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Kirsty L. Hassall∗ , Alex Dye†, Ilyas Potamitis‡ and James R. Bell†

∗Computational and Analytical Sciences, Rothamsted Research, West Common, Harpenden, AL5 2JQ, U.K., †Rothamsted Insect Survey, Rothamsted

Research, West Common, Harpenden, AL5 2JQ, U.K. and ‡Department of Music Technology and Acoustics Engineering, Hellenic Mediterranean
University, Crete, Greece

Abstract 1 Bioacoustic methods play an increasingly important role for the detection of insects
in a range of surveillance and monitoring programmes.

2 Weak-flying insects evade detection because they do not yield sufficient audio
information to capture wingbeat and harmonic frequencies. These inaudible insects
often pose a significant threat to food security as pests of key agricultural crops
worldwide.

3 Automatic detection of such insects is crucial to the future of crop protection by
providing critical information to assess the risk to a crop and the need for preventative
measures.

4 We describe an experimental set-up designed to derive audio recordings from a range
of weak-flying aphids and beetles using an LED array.

5 A rigorous data processing pipeline was developed to extract meaningful features,
linked to morphological characteristics, from the audio and harmonic series for six
aphid and two beetle species.

6 An ensemble of over 50 bioacoustic parameters was used to achieve species
discrimination with a success rate of 80%. The inclusion of the dominant and
fundamental frequencies improved prediction between beetles and aphids because of
large differences in wingbeat frequencies.

7 At the species level, error rates were minimized when harmonic features were
supplemented by features indicative of differences in species’ flight energies.

Keywords Aphid, beetle, insect classification, random forest classification, wing-
beat harmonics.
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Introduction

Over the last 30 years, agriculture has been in the midst of a dig-
ital revolution with the increasing availability of sensor technol-
ogy and associated collection of ‘big data’ aiming at improving
the sustainability of food production systems. These technolo-
gies exist at all levels of the agricultural system, from defining
management zones from yield monitor data (Milne et al., 2012),
drones and augmented reality (Huuskonen & Oksanen, 2018)
to pest detection using UAVs (Tetila et al., 2020). Many of
these technologies feed into decision support systems (DSS) fur-
ther enabling the implementation of precision agriculture (Can-
cela et al., 2019; Zhai et al., 2020). Despite this, insect pests
remain a key challenge. Automatic insect pest detection is a
long sought-after goal that began in the 1950s and has still yet
to reach maturity (Lowe & Dromgoole, 1958; Cardim Ferreira
Lima et al., 2020). For many years, image recognition systems
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have been at the forefront but increasingly, bioacoustic meth-
ods are playing an important role for the detection of insects
in a diverse range of surveillance and monitoring programmes.
Almost exclusively, these programs use sound recordings to
detect species and groups across the audible range of human
hearing (Chen et al., 2014). Typically, model organisms have
included mosquitoes, fruit flies, hawkmoths and crickets using a
simple microphone set-up (Montealegre-Z et al., 2011; Potami-
tis & Rigakis, 2016b; Mukundarajan et al., 2017). Although the
songs of some cicadas can generate in excess of 100 dB of sound
pressure (Sanborn & Phillips, 1995), there is an important group
of small insects that are effectively silent in flight, which pose
a much more significant threat. For example, the peach potato
aphid, Myzus persicae (Sulzer, 1776) (Hemiptera: Aphididae),
compromises worldwide food security through the transmission
of 100 different plant viruses, and is consequently one of the
world’s top 10 pests (Willis, 2017; CABI, 2020). Yet, these small
insects, no more than a couple of millimetres long and of the
upmost agricultural importance, are not the focal interest of bioa-
coustics monitoring, despite their profound and lasting impact on
food quality and quantity.

Aphid flights are so weak that they fall well below the lowest
human hearing range of 40 dB at 100 Hz and are effectively
silent, producing a wingbeat frequency that is nearly an order
of magnitude weaker than some mosquitoes (Byrne et al., 1988;
Smith, 1999; Moore & Miller, 2002; Potamitis & Rigakis, 2016b;
Tercel et al., 2018). Further, the rate of progress in flight is very
weak, and no more than 0.70 m/s−1 under laboratory conditions
for some well-studied aphids (Thomas et al., 1977).

