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• Semiochemicals govern belowground interactions, but their extraction is difficult
• We adapted a method to isolate small lipophilic molecules (SLMs) from soil matrices
• We show ether extraction of silicon tubing (PDMS) produces samples enriched in SLMs
• Performance of the extraction method is described for various sampling parameters
• PDMS is a non-invasive, in situ method to provide samples for chemical ecology assays



Abstract
The extraction of small lipophilic molecules (SLMs) in the soil-root interface that play a role in 
belowground ecological interactions between plants and insect herbivores was investigated. 
Polydimethylsiloxane (PDMS) microtubing has been shown to absorb root SLMs selectively in low-
disturbance setups, where analytes were extracted from the polymer with methanol. This technique 
was adapted to isolate SLMs that diffuse in the vapour phase in soil and sand and under various 
experimental parameters, extracting with a plug of diethyl ether pushed through the length of the 
silicon tubing. Moisture level had a substrate-dependent effect on the recovery rate of analytes that 
were applied as synthetic blends of known belowground SLM semiochemicals in the media. Higher 
amounts of two selected SLMs, (E)-caryophyllene and (-)-thujopsene, were extracted from sand, and 
increased polymer and solvent volume, as well as sampling duration, resulted in more of these two 
SLMs recovered by extraction. It was also shown that PDMS tubes lose no extraction capacity after 
repeated use. The signature compound (E)-caryophyllene was successfully isolated from the 
rhizosphere of maize plants infested with Diabrotica v. virgifera larvae by extracting the silicon tubing 
with diethyl ether. Because the tubes are preconditioned to reduce the presence of contaminants, 
such extracts can be directly analysed by GC and GC-MS and used in electrophysiological and 
behavioural assays. After further modifications, non-invasive, in situ PDMS probes can be developed 
that extract SLMs from plant rhizosphere for the study of belowground chemical ecology processes.

