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A B S T R A C T

China has experienced a dramatic change in atmospheric reactive nitrogen (Nr) emissions over the past four
decades. However, it remains unclear how nitrogen (N) deposition has responded to increases and/or decreases
in Nr emissions. This study quantitatively assesses temporal and spatial variations in measurements of bulk and
calculated dry N deposition in China from 1980 to 2018. A long-term database (1980–2018) shows that bulk N
deposition peaked in around 2000, and had declined by 45% by 2016–2018. Recent bulk and dry N deposition
(based on monitoring from 2011 to 2018) decreased from 2011 to 2018, with current average values of
19.4 ± 0.8 and 20.6 ± 0.4 kg N ha−1 yr−1, respectively. Oxidized N deposition, especially dry deposition,
decreased after 2010 due to NOx emission controls. In contrast, reduced N deposition was approximately con-
stant, with reductions in bulk NH4

+-N deposition offset by a continuous increase in dry NH3 deposition. Elevated
NH3 concentrations were found at nationwide monitoring sites even at urban sites, suggesting a strong influence
of both agricultural and non-agricultural sources. Current emission controls are reducing Nr emissions and
deposition but further mitigation measures are needed, especially of NH3, built on broader regional emission
control strategies.

1. Introduction

Over the last century humans have at least doubled the amount of
reactive nitrogen (Nr) compounds in the biosphere due to increased
agricultural and industrial activities (Galloway et al., 2004). Much of
this anthropogenic nitrogen (N) enters natural and semi-natural eco-
systems via atmospheric deposition, which is an important component
of N cycling (Galloway et al., 2008). Excess N deposition can cause
adverse ecological effects in terrestrial and aquatic environments,

including soil acidification (Johnson et al., 2018), eutrophication of
coastal waters and lakes (Zhan et al., 2017) and reductions in biodi-
versity (Midolo et al., 2019; Nair et al., 2016). Over the last 30 years,
the effectiveness of Nr emission controls by governments has been de-
monstrated in some regions (e.g., Europe, North America), as proven by
decreasing atmospheric Nr concentrations and deposition (Ackerman
et al., 2019; Li et al., 2016). In contrast, N deposition continues to in-
crease, or at least not decrease rapidly, particularly in East Asia and
most parts of India (Gupta et al., 2003; Xu et al., 2015).
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China, with the largest area and population in East Asia, has wit-
nessed severe air pollution problems over recent decades (Huang et al.,
2014). Concentrations of particulate matter (PM) and many gaseous
pollutants have increased significantly due to rapid industrialization,
urbanization, and intensified agricultural production (An et al., 2019).
The combustion of fossil fuels, increased more than 6 times from 1980
to 2018 (China statistical yearbook, http://www.stats.gov.cn/tjsj/ndsj/
), and is the major contributor to NOx in the atmosphere. Synthetic
fertilizer production represents an important source of NH3 emissions,
having increased threefold during the past three decades, from ap-
proximately 10 million tons in 1980 to 33 million tons in 2010 (Liu
et al., 2013). China has experienced a growing public awareness of air
pollution in recent years; to alleviate this and improve environmental
quality, a series of government laws, regulations, and standards have
been enacted (Zheng et al., 2018). One example is the setting of more
ambitious goals to reduce annual SO2 and NOx emissions by 15% and
10%, respectively, by 2021 from their 2016 levels. This follows suc-
cessfully achieving binding goals for the 11th Five-Year-Plan (FYP,
2006–2010) of 8% reductions for SO2 emissions, and the 12th FYP
(2011–2015) of a further 8% and 10% for SO2 and NOx emissions, re-
spectively. Previous efforts have been designed to reduce acid precursor
emissions. Reductions of alkaline gas emissions, such as NH3, a critical
influencing factor for secondary inorganic aerosol formation (which
accounts for 40–57% of PM2.5 in eastern China (Huang et al., 2014;
Yang et al., 2011), the most damaging air pollutant to human health
(Chen et al., 2017), have not been a priority. Evidence from emission
inventory studies confirms that total NH3 emissions in China remain
high (Huang et al., 2012; Kang et al., 2016). Zhang et al. (2017) re-
ported that total NH3 emissions in China could have been substantially
underestimated in previous studies, and were 15.6 Tg N yr−1 rather
than the previously estimated 12.1 Tg N yr−1 during 2000–2015.