Recently, opto-acoustic methods have provided a novel way
of capturing the flight of these small insects using photo-
transistors and infrared light (Ouyang et al., 2015; Potamitis
& Rigakis, 2016a,b). Here, the use of both the extinction of
light and backscattered light principles has been shown to per-
form better than audio (Potamitis et al., 2015; Potamitis &
Rigakis, 2016b).

In parallel to the evolution of sensor technologies has been
a rapid development in computational techniques. Classifica-
tion problems once thought to be impossible can be tack-
led by any number of different data science techniques. Such
techniques have been widely applied to the classification of
species from audio measurements and, in general, the litera-
ture approaches this problem in two ways; the first approach
generates a ‘dictionary’ of features for each species through
unsupervised learning methods such as clustering and nearest
neighbour classification. A new unknown species is then allo-
cated to the closest ‘word’. Such methods have been shown
to perform relatively poorly (Moore & Miller, 2002; Potami-
tis, 2014; Potamitis et al., 2015). The second, more suc-
cessful, approach focuses on species classification through
supervised learning algorithms that learn from labelled data.
These include artificial neural networks (Moore, 1991; Moore
& Miller, 2002), Gaussian mixture models (Potamitis, 2014;
Ouyang et al., 2015), random forests, support vector machines
and gradient boosting classifiers (Potamitis et al., 2015). Deep
learning approaches are seeing an exponential increase in their
usage but as highlighted in the studies by Chen et al. (2014)
and Kiskin et al. (2020), such methods also require formidable
sample sizes. Conversely, convolutional neural networks have

been used to good effect in data scarce scenarios (Kiskin
et al., 2020).

Not only do classification methods vary in the chosen algo-
rithm but also in the choice of input data. Chen et al. (2014)
attribute the stagnation of insect classification in part to the
overreliance on a single feature of wingbeat frequency; often
the fundamental frequency or the rate of wing flap. This was
observed more than 20 years previously (Moore, 1991) where
error rates in classification of mosquitoes increased by 33%
when only using the wingbeat frequency, compared with using
the entire frequency spectra. Later, however, it was found that
using the first 17 harmonics was as effective as using the entire
frequency spectra to classify five different aphid species (Moore
& Miller, 2002). Similarly, 12 features from the cepstrum have
been used as input to the Gaussian mixture models for classi-
fying mosquitoes (Ouyang et al., 2015). This contrasts with the
study by Potamitis et al. (2015)) and references therein who
argue that the unprocessed spectra are a better choice than more
sophisticated features coming from individual harmonics. This
is taken further in other studies (Chen et al., 2014) where the
frequency spectra are supplemented with additional covariates,
such as time of flight and where prior information on insect
behaviour is available for inclusion in the Bayes classifier. A less
common approach is to move away from the frequency domain
and to instead use wavelet transformations of the audio (Kiskin
et al., 2020), which arguably loses biological interpretability in
relation to insect flight.

The literature shows little consensus on the convergence of a
single approach but individual studies highlight nuances in spe-
cific application areas. It is not known whether the performance
of algorithms and associated processing of data differs due to
targeted species, experimental conditions, tuning parameters, or
most likely a combination of all three. However, the choice of
both algorithm and data processing should be made in the context
of why discrimination is needed. In this paper, we aim to couple
together successful classification along with biological insight
and as such, consider both rigorous data processing to extract
morphologically meaningful parameters and machine learning
algorithms to develop classification models. Furthermore, we
aim to show that an ensemble of bioacoustic parameters and
indices can be used to distinguish between groups and species
of the agriculturally and economically important, but often over-
looked, weak-flying insects.

Materials and methods

Flight experiments

Opto-acoustic recorders capture the variation of light when an
insect passes through a light beam. Both the main body and
the wings cast a shadow in the emitter’s light beam, known
as the extinction of light principle, and this shadow is subse-
quently detected by a receiver photodiode array (Potamitis &
Rigakis, 2016a). The Wingbeat Recorder® (Insectronics, Cha-
nia, Crete, Greece) was set up on a work surface in a laboratory,
with white dividers either side of the set-up preventing other
equipment, lasers and light to interfere with the recording. Dur-
ing experimental conditions, the sensor was placed underneath
a 15 000 mL heavy-walled glass beaker (Duran™), which pro-
vided sufficient space for insects to behave as normal.
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Figure 1 Data processing pipeline, indicating where features are extracted. Aphid illustration released under the creative commons Licence https://
commons.wikimedia.org/wiki/File:Aphid_(PSF).Png. [Colour figure can be viewed at wileyonlinelibrary.com].