Keywords: soil chemistry; belowground interaction; chemical ecology; semiochemical; diffusion; 
absorption
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16 1 Introduction
17
18 Small lipophilic molecule (SLM) semiochemicals (naturally occurring behaviour- and development-
19 modifying chemical signals, e.g. pheromones and other allelochemicals) govern a wide range of 
20 ecological interactions within and across trophic levels, e.g. between plants and their associated 
21 insect, pathogen and weed pests. Whilst the role and identity of volatile SLMs in aboveground 
22 multitrophic interactions has been well characterised by numerous chemical ecology studies, by 
23 comparison, there are significant gaps in knowledge of similar SLMs involved in belowground 
24 interactions [1], i.e. in the rhizosphere (the zone of chemical, biological and physical influence 
25 generated by root growth and activity). The abundance of live biomass and the diversity of organisms 
26 in the rhizosphere is a source of a breadth of natural products with ecological functions. Bacteria, 
27 fungi, plants, arthropods and other soil-dwelling invertebrates have mostly been studied in isolation 
28 from the rhizosphere, resulting in the description of a plethora of SLMs without the characterisation 
29 of their semiochemical roles. This is in part due to the methodological difficulties that accompany the 
30 isolation, bioassay-guided fractionation and identification of SLMs from soils. As soil is a three-state 
31 system, consisting of a solid phase of minerals and organic matter (the soil matrix), as well as a porous 
32 phase that holds gases (the soil atmosphere) and water (the soil solution), the diffusion of SLMs is 
33 affected by soil pH [2] as well as their ability to cross state boundaries while interacting with substrate 
34 particles and water [3].
35
36 Over the past two decades, a number of invasive and non-invasive techniques have been developed 
37 for the in vitro and in vivo isolation of rhizosphere SLMs from artificial and natural soil ecosystems. 
38 Freezing cleaned maize (Zea mays L., Poaceae) roots in liquid nitrogen after herbivory by the western 
39 corn rootworm (Diabrotica v. virgifera LeConte) (Coleoptera: Chrysomelidae) larvae, followed by  
40 collection of volatile compounds from powdered tissue using solid-phase microextraction (SPME), led 
41 to the identification of (E)-caryophyllene as a cue used by entomopathogenic nematodes to locate 
42 their herbivore hosts [4]. Headspace sampling methods, commonly used to collect aboveground plant 
43 volatiles [5], were also developed to sample compounds from live roots in situ. Vacuum pumps were 
44 used to remove air continuously from the root zone of Citrus paradisi Macf. × Poncirus trifoliata L. Raf. 
45 (Rutaceae) plants infested with the weevil Diaprepes abbreviatus L. (Coleoptera: Curculionidae), with 
46 Super Q adsorbent polymer being placed in the airflow to trap volatile SLMs emitted by the roots [6]. 
47 This way, pregeijerene was identified in the adsorbent extracts from both greenhouse- and field-
48 grown trees, which attracted natural enemies (entomopathogenic nematodes) of the herbivore 
49 larvae.
50
51 Polydimethylsiloxane (PDMS)-based applications exploit the property of PDMS to absorb lipophilic 
52 compounds selectively [7]. PDMS is used as the stationary phase in capillary columns for gas 
53 chromatography (GC), and as enrichment material in SPME or stir-bar sorptive extraction (SBSE). 
54 PDMS/divinylbenzene-coated SPME microfibres have been used to collect volatile SLMs in situ from 
55 near the roots of pot-grown broccoli plants (Brassica oleracea L. var. italica) (Brassicaceae) infested 
56 with cabbage fly larvae (Delia radicum L.) (Diptera: Anthomyiidae) [8]. Analysis of the volatiles after 
57 thermal desorption from SPME fibres revealed the presence of different sulphur-containing 
58 compounds that characterised the headspace of infested broccoli roots. Other techniques relied on 
59 the absorption of SLMs into the PDMS coating of SBSE rods [9], [10] and permeation of non-polar 
60 analytes through the wall of PDMS microtubing [11], [12]. Kallenbach et al. [13] used short pieces of 
61 PDMS to extract volatiles from aboveground plant organs, which were subsequently analysed via 
62 thermal desorption, and the same procedure was applied to the rhizosphere [14]. Mohney et al. [15] 
63 inserted long pieces of PDMS tubing into the root zone of Tagetes spp. (Asteraceae), and by pushing 
64 a plug of methanol through the tubing and collecting the solvent in an HPLC vial, they could extract 
65 root-exuded thiophenes (MW 216 and 248) with allelopathic properties, which are generally 
66 distributed by soil mycorrhizal networks [16]. Using in situ PDMS microtubing placed in the root zone 
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67 of T. patula and extracting the tubing with methanol by slowly pushing it through with a syringe pump, 
68 the spatial and temporal heterogeneity in thiophene production was later demonstrated [17]. The 
69 method by Mohney et al. [15] utilised the three-step transfer phenomenon of SLM vapour across the 
70 PDMS polymer, i.e. 1) dissolution of the molecules in the polymer, 2) diffusion of the molecules across 
71 the polymer under a concentration gradient, and 3) release of the vapour from the polymer at the 
72 opposite side of the membrane [18]. 
73
74 The approach described in [17] allows the non-invasive, repeated sampling of the root zone for 
75 lipophilic compounds. However, to study the chemical ecology of belowground ecological interactions 
76 using GC, coupled GC-mass spectrometry (GC-MS), coupled GC-electroantennography (GC-EAG) or 
77 bioassays, methanol is not a desirable solvent, because SLMs need to be extracted with a less-polar 
78 solvent from methanol extracts prior to analysis, and it is potentially toxic to test organisms. Here, we 
79 explore, for the first time, the use of PDMS tubing as a novel approach that enables isolation and 
80 biological studies to be rationalised through collection of re-usable biological samples directly 
81 analysable by GC-based methods, and without the need of a pump system. Diethyl ether is an 
82 established solvent for use in chemical ecology research to extract a range of polymers [5], hence is 
83 used in this study. We also determine some key sampling parameters in growth media spiked with 
84 synthetic standards, and in plant rhizosphere.
85
86 2 Materials and methods
87
88 2.1 Experiments with synthetic compounds
89
90 Synthetic compounds were selected based on their published bioactivity in the rhizosphere (see 
91 references in Table 1). All compounds were obtained from Sigma-Aldrich (Gillingham, UK).
92
93 Polydimethylsiloxane (PDMS) tubing (1 mm i.d. x 0.4 mm wall thickness) was obtained from VWR 
94 International Ltd (Lutterworth, UK). Prior to each experiment, PDMS tubing was cut into 28 cm pieces 
95 and cleaned either by soaking in acetonitrile:methanol 4:1 for 3 h [19] or in methanol for 24 h [15], 
96 and the cut lengths then placed in a glass vessel and baked in an oven at 180°C under nitrogen for 1.5 
97 h.
98
99 Sand (0.25-0.71 mm grain size) or soil (pH 5.5-6.0; 75% medium-grade peat, 12% sterilised loam, 3% 