China is one of three global hotspots for N deposition (Vet et al.,
2014). A meta-analysis of historic data by Liu et al. (2013) showed that
bulk N deposition (wet plus a certain unknown fraction of dry deposi-
tion) in China increased from 13.2 kg N ha−1 yr−1 in the 1980s to
21.1 kg N ha−1 yr−1 in the 2000s. Yu et al. (2019) further quantified
trends in atmospheric wet and dry N deposition and reported that total
N deposition stabilized after 2005, and estimated total deposition as
20.4 ± 2.6 kg N ha−1 yr−1 in 2011–2015. However, the main
weakness of their study was the large uncertainty of earlier dry N de-
position, which was obtained by empirical modeling. Meanwhile, Yu
et al. (2019) only considered the period up to 2015, thereby missing
main impact from recent major emission control measures of air pol-
lutants taken at a national scale (e.g. the effect of the ten air pollution
control regulations enacted after June 2013).

Thus, the objectives of this study were to: (1) examine long-term
trends of N deposition via different pathways (dry and bulk N deposi-
tion) and in various chemical forms (reduced and oxidized N) in China
from 1980 to 2018; (2) explore the relationship between N deposition
and emissions to check any potential delay in the response of N de-
position to Nr emission reductions. N deposition was quantified in two
ways. First, a long-term database of bulk deposition in China from 1980
to 2018 was established using data from published papers. Second, a
database of dry and bulk deposition of various Nr species after 2010
was obtained from a nationwide monitoring network. The two data-
bases jointly reveal temporal and spatial variations in N deposition
across China over a period of almost four decades. The results will help
identify effective and feasible measures to decrease N deposition to
sensitive ecosystems and will also provide useful guidance regarding Nr
pollution control in China and other rapidly developing countries.

2. Methods

2.1. Long-term national datasets of bulk N deposition

Data with high spatial and temporal resolution are necessary for

analyzing the regional characteristics of bulk N deposition in China.
Bulk N deposition data were obtained from articles published after
1980, using “precipitation” and “atmospheric nitrogen deposition” as
keywords (Table S1). Each dataset included event-based precipitation
measurements together with Nr species concentrations, with a
minimum sampling record of one year. The datasets included in-
formation on the monitoring site (including province, location, latitude,
and longitude), the monitoring period, rainfall, concentrations and
deposition fluxes of NH4

+-N, NO3
−-N, and DIN (dissolved inorganic

nitrogen, the sum of NH4
+-N and NO3

−-N).
Based on these criteria, a total of 951 yearly data points were ob-

tained from 1980 to 2018 (Fig. S1). To better understand the spatial
and temporal distribution of bulk N deposition in China, the country
was divided into six regions based on socioeconomic development and
geographical information: North China, Northwest China, Northeast
China, Southeast China, Southwest China, and the Qinghai-Tibet Pla-
teau.

2.2. Monitoring networks of bulk and dry N deposition

A Nationwide Nitrogen Deposition Monitoring Network (NNDMN)
covered sixty-six in situ monitoring sites across China (Fig. S1). This
network, established and operated by China Agricultural University,
quantifies bulk and dry deposition of major Nr species in air (as gaseous
and particulate forms) and in precipitation. It has become an important
long-term monitoring platform for the region. In order to ensure the
representativeness of the sampling sites, quantification of N deposition
was mostly conducted in eastern China, with its high emissions of NH3

and NOx, and fewer sampling sites in western China with less anthro-
pogenic activity. The 66 sites cover major land use types, including
urban, rural (cropland), and background regions (coastal, forest, and
grassland). More details on each site can be found in Table S2.

Measurements at all NNDMN sites were conducted from 2011 to
2018. Ambient gaseous (NH3 and HNO3), and particulate (pNH4

+ and
pNO3

−) Nr samples were collected with active DELTA (Denuder for
Long-Term Atmospheric sampling, Center for Ecology and Hydrology,
Edinburgh, UK) samplers, while NO2 samples were collected with
Gradko passive diffusion tubes (Gradko International Limited, UK) de-
ployed in duplicate or triplicate. NH3 was also sampled using an ALPHA
passive sampler (Adapted Low-cost High Absorption, Center for
Ecology and Hydrology, Edinburgh, UK) at all monitoring sites for
double insurance. In total, there were approximately 30,000 samples
collected over the 8 years to estimate dry deposition fluxes.

Precipitation samples were collected in rain gauges (SDM6, Tianjin
Weather Equipment Inc., China), which were placed on open flat land
with no obstacles or distinct nearby sources of pollution. An anti-bird
device was installed on the rain gauges to avoid contamination by bird
droppings. Approximately 2000 precipitation samples were collected by
the network each year. More detailed information on sample processing
can be found in Text S1. Quality control procedures were applied
during all analytical processes as described by Xu et al. (2019a).

Direct methods for measuring dry deposition (e.g., eddy correlation;
chambers) are difficult and expensive. The inferential method is an
indirect method that estimates dry deposition fluxes of Nr species using
a combination of ambient Nr concentrations and their dry deposition
velocities (Fowler et al., 1990). Dry N deposition was calculated as the
product of the measured Nr concentration and simulated deposition
velocity (Vd). The GEOS-Chem chemical transport model (CTM; http://
geos-chem.org) was used to simulate the Vd values of five Nr species
every hour at each monitoring site from 2011 to 2018. Hourly Vd values
were averaged to obtain a monthly Vd, which was multiplied by the
monthly species concentration to estimate the dry deposition flux. The
details of inputs of the model, including meteorological data, domain,
resolution, and land use type are presented in Text S2. The Vd values of
gaseous NH3, NO2, HNO3 and particulate NH4

+ and NO3
− all showed

no significant differences from 2011 to 2018 (p > 0.05) (Fig. S2).
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Therefore, calculated trends in dry deposition are not a function of Vd,
but follow the measured Nr concentrations in air.

3. Results and discussion

3.1. Interannual variation of N deposition across China

The long-term trend over a period of 39 years shows that bulk N
deposition across China reached a maximum around 2000 and then
began to gradually decline (Fig. 1). Deposition of DIN (the sum of
NH4

+-N and NO3
−-N) in precipitation increased from

8.88 ± 2.20 kg N ha−1 yr−1 (mean ± standard error) in 1980 to
24.5 ± 1.47 kg N ha−1 yr−1 during 1996–2000, and afterward de-
creased to 13.5 ± 1.43 kg N ha−1 in 2016–2018 (Fig. 1f), mirroring
trends in NH4

+-N rather than NO3
−-N, the deposition of which re-

mained relatively constant after 2000 (Fig. 1d, e). Not surprisingly,
trends in the concentrations of inorganic N in precipitation were similar
to those of deposition (Fig. 1a, b, c). That the observed decline in bulk
DIN deposition is driven by changes in bulk NH4

+-N deposition is

consistent with evidence from Yu et al. (2019), that total N deposition
began to stabilize around 2005 due to a gradual decline in wet NH4

+-N
deposition.

The monitoring network recorded an average annual concentration
of DIN of 2.94 ± 0.12 mg N L−1 during 2011–2018 (Fig. 1c). Con-
sistent with the long-term trends in bulk deposition, the average DIN
deposition measured by the network was 19.4 ± 0.78 kg N ha−1 yr−1,
showing a decline (p = 0.01) over the monitoring period (Fig. 1f). As
shown in previous studies (Xu et al., 2015), dry N deposition is as im-
portant as bulk N deposition at the national scale, so neglecting dry
deposition can result in a substantial underestimation of the total N
deposition flux. The total Nr concentrations in air (the sum of NH3,
HNO3, NO2, pNH4

+, and pNO3
−) averaged 22.5 ± 0.38 μg N m−3

(Fig. 1c), and the annual dry N deposition showed a minor decrease
from 2011 to 2018, with an overall average value of
20.6 ± 0.35 kg N ha−1 yr−1 (Fig. 1f). Total N deposition (bulk plus
dry deposition) declined significantly (p < 0.01) from 2011 to 2014
(average 42.2 ± 0.98 kg N ha−1 yr−1) to 37.5 ± 0.55 kg N ha−1

yr−1 in 2015–2018.

Fig. 1. Annual mean concentrations (a, b, c) and deposition (d, e, f) of inorganic N in precipitation and reduced and oxidized N species in air derived from two
complementary databases: (1) published long-term data of bulk N deposition covering 1980–2018, and (2) short-term NNDMN-based bulk and dry N deposition
fluxes (calculated on the bases of measured Nr concentrations and deposition velocities) from 2011 to 2018. For the long-term data, the blue open circles represent
annual average concentrations of inorganic N species in precipitation: NH4

+-N (a), NO3
−-N (b), DIN (c) and bulk N deposition: NH4

+-N (d), NO3
−-N (e), DIN (f); the

red curve shows the trends in inorganic N concentrations in precipitation and bulk deposition, while the red dots represent the 5-year average inorganic N con-
centration and bulk deposition, except in 1980 (only that year's average) and in 2018 (the average of 2016–2018) (N = 951). For the short-term data, the green
triangles represent the concentrations of inorganic N species in precipitation: NH4

+-N (a), NO3
−-N (b), DIN (c) and orange triangles represent bulk deposition:

NH4
+-N (d), NO3

−-N (e), DIN (f); the yellow triangles represent the concentrations of Nr species in air: NHx (gaseous NH3 plus particulate NH4
+) (a), NOy (gaseous

HNO3, NO2 plus particulate NO3
−) (b), Total Nr (NHx plus NOy) (c) and the purple triangles represent dry deposition: NHx (d), NOy (e), Total Nr (f), respectively. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Anthropogenic emissions of NOx (NO + NO2) and NH3 show a
marked increase from 1980 to 2010, after which NH3 emissions con-
tinued to increase while NOx emissions began to decrease, reflecting
measures taken to reduce NOx emissions (Fig. 2a, b). Correspondingly,
total oxidized N deposition (NO3

−-N in bulk deposition plus HNO3,
NO2, and pNO3

− in dry deposition) has decreased in recent years, while
the total amount of reduced N deposition (NH4

+-N in bulk deposition
plus NH3 and pNH4

+ in dry deposition) has remained stable, despite a
decline in bulk NH4

+-N deposition (Fig. 2c, d).
China has faced a series of socio-economic changes over the past

four decades, during which urbanization increased from 19.4% in 1980
to 59.6% in 2018, along with a dramatic 7.6-fold increase in energy
consumption (Fig. S3). Consequently, the country has experienced
frequent and severe air pollution episodes over the past decade (Cui
et al., 2016). To improve air quality, protect ecosystems and ensure
ecosystem service function, the Chinese government has adopted
stringent control measures to reduce emissions and deposition fluxes of
air pollutants (e.g., SO2, NOx, particles) from manufacturing, power
plants, and transportation, such as widespread implementation of flue
gas desulfurization, mandatory transformation of energy structures, and
the active promotion of clean energy vehicles (Fig. S4). Our findings
reflect the positive effects of the implementation of such measures on
the mitigation of atmospheric Nr pollution in China.

From an eco-environmental protection perspective, mitigation of N
deposition is undoubtedly beneficial in reducing potential acidification
and eutrophication risks in natural and semi-natural ecosystems.
However, we found the total potential acidifying N deposition fluxes
averaged 40.0 ± 1.06 kg N ha−1 yr−1 during 2011 and 2018, much
higher than the critical loads (< 28 kg N ha−1 yr−1) for acidification in
most areas in China, even without considering atmospheric sulfur

deposition. The total potential acidifying N deposition declined by 11%
in 2018 compared with 2011. SO2 emission abatement in China has
been reported to have had a positive effect on the recovery of acidified
soil and water bodies (Duan et al., 2013). Benefits may also be antici-
pated from a decline in N deposition as it has been found that N de-
position can acidify soils in tropical ecosystems, temperate forests and
waters (Bonten et al., 2016; Oulehle et al., 2011; Lu et al., 2014).
Schmitz et al. (2018) reported a potential response in soil solution and
foliage concentrations to decreasing N deposition for Europe's forests.

3.2. A shift in oxidized and reduced N deposition

Bulk NH4
+-N deposition reached a peak in 1996–2000

(18.0 ± 1.15 kg N ha−1 yr−1), and had decreased by more than half
by 2016–2018 (7.55 ± 0.82 kg N ha−1 yr−1) (Fig. 1d). In contrast, the
change point for bulk NO3

−-N deposition occurred in 2001–2005
(8.16 ± 0.42 kg N ha−1 yr−1) with subsequent values being ap-
proximately constant (Fig. 1e). Thus, the NH4

+-N/NO3
−-N ratio in-

creased in the early 1980s, then decreased significantly from 1984 to
2018 (p < 0.01) at a rate of −0.17 yr−1 (Fig. 3a). The consequence is
that bulk N deposition changed from being NH4

+-N dominated to
NH4

+- N and NO3
−-N being equally important (Fig. S3). A similar ratio

of reduced to oxidized N in bulk deposition was observed in the
NNDMN data (Fig. 3c). Dry NHx deposition (NH3 and pNH4

+ in dry
deposition) increased from 2011 to 2018 at a rate of 0.23 kg N ha−1

yr−1 (p < 0.05), while dry NOy deposition (HNO3, NO2, and pNO3
− in

dry deposition) markedly declined at a rate of −0.57 kg N ha−1 yr−1

(p < 0.01) (Fig. 1d, e), leading to a significant increase in the ratio of
reduced to oxidized N in dry deposition (Fig. 3b). The observed de-
crease in bulk NHx deposition (NH4

+-N in bulk deposition) was offset

Fig. 2. NOx (a) and NH3 (b) emissions from emission inventories and the observed deposition of oxidized N (NOy) (c) and reduced N (NHx) (d) across China over the
past four decades. In panels (c) and (d), the green lines represent results from the long-term bulk deposition database and the NNDMN database, and the blue and red
scatter points represent observed total deposition. NOx and NH3 emissions data were obtained from the China statistical yearbook (http://www.stats.gov.cn/),
EDGAR (https://edgar.jrc.ec.europa.eu/), RESA (http://www.nies.go.jp/REAS/), MEIC (http://www.meicmodel.org/), and publications (Ohara et al., 2007; Liu
et al., 2017; Kang et al., 2016; Zhang et al., 2017; Zheng et al., 2018). (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Z. Wen, et al. Environment International 144 (2020) 106022

4

http://www.stats.gov.cn/
https://edgar.jrc.ec.europa.eu/
http://www.nies.go.jp/REAS/
http://www.meicmodel.org/


by an increase in dry NHx deposition, which resulted in an approxi-
mately constant level of total NHx deposition from 2011 to 2018. In
contrast, annual dry NOy deposition significantly declined, while an-
nual bulk NOy deposition (NO3

−-N in bulk deposition) remained rela-
tively constant, resulting in a decrease in total NOy deposition (Fig. 3d).
The implementations of strict control measures (Fig. S4) have suc-
cessfully reduced NOx emissions over recent years (Fig. 2a, c) as seen in
the observed decrease in oxidized N deposition.

A substantial reduction in atmospheric SO2 concentrations has been
observed since 2005 (Fig. S5). A rapid reduction of SO2 can sig-
nificantly reduce the formation of ammonium sulfate ((NH4)2SO4) and
then increase the proportions of gas-phase NH3 (Bleeker et al., 2009;
Sutton et al., 2003). The increased NH3 concentration can be attributed
to the release of NH4

+ from the aerosol phase as a semi-volatile

property of ammonium nitrate (NH4NO3) and associated aerosol water.
Thus, a possible explanation of decreased NH4

+ bulk deposition is that
more NH3 is partitioned to the gaseous phase, reducing the NH4

+

concentration in the particle-phase and in precipitation. Lachatre et al.
(2019) showed that SO2 and NOx emissions in China between 2011 and
2015 were reduced by 37.5% and 21%, respectively, in agreement with
an increase in gaseous NH3 concentrations by as much as 49%. This, in
turn, led to an increase in gaseous NH3 concentrations by as much as
49% from 2011 to 2015, similar to the 48% increase in NH3 con-
centrations during the same period across all sites in this study. Ac-
cording to recent research, the enhanced atmospheric NH3 concentra-
tion over China between 2002 and 2016 mainly resulted from increased
fertilizer use and increasing temperatures (Warner et al., 2016), to-
gether with substantial reductions in SO2 and NOx emissions since 2011

Fig. 3. Annual variations in the ratio of reduced N (NHx) to oxidized N (NOy) species in long-term bulk deposition (a), and dry (b), bulk (c), and total deposition (d)
measured in the short-term monitoring network in China. Green, purple and blue lines represent linear fits for dry, bulk, and total N deposition, respectively. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Annual mean concentrations of Nr species in urban (a), rural (b) and background (c) land use types from 2011 to 2018. Top: Nr concentrations in the air;
bottom: Nr concentrations in precipitation. Light colored lines represent standard errors.
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(Chen et al., 2020). Response times between decreases of NOx emissions
and NOy wet deposition were associated with the reduction rates of NOx

emissions, and the atmospheric acidity and humidity, which determine
the gas-aerosol partitioning of NO3

− (Tan et al., 2018). Therefore, the
effectiveness of NOx emissions control may first be reflected in the
gaseous concentration, then the aerosol or precipitation.

During 2011–2018, the annual mean ambient NOy concentrations
(the sum of NO2, HNO3, and pNO3

−) were higher at urban sites
(13.6 ± 3.04 μg N m−3) than rural (7.49 ± 1.58 μg N m−3) and
background sites (5.22 ± 2.19 μg N m−3) (Fig. 4). NOy concentrations
decreased by 23.2%, 20.9%, and 32.9% at urban, rural, and background
sites, respectively, in 2018 compared to 2011, further demonstrating
the effectiveness of NOx emission controls across China. The annual
mean oxidized and reduced species concentrations in precipitation
showed different patterns across the three land-use types, as shown in
Fig. 4. NO3

−-N deposition was the main component in bulk N deposi-
tion at urban sites, while equal contributions from NH4

+-N and NO3
−-

N were found at rural and background sites.
China is one of the largest grain and meat producers in the world, so

agricultural NH3 emissions (mainly from fertilization and livestock
manure) have substantially increased over the last four decades (Kang
et al., 2016). Annual NH3 concentrations at rural and urban sites in-
creased by approximately 83% and 78%, respectively, from 2011 to
2018, whereas no clear trend was found at background sites. Further-
more, a substantial increase in the ratio of NH3/(NH3 + pNH4

+) at
rates of 4.41% yr−1 and 5.25% yr−1 was observed at urban and rural
sites, respectively, indicating that the atmospheric environment of
China is increasingly NH3-rich.

The average NH3 concentration at rural monitoring sites
(8.25 ± 1.97 μg N m−3) was comparable to that at urban monitoring
sites (9.37 ± 1.80 μg N m−3). However, sources of NH3 in urban areas
are complex. Atmospheric NH3 is a short-lived Nr species and mainly
locally deposited. For example, Xu et al. (2014) have found a 64% re-
duction in ambient NH3 concentration at 650 m distance from the
source. In addition to agricultural sources, non-agricultural sources of
NH3 emissions (e.g., vehicles and coal combustion) have attracted in-
creasing attention because of their potential to form secondary in-
organic aerosols, especially in urban areas (Huang et al., 2018; Pan
et al., 2016). A high-resolution NH3 emission inventory for combustion
and industrial sources showed that the emission density of NH3 in urban
areas was an order of magnitude higher than in rural areas (Meng et al.,
2017). Reducing NH3 emissions by improved N management practices
(e.g. Ju et al., 2009; Sha et al., 2020) should be a priority in curbing N
deposition in China.

3.3. Spatial distribution of DIN in precipitation and Nr pollution in air

Fig. 5 shows the bulk and dry deposition in regions of China; both

show large spatial variability. Total N deposition followed the order:
North China (NC) > Southwest China (SW) and Southeast China
(SE) > Northeast China (NE) > Northwest China (NW) > Qinghai-
Tibet Plateau (TP). North China has the highest dry N deposition
(27.8 ± 0.57 kg N ha−1 yr−1) and total N deposition
(47.4 ± 1.90 kg N ha−1 yr−1), mainly due to differences in regional
emissions of NH3 and NOx (Xu et al., 2015). The Qinghai-Tibet Plateau
has the lowest total N deposition (12.3 ± 2.79 kg N ha−1 yr−1),
consistent with its limited anthropogenic disturbance. Earlier, Pan et al.
(2012) reported that total N deposition in NC reached 60.6 kg N ha−1

yr−1 from 2007 to 2010, 60% of which was comprised of dry-deposited
forms. Total N deposition in NC began to decrease from 2011 to 2018,
mainly due to a decline in bulk deposition and the stabilization of dry
deposition (Fig. S6).

Meteorological and geographical conditions significantly affect N
deposition. High bulk N deposition is observed not only in NC, but also
in SE (21.8 ± 1.23 kg N ha−1 yr−1) and SW (21.9 ± 1.62 kg N ha−1

yr−1), a pattern also observed in long-term bulk deposition data
(Fig. 5b and S7). Precipitation amounts were positively and sig-
nificantly correlated (p < 0.01) with bulk N deposition, and negatively
correlated (p < 0.01) with DIN concentrations (Fig. S8). Analyzing
39 years of data, the average annual precipitation in NC was
531.7 ± 10.9 mm, 1441.5 ± 27.4 mm in SE, and 1063.0 ± 29.6 mm
in SW. Higher amounts in southern China contributed to the high bulk
deposition in SE and SW. Rain generally efficiently removes water-so-
luble gaseous pollutants and large aerosol particles from the atmo-
sphere (Al-Khashman, 2005; Xu et al., 2017). In contrast, in regions
with severe air pollution and/or less precipitation, dry deposition is
often the dominant deposition pathway. Bulk deposition was the main
form of deposition in southern areas of China, while dry deposition was
predominant in drier northern China.

As shown in Table 1, China has experienced enhanced N deposition
at background sites compared with such sites at international mon-
itoring locations observed by NADP, EMEP, and Japan’s EANET net-
work, indicating that local atmospheric N deposition levels are affected
by regional Nr emissions. Current annual dry and bulk N deposition,
estimated in this study (20.6 ± 0.4 and 19.4 ± 0.8 kg N ha−1 yr−1),
were both approximately twice the corresponding values (10.3 ± 1.5
and 10.1 ± 1.2 kg N ha−1 yr−1, respectively) reported by Yu et al.
(2019) for the 2011–2015 period. This is not surprising, mainly because
the national magnitudes of dry and wet N deposition from the study of
Yu et al. (2019) were estimated based on a Kriging interpolation
technique, rather than arithmetic averaging used in this study. As re-
ported by Zhao et al. (2017), China’s domestic anthropogenic sources
contribute 86% of the total deposition, foreign anthropogenic sources
7% and natural sources 7%. This suggests that emission reductions
should be planned at large scales. In the United States, insight into the
balance between oxidized and reduced N revealed a significant shift

Fig. 5. Maps of dry deposition (a), bulk deposition (b) and total deposition (c) created from the NNDMN monitoring sites in North China (NC), Northwest (NW),
Northeast (NE), Southeast (SE), Southwest (SW) and Qinghai-Tibet Plateau (TP) of China, respectively.
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from NO3-dominated to NH4-dominated conditions. Reduced N de-
position, which is not regulated, accounted for 65% of N deposition
from 2011 to 2013 (Du et al., 2014; Li et al., 2016). This is similar to
our NNDMN results from 2011 to 2018, which showed that reduced N
contributed an average of 56% to the total N deposition amount and
continues to increase.

3.4. Policy implications

The long-term bulk deposition records show a downward trend
since 1998; measured short-term bulk and calculated dry deposition
continuously decreased from 2011 to 2018, caused by adjustments of
energy production structures and strong support of environmental po-
licies in China. Total potential acidifying N deposition declined by 11%
and should result in a degree of recovery of acidified soil and water
bodies. However, when compared with the critical load, the ecological
impact of atmospheric N deposition is still much too high. After com-
pletion of the “Action Plan for Prevention and Control of Air Pollution”
(2013–2017), the Chinese government has announced plans to roll out
a three-year plan (2018–2020) to ensure even greater reductions in air
pollution. Many positive policy and practical changes are taking place,
so further evaluation using field measurements of Nr deposition (or
emission) fluxes in typical ecosystems (e.g., cropland, forest, grassland)
over a longer period is recommended. The trend in Nr concentrations
and deposition can also be quantified using an atmospheric model
based on long-term emission inventories (e.g. Kang et al., 2016; Crippa
et al., 2020). The observations presented in this study can be valuable
for evaluating the performance of atmospheric models and improving
the accuracy of emission inventories. Future work will focus on quan-
tifying the trends in the concentrations/deposition fluxes of atmo-
spheric reactive N by combing atmospheric chemistry model simula-
tions and in-situ observations (More details of uncertainty in dry and
wet deposition are presented in Text S3).

Reduced N deposition, which stems from the mostly uncontrolled
NH3 emissions, has become the dominant form of N deposition. While
some decrease has been observed in the bulk deposition of NH4

+, dry
NH3 deposition has dramatically increased at a rate of 0.31 kg N ha−1

yr−1. Furthermore, there were no significant differences in measured
NH3 concentrations between urban and rural monitoring sites, in-
dicating that non-agricultural emissions of NH3 need urgent attention.
Bulk and dry deposition fluxes of oxidized N are expected to continue to
decrease in the future as China’s government continues to reduce SO2

and NOx emissions by implementing strict emission reduction mea-
sures, such as upgrading coal-burning equipment, encouraging the use
of desulfurization and denitration technologies, promoting the devel-
opment of clean and renewable energy, controlling pollution sources,
and restricting motor vehicle use. From the experience of air quality
improvements in Europe and the United States, NH3 emissions present a
serious environmental issue with the sharp reduction of acidic pre-
cursors (Backes et al., 2016). Optimizing fertilizer application by im-
proving application methods and utilization rates and their uptake must
be a priority in China (Zhang et al., 2019), which is also key to

establishing green eco-environment (Liu et al., 2020). Livestock manure
management, including reductions in the crude protein content of feed
and acidifying slurry, are strategies that could consistently reduce NH3

emissions (Hou et al., 2015). Xu et al. (2019b) showed, in simulations,
that better livestock manure management during winter in northern
China could reduce NH3 concentrations by 40%, contributing to a re-
duction of 37% for pNO3

− during a severe haze episode. At the same
time, accurate identification and effective control of non-agricultural
NH3 sources are essential, especially for urban areas (Zhang et al.,
2020). Recent simulations have shown that 50% NH3 emission reduc-
tions, together with 15% reductions in SO2 and NOx emissions, could
mitigate PM2.5 concentrations by 11–17% and N deposition by 33%, but
significantly increase the acidity of precipitation (Liu et al., 2019).
Research is needed to identify the sources of different Nr components in
deposition to provide region-specific strategies for the prevention and
control of multiple air pollutants. An effective emission reduction plan
should be formulated by combining the effects of different land use
types in different regions on N deposition, according to the most ap-
propriate economic-ecological effects. In other words, more attention
not only should be paid to the control of NOx emissions from China's
core urban agglomerations or industrial cities, but to the control of NH3

emissions from cropland and livestock production dominated agri-
cultural areas. In summary, emission reduction policies, based on sound
science, are needed. This paper provides basic information for future
environmental quality governance.
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