Ellenberg N values407

taken from the full range present within the regional pool, however, in some simulations there is408

selection towards a peak at Ellenberg N = 6, although this is not consistent. In the regional pool409

there are a similar number of species with each type of emergence calendar (Fig. 5b). However, in410

Brome Pin we found very few Autumn-emergers and most individuals were generalist emergers.411

Our simulated weed communities reflected this with strong selection against autumn-emerging412

species. Whilst most species in our regional pool are broadleaves with fewer grasses (Fig. 5c)413

there is an even stronger bias toward broadleaves in the weed community observed in Brome414

Pin, with very few grasses found in the sampled seedbank. Our model simulations reflected this415

selection pressure and in all simulations the frequency of grasses was reduced compared to the416

regional pool. In Brome Pin we saw a prevalence of short-term persistent seedbank types and an417
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absence of species with a transient seedbank. Our model selects for both short-term and long-term418

persistent seedbank species but we also saw a removal of species with a transient seedbank in line419

with our observations from Brome Pin.420

Discussion421

Predicting the relative abundance of species along environmental gradients or following changes422

in management practices is a fundamental goal in community ecology. Our approach, which links423

trait-based environmental filtering with a process-based community model, allows both the di-424

vergent and convergent selection pressures of environmental filters and biotic interactions to be425

considered in combination. The observed data on functional traits from the study field generally426

reflected a convergence of traits, especially for seed mass and this was captured by the model. How-427

ever two distinct peaks were observed in the density plots of observed data for maximum height428

and specific leaf area reflecting a divergence of traits in response to crop competition. The sim-429

ulation output for maximum height also had two peaks, although underestimating the dominance430

of shorter species. As the functions modelling competition incorporate height, it is encouraging431

that biological interactions result in a degree of trait divergence. However, the effect of variation432

in SLA on competition for light is not currently included in the model and the results indicate that433

further development is required to reflect the observed divergence in this trait.434

We demonstrated that by parameterising a process-based model using data from well-studied435

plant traits that we can effectively model the effect of environmental filters on plant communities436

at the level of functional traits. In all of our simulations the direction of selection was consistent437

with in-field observations. Although there was stronger selection for some traits than for others.438

We predicted different plant communities under different levels of herbicide indicating that this439

simple management filter does exert selection pressure at the trait level. We also demonstrated440

that stochasticity can play a role in community assembly as the inclusion of stochastic processes441

in our model resulted in different realisations of the final plant community, although the functional442

diversity of those communities remained similar.443

20This	article	is	protected	by	copyright.	All	rights	reserved

A
cc

ep
te

d 
A

rt
ic

le



By combining the trait filtering approach with a process-based community model we revealed444

a number of emergent properties of the model which were not anticipated by the inputs alone.445

Our model predictions under varying levels of herbicide input predict the largest number of plants446

when herbicide input is low. This phenomenon has been observed in the field for a number of447

weed species (e.g. Buhler, 1999, Boström & Fogelfors, 2002) and is consistent with the interme-448

diate disturbance hypothesis which states that at intermediate levels of disturbance (low herbicide)449

coexistence is more likely (Catford et al., 2012). This unanticipated emergent property highlights450

the importance of including mechanistic processes in the model in addition to empirical relation-451

ships between traits and environmental filters as the synergistic effect of these processes may reveal452

interesting aspects of community dynamics such as these which can only be revealed when there453

is both convergent and divergent selection acting simultaneously.454

Our model takes mean trait values as input for each species, yet within a species the value for455

that trait may vary along environmental gradients or change through time (Violle et al., 2007). It is456

important that we recognise this intraspecific variation in models of this kind. For example, plant457

height is very dynamic, and depends strongly on disturbance regime (Garnier & Navas, 2012)458

meaning that the mean values reported in the literature and used here in our model may not be459

very accurate for plants of the same species growing in a highly disturbed arable field. A similar460

argument can be made for flowering time. However, as yet, these data are not readily available461

for arable systems in the UK and as such this may be a source of error in our model. Despite462

not explicitly incorporating intraspecific trait variation in our model we do include it implicitly463

by accounting for the uncertainty in each trait–parameter relationship and so by including this464

stochasticity within the model we account, to some extent, for variation between individuals.465

The discrepancies between the ability of our model to successfully predict the correct species466

list for our studied field (limited success) and the ability to predict the correct distribution of func-467

tional traits (greater success) highlights an important question surrounding its utility in predicting468

community composition. If, as we state in the introduction to this paper, the primary objective of469

community ecology is to predict the impact of change (environment, land-use, and management)470
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on the function of the emergent community then our model succeeds. This will be particularly471

pertinent where there are associations between the response traits included within the model and472

any effect traits that determine ecosystem function (Dı́az et al., 2007a). However, if the objective473

is to simply predict the composition of species then our model is of more limited use.474

By demonstrating the ability of our model to predict changes in both weed abundance, and the475

distribution of functional traits we have shown that it will have utility in assessing the viability476

of various management scenarios. For example, if the aim of weed management is to reduce477

overall weed abundance we could use our model to assess the success of a number of hypothetical478

management regimes in achieving this for a given field. Similarly, if the aim of weed management479

is to provide a functionally diverse weed community which can support the provision of ecosystem480

services then this too could be assessed through simulation of various management options to481

determine the best approach for achieving this.482

Whilst our model is intrinsically linked to the arable production system, the principle of com-483

bining trait-based filtering with process-based models could be easily extended to any ecosystem484

where the community composition of annual plants is of interest. The generic model of the annual485

plant life-cycle is broadly applicable and questions surrounding changes in management or envi-486

ronment can be easily addressed as demonstrated by our inclusion of different herbicide programs.487

For example, the effect of post-emergence herbicide on seedling mortality included in our model488

could be easily mapped to other management practices such as grazing or even natural disturbances489

such as burning — provided details are known about the proportion of the population removed by490

such disturbances. The main factor limiting the application of our modelling framework to habitats491

other than cultivated fields is the level of specificity of the relationships between functional traits492

and model parameters that have been quantified for a subset of arable weeds. There is evidence in493

the literature that some of these allometric relationships follow ecological rules and are conserved494

across functional groups (for example seed weight and seedling growth rate (Shipley & Peters,495

1990). However, the extent to which the model can be applied to other annual plant communities496

without additional experimental parameterisation remains to be determined.497
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Table 1: Each transition from one stage of the annual plant life cycle to the next is the result of

one or more mechanistic processes. The success of each of these processes is determined by the

strength of certain environmental filters which act on various response traits.

Transition Process Filters Response Traits

Seedbank →
Seedlings

Seedling emergence
Date of crop sowing Emergence periodicity*

Depth of cultivation Seed mass

Seedling mortality Herbicide timing Emergence periodicity*

Seedbank Decline
Frequency and depth of

cultivation
Seedbank persistence*

Seedlings →
Mature plants

Early Growth
Temperature

Seed mass, emergence

periodicity*,

grass / broad-leaf*

Fertilization Ellenberg N number*

Competition
Crop canopy architecture Maximum height, flowering time

Fertilisation Ellenberg N number*

Mature plants

→ Fresh seed
Seedbank decline Timing of harvest Flowering time, SLA, Seed mass
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Figure Captions656

Fig.1: Combining trait filtering and community dynamics modelling approaches allows us to pre-657

dict changes in community composition. We use relationships between functional traits published658

in trait databases and parameters in the annual plant life cycle to parameterise a mechanistic model659

for multiple species.660

Fig.2: Emergence calendars for Spring emergers, autumn emergers and generalist emergers.661

Bimodal normal probability distributions are fitted to each group using data from Storkey et al.662

(2015), (5 spring emergers, 2 autumn emergers, 3 generalist emergers.663

Fig. 3: Summary at all levels of herbicide input of the total a) plants, b) seeds in the top layer of664

the seedbank, and c) seeds per plant in the end community after 30 years of simulation. Bar height665

represent the means from 20 simulations at each level of herbicide input and error bars show the666

standard error of the mean.667

Fig. 4: Density plots showing the frequency of the continuous traits a)seed mass, b) maximum668

height, c) flowering day, and d) specific leaf area. The green distribution shows the density function669

fitted to the observed data from the Brooms Barn field site, the blue distribution shows the full range670

of trait data included in the model and represents a density function fitted to an even community671

consisting of all species, the purple lines are the density functions fitted to each realisation of the672

field following the simulation of 30 years of management history at the brooms barn site.673

Fig. 5: Density plots showing the frequency of the discrete groping factors a) Ellenberg N, b)674

emergence group, c) phylogeny, and d) seedbank longevity. The green bars show the density of675

the observed data from the Brooms Barn field site, the blue bars show the full range of trait data676

included in the model and represents the density of an even community consisting of all species,677

the purple lines are the density values of the group for each realisation of the field following the678

simulation of 30 years of management history at the brooms barn site.679
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