100 medium-grade vermiculite; 10% 5 mm lime-free grit; <2 mm particle size after sieving), heat-sterilised 
101 for 48 h in an oven at 80°C, was mixed with distilled water (pH 9) to reach the required level of 
102 moisture content (v/v). The middle 6 cm section of a PDMS tube was positioned on a ca. 1 cm thick 
103 bed of medium in a 250 mL glass beaker such that the rest of the tube ran alongside the opposite walls 
104 and a 1 cm piece of both the ends reached over the beaker rim. While holding the tube in place, the 
105 beaker was filled up completely with medium, which was then compacted with a metal spoon. 
106 Synthetic compounds were delivered into the medium in hexane (100 μL) by first making a 5 mm diam. 
107 hole into the medium with a glass rod, then inserting a glass micropipette (100 μL, BLAUBRAND® 
108 intraMARK, Wertheim, Germany) held inside the rod, down to the bottom of the hole and injecting 
109 the solution. After withdrawal of the delivery device, the hole was filled back with the medium and 
110 the experiment run at 20°C. It was expected that after solvent evaporation, the solutes vaporised in 
111 the test media.
112
113 At the end of each experiment, PDMS tubes were extracted with redistilled diethyl ether by inserting 
114 the narrow end of a Pasteur pipette (150 mm, Fisher Scientific UK Ltd, Loughborough, UK) into one 
115 end of the tube, placing the other end into a glass vial (1.1 mL, Thermo Fisher Scientific, Hemel 
116 Hempstead, UK) and administering diethyl ether into the Pasteur pipette. The remaining solvent in 
117 the tube was extruded using a ca. 1 mL bolus of air from a pipetting bulb.
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118
119 The following experiments were repeated four-six times:
120 1) Effect of sand moisture level (0, 5, 10, 15 and 20% v/v) on the recovery of (E)-caryophyllene and (-)-
121 thujopsene. Applied amount of each compound: 1 mg. Sampling duration: 2 h. Number of PDMS 
122 tubes/replicate: 1. Extraction: 1 x 1 mL diethyl ether/tube.
123 2) Effect of soil moisture level. As for experiment 1 but using soil instead of sand.
124 3) Effect of sand moisture level (0, 5, 10, 15 and 20% v/v) on the recovery of allyl isothiocyanate, (RS)-
125 limonene, methyl benzoate, (E)-2-nonenal, (S)-bornyl acetate, methyl eugenol, phenethyl 
126 isothiocyanate, β-ionone and (-)-caryophyllene oxide. Applied amount of each compound: 1 mg. 
127 Sampling duration: 2 h. Number of PDMS tubes/replicate: 1. Extraction: 1 x 1 mL diethyl ether/tube. 
128 Analytes dissolve in the relatively large volume of PDMS (absorption); thus, there is little chance of 
129 competitive interactions among multiple metabolites [7].
130 4) Effect of soil moisture level. As for experiment 3 but using soil instead of sand.
131 5) Effect of applied dose on the recovery of synthetic compounds in sand. Moisture level: 15% (v/v). 
132 Applied amounts: 100 ng, 10 μg or 1 mg, with the highest dose still ca. two orders of magnitude lower 
133 than that used in similar studies [2]. Number of PDMS tubes/replicate: 1. Extraction: 1 x 1 mL diethyl 
134 ether/tube.
135 6) Effect of applied dose on the recovery of synthetic compounds in soil. As for experiment 5, but using 
136 soil instead of sand, and a moisture level of 5% (v/v).
137 7) Effect of volume of solvent on the recovery of (E)-caryophyllene and (-)-thujopsene in sand. Moisture 
138 level: 15% (v/v). Applied amount of each compound: 1 mg. Sampling duration: 2 h. Number of PDMS 
139 tubes/replicate: 1. Extraction: 1, 2, 3, 5 or 10 x 1 mL diethyl ether/tube.
140 8) Effect of sorbent volume (total tube length) on the recovery of (E)-caryophyllene and (-)-thujopsene 
141 in sand. Moisture level: 15% (v/v). Applied amount of each compound: 1 mg. Sampling duration: 2 h. 
142 Number of PDMS tubes: 1, 2 or 3. Extraction: 1 x 1 mL diethyl ether/tube.
143 9) Effect of sampling duration on the recovery of (E)-caryophyllene and (-)-thujopsene in sand. 
144 Moisture level: 15% (v/v). Applied amount of each compound: 1 mg. Sampling duration: 0.5, 2 or 4 h. 
145 Number of PDMS tubes/replicate: 1. Extraction: 1 mL diethyl ether/tube. Determination of sampling 
146 duration was based on [13].
147 10) Effect of PDMS tube re-use on the recovery of (E)-caryophyllene and (-)-thujopsene in sand. 
148 Moisture level: 15% (v/v). Applied amount of each compound: 1 mg. Sampling duration: 2 h. Number 
149 of PDMS tubes/replicate: 1. Extraction: 1 mL diethyl ether/tube. Each tube was used three times, with 
150 the cleaning procedure ([15]) undertaken between each use. Cleaned tubes, placed in empty glass 
151 beakers the way described above, were also extracted by pushing 1 mL diethyl ether through each of 
152 them to check for compound residues and thus for the evaluation of the efficiency of each cleaning 
153 process.
154
155 2.2 Experiments in plant rhizosphere
156
157 To test the efficacy of the PDMS tubing to extract SLMs from plant rhizosphere, a 130 cm piece of 
158 PDMS tube was coiled around a 19 cm long glass tube (5 mm diam.) bent into a U shape (8-3-8 cm 
159 sections). The increased sorption surface was used in anticipation of small amounts of SLMs, notably 
160 (E)-caryophyllene, being released from the roots of maize attacked by Diabrotica v. virgifera LeConte 
161 (Coleoptera: Chrysomelidae) larvae [4]. Larvae were collected in a field near Bonyhád, Hungary, by 
162 pulling out maize plants and inspecting the root ball for 2nd and 3rd instars. After transferring to the 
163 Rothamsted laboratory, 15-20 larvae were added to a 250 mL glass beaker filled with soil. Each beaker 
164 contained two corn seedlings. Larvae were kept under artificial light (15L:9D photoperiod) at 23°C, 
165 60±10% RH, and watered daily. The probe was inserted into a 250 mL glass beaker with 15% moisture 
166 sand, into which a 16-day-old maize plant (cv Delprim), previously grown in soil, was transplanted. The 
167 treatment consisted of placing five 2nd instar larvae on top of the sand in each beaker, which eventually 
168 tunnelled into the medium. Non-infested plants served as control. After five days, the tubing was 
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169 extracted with 2 mL diethyl ether as above. Five replicates were done. To estimate volatile release/dry 
170 weight, maize roots were washed with distilled water, dried at 172 °C for 24 h and then weighed. n=4, 
171 mean (±SE) weight=0.21±0.02 g.
172
173 2.3 Sample analysis
174
175 Eluted diethyl ether samples were analysed using an Agilent 6890N GC equipped with a cool on-