For each species studied, insects were either collected from
the field or from insectary reared cultures and placed within the
up-turned beaker in which the sensor was enclosed (Fig. S1).
Over a period of 2 days, insects were free to disperse in and
around the sensor. Flights were automatically triggered when an
insect entered the field of view of the LED array, generating a
recording lasting 0.6 s. All flights were saved as an audio file
on an SD card within the sensor along with average temperature

and humidity covariates. Approximately 30 insects were used per
experiment run, generating on average 50 recordings (ranging
from 0 to more than 500) per run.

Audio pre-processing and feature extraction

A depiction of the audio processing steps is shown in Fig. 1.
Amplitude of the audio (volume) was scaled according to the
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bit rate, b, (divided by 0.5 × 2b) to be expressed in arbitrary
amplitude units (AAU). This allows a direct comparison between
the amplitude across recordings sampled with different bit rates.
Audio recordings were trimmed to remove the ‘silence’ at either
end of the recording. A threshold of 0.0061 AAU was identified
at which sound can be considered background noise. However,
background noise exhibits stochasticity, and the first sound above
this threshold does not necessarily indicate it is an insect flight.
Thus, to determine the first and last true sound and therefore
flight, any index for which the sound was above the threshold
and identified as an outlier (on the temporal scale), defined as
more than three times the interquartile range (IQR) away from
the upper or lower quartiles, was considered stochastic variation
above the threshold and not true sound (Fig. S2). Trimmed audio
recordings consisting of fewer than 128 time points (a total of
0.01 s) were removed.

A filtering to remove background variation through a
short-time Fourier transform with Hanning window was applied
to the trimmed audio recordings. Summary statistics (maximum
amplitude, amplitude range, amplitude interquartile range, see
Table 1) and measures of energy (crest factor, energy, power
and root mean square (RMS), see Table 1) were obtained from
the filtered trimmed audio (Feature extraction box 1 in Fig. 1).
Additional summary statistics (amplitude index and temporal
entropy, see Table 1) were obtained from zero padded trimmed
audio (Feature extraction box 2 in Fig. 1).

The frequency spectrum was calculated with a window length
of 128 time points using a short-time Fourier transform and
applied to the trimmed audio, padded with zeroes to make a total
recording of length 8192 (213) time points. The dominant fre-
quency was identified as the largest harmonic above 0.05 kHz.
Harmonics were extracted in order of frequency peak height
and the top 10, with no lower frequency limit, were recorded.
Spectral summaries (bioacoustic indices at four different fre-
quency ranges: 0–1000, 50–1000, 50–300, 200–3000 Hz; spec-
tral entropy and the acoustic entropy, see Table 1) were calculated
(Feature extraction box 3 in Fig. 1).

A long-term trend, often consisting of a single peak and
trough, was evident in the majority of recordings. It is thought
that this long-term trend relates to insect flight movement (e.g. a
banking behaviour) rather than to wingbeat frequencies alone.
As such, the frequency spectra extracted as above may have
limited interpretability of the resulting harmonics, which, in
particular, prohibits the estimation of the fundamental frequency.
Thus, a second set of features are calculated after removal of
this long-term trend through smoothing, estimated via a gen-
eralized additive model (GAM). The GAM was fitting using
thin plate regression splines and a maximum basis dimension of
1/50th of the length of the trimmed audio or of dimension 10,
whichever was bigger. Summary statistics (maximum ampli-
tude, amplitude range and amplitude interquartile range, see
Table 1) and measures of energy (crest factor, energy, power and
root mean square (RMS), see Table 1) and also the maximum
amplitude of the estimated GAM were obtained from the filtered
trimmed audio (Feature extraction box 4 in Fig. 1). Additional
summary statistics (amplitude index and temporal entropy)
were obtained from zero padded trimmed audio (Feature extrac-
tion box 5 in Fig. 1). Harmonic features (dominant frequency,
top 10 harmonic peaks, bioacoustic indices at four different

frequency ranges: 0–1000, 50–1000, 50–300, 200–3000 Hz;
spectral entropy and the acoustic entropy) were extracted
from the frequency spectrum calculated on the zero-padded,
trend-removed, trimmed audio (Feature extraction box 6 in
Fig. 1).

To calculate the fundamental frequency, peaks were identified
in the modulus of the autocorrelation function of the detrended
audio, ensuring peaks were no closer than 10 time points
(0.001 s) apart. The fundamental frequency was then calculated
as the inverse of the time of the first peak (Feature extraction box
7 in Fig. 1).

Audio processing was done in the statistical software pack-
age, R, using packages seewave (Sueur et al., 2008a) for the
Fourier transform, calculation of the harmonics and the calcu-
lation of temporal, spectral and acoustic entropies. The pack-
age soundecology (Villanueva-Rivera & Pijanowski, 2018) was
used to calculate the bioacoustics index, and the mgcv package
(Wood, 2011) was used for the GAM estimation.

Data

A total of 5026 audio recordings were available. Ninety-eight
of these did not exceed the required minimum audio length of
0.016 s, potentially because individuals did not fly through the
whole sensor or were flying vertically through the sensor, and no
features were extracted. Of the remaining 4928 observations, for
which up to 52 features (as listed in Table 1) were calculated,
70% were randomly allocated to the training set and 30% to the
validation set. Four aphid species (Aphis fabae, Sitobion avenae,
Myzus persicae and Rhopalosiphum padi) were studied because
they are global pests and reported on weekly by the Rotham-
sted Insect Survey (RIS) to growers (https://insectsurvey.com/
aphid-bulletin). Drepanosiphum platanoidis and Periphyllus tes-
tudinaceus are two additional aphid species that are included
in our analyses and while neither is a crop pest, they are
likely to be sampled by a sensor deployed in the field, partic-
ularly near sycamores and maples close to field margins. Psyl-
liodes chrysocephala and Brassicogethes aeneus pose a seri-
ous threat to oilseed rape (Brassica napus) and other brassi-
cas and are featured weekly in RIS’ non-aphid commentary
(https://insectsurvey.com/ris-remarks). Due to the small number
of recordings for M. persicae and R. padi, these species were
excluded from the random forest analysis, but are included in
the basic analyses of flight. The number of observations for each
species within each dataset is given in Table 2.

A total of 52 features were calculated for each audio record-
ing. Seven different feature sets were considered and are shown
in Table S1. The first set considers all 52 features. The second
considers the 25 features calculated without detrending, whereas
the third feature set considers the 27 features calculated on the
detrended audio. Feature set 4 considers only the frequencies
of the harmonic peaks, calculated both before and after signal
detrending. Feature set 5 extends set 4 to also include the fre-
quency indices such as the bioacoustics index, spectral entropy
and dominant and fundamental frequencies. Feature sets 6, 7
and 8 consist of the representative features from a hierarchical
cluster analysis with complete linkage on the correlation matrix
of standardized features with 3, 5 and 14 clusters (Fig. S3).
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Table 2 Number of audio recordings with feature information listed by species in the complete, training and validation datasets

Species

Insect order Common Latin
Number of
observations Training Validation Wing

Hemiptera Sycamore aphid Drepanosiphum platanoidis 3323 2351 972

Hemiptera English grain aphid Sitobion avenae 274 193 81

Hemiptera Maple aphid Periphyllus testudinaceus 113 76 37

Hemiptera Black bean aphid Aphis fabae 161 120 41

Hemiptera Peach-potato aphid Myzus persicae 15

Hemiptera Bird cherry-oat aphid Rhopalosiphum padi 8

Coleoptera Pollen beetle Brassicogethes aeneus 848 566 282

Coleoptera Cabbage stem flea beetle Psylliodes chrysocephala 186 127 59

Total 4928 3433 1472

Illustration of wing venation for each species.

Representative features were defined to be the feature closest to
the cluster centroid.

Statistical analysis

A linear model was fitted to each feature including covariates;
humidity and temperature and an explanatory variable indicative
of species. A Type II ANOVA table was produced showing the
effect of dropping each term while retaining all others in the
model. Where necessary, variables were transformed to ensure
homogeneity of variance as listed in Table 1.

Random forests (Breiman, 2001) were used to classify obser-
vations. Given the high levels of data imbalance across species,
balanced random forests were implemented. Balanced ran-
dom forests resample the data according to a set of defined
class-specific sample sizes. Considerable tuning of these class
sample sizes is required, and our criteria for tuning were to bal-
ance the class-specific error rates. The chosen set of sample sizes
for A. fabae, P. chrysocephala, S. avenae, P. testudinaceus, B.
aeneus, D. platanoidis were 75, 75, 120, 50, 120, 300 for datasets
including observations with missing values and 60, 60, 96, 40,
96, 240 for datasets excluding observations with missing values,
respectively. Hyper-parameters were tuned through an assess-
ment of both the out-of-bag error rate and predictive accuracy.
Selected hyper-parameters were to grow 1000 trees trying 10
randomly selected variables at each split. Missing values were
handled through the inbuilt option na.roughfix, which imputes
missing values by the variable median. To compute the accuracy
on validation data, missing values were replaced by the median
of each feature as computed from the training data.

Performance measures for classification include the true pos-
itive rate (TPR), true negative rate (TNR), weighted accuracy
(wAcc) and the class error (clErr) as defined in the supplementary
information.

The importance of each feature was estimated as the mean
decrease in accuracy associated with dropping that variable from
the model. This can be calculated for each class separately, the
average of which forms the mean decrease accuracy overall. The
Gini index is the mean decrease in Gini score associated with
dropping the variable from the model, and thus the Gini score
provides a measure of how well classes are separated.

Feature importance was investigated both for the full classifica-
tion defined in Table 2, but also for separate sub-classifications:
Hemiptera (aphids) vs Coleoptera (beetles); within Hemiptera
species; within Coleoptera species separately. For the latter two
classifications, new training and validation datasets, satisfying
the 70:30 split in each case, were defined.

Random forest models derived from different feature sets
(Table S1) were compared with the out-of-bag error estimates
and the predictive accuracy, calculated as the average proportion
of correctly classified observations.

To simulate the process of identifying previously unidentified
species, the random forest model was calibrated on all data
excluding all observations of a single nominate species. This
excluded species was then used as the validation dataset to
form predictions. To investigate this process, the proportion of
allocations to each species classification was extracted along
with the maximal class probability. This process was repeated
for each species in turn.

Random forests were fitted using the R package randomForest
(Liaw & Wiener, 2002).

Results

The average flight duration was 0.17 s across all taxa, translat-
ing to a speed of 0.41 m/s−1. Substantial variation in the flight
duration was observed with interquartile range of 0.065–0.237 s
and could be due to both the speed and direction of flight. Longer

© 2021 The Authors. Agricultural and Forest Entomology published by John Wiley & Sons Ltd on behalf of Royal Entomological Society.

Agricultural and Forest Entomology, doi: 10.1111/afe.12453



Identifying weak-flying insects during flight 9

flights may involve spiralling as well as turning behaviour. Flight
duration differed between species (F5, 4773 = 19.52, p < 0.001),
with M. persicae (0.04 s; 1.75 m/s−1) and P. chrysocephala
(0.076 s; 1.0 m/s−1) exhibiting shorter than average flight dura-
tions and thus higher speeds.

For each recording, up to 52 features were extracted (Table 1)
and all show significant differences between species, on aver-
age (Table 3). Furthermore, with the exception of the amplitude
index (of the raw audio), all features showed a greater variabil-
ity among species than with either of the environmental covari-
ates (largest F-statistic is associated with species differences,
Table 2). However, there is considerable variability within each
feature reducing the chance that any one feature could in isola-
tion discriminate between species without inclusion of additional
features (Table S2).

Species classification

Classification to species level has varying levels of success
with random forest models. An overall out-of-bag error rate
of 20.62% (17.88%) on the training set and an error rate of
21.19% (17.75%) on the validation set including (excluding)
observations with missing values suggest reasonable success in
identifying individual species. A summary of the class-specific
error rates is given in the supplementary information (Figure
S4). Random forest classification is better viewed in the ensem-
ble framework within which it is derived. Figure 2 shows the
distribution of the maximal class probability with an indication
of whether the maximal probability coincided with the true
underlying species. For those species with low misclassification
rates (D. platanoidis, B. aeneus, P. chrysocephala), a direct
correspondence is seen with high maximal class probability (a
median of 0.69, 0.62, 0.80, respectively). Furthermore, for those
observations of these species that are misclassified, the maximal
class probability is lower (a median of 0.42, 0.46, 0.40), indicat-
ing greater uncertainty in the final classification. Although the
certainty in the correct classification of A. fabae is lower (median
of 0.51), there is still a pronounced increase in uncertainty when
the classification is wrong (median of 0.39). By contrast, the
certainty of classification for S. avenae and P. testudinaceus
does not change depending upon whether the classification is
correct or not (a median of 0.50, 0.51 for correct classifications
and a median of 0.48, 0.43 for incorrect classifications).

Features for classification

Figures 3 and S5 illustrate the relative importance of the different
features in the classification model. The dominant frequency
comes out top in both the accuracy (a measure of how well
the prediction improves) and the Gini index (a measure of how
well class separation improves) when the variable is included
in the models. The fundamental frequency is a close second in
terms of accuracy. It is clear that the higher-order harmonics
contribute little in terms of feature importance. By contrast, a
number of summary indices of both the frequency and time
domain are highlighted as important. These include the spectral
and acoustic entropy, Bioacoustic Index (3) over 50–300 Hz, the
RMS and power. Figure 3(C) shows that the importance of these

features differs by species with the acoustic entropy important
for identifying P. chrysocephala and the fundamental frequency
important for B. aeneus and the dominant frequency for A. fabae.

Harmonics alone are not enough

A comparison of out-of-bag error rates shows that classifica-
tion improves when using all features of both the frequency and
time domain compared with using specific subsets of feature
variables (Fig. S6(A)). Specifically, the best out-of-bag accuracy
rates on the validation set, where missing values are imputed, are
seen when using all 52 features (78.9%) and when using the 27
features extracted after detrending (79.4%). A lower accuracy
is seen when using the 25 features extracted before detrending
(76.8%) and when using only the 20 harmonic features (76.8%).
Marginal improvements are seen when supplementing the har-
monic features with the additional frequency spectra indices
(77.6%). Although the minimal feature sets of 3 and 5 chosen
features result in lower accuracy (60.0% and 68.5%), the mini-
mal set of chosen 14 features performs relatively well (75.6%).
It can be seen that when imputation methods are used, the error
rates tend to increase by about 2.5–4%.

Further investigation of the class-specific error rates
(Fig. S6(B)) shows that the high error rates of the minimal
feature sets of 3 and 5 chosen features correspond with poor
prediction of pollen beetles in particular. The predictive per-
formance of black bean aphids increases in the feature sets
restricted to the harmonics only, 75.0% class-specific error rate
compared with 44.2% in the full 52 feature set.

Features for within-order classification differ between order
classification

Features important in classifying between Hemiptera and
Coleoptera align very closely with those identified in the full
model (Fig. 4). However, when data are restricted to a single
order, differing patterns of feature importance are revealed.
When focussed on aphid species only, the prominent features
are the maximum amplitude, the amplitude range and the power
or RMS (accuracy decrease), indicating a preference for features
of the audio rather than the harmonics. The highly influential
features of the full classification reduce to a mid or low level
of importance in the within-order classification. Similarly,
focussing only on classifying between beetle species (albeit on a
much smaller dataset), the key features of importance identified
are the spectral and acoustic entropy and to a lesser extent, the
bioacoustic index (at 50–300 Hz), the frequency of the most
prominent harmonic and the temporal entropy, thus indicating a
preference for features of the frequency spectra. Thus, harmon-
ics such as the dominant frequency and fundamental frequency
appear to be key in identifying between orders, but alternative
features of the audio and spectrum are required to identify to a
species level.

Classifying unknown species results in less certain
predictions

In general, the class probability for a misclassified observation is
lower than that for a correctly classified observation (Fig. 5(A)).

© 2021 The Authors. Agricultural and Forest Entomology published by John Wiley & Sons Ltd on behalf of Royal Entomological Society.
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Table 3 ANOVA results testing for differences between species for each individual feature

To adjust for confounding, the covariates humidity and temperature were included in the model. Significant terms are highlighted in green. F statistics
reported are of type II. Features are ordered by the size of the F statistic associated with dropping species from the model (from largest to smallest).
Where necessary, variables were transformed as listed in Table 1.
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Unobserved species are most commonly classified as sycamore
aphids or pollen beetles, likely due to the larger number of
observations in these two classes (Fig. 5(B)). Lower predic-
tive certainty generally persists when investigating the model
performance on predictions of a previously unobserved class
(Fig. 5(B)). It is noticeable that when either cabbage stem flea
beetles or English grain aphids are excluded from the training
set, the class predictions remain relatively high, resulting in rea-
sonable certainty that these species are in fact sycamore aphids or
pollen beetles, respectively. When sycamore aphids are excluded
from the training set, they are mostly allocated to the English
grain aphid (62.3%) with some to the pollen beetle class (20.9%).

Discussion

There is now a wealth of studies having developed classification
models of insect flight (Moore, 1991; Chen et al., 2014; Potami-
tis, 2014; Ouyang et al., 2015; Potamitis et al., 2015; Kiskin
et al., 2020), but relatively few have focussed on weak-flying
aphids and beetles (Moore & Miller, 2002). None that we know
of have attempted to link morphological characteristics to acous-
tic properties with the exception of Rajabi et al. (2016)) who
showed that the corrugated pattern of dragonfly wings explained
differences between damsel and dragonfly wingbeat frequen-
cies. The aim of this study has been to provide proof-of-concept
for automatic detection methods of aphid and beetle pests via
opto-acoustic methods while also providing key insight into
the drivers that will further this area of science. At first look,
the error rates in misclassification in this study appear high at
18–20% and yet these insect pests are not only inaudible but
their wingbeat rate is eight times smaller than the typical model
species such as Anopheles mosquitoes (≈100 Hz v≈ 800 Hz) and
have a much weaker flight speed (0.41 m/s−1 vs≈ 1 m/s−1) too
(Potamitis et al., 2015). As sensors improve and more species
are observed, it seems inevitable that the overall error rates will

improve and yet we also anticipate specific species compar-
isons to remain a challenge. This is because of the close species
similarity between aphid body plans, their small size (2–5 mm;
body mass 1–13 mg) and their simple wings that do not affect
the biomechanics of flight profoundly (cf dragonflies (Rajabi
et al., 2016)). Successful classification to species level should not
be the final endpoint, however. Rather the highly polyphagous
nature of aphids and the differential risk such forms pose make
it desirable to classify beyond species. Indeed, Hardie and Pow-
ell (2002)) show substantial variation in flight behaviour through
video tracking technology between different forms of A. fabae.
Although sensor technologies will undoubtedly improve, it is the
view of the authors that black-box classification of empirical data
will always be limited in its scalability if not coupled with knowl-
edge of morphology and if deployed in-field, phenology.

At the highest taxonomic resolution, an ensemble of bioacous-
tics parameters and indices were used to distinguish between
beetle and aphid species. Our models indicate that within a small
selection of the Aphididae, measures of flight energy, partic-
ularly the maximum amplitude and the amplitude range, are
more important than higher-order harmonics even though stroke
amplitude varies during flight (Tercel et al., 2018). Harmon-
ics alone were shown to perform less well than conjectured by
Moore and Miller (2002)) wherein they proved useful with neural
networks. A lack of utility for harmonics in our study is perhaps
surprising given that wingbeat frequency and the harmonics are
functions of the physical size, shape, stiffness and mass of the
wing as well as the wing muscles and stroke amplitude (Byrne
et al., 1988; Tercel et al., 2018). However, because of their small
size, aphids will likely incur greater relative drag and as a result
of their small wings relative to body size will beat their wings
comparatively faster than other insects and this appears to be an
important discriminator (Byrne et al., 1988, Tercel et al., 2018).
Such strengthening phenomena, discussed at length by Woot-
ton (1981)) and shown to be the cause of variation in insect wing
deformation between species, are also observed in birds, where
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higher wing loadings demand a more substantial humerus (Sul-
livan et al., 2019).

To further improve misclassification rates, a mechanistic
understanding of wing acoustics is needed, and while a detailed
investigation is beyond the scope of this study, some general
observations are already profoundly clear; even with major
differences in wing and flight apparatus, species are still mis-
classified between major groups, reducing overall model pre-
cision and accuracy; higher-order wing beat harmonics do not
play a major role in species discrimination, instead fundamental

and dominant frequencies as well as audio are more high
ranking.

Specifically concerning the first point, the forewings of bee-
tles are hardened to form the elytra, such that the hindwing
provides the energy and propulsion for flight and are not cou-
pled to the elytra. Instead, both the elytra and hindwing beat
in phase during flight, although the former have a smaller
stroke angle (Brackenbury & Wang, 1995). Beetle wing vena-
tion is also modified to allow folding under the elytra when
not in flight. Indeed, for both species of beetle studied here,
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Figure 4 Comparison of class sets. The mean decrease in accuracy due to dropping each feature in turn from a model (using the complete feature set)
classifying between all species, between aphids vs beetles, between aphid species and between beetle species.

individuals have poorly developed venation and therefore less
stiffness (Kukalová-Peck & Lawrence, 1993; Suzuki, 1994;
Kukalová-Peck & Lawrence, 2004). It can be clearly seen
how flexible the chrysomelid beetle Crepