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retroflexus L.) and Lamb’s Quarters
(Chenopodium album L.) Populations
Exhibit a High Degree of
Morphological and Biochemical
Diversity
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Shiva Hamidzadeh Moghadam1, Mohammad Taghi Alebrahim1* , Ahmad Tobeh1,
Mehdi Mohebodini2, Danièle Werck-Reichhart3, Dana R. MacGregor4 and
Te-Ming Tseng5

1 Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh
Ardabili, Ardabil, Iran, 2 Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University
of Mohaghegh Ardabili, Ardabil, Iran, 3 UPR2357 Institute of Plant Molecular Biology, CNRS, University of Strasbourg,
Strasbourg, France, 4 Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden,
United Kingdom, 5 Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS, United States

Amaranthus retroflexus L. and Chenopodium album L. are noxious weeds that have
a cosmopolitan distribution. These species successfully invade and are adapted to
a wide variety of diverse climates. In this paper, we evaluated the morphology and
biochemistry of 16 populations of A. retroflexus L. and 17 populations of C. album
L. Seeds from populations collected from Spain, France, and Iran were grown together
at the experimental field of the agriculture research of University of Mohaghegh Ardabili,
and a suite of morphological traits and biochemical traits were assessed. Among the
populations of A. retroflexus L. and of C. album L. were observed significant differences
for all the measured traits. The number of branches (BN) for A. retroflexus L. (12.22)
and inflorescence length (FL; 14.34) for C. album L. were the two characteristics
that exhibited the maximum coefficient of variation. Principal component analysis of
these data identified four principal components for each species that explained 83.54
(A. retroflexus L.) and 88.98 (C. album L.) of the total variation. A dendrogram based on
unweighted neighbor-joining method clustered all the A. retroflexus L. and C. album L.
into two main clusters and four sub-clusters. Canonical correlation analysis (CCA) was
used to evaluate relationships between climate classification of origin and traits. Similarly,
the measured characteristics did not group along Köppen climate classification. Both
analyses support the conclusion that A. retroflexus L. and C. album L. exhibit high
levels of diversity despite similar environmental histories. Both species also exhibit a
high diversity of the measured biochemical compounds indicating that they exhibit
different metabolic profiles even when grown concurrently and sympatrically. Several
of the biochemical constituents identified in our study could serve as effective indices
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for indirect selection of stresses resistance/tolerance of A. retroflexus L. and C. album
L. The diversity of the morphological and biochemical traits observed among these
populations illustrates how the unique selection pressures faced by each population
can alter the biology of these plants. This understanding provides new insights to how
these invasive plant species successfully colonize diverse ecosystems and suggests
methods for their management under novel and changing environmental conditions.

Keywords: cluster analysis, climate change, morphological and biochemical traits, noxious Q13weeds, principal
component analysis

INTRODUCTION

Amaranthus retroflexus L. (redroot pigweed)Q14 and Chenopodium
album L. (lamb’s quarters) are fast-growing weedy annual plants
that belong to the Amaranthaceae family. They are both listed
among the most common dicotyledonous weeds in the world
and are widely distributed in many agricultural areas (Horak
and Loughin, 2000; Alebrahim et al., 2012) where they cause
significant problems. They severely reduce the yield of the
crops in which they grow while their destructive growth and
allelopathic activity make them very competitive resulting in
significant decreases in crop yield and quality (Ma et al., 2015;
Bajwa et al., 2019).

Amaranthus retroflexus is a C4 plant (Baskin and Baskin,
1978) considered to be native to North America, but it now is
distributed worldwide (Frankton and Mulligan, 1987). Where
it has been introduced, this annual weed is a casual weed on
cultivated land and in waste places such as rubbish tips (Clapham
et al., 1987; Stace, 1997; Bond et al., 2007). It grows best at higher
temperatures, light intensities, and nitrogen levels (Costea et al.,
2003). A. retroflexus has a negative influence on row crops, such
as sugar beet (Brimhall et al., 1967), soybean (Dieleman et al.,
1995), potatoQ15 (Weaver, 1991), cotton (Buchanan et al., 1980), and
corn (Kenzevic et al., 1995).

Chenopodium album is native to Western Asia (Poonia and
Upadhayay, 2015) but even in the early 1950s was considered to
be one of the five most widely distributed plants in the world
(Williams, 1963). C. album is a weed in crops including wheat,
barley, mustard, and gram (Sarabi et al., 2013; Jabran et al., 2017).
This weed is low growing while the cultivated plants in which it
grows are frequently tall and leafy (Bhattacharjee, 2001).

Both species interfere with human land use as they are
successful colonizers and have considerable impact on plant
growth (Garbari and Pedulla, 2001). They are adapted to highly
unstable and unpredictable environments, can compete with
other plants for nutrients, water, light, and space through
different survival tactics, and can harbor crop pests or diseases
(Rodenburg et al., 2010). The number of herbicides that can
be used to control them is limited and these herbicides are
not very efficient (Alebrahim et al., 2011). Quantifying how
much morphological and biochemical diversity is exhibited in
populations from different geographical locations is necessary to
design and employ effective management practices (Jannatabadi
et al., 2014). In particular, it is still unclear if the performance

of invasive species is driven by ecological processes, evolutionary
processes, or both (Pearson et al., 2018).

The ability of plants to vary their morphological traits has
long been recognized as a beneficial survival strategy that enables
plants to acclimatize to changing habitats (Gambino and Vilela,
2011). Plants exhibit a high degree of phenotypic plasticity which
enables them to incorporate information from the environment
into decisions about their morphology. Changes in morphology
are often connected to the conditions under which the plant is
growing (Mandák et al., 2011). For instance, root (MacGregor
et al., 2008) and shoot (Teichmann and Muhr, 2015) architecture
can vary dramatically between isogenic plants in response to
different environmental conditions. Hence, the same species
of plant can occupy and be maintained in diverse habitats by
appropriately adjusting plant morphology (Urbas and Zobel,
2000).

That said, plants are genetically constrained in the forms
that they can adopt; otherwise, taxonomic classification of
plants would be impossible. An understanding of a plant’s
morphological and biochemical variability is useful for designing
management and conservation strategies that balance endemic
with invasive species as it explains colonization history through
genetic diversity and population Q16structures (Thompson, 1999).