176 column injector, a flame ionization detector (FID), and either a 50 m × 0.32 mm i.d. non-polar HP-1 
177 column (0.52 μm film thickness) or a 10 m × 0.53 mm i.d. HP-1 column (2.65 μm film thickness) (J & W 
178 Scientific, Folsom, CA, USA). The oven temperature was maintained at 30°C for 1 min, then 
179 programmed to increase at 5°C/min to 150°C, then held for 0.1 min, then programmed to increase at 
180 10°C/min to 250°C and then held for 20 min. The carrier gas was hydrogen. The identity of peaks in 
181 PDMS extracts was confirmed by comparison of their gas chromatographic (GC) and mass 
182 spectrometric (GC-MS) properties with those of authentic standards, and by GC peak enhancement 
183 using authentic samples. GC-MS conditions: a Micromass Autospec Ultima magnetic sector mass 
184 spectrometer (Waters, Milford, MA) attached to an Agilent 6890N GC (fitted with a 50 m x 0.32 mm 
185 i.d. x 0.52 µm film thickness HP-1 column, J & W Scientific), and equipped with a cool-on-column 
186 injector. Ionization was by electron impact (70 eV, 220°C). The GC oven temperature was maintained 
187 at 30°C for 5 min and then programmed to increase at 5°C/min to 250°C, with a 70-min run time. A 
188 log-to-base 10 transformation was applied to the amount (µg) of compounds to account for some 
189 heterogeneity of variance over the treatments, with an adjustment of 0.001 to account for zero 
190 observations. ANOVA, providing an F-test for the overall difference between treatments, was followed 
191 by application of Fisher’s least significant difference (LSD) test (p<0.05) for the statistical separation 
192 of means, or a two-sample t-test (p<0.05) for comparisons between mean amounts of two 
193 compounds. The Genstat (2015, 18th edition, VSN International 140 Ltd, Hemel Hempstead, UK) 
194 statistical package was used for the analysis. Estimation of quantities of compounds was achieved 
195 using the single-point external standard method with a series of C7-C22 alkanes.
196
197 To determine the total amount of (E)-caryophyllene and (-)-thujopsene absorbed into the volume of 
198 PDMS, sand with 15% moisture content was spiked with 10 μg of each compound and left at 20°C for 
199 2 h. The 28 cm long tube was then removed from the medium and sand particles were rinsed off with 
200 distilled water. The tube was cut up to four equal pieces and a piece was put into an empty Tenax tube 
201 (Sigma-Aldrich, Gillingham, UK) for immediate analysis, while the remaining pieces were sealed 
202 individually into glass ampoules under nitrogen and kept at -20°C until analysis. Tenax tubes were 
203 inserted into the OPTIC PTV unit of a GC (30->250°C ballistically at a rate of 16°C/s) equipped with a 
204 50 m × 0.32 mm i.d. HP-1 column (0.52 μm film thickness) and FID, and with GC oven conditions as 
205 described above. Five replicates were done.
206
207 To determine expected recovery (extraction yield), the formula η=1/((β/Kow)+1) was used, where η is 
208 the extraction yield (recovery), β is the phase ratio of the static extraction system and is defined as 
209 Vmedium/VPDMS, and Kow is the octanol–water partition coefficient. β was calculated using the following 
210 parameters: Vmedium = 250 mL, VPDMS = [r (0.09 cm)2 × π × length within medium (26 cm)]-[r of internal 
211 hole (0.05 cm)2 × π × length within medium (26 cm)] = 0.46 mL. The log Kow values were in part 
212 extracted from [20]: (E)-caryophyllene = 4.73, (-)-thujopsene = 6.12, methyl benzoate = 2.2, β-ionone 
213 = 4, methyl eugenol = 3.45, allyl isothiocyanate = 2.15, (RS)-limonene = 4.23, phenethyl isothiocyanate 
214 = 3.47, (-)-caryophyllene oxide = 3.94, (S)-bornyl acetate = 4.3, (E)-2-nonenal = 3.18.
215
216 3 Results
217
218 3.1 Experiments with synthetic compounds
219
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220 The moisture content of sand had a significant effect on the recovery of (E)-caryophyllene and (-)-
221 thujopsene, with higher moisture levels resulting in higher recovery rates (Fig. 1A). There was no 
222 difference in the extracted amounts between the two sesquiterpenes at any of the moisture levels 
223 (two-sample t-test, df=8; 0%: t=-1.54, p=0.163; 5%: t=-1.55, p=0.159; 10%: t=-1.20, p=0.265; 15%: t=-
224 1.68, p=0.132; 20%: t=-0.45, p=0.662). The other synthetic compounds in sand all showed a moisture-
225 dependent recovery pattern similar to that observed for the two sesquiterpenes (Fig. 3A). The 
226 amounts of synthetic compounds in PDMS extracts was also moisture-dependent (Table 2).
227
228 In soil, more (E)-caryophyllene and (-)-thujopsene (Fig. 1B), as well as methyl benzoate, (E)-2-nonenal 
229 and (S)-bornyl acetate (Fig. 3B), were collected at the two lowest (0 and 5%) moisture levels, although 
230 the increase was not significant. However, there was a significant increase at 0 and 5% for methyl 
231 eugenol, phenethyl isothiocyanate and β-ionone (Fig. 3B). (RS)-Limonene showed the highest, 
232 although not significant, recovery level at 5%, and (-)-caryophyllene oxide at 0 and 20%, whereas the 
233 recovery pattern for allyl isothiocyanate resembled that measured in sand (Fig. 3B). The relative 
234 abundance of recaptured compounds in PDMS extracts was moisture-dependent (Table 2).
235
236 The amount of (E)-caryophyllene and (-)-thujopsene collected from the PDMS tubes in sand increased 
237 with increasing solvent volume, sorbent volume and sampling time (Fig. 1C, D and E, respectively).
238
239 The dose of synthetic compound used per experiment had a profound effect on compound recovery 
240 (Table 3). At the highest dose (1 mg), all compounds were detected in PDMS extracts from both sand 
241 and soil. In sand, all constituents of PDMS extracts produced a detectable FID signal even at the lowest 
242 applied dose (100 ng), except (-)-caryophyllene oxide; in soil, however, only (-)-thujopsene could be 
243 detected at this dose. Also, at the 10 μg applied dose in soil, only (-)-thujopsene, (E)-caryophyllene 
244 and (RS)-limonene could be detected by GC in the PDMS extracts.
245
246 There was no significant loss of recovery of (E)-caryophyllene and (-)-thujopsene after three repeated 
247 uses of the same PDMS tube (ANOVA, d.f.=2, p=0.51) (Fig. 1F). Neither compound could be detected 
248 in extracts prepared from cleaned tubes.
249
250 The predicted recovery (η) values were as follows: (E)-caryophyllene = 0.0086, (-)-thujopsene = 0.0111, 
251 methyl benzoate = 0.0040, β-ionone = 0.0073, (E)-2-nonenal = 0.0058, methyl eugenol = 0.0063, allyl 
252 isothiocyanate = 0.0039, (RS)-limonene = 0.0077, phenethyl isothiocyanate = 0.0063, (-)-caryophyllene 
253 oxide = 0.0072, (S)-bornyl acetate = 0.0079.