In this study, we aimed to better understand the colonization
history and capacity for invasiveness of A. retroflexus and
C. album by characterizing a suite of morphological and
biochemical traits in populations of collected from contrasting
habitats. We choose traits that are associated with successful
invasions; for instance, specific leaf area Q17(SLA) is a key functional
trait representing the amount of light-capturing surface area
and thus is used widely to estimate plant carbon acquisition
efficiency provides a useful framework to assess invasive plant
responses to climate change and the population’s variability
(Colautti and Barrett, 2013). This collection was examined for
morphological and biochemical variations in order to understand
the strategies that have enabled their successful invasion into a
wide range of habitats by providing a selective advantage for
competitiveness of these varied environments Q18. We hypothesized
that (1) populations of A. retroflexus L. and C. album L. from
different invaded seed source regions would exhibit variation in
plant traits when grown in common garden and (2) populations
grown from seeds of the same type of climate zone would
display characters more similar to those from the different climate
zones. We have found that the biochemical compounds and
morphological traits vary significantly in both A. retroflexus
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and C. album even when grown concurrently and sympatrically
and that the population’s original climate could not accurately
predict its morphology or biochemistry. Although variability
among populations is expected, these species are able to grow
in a wide range of environmental conditions. This knowledge
indicates that a “Universal Management Regime” will not be
suitable for these species.

MATERIALS AND METHODS

Plant Materials
In order to investigateQ20 the morphological and biochemical
characteristics of these weeds, seeds of 16 A. retroflexus and 17
C. album populations were collected in 2016 and 2017 from
different provinces of Iran, Spain, and France (Table 1). The
seeds provided by Research Institute of Forests and Rangelands
(RIFR) and UMR Agroecology (INRA Dijon) were cultivated at
the experimental field of the agriculture research of University of
Mohaghegh Ardabili (38◦19′N 48◦20′E) (Figures 1A,B).

To assess the morphological and biochemical traits, seeds from
the each population were germinated in plastic trays containing
a growing medium without fertilizers. Three weeks after sowing,
five plants per population were selected and planted outdoors at
the experimental field of the agriculture research of University
of Mohaghegh Ardabili during the summer of 2018. Three
replicates plots with five seedlings per replicate were planted in
each plot. Seeds were planted at a distance of 20 cm in row
and 30 cm between rows. At the end of the growing season, 12
morphological traits were evaluated on three randomly selected
plants: plant height (PH), inflorescence length (FL), leaf length
(LL), leaf width (LW), leaf area (LA), number of leaves (LN)
number of branches (BN), diameter of stem (SD), fresh weight
(FW), dry weight (DW), SLA, and seed weight (SW). For the
analyses of some of the biochemical parameters: chlorophyll
a (Ca), chlorophyll b (Cb), total chlorophyll (TC), carotenoid
(Car) and total protein content (TP), catalase (CAT), peroxidase
(POD), and polyphenol oxidase (PPO); the fresh leaf samples
were collected and stored at−70◦C until analyses.

Determination of Specific Leaf Area
Samples were randomly selected from each plant. The surface
area of each leaf [S (cm2)] was measured. Then, the leaf was dried
(70◦C, 48 h) for dry mass measurements [M (g)]. The surface area
(S) was divided by the mass (M) to obtain the SLA.

Determination of Leaf Photosynthetic
Pigments
To determine leaf photosynthetic pigment content,
approximately 0.25 g of fresh plant leaf sample was homogenized
in 5 ml 80% acetone. Homogenates were centrifuged at
10,000 r/min for 15 min at 4◦C and 0.25 ml of the clarified
supernatant was mixed with 2.5 ml of 80% acetone. The
absorbance of acetone extracts was measured at 662, 645, and
470 nm for determination of Ca, Cb, and Car content using
a spectrophotometer. The leaf photosynthetic pigments were

expressed as mg g−1 on FW basis using the formula listed below
(Lichtenthaler and Wellburn, 1983).

Ca = 12.25 A− 2.798 A646.8
Cb = 21.50 A646.8− 5.10 A663.2
TC = Ca + Cb
Car = (1000 A470− 1.82 Ca− 85.02Cb)/ 198

Determination of Protein Content
Total protein content was measured using the method of
Bradford (1976) using bovine serum albumin (BSA) standard
as a standard. Protein concentrations were measured using
a NanoDrop spectrophotometer (Thermo One C., Termo
scientific, Inc., United States) at 595 nm.

Extraction of Antioxidant Enzymes
To extract proteins for antioxidant enzyme analysis, 200 mg of
leaf samples was flash-frozen in liquid nitrogen and homogenized
in 10 ml of Tris-HCl buffer (pH 7.5, 0.1 M). The homogenate was
centrifuged at 13,000 r/min for 15 min at 4◦C and supernatants
collected to determine CAT, POD, and PPO activities using
established protocols described in Sudhakar et al. (2001).

Determination of Enzymatic Activities
To determine CAT activity (EC 1.11.1.6), the method described
by Chance and Maehly (1955) was used with the following
modifications. Degradation of H2O2 in a reaction medium
containing 300 µM tris buffer (pH 7.5), 100 µM H2O2 and 1 ml
of plant extract mixed in an ice bath was monitored at 240 nm
for 2 min. The same reaction medium free of plant extract was
used as a blank.

The activity of PPO (EC 1.10.3.1) was determined according to
Kar and Mishra (1976) with minor modifications. The reaction
medium consisted of the same assay mixture as that of POD
without H2O2 and was incubated at 25◦C. Readings were taken
at 560. Enzymatic activities were expressed in absorbency units
(unit mg−1 protein min−1).

The activity of POD (EC 1.11.1.7) was determined by reading
absorbance at 420 nm according to Kar and Mishra (1976) with
minor modifications. The Q21reaction consisted of 125 µM tris buffer
(pH 7.5), 50 µM pyrogallol, and 50 µM H2O2, and 1 ml of the
total plant extract was incubated for 5 min at 25◦C. As a control,
the same reaction medium was incubated in the absence of plant
extract under the same conditions.