254
255 Increasing the moisture level to 5% in sand caused the η for (E)-caryophyllene and (-)-thujopsene to 
256 exceed their expected values (Fig. 2A). This was also true for all the other compounds, except β-ionone 
257 and (-)-caryophyllene oxide, which only exceeded their expected recovery values at 10% or above (Fig. 
258 4). In soil, only (RS)-limonene at 5 and 10% and methyl benzoate at 5% moisture level exceeded the 
259 expected recovery values (data not shown).
260
261 Of the 10 μg (E)-caryophyllene and (-)-thujopsene injected into the sand, in total 1.568±0.166 and 
262 1.8±0.214 μg, respectively, could be detected in the PDMS polymer by GC thermal desorption, 
263 equalling to 15.7 and 18% recovery (extraction yield).
264
265 The cleaning procedure affected the level of contamination present in silicon tube extracts, the 
266 methanol soaking [15] resulting in smaller contaminant peaks in extracts prepared following the 
267 cleaning procedure (Fig. 5).
268
269 3.2 Experiments in plant rhizosphere
270
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271 An average amount of 1.38±0.24 ng (E)-caryophyllene was recovered from the rhizosphere of maize 
272 infested with D. virgifera virgifera larvae, whereas this compound was not observed in control 
273 samples. Accounting for the expected recovery of (E)-caryophyllene from 15% moisture sand and 
274 correcting with tube length, the estimated average release of the compound from damaged maize 
275 roots over the experiment was 78.2 ng/g dry weight.
276
277 4 Discussion
278
279 The development of in situ, non-invasive sampling methods to study chemical processes in the 
280 rhizosphere is key to understand ecological interactions among soil-dwelling organisms, and between 
281 them and non-living matter. Such complex interactions shape how healthy ecosystems function and 
282 how crop plants perform [21]. Here, we report on the assessment of a range of parameters for a 
283 technique with the potential to be developed into low-cost non-invasive probes that sample the 
284 rhizosphere to uncover the chemical drivers of crop-pest ecology and allelopathy [22].
285
286 As PDMS has a hydrophobic surface, lipophilic organic solvents diffuse into the polymer causing 
287 swelling. The swelling ratio for diethyl ether was reported to be 1.38 after 24 h soaking, during which 
288 time it has reached an equilibrium [23], whereas we measured this ratio to be only 1.07 after a short 
289 (~10 s) elution with a 1 mL plug of diethyl ether. According to Lee at al. [23], solvents that cause 
290 significant swelling (swelling ratio >1.28) extract organic compounds from the PDMS with high 
291 efficacy, and the 1.07 value compares only with solvents of lower extraction ability. The amount of 
292 volatiles extractable from the polymer might be increased if the solvent plug is retained inside the 
293 tubing for longer, i.e. by slowing down its flow-through rate with a glass narrowing attached to one 
294 end, as test compounds had likely reached equilibrium concentrations by the end of an average 2 h 
295 experiment [13]. However, our pilot experiments suggest that 0.5 mL diethyl ether in a 50 cm long 
296 PDMS tube completely evaporates within 5.96±0.07 min. Extraction yield of absorbed compounds 
297 could be increased either by using larger volumes of solvent or extending the extraction time; a syringe 
298 pump system used in [17] aimed to account for the latter. A first-order one-compartment model [18] 
299 outlines the analyte mass accumulation within the PDMS as a function of time. The first of the three 
300 distinguished phases is the linear region, where the analyte mass collected is directly proportional to 
301 its concentration in the sample and the time for which the polymer is exposed to the sample. The 
302 relationship between extraction yield and sampling duration in this study shows a strong resemblance 
303 to the linear region of the model, indicating that equilibrium has not been reached and recovery can 
304 be further increased by increasing the sampling time.
305
306 A similar relationship can be modelled between extraction yield and volume of solvent used to extract 
307 the analytes, which appears to arrive at the equilibrium phase only at 10 × solvent volume, i.e. from a 
308 2.17 to a 21.7 Vsolvent/Vsorbent ratio. Sorbent volume, on the other hand, can be further increased, as it 
309 shows a linear relationship with recovery within the parameter values tested. High sorbent:medium 
310 ratio was used in [15] to extract thiophenes from soil. The same authors could reach ca. 10% recovery 
311 after 24 h incubation from sand spiked with a synthetic thiophene.
312
313 Recovery can also be influenced by the diffusion rate of test compounds both in the polymer and the 
314 media. The analyte concentration on the surface of the sorbent exposed to the sample is higher than 
315 on the other surface, and the difference depends on the partition coefficient and diffusion rate [18], 
316 [24], influenced by sorbent chemical composition and wall thickness (silicon microtubing is available 
317 in different wall thicknesses). (RS)-Limonene was the most abundant analyte in the PDMS extracts [ca. 
318 4 × the amount of (E)-caryophyllene and (-)-thujopsene] in this study, which might be due to its lower 
319 molecular weight and thus higher volatility than that of the two sesquiterpenes (MW 136 vs 204, 
320 resp.). All the other test compounds contained at least one heteroatom, which makes them more 
321 polar, thus less able to dissolve into the PDMS matrix, hence their lower recovery rate compared to 
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322 (RS)-limonene (Fig. 6). Certainly, this might have reduced the extraction yield of allyl isothiocyanate, 
323 methyl benzoate and (E)-2-nonenal, all with the same or similar MW as (RS)-limonene, whereas larger 
324 molecules may simply diffuse more slowly, hence their relatively lower recovery. Methyl eugenol, 
325 despite its similar mass compared to, e.g., (S)-bornyl acetate, produced lower extraction yield at 
326 certain moisture levels, which could be due to decomposition during diffusion from the source to the 
327 polymer [2], [25], or solubilisation into the soil solution [26], which might stand for some of the other 
328 oxigenated chemicals [27]. Degradation of linalool in sand medium is influenced by pH conditions [2], 
329 acidic, but not basic, environments facilitating it. It can thus be speculated that the use of pH 9 water 
330 in this study had little effect on the chemical properties of analytes, but the impact of pH on the fate 
331 of soil SLMs needs to be investigated in the future.
332
333 The amount of (E)-caryophyllene measured from infested maize root tissue of the same cultivar used 
334 by Rasmann et al. [4] was around 6 ng/h, whereas what was actually released into the rhizosphere 
335 remains unknown. We attempted to measure levels of this compound directly from the growth 
336 substrate to get a more realistic view of the plant`s response to root damage by a specialist herbivore. 
337 To maximise absorption, based on previous experiments with synthetic (E)-caryophyllene, sand at 15% 
338 moisture level was used, and relatively low, but significant amounts were extracted from the medium 
339 with the tubing. Using dynamic headspace sampling, maize (cv. Delprim) root (E)-caryophyllene 
340 emissions were ca. 2.3 ng/h [28]. Other plants have also been shown to release (E)-caryophyllene from 
341 their roots in varying amounts: Centaurea stoebe L. (Asteraceae), for example, emits ca. 3 µg/g dry 
342 weight/h [29].
343
344 Although adsorption of SLMs onto colloids within the media could slow down or stop both vertical and 
345 horizontal diffusion [30], higher water levels can decrease their adsorption onto substrate particles 
346 [3]. This may explain the higher general compound recovery in higher moisture sand, but not in soil. 
347 In the latter, increasing moisture content decreased extraction yields, which might be accounted for 
348 by the observation that adsorption of SLMs in the presence of water is a phenomenon dependent on 
349 the mineralogical composition of the substrate (e.g. soil colloids) [3], or the presence of natural 
350 surfactants that assist in transporting relatively water-insoluble SLMs into the soil via micellization 
351 [31]. Certain SLMs were also found to diffuse further in sand at higher moisture levels, which 
352 contributed to their higher recovery on the sampling device deploying Tenax polymer [2]. However, 
353 the opposite trend was found with (E)-caryophyllene, arguably because low moisture levels enhance 
354 the horizontal diffusion of this lipophilic molecule in the gaseous phase, the extent of which is reduced 
355 with increasing moisture content [30]. Our contrasting results might be explained by the negative 
356 effect of substrate water content on molecular adsorption onto particles, e.g. silicates in sand [3], [32]. 
357 The dramatic increase in absorption into the PDMS polymer of all test compounds from 0 to 5% 
358 moisture level in sand can be attributed to the decrease in vertical diffusion of molecules due to a thin 
359 layer of water slowing down evaporation into the aboveground atmosphere [30]. Although water that 
360 covers pores slows down volatile diffusion markedly in substrates as compared to air [33], the usual 
361 sampling duration in our experiments (2 h) could allow enough time for the synthetic compounds to 
362 diffuse through >3.5 cm wet sand before reaching the PDMS polymer. The highest (E)-caryophyllene 
363 concentration in Som et al. experiments was measured 13.5 cm from the source (5 mg released) after 
364 18 h, the recovery from the probe with Tenax polymer steadily increasing up to this point [2]. Our 
365 experiments also point at the positive effect of sampling duration on extraction yield.
366
367 The recovery of test compounds in soil was significantly lower than in sand, which could be because 
368 of 1) the more heterogenous composition of soil that may have retained the diffusing molecules by 
369 sorbing them into particles of organic matter more intensively as the moisture level rose [26], [32], or 
370 2) the less constant porosity of the soil medium, creating air spaces of different size, density and 
371 distribution, and thereby affecting the diffusion of molecules. In the rhizosphere, however, the 
372 diffusion and fate of SLMs is not only affected by their interactions with moisture, soil colloids and 
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373 minerals, but also with microorganisms such as fungi and bacteria [34], [35]. Fusarium spp. 
374 (Ascomycota: Nectriaceae) were shown to metabolize and transform soil volatiles and speculated that 
375 these compounds might also be adsorbed onto fungal hyphae by yet unknown mechanisms, thereby 
376 acting as a possible sink for bioactive volatiles [34]. Weidenhamer et al. [17] also emphasize the nature 
377 of heterogeneity in allelochemical concentrations in the soil substrate, with less extent of degradation 
378 of them by microorganisms when released at high doses. This sets a challenge for the development of 
379 non-invasive, in situ soil probes that need to accommodate the influence of the dynamically changing 
380 abiotic and biotic environment on their sampling capability, by creating a patchy distribution of SLMs.
381
382 Our results indicate that diethyl ether extraction of PDMS tubes can produce biological samples 
383 suitable for multiple analysis by GC and GC-MS, and consequently also for direct use in behavioural 
384 and electrophysiological assays. As the solvent evaporates quickly, it is not likely to exert major (if any) 
385 negative effects on test organisms, and owing to the clean-up procedure prior to sampling, 
386 contaminants are less likely to interfere with chromatographic and biological signals. Sampling 
387 efficiency can be improved by increasing sorbent and solvent volume, and sampling time. The choice 
388 of experimental media (composition, texture, structure) in lab assays has a significant influence on the 
389 extraction yield. In summary, the described extraction method may lead to the development of in situ, 
390 non-invasive probes capable of repeated field sampling, which can be left in place after installation 
391 and without the need for a pump system (see [17]). Optimisation processes will need to consider 
392 characteristics of the media, such as porosity, moisture level, pH or temperature, as their combined 
393 effect under field conditions is expected to influence the enrichment of analytes from rhizodeposits 
394 into the PDMS polymer. It will also be possible to obtain information about the spatial distribution of 
395 soil SLMs by using a network of PDMS probes. However, it must be noted that such probes will only 
396 provide snapshots of the temporal dynamics of rhizosphere natural products, the resolution of which 
397 depending on sampling duration and hence analyte accumulation in the polymer [36].
398
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compound purity (%) KI* MW vapour 
pressure (kPa, 
25°C)

reference

allyl isothiocyanate 95 855 99 0.670 37
(RS)-limonene 97 1027 136 0.207 37
methyl benzoate 99 1073 136 0.051 37
(E)-2-nonenal 97 1139 140 0.034 37
(S)-bornyl acetate 95 1276 196 0.030 37
methyl eugenol 98 1374 178 0.004 37
phenethyl isothiocyanate 99 1428 163 0.670 37
(E)-caryophyllene 98.5 1430 204 0.002 4
(-)-thujopsene 97 1444 204 0.003 38
β-ionone 96 1471 192 0.007 37
(-)-caryophyllene oxide 95 1584 220 0.0009 37

419 *on a HP-1 non-polar column
420

421 Table 1. Synthetic compounds used in the PDMS experiments. KI=Kováts index, MW=molecular weight
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423

Substrate moisture level (v/v %)
0 5 10 15 20
Sand soil sand soil Sand soil sand soil sand soil

p valueCompound
0.218 0.528 <0.001 <0.001 <0.001 <0.001 0.003 <0.001 <0.001 0.021

allyl isothiocyanate a a cd b c c abc bc a ab
(RS)-limonene a a d b d c d c b c
methyl benzoate a a cd b cd b cd ab a ab
(E)-2-nonenal a a bc b bc ab bc ab a b
(S)-bornyl acetate a a abc b bc ab bc ab a b
methyl eugenol a a a b a a a a a a
phenethyl isothiocyanate a a ab b ab a abc a a ab
β-ionone a a a b a a ab a a ab
(-)-caryophyllene oxide a a a a ab a abc a a ab

424
425 Table 2. Comparison between the amounts of synthetic compounds collected by PDMS tubes at each applied moisture level in sand and in soil. Compounds 
426 with the same letters in each column are not significantly different (ANOVA, Fisher`s protected least significance test, p<0.05)

427
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428
Dose

100 ng 10 μg 1 mg
compound

Sand soil sand soil sand soil
(E)-caryophyllene 0.041±0.013 0.0±0.0 1.377±0.387 0.024±0.014 24.084±1.088 1.830±1.099
(-)-thujopsene 0.041±0.014 0.002±0.002 0.975±0.272 0.025±0.014 28.206±1.472 1.946±1.162
allyl isothiocyanate 0.021±0.008 0.0±0.0 0.329±0.079 0.0±0.0 26.39±2.943 3.235±0.426
(RS)-limonene 0.117±0.029 0.0±0.0 0.961±0.186 0.22±0.101 72.395±7.363 12.358±1.33
methyl benzoate 0.078±0.021 0.0±0.0 0.41±0.108 0.0±0.0 32.852±5.182 1.404±0.752
(E)-2-nonenal 0.033±0.014 0.0±0.0 0.25±0.733 0.0±0.0 25.266±3.334 0.705±0.392
(S)-bornyl acetate 0.04±0.012 0.0±0.0 0.239±0.598 0.0±0.0 23.289±2.753 1.596±0.709
methyl eugenol 0.008±0.005 0.0±0.0 0.027±0.027 0.0±0.0 9.449±1.847 0.036±0.016
phenethyl isothiocyanate 0.045±0.019 0.0±0.0 0.256±0.082 0.0±0.0 15.798±2.442 0.045±0.019
β-ionone 0.007±0.004 0.0±0.0 0.025±0.025 0.0±0.0 11.535±2.442 0.062±0.021
(-)-caryophyllene oxide 0.0±0.0 0.0±0.0 0.016±0.016 0.0±0.0 12.785±2.876 0.118±0.017

429
430 Table 3. The effect of applied dose on the recovery of synthetic compounds (mean μg ±SE). The length of individual PDMS tubes was 28 cm, and each 
431 experiment was conducted in 250 mL glass beakers in five replicates. Sand at 15% and soil at 5% moisture level (v/v) was used, the sampling lasted for 2 h at 
432 20°C, and each tube was rinsed with 1 mL diethyl ether.
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433 Figure legends
434
435 Fig. 1. The effect of different factors on the recovery of (E)-caryophyllene (black bars) and (-)-
436 thujopsene (grey bars) in sand and soil. The length of individual PDMS tubes was 28 cm, and each 
437 experiment was conducted in 250 mL glass beakers in five replicates at 20°C. A) Sand moisture level. 
438 B) Soil moisture level. C) Solvent volume. D) Sorbent volume (total tube length). E) Sampling duration. 
439 F) Repeated use. Columns with the same letter within one diagram are not significantly different at 
440 α=0.05, ANOVA. ns=not significant
441
442 Fig. 2. Recovery (extraction yield, η) of (E)-caryophyllene and (-)-thujopsene in sand (A) and soil (B) as 
443 a function of substrate moisture level. The grey straight lines are the expected η for (E)-caryophyllene 
444 and (-)-thujopsene.
445
446 Fig. 3. The effect of moisture content of medium (v/v%) on the recovery of synthetic compounds. See 
447 Fig. 1. for experimental conditions. A: sand experiment, B: soil experiment. Columns with the same 
448 letters are not significantly different for each compound (ANOVA, LSD, p<0.05). ANOVA p values A: 
449 allyl isothiocyanate 0.006, (RS)-limonene 0.004, methyl benzoate <0.001, (E)-2-nonenal <0.001, (S)-
450 bornyl acetate <0.001, methyl eugenol <0.001, phenethyl isothiocyanate <0.001, β-ionone <0.001, (-
451 )-caryophyllene oxide <0.001; ANOVA p values B: allyl isothiocyanate 0.399, (RS)-limonene 0.167, 
452 methyl benzoate 0.180, (E)-2-nonenal 0.156, (S)-bornyl acetate 0.131, methyl eugenol <0.001, 
453 phenethyl isothiocyanate 0.005, β-ionone <0.001, (-)-caryophyllene oxide 0.183
454
455 Fig. 4. Recovery (extraction yield, η) of nine synthetic compounds in sand. The grey solid line is the 
456 expected η for each compound.
457
458 Fig. 5. Representative GC chromatograms of PDMS diethyl ether extracts immediately after cleaning 
459 by soaking in either 4:1 acetonitrile:methanol for 3 h (upper trace) or methanol for 24 h (lower trace). 
460 n=3
461
462 Fig. 6. Relationship between molecular weight, Kow (octanol–water partition coefficient), PSA (polar 
463 surface area) and recovery. The compounds along the horizontal axis are in ascending order of 
464 molecular weight from left to right (MW 99 to 220).
465
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