Statistical Analysis
ANOVA tests were performed for each morphological and
biochemical parameter using SAS package (9.3 SAS Institute,
Inc., United States). The simple correlation coefficient among
the studied variables using the Pearson’s correlation coefficient
method, principal component analysis, and scatter plot of
loadings corresponding to the first three principal components
were made using the SPSS software (22, SPSS, Inc., Chicago,
IL, United States). Unweighted pair-group method of arithmetic
averages (UPGMA) method was performed using SPSS 16 to
determine the individual relationship among populations by
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adopting the Ward method based on squared Euclidean distance
and to determine the best cut-off point of the dendrogram,
a canonical discriminant function analysis (Manly, 2005).
Canonical correlation analysis (CCA) was used to evaluate
relationships between Köppen climate classification (Raziei,
2017) and morphological and biochemical traits by PROC
CANCORR procedure of SAS program version 9.3.

RESULTS

Morphological Traits
To determine if the populations of A. retroflexus and C. album
exhibited different morphological traits, PH, FL, LL, LW, LA,
LN, BN, SD, FW, DW, SLA, and SW were measured. All of the
measured morphological traits differed significantly among the
populations of A. retroflexus and C. album (Tables 2A,B).

A. retroflexus
Mean comparison of populations indicated shortest PH (22.6 cm)
in Spain 1 and longest (93.6 cm) in Spain 2. Zarand showed the
maximum FL (28 cm), followed by Bojnurd (26.63 cm), while
minimum (1.96 cm) was noted in Sari. The LL, LW, and LA
were highest (12.77 cm, 5.1 cm, and 65.08 cm2, respectively) in
Spain 2 and lowest (2.5 cm, 1 cm, and 2.5 cm2, respectively)
in Yazd. The least numbers of leaves and branches (34.66 and
2.67, respectively) were obtained in Zarand and Bojnurd, and
the highest number of leaves and branches (107 and 9.67,
respectively) in Ilam and Rudsar. The thickest shoot (11.32 cm)
was measured in Spain 2 and thinnest (1.99 cm) in Yazd. Spain 2
showed the highest FW and DW (95.36 and 17.17 g, respectively)
while the lowest (24.15 and 4.29 g, respectively) was found for
FW and DW in Gorgan. The highest SLA recorded in Sari
(122.35 cm2 g−1) followed by Bojnurd (120.24 cm2 g−1) and
lowest (103.19 cm2 g−1) in Ardail. SW was the highest (1.83 g)

TABLE 1 | Region name, country of origin, geographical coordinates, and Köppen climate classification of A. retroflexus and C. album populations used herein.

A. retroflexus

No. Region name Origin Coordinate Köppen climate classification

1 Rasht Iran 37◦16′05 N 49◦35′20 E Humid subtropical climate (Cfa)

2 Gorgan Iran 36◦45′06 N 54◦21′40 E Hot summer mediterranean climate (Csa)

3 Rudsar Iran 37◦08′16 N 50◦17′10 E Humid subtropical climate (Cfa)

4 Sari Iran 36◦33′57 N 53◦03′31 E Hot summer mediterranean climate (Csa)

5 Shahr-e-Rey Iran 35◦34′37 N 51◦27′44 E Cold semi-arid climate (Bsk)

6 Ilam Iran 33◦38′05N 46◦24′54 E Hot summer mediterranean climate (Csa)

7 Yazd Iran 31◦10′97 N 53◦11′97 E Cold desert climate (Bwk)

8 Bojnurd Iran 37◦53′74 N 57◦24′96 E Cold semi-arid climate (Bsk)

9 Zarand Iran 30◦47′27 N 56◦50′10 E Cold desert climate (Bwk)

10 Hamedan Iran 34◦47′50 N 48◦30′45 E Hot summer mediterranean climate (Csa)

11 Ardabil Iran 38◦14′54 N 48◦17′03 E Hot-summer humid continental climate (Dsa)

12 Moghan Iran 39◦13′00 N 47◦33′53 E Humid subtropical climate (Cfa)

13 France France 47◦19′20 N 5◦2′28 E Humid subtropical climate (Cfa)

14 Spain 1 Spain 37◦53′18 N 4◦46′38 W Hot summer mediterranean climate (Csa)

15 Spain 2 Spain 37◦ 53′15 N 4◦ 46′35 W Hot summer mediterranean climate (Csa)

16 Spain 3 Spain 37◦ 53′14 N 4◦ 46′45 W Hot summer mediterranean climate (Csa)

C. album

1 Rudsar Iran 37◦08′13 N 50◦16′52 E Humid subtropical climate (Cfa)

2 Rasht Iran 37◦16′03 N 49◦35′08 E Humid subtropical climate (Cfa)

3 Boyer-Ahmad Iran 30◦53′47 N 51◦24′96 E Hot semi-arid climate (Bsh)

4 Rudan Iran 27◦25′44 N 57◦10′45 E Hot desert climate (Bwh)

5 Moghan Iran 39◦12′03 N 47◦34′24 E Humid subtropical climate (Cfa)

6 Kivi Iran 37′41′02 N 48◦20′53 E Hot summer mediterranean climate (Csa)

7 Ardabil Iran 38◦12′44 N 48◦17′38 E Hot-summer humid continental climate (Dsa)

8 Yazdabad Iran 32◦39′41 N 51◦41′21 E Cold semi-arid climate (Bsk)

9 Shahr-e-Ray Iran 35◦34′22 N 51◦27′ 44 E Cold semi-arid climate (Bsk)

10 Tehran Iran 35◦41′13 N 51◦26′22 E Cold semi-arid climate (Bsk)

11 Dehloran Iran 32◦41′49 N 47◦16′05 E Hot semi-arid climate (Bsh)

12 Hamadan Iran 34◦49′46 N 48◦19′ 47 E Hot summer mediterranean climate (Csa)

13 Mashhad Iran 36◦16′24 N 59◦38′16 E Cold semi-arid climate (Bsk)

14 Spain 1 Spain 37◦53′ 15 N 4◦46′35 W Hot summer mediterranean climate (Csa)

15 Spain 2 Spain 37◦53′ 14 N 4◦46′45 W Hot summer mediterranean climate (Csa)

16 France 1617 France 47◦19′20 N 5◦2′28 E Humid subtropical climate (Cfa)

17 France 1499 France 47◦19′29 N 5◦2′22 E Humid subtropical climate (Cfa)
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FIGURE 1 | (A) SamplingQ6

Q7

sites of A. retroflexus populations according to the Koppen–Geiger classification (1990–2014) (Raziei, 2017). Numbers on map are
population names based on Table 1. (B) Sampling sites of C. album populations according to the Koppen–Geiger classification (1990–2014) (Raziei, 2017).
Numbers on map are population names based on Table 1.
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in Spain 2 and the lowest in Spain 1 (0.43 g), followed by Gorgan
(0.42 g) (Figure 2A).

C. album
Mean comparison of populations showed minimum PH in
Dehloran (22 cm) and maximum in Rudsar (97.5 cm). Maximum
FL was observed in Boyer-Ahmad (20.4 cm) and minimum
(3.1 cm) was noted for Moghan, followed by Rudsar (3.2 cm)
and Rasht (3.3 cm). The shortest LL (1.6 cm) was observed
for Spain 2 (1.6 cm) followed by Dehloran (2 cm), and the
longest for Rudsar (7.1 cm). The widest leaves were (4.83 cm)
in Rudsar, and narrowest (0.5 cm) in Kivi, Yazdabad, and
Boyer-Ahmad. Rudsar showed the maximum LA (34.33 cm2),
while minimum (1.63 cm2) was noted in Yazdabad, followed by
France 1499 (1.65 cm2), Kivi (2.18 cm2), Dehloran, and Spain
2 (2.5 cm2). Largest LN and BN (175 and 14.33, respectively)
were recorded for Kivi, Rudsar, and Rasht, and smallest number

(14.66 and 4.33, respectively) was observed in Dehloran. The
thickest shoot (9.23 cm) was in Rudsar and thinnest (2.48 cm)
in France 1499. Kivi showed the highest FW and DW (161.07
and 27.72 g, respectively) and France 1499 the lowest (3.74 and
0.64 g, respectively), followed by Dehloran (8.53 and 1.49 g,
respectively). Yazdaad had the highest SLA (133.33 cm2 g−1),
while lowest (104.09 cm2 g−1) was recorded in Spain 2.
The Kivi showed the highest SW (2.91 g) and the lowest
(0.076 g) was observed for France 1499, followed by Dehloran
(0.16 g) (Figure 2C).

Biochemical Parameters
To determine if the populations of A. retroflexus and C. album
exhibited different biochemical traits, Ca, Cb, TC, Car content,
TP, CAT activity, POD activity, and PPO were measured. Like
the morphological traits, these biochemical traits all differed

TABLE 2 | Variance analysis ofQ22 the evaluated traits in A. retroflexus (A) and C. album (B) populations.

(A)

Source of variation Degrees of freedom Mean squares

PH FL LL LW LA LN BN SD FW DW SLA SW

Replication 2 3ns 0.41ns 1.38ns 0.36** 33.17** 159.5** 1.75ns 0.36** 31.4ns 0.94ns 0.77ns 0.001ns

Population 15 1302.4** 163.2** 21.1** 4.4** 786.62** 1470.61** 10.3** 18.07** 1455.67** 50.16** 94.6** 0.57**

Error 30 5.68 0.696 0.3 0.05 5.18 66.25 0.77 0.33 41.42 1.42 2.09 0.005

CV 4.8 8.3 9.84 8.06 11.66 11.83 12.22 10.26 11.99 12.09 11.9 7.1

Source of variation Degrees of freedom Mean squares

Ca Cb TC Car TP CAT POD PPO

Replication 2 0.003ns 0.0008ns 0.003ns 0.0002ns 0.0016ns 0.0039** 0.001ns 0.0007ns

Population 15 4.21** 1.86** 7.38** 0.4** 0.4** 0.17** 0.044** 0.018**

Error 30 0.01 0.0004 0.011 0.0002 0.004 0.0006 0.001 0.0004

CV 2.87 1.32 1.95 1.21 8.73 1.84 3.28 1.29

(B)

Source of variation Degrees of freedom Mean squares

PH FL LL LW LA LN BN SD FW DW SLA SW

Replication 2 74.43** 5.34* 0.05ns 0.04ns 2.12ns 142.82ns 1.11ns 0.011ns 13.47ns 0.03ns 0.47ns 0.002ns

Population 16 1567.97** 47.8** 6.55** 4.46** 209.75** 4829.2** 30.34** 11.03** 5735.64** 169.8** 193.3** 2.09**

Error 32 6.16 1.58 0.06 0.019 0.98 56.55 0.47 0.13 28.46 0.87 25.96 0.006

CV 4.26 14.34 6.56 7.99 12.73 10.88 7.58 7.21 10.44 10.58 7.6 8.29

Source of variation Degrees of freedom Mean squares

Ca Cb TC Car TP CAT POD PPO

Replication 2 0.0002ns 0.0017ns 0.0017ns 0.003* 0.00007ns 0.001ns 0.004ns 0.0002ns

Population 16 4.58** 1.26** 11.23** 0.71** 0.43** 0.26** 0.047** 0.19**

Error 32 0.0006 0.0005 0.001 0.0008 0.0013 0.0006 0.0003 0.0002

CV 0.85 1.88 0.78 2.27 7.41 2.41 2.11 0.97

PH, plant height; FL, inflorescence length; LL, leaf length; LW, leaf width; LA, leaf area; LN, number of leaves; BN, number of branches; SD, diameter of stem; FW, fresh
weight; DW, dry weight; SW, seed weight; Ca, chlorophyll a; Cb, chlorophyll b; TC, total chlorophyll; Car, carotenoid content; TP, total protein content; CAT, catalase
activity; POD, peroxidase activity; PPO, polyphenol oxidase.
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significantly among the populations of A. retroflexus and
C. album.

A. retroflexus
The highest Ca content (5.21 mg g−1 FW) was detected in
Ardabil, which was equal with France (5.12 mg g−1 FW) and the
minimum (2.06 mg g−1 FW) in Zarand. Rasht had the highest
Cb content (3.11 mg g−1 FW), and the lowest (0.28 mg g−1

FW) was found for Ardabil. The highest TC content (7.69 mg
g−1 FW) was recorded in Rasht, which was equal to Rudsar
(7.61 mg g−1 FW), while it was at lowest (2.82 mg g−1 FW) in
Zarand. The Ardabil had the highest total Car content (1.95 mg
g−1 FW), while the lowest (0.71 mg g−1 FW) was in Shahr-
e-Ray. The maximum total soluble protein content (1.17 mg
g−1 FW) was recorded in Ardabil, followed by France (1.16 mg
g−1 FW), and the lowest (0.11 mg g−1 FW) was recorded in
Hamedan, followed by Zarand (0.16 mg g−1 FW). The highest
CAT activity (1.65 units mg−1 protein min−1) was detected
in Ardabil, and lowest (0.85 units mg−1 protein min−1) in
Hamedan, followed by Kerman (0.88 units mg−1 protein min−1).
The highest POD activity (1.14 units mg−1 protein min−1)
was recorded in Bojnurd followed by Ilam (1.12 units mg−1

protein min−1) and the lowest (0.77 units mg−1 protein min−1)

in Shahr-e-Ray followed by Zarand, Moghan (0.81 units mg−1

protein min−1), and Gorgan (0.82 units mg−1 protein min−1).
The highest PPO activity (1.78 units mg−1 protein min−1) was
recorded in Ilam, and the lowest (1.52 units mg−1 protein min−1)
in Shahr-e-Ray followed by Gorgan (1.53 units mg−1 protein
min−1) (Figure 2B).

C. album
The largest concentration Ca (4.79 mg g−1 FW) was recorded in
Yazdabad and the lowest (1.98 mg g−1 FW) in Spain 2 followed
by Ardabil (2 mg g−1 FW). The Boyer Ahmad had the highest Cb
and TC content (2.75 and 7.46 mg g−1 FW, respectively), while
the lowest (0.66 and 2.7 mg g−1 FW, respectively) was found
in Kivi. The highest total Car (2.09 mg g−1 FW) was recorded
in Yazdabad and the lowest was detected in Spain 2 (0.56 mg
g−1 FW). The Shahr-e-Rey had the highest total soluble protein
content (1.1 mg g−1 FW), while the lowest was found (0.08 mg
g−1 FW) in Yazdabad. The highest CAT activity (1.64 units mg−1

protein min−1) was measured in the Shahr-e-Ray and the lowest
in Spain 2 and Kivi (0.8 units mg−1 protein min−1) followed
by France 1499 and Ardabil (0.83 units mg−1 protein min−1).
The Boyer Ahmad, Yazd Abad, and Shahr-e-Ray had the highest
(1.1 units mg−1 protein min−1) POD activity, while the lowest

FIGURE 2 | Continued
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FIGURE 2 | (A) Frequency distribution for each morphological trait in A. retroflexus populations. (B) Frequency distribution for each biochemical trait in A. retroflexus
populations. (C) Frequency distribution for each morphological trait in C. album populations. (D) Frequency distribution for each biochemical trait in C. album
populations.

(0.77 units mg−1 protein min−1) was in Kivi, followed by Rudan
and Moghan (0.8 units mg−1 protein min−1). The highest PPO
activities (1.7 units mg−1 protein min−1) were in Shahr-e-Ray
and Yazdabad, and the lowest in Kive and Tehran (1.51 units
mg−1 protein min−1) (Figure 2D).

Correlation Among Measured Traits
A. retroflexus
The correlations coefficients among the morphological and
biochemical populations are presented in Table 3A. PH showed
significant positive correlation with the LA (r = 0.8), SD (r = 0.87),
FW (r = 0.9), and SW (r = 0.9). FL was significantly negatively
correlated with the LN (r = −0.69) and BN (r = −0.74). LL
showed significantly positively correlated with LA (r = 0.98), SD
(r = 0.78), FW (r = 0.69), and SW (r = 0.63). The LA was positively
correlated with SD (r = 0.83), FW (r = 0.73), and SW (r = 0.68).
The LN was positively correlated with the BN (r = 0.69). SD
showed highly significant positive correlated with FW (r = 0.87),
but had negative correlation with SW (r =−0.85).

Chlorophyll a content showed highly significant positive
correlation with TC content (r = 0.87), Car (r = 0.79), total
protein (r = 0.93), and highly significant negative correlation with
CAT (r =−0.78), POD (r =−0.73), and PPO activity (r =−0.64).
Cb content was significantly positively correlated with TC
content (r = 0.67). Car content showed significant positive
correlation with TC content (r = 0.65) and significant negative
correlation with CAT (r = −0.55). TC content showed positive
correlation with Car (r = 0.77) and total protein (r = 0.75),
and negative correlation with POD (r = −0.5). Total soluble
protein content was significantly negatively correlated with CAT
(r =−0.87), POD (r =−0.82), and PPO (r =−0.77) activity. CAT
activity was positively correlated with POD (r = 0.86) and PPO
(r = 0.8) activity. POD activity was positively correlated with PPO
(r = 0.88) activity (Table 3A).

C. album
Plant height was positively correlated with LA (r = 0.49), LN
(r = 0.76), BN (r = 0.63), SD (0.74), FW (r = 0.85), and SW
(r = 0.89). In addition, FL was significantly negatively correlated
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with LW (r = 0.49). LA was positively correlated with the BN
(r = 0.58) and SD (0.58). The LN showed positive correlation with
BN (r = 0.56), SD (0.48), FW (r = 0.97), and SW (r = 0.94). BN
was significantly positively correlated with FW (r = 0.57) and SW
(r = 0.65). SD was positively correlated with FW (r = 0.55), SW
(r = 0.64), Ca content (r = 0.57), TC content (r = 0.49), and total
protein (r = 0.55). SLA was significantly positively correlated with
POD (r = 0.51) and PPO (r = 0.53) activity.

Chlorophyll a content was significantly negatively correlated
with the CAT activity (r =−0.62) while a positive correlation with
Cb content (r = 0.92), TC content (r = 0.99), Car (r = 0.85), and
total protein (r = 0.9). Cb content showed negative correlation
with CAT activity (r = −0.54), while a positive correlation
with TC content (r = 0.96), Car (r = 0.82), and total protein
(r = 0.92). Car was significantly positively correlated with total
protein (r = 0.86), but negatively correlated with CAT (r =−0.55)
and POD (r = −0.5) activity. Total soluble protein content was
significantly negatively correlated with CAT (r =−0.67) and POD
(r = −0.53) activity. CAT activity was positively correlated with
POD (r = 0.86) and PPO (r = 0.7) activity. POD activity was
positively correlated with PPO (r = 0.82) activity (Table 3B).

Principal Component Analysis (PCA)
A. retroflexus
In this evaluation, effective traits were divided into four
components accounting for 88.22% of the total observed
variance. Loading values higher than 0.5 were considered
significant as suggested by Wu et al. (2016). Four principal
components (PC1, PC2, PC3, and PC4) explained together more
than 83.54% of the total variation (Table 4A). PC1 related with
PH, LL, LW, LA, SD, FW and DW, SLA, and SW explained
35.2% of the total variability. Component PC2 was associated
with Ca, Cb, TC, Car, and TP and accounted for 24.17% of the
total variability. Component PC3 was mainly associated with FL,
LN, and BN and accounted for 14.951% of the total variability.
Component PC4 showed the integration with CAT, POD, and
PPO activity and explained 9.213% of the total variability. Hence,
the morphological and biochemical parameters could effectively
explain the existing variability.

A scatter plot based on the first three components explained
the morphological and biochemical diversity among the
measured traits (Figure 3A). Four distinct groups are
determined: group I consists of total protein, Ca, and TC;
group II consists of LL, LA, LW, SW, PH, FL, SD, FW, and DW;
group III consists of Cat, POD, and PPO; and group IV consists
of BN, LN, SLA, Cb, and Car.

C. album
A principal component analysis (PCA) demonstrated that the
first four principal components accounted for 88.98% of the total
variance (Table 4B). PC1, which explained 30.2% of the total
variability, was highly correlated with PH, LL, LW, LA, SD, FW
and DW, SLA, and SW. PC2 was highly correlated with Ca, Car,
TP, CAT, POD, and PPO activity explaining 29.49% of the total
variability. PC3 was highly correlated with the FL, BN, and LN
and explained 14.91% of the total variability. PC4 was associated
with Cb and TC and accounted for 14.37% of the total variability.

TABLE 4 | Eigen values, variance (%), and cumulative variance (%) for four
principal components obtained from PCA and significant characters within each
component in the studied A. retroflexus (A) and C. album (B).

Principal component

Characteristics 1 2 3 4

(A)
PH 0.896 0.266 0.166 0.099

FL 0.184 −0.31 −0.668 −0.19

LL 0.602 0.504 0.331 −0.137

LW 0.942 0.21 0.03 −0.009

LA 0.855 0.34 0.228 0.098

LN −0.11 0.099 0.63 0.018

BN 0.540 −0.153 0.63 −0.017

SD 0.592 0.518 0.45 −0.148

FW 0.978 0.03 0.032 0.094

DW 0.979 −0.013 0. 03 0.098

SLA −0.533 0.466 −0.358 −0.523

SW 0.96 0.062 0.151 0.092

Ca 0.065 0.962 0.086 −0.179

Cb −0.015 −0.191 −0.135 0.945
TC 0.039 0.008 0.973 0.973
Car −0.12 0.878 −0.088 −0.197

TP −0.042 0.950 0.032 −0.249

CAT −0.116 0.795 0.048 0.487

POD 0.098 −0.899 −0.328 −0.08

PPO 0.143 0.931 0.089 0.073

Eigen variance 6.04 5.89 2.983 2.87

Percentage of variance 30.2 29.49 14.91 14.37

Cumulative percentage 30.2 59.694 74.6 88.98

(B)
PH 0.943 0.087 −0.54 −0.131

FL 0.101 −0.077 −0.873 −0.145

LL 0.842 0.282 −0.183 0.098

LW 0.857 0.065 −0.332 0.111

LA 0.885 0.220 −0.201 0.066

LN −0.158 0.110 0.814 0.104

BN 0.183 0.000 0.933 0.007

SD 0.934 0.036 0.027 −0.043

FW 0.937 0.010 0.190 −0.096

DW 0.933 −0.020 0.205 0.086

SLA 0.427 −0.193 −0.059 −0.372

SW 0.924 −0.007 0.197 −0.114

Ca −0.052 0.925 0.155 0.172

Cb −0.025 0.946 0.000 0.232

TC 0.052 0.700 0.234 0.605

Car 0.399 0.436 −0.307 −0.005

TP −0.048 0.97 0.129 0.073

CAT −0.246 0.297 −0.079 −0.903
POD −0.231 0.07 0.017 −0.897
PPO −0.372 0.094 0.217 −0.856
Eigen variance 7.042 4.83 2.99 2.1.84

Percentage of variance 35.209 24.171 14.951 9.213

Cumulative percentage 35.209 59.380 74.331 83.544

Eigen values are significant ≥ 0.5 which are indicated by bold letters.

A scatter plot based on first three component analysis of
populations demonstrated four distinct groups (Figure 3B):
group I consists of total protein, Ca, Cb, TC, and Car; group II
consists of FL, PH, SW, DW, FW, and LN; group III consists
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FIGURE 3 | Scatter plot based on first three component analysis of 20 traits for the A. retroflexus (A) and C. album (B) populations.

FIGURE 4 | Dendrogram based on cluster analysis for 16 A. retroflexus (A) and 17 C. album (B) populations.

of LA, LW, BN, CAT, POD, and PPO; and group IV consists
of SLA, LL and SD.

Cluster Analysis
A. retroflexus
Cluster analysis was carried out with the Ward method,
based on morphological and biochemical parameters. Generally,
populations were divided into two main clusters (Figure 4A).
With a decrease in the squared Euclidean distance, the
populations were divided into four main sub-clusters: first sub-
cluster (Hamedan, Sari, and Moghan populations), second sub-
cluster (Gorgan, Shahr-e-Rey, Zarand, and Bojnurd populations),
third sub-cluster (Rasht, Rudsar, Yazd, Spain 1, and Spain 3
populations), and fourth sub-cluster (Ilam, France, Ardabil,
and Spain 2 populations). The results of canonical detection
function analysis to determine the best cut-off point showed more
differentiation with four groups (Table 5).

C. album
Populations were divided into two main clusters and four sub-
clusters, which was confirmed with canonical detection function

TABLE 5 | Discriminant analysis to determine the cut-off point dendrogram of
cluster analysis in A. retroflexus (A) and C. album (B) populations.

Number of groups Wilks’ lambda Chi-square Significance level

(A)

2 0.007 53.843 0.000

3 0.093 26.128 0.000

4 0.428 9.344 0.009

(B)

2 0.000 138.831 0.000

3 0.004 55.988 0.000

4 0.095 23.531 0.001
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TABLE 6 | Canonical correlations between Köppen climate classification and morphological and biochemical traits in A. retroflexus (A) and C. album (B) populations.

(A)

First function correlation 0.999

Climate classification Cfa Csa Bsk Bwk Dsa

Function 1 −0.323 0.269 0.679 −0.731 0.096

Traits PH FL LL LW LA LN BN SD FW DW SLA SW Ca Cb TC Car TP CAT POD PPO

Function 1 −0.115 −0.023 0.115 0.07 0.081 0.042 −0.021 0.22 −0.1 −0.08 0.256 −0.069 −0.02 0.11 0.03 −0.15 0.08 −0.093 −0.16 −0.2

(B)

First function correlation 0.999

Climate classification Cfa Csa Bsk Dsa Bsh Bwh

Function 1 0.59 0.25 −0.28 0.05 −0.25 −0.8

Traits PH FL LL LW LA LN BN SD FW DW SLA SW Ca Cb TC Car TP CAT POD PPO

Function 1 0.17 −0.6 0.006 0.36 0.3 0.29 0.44 −0.02 0.26 0.25 −0.54 0.32 −0.14 −0.2 −0.16 −0.33 −0.19 0.43 0.4 0.62

analysis (Figure 4B and Table 5): first sub-cluster (Rudan, France
1617, France 1499, Tehran, Dehloran, Moghan, Hamedan, and
Spain 1 populations), second sub-cluster (Boyer-Ahmad, Shahr-
e-Ray, Mashhad, and Yazdabad populations), third sub-cluster
(Rudsar and Rasht populations), and fourth sub-cluster (Ardabil,
Kivi, and Spain 2 populations).

Canonical Correlation Analysis
Since 99% of trait-related changes are justified by Köppen climate
classification, this function was used to interpret the correlation
of two sets of variables in A. retroflexus and C. album.

A. retroflexus
According to results, Cfa and Bwk climate provided relatively
positive correlation with PH, FL, BN, FW, DW, SW, Ca, Car, and
antioxidant enzymes and negative correlation with LL, LW, LA,
LN, SD, SLA, Cb, TC, and TP. In Csa and Bsa climate, the results
were the opposite of the above. The traits were not very affected
by the Dsa climate (Table 6A).

C. album
Results showed positive correlations between Bsh, Bsk, and Bwh
climate and FL, SLA, SD, TP, and leaf photosynthetic pigments,
moreover negative correlations with PH, LL, LW, LA, LN, BN,
FW, DW, SW, and antioxidant enzymes. In Csa and Cfa climate,
the results were the opposite of the above (Table 6B).

DISCUSSION

We set out to understand the morphological and biochemical
traits of invasive weed populations for two main reasons. The
first is that by characterizing these traits from populations
collected from different locations, we measure the variability
that is possible within and between populations and therefore
quantify how variable these traits can be. Moreover, as the
collection locations have different climates, we can understand
better the weeds capacity to be shaped by those climatic zones.

As the measured traits are under environmental as well as
genetic control, we grew these populations under common
garden conditions to ensure any differences we observe in
the measured traits were driven by heritable differences in
the populations. The second reason to study these traits
is that well-characterized collections of wild populations of
weeds are a useful resource for plant breeders as they
provide information to guide crop improvement through gene
introgression, population selection, and conventional breeding
practices (Sagnard et al., 2011; Adamczyk-Chauvat et al., 2017;
Neve, 2018). Since the genetic resources of weeds remain
largely unexplored, understanding the extent of variability in
a suite of morphological and biochemical traits will act as a
primary effort to simplify improvement of cultivated plants
(Andini et al., 2013).

In this study, we measured 12 morphological and eight
biochemical traits of 16 A. retroflexus L and 17 C. album L.
populations. Morphological traits differed significantly within
the species. For instance, the BN, FW and DW, LN, LA, and
SD differed among the A. retroflexus L. populations, and FL,
LA, FW and DW, and LN were significantly different among
the C. album L. Similarly, the measured biochemical traits also
varied significantly. TP, POD activity, and Ca in A. retroflexus
L. and TP, Car content, CAT, and POD activity in C. album
L. all demonstrated a high coefficient of variation, therefore,
high diversity among populations. These traits provide key
morphological and biochemical descriptors for each of the major
type of weedy population.

Principal component analysis of these data indicated that a
combination of PH, LL, LW, LA, SD, FW and DW, SLA, and
SW explained the most variability of A. retroflexus, while PH, LL,
LW, LA, SD, FW and DW, SLA, and SW drove the variability
of C. album. Scatter plot based on first three components of the
PCA indicated that Group I reflected photosynthetic pigments,
whereas Group III represented enzymatic activity. Group II and
Group IV may indicate morphological traits among the studied
A. retroflexus and C. album populations.
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Canonical correlation analysis suggested that areas classified
as Cfa and Bwk climates according to the Köppen climate
classification system had more value of PPO, POD, and Car,
and Bsk and Csa climates had more values of SD, LL, and SLA
in A. retroflexus L. Similar analysis for C. album showed that
Bwh, Bsk, and Bsh climates had more value of FL, SLA, and
Car, while Cfa and Csa had more value of PPO, POD, and CAT.
The analysis also showed that Hamedan and Moghan, Ardabil,
and Spain 2 consistently cluster together in both species, but
they are classified in different climate conditions. So, measured
values among populations showed different results in similar
climate classification from which they were collected. Therefore,
the climate from which the population was collected is not a good
predictor of morphology or biochemistry.

Based on the morphological and biochemical traits, cluster
analysis established the phylogenetic relationship among the
A. retroflexus and C. album populations. The dendrogram
revealed no separate group among populations according to
Köppen climate classification which supports the conclusion
that there is a high level of morphological and biochemical
diversity among them.

Variability observed among populations is not surprising
since a high level of genetic heterogeneity is expected in plant
species that are able to grow in a wide range of environmental
conditions. Morphological differences have been reported in
ecotypes and populations of many weeds (Bajwa et al., 2017; Van
Etten et al., 2017; Le et al., 2020). A higher level of variability
in morphological parameters is maintained in many of the
weedy or wild relatives of crop plants (Pickersgill, 1981; Hubner
et al., 2003). In fact, identification of weed species based solely
on their morphological traits can be difficult (Sammour et al.,
2012; Khaing et al., 2013) as weeds can exhibit a large number
of morphs depending on the environment in which they are
grown. The observed variation in morphological appearance
might be explained in three possible ways: (1) naturally existing
variations (Chan and Sun, 1997); (2) mixed mating system that
may facilitate the natural introgression process; (3) polyploidy,
leading to gene combination, might have resulted in higher
morphological variation (Andini et al., 2013). Weedy plants
are regarded as rich sources of variation and a repository of
genetic diversity. These weedy populations are known to be
able to survive in a large variety of habitats (Frankton and
Mulligan, 1987) and the populations studied were collected
from a variety of locations across their range; therefore, it is
unsurprising that the different selection pressures they faced
in their past have shaped the morphologies they adopt in a
common garden experiment. Although self-pollination is more
likely to occur, Amaranths can also cross pollinate through wind,
with mean outcrossing rates ranging from 4 to 34% (Kulakow
and Hauptli, 1994); therefore, Amaranths have the capacity
to maintain beneficial traits as well as accumulate new ones.
Polyploidy is common among plant species and recent large-
scale transcriptomics indicates that whole-genome duplications
have occurred repeatedly throughout flowering plants evolution
(Leebens-Mack et al., 2019).

This research suggests that these heritable morphological and
biochemical traits vary between populations from similar climate

and suggests the local environments they have adapted to have
affected the way the trait was selected. Our data are similar to
other studies done with Amaranths. Andini et al. (2013) assessed
the variations in morphology of Indonesian Amaranths and
compared them with the worldwide variation. They proposed
high levels of variability for most morphological traits. Thapa
and Blair (2018) evaluated the morphological diversity of close to
300 cultivated grain Amaranths and their wild relatives from two
gene banks through field assessments of leaf, flower, and grain
characteristics. They concluded that the amaranth collection was
a source of diversity traits and adaptation traits. Some other
studies have showed that the variability of morphological traits
is affected by a combination of species, climate, and soil factors
(Reich et al., 2007; Han et al., 2011; Liu et al., 2012; Li et al., 2018).

In our investigation, FW showed highest significant and
positive correlations with DW; moreover, TP showed highest
significant and negative correlations with Ca in both species. SLA
showed negative correlations with Ca which is inversely related
to leaf thickness and density. At a given cellular composition,
leaves of lower SLA typically have higher pigment concentrations
per area due to the additional thickness of mesophyll tissue
(Wright et al., 2004).

Biochemical parameters, namely, leaf photosynthetic
pigments and antioxidant enzymes, were found to differ
among the populations of these weed species. Weed species
overcome stress more easily than cultivated plants by activating
various metabolic and biochemical processes (Pavlović et al.,
2014). Chlorophylls are essential for photosynthesis and their
amounts can directly influence plant photosynthetic ability
and biomass (Curran et al., 1990; Filella et al., 1995). Besides
chlorophylls, Car are also essential for the photosynthesis
process (Ong and Tee, 1992) protecting chlorophylls from
photo-oxidative destruction (Giri et al., 2013). In this study, wide
variations of leaf photosynthetic pigments were measured in the
A. retroflexus and C. album populations. This study has identified
photosynthetically efficient populations which could be used in
improvement programs for cultivated grain Amaranths (Hussain
and Reigosa, 2015; Zhang et al., 2016).

We also detect a significant variation in antioxidant enzyme
activities among the studied various A. retroflexus and C album
populations. Factors such as season, area, sampling site, water,
and soil nutrients affect protein content (Sigua et al., 2012).
The antioxidant enzyme activities decrease reactive oxygen
species (ROS) and protect plant cells from oxidative damage
under stressful conditions (Chaves and Oliveira, 2004). The
disparate antioxidant potential of the A. retroflexus and C. album
populations could alter their biotic and abiotic stress tolerance or
resistance. According to Slabbert and Krüger (2014), greenhouse
screening for leaf antioxidative enzymes production in amaranth
demonstrated ecotype variation.

Our results suggest that when chlorophylls, Car, and soluble
protein contents were reduced in different populations, the
activities of antioxidant enzymes were increased. Even under
favorable conditions, ROS production is carried out as the result
of different metabolic processes and toxic oxygen derivatives
are produced as a result of different stresses. Plants adopt
effective systems for scavenging active oxygen species that
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support them against destructive oxidative reactions (Foyer
et al., 1994). Antioxidant enzymes act as key elements in the
defense mechanisms. Many changes have been observed in the
activities of antioxidant enzymes in different ecotypes of plants
(Aziz and Larher, 1998). The efficacy of the antioxidant defense
system can likewise lead to high tolerance to different climate
(Coelho et al., 2017).

Generally, TC concentrations showed a significant negative
correlation with the level of antioxidant activities. The reaction
centers of photosystem I and photosystem II are the major sites
of ROS generation in the chloroplast thylakoids (Asada, 2006).
One of the key factors that affect the balance between the damage
and restoration of the photosynthetic activity is the relationship
between the stability of the oxidative stress and the activity of
the antioxidant system (Kreslavski et al., 2009). The reduced
electron acceptors accumulation may increase the generation
of ROS and lead to oxidative injuries. These injuries could
enhance Cb degradation or the prevention of its biosynthesis,
damage PSII components, and inactivate chloroplast enzymes
(Cui et al., 2006). These inter-relationships among SLA, pigment
concentrations, and antioxidant activities highlight the existence
of a constellation of functional traits that shifts in a coordinated
way during the adaptation of A. retroflexus L. and C. album L.
populations to diverse environmental conditions.

CONCLUSION

Populations differedQ24 significantly in studied morphological and
biochemical traits. This variability is anticipated to affect the
ability of specific populations to compete with other plants and
response to herbicides, biotic, and abiotic stresses. Successful
weed management must target the removal of biomass to
limit new seed dispersal and detection strategies of new
populations. Source regions may be more suited than others to
cope with current and future environmental changes, although
measured differences among populations are directly related
to genetic differences and maternal effects. Further studies are
needed to confirm these aspects for a better characterization
and understanding of the strategies and abilities of invasive
populations to grow and reproduce in novel environments.
This understanding is essential to improve management plans
particularly in the context of changing environmental conditions

and providing information for propagation, domestication, and
breeding programs, as well as conservation of genetic resources
for plant species (Pickersgill, 1981). The existing diversity could
further add new genetic information in global gene pool of weedy
species. In addition, the results showed that many field traits
have promise for genome analysis in the future, where combining
molecular marker data with agro-morphology can identify genes
for weed populations control.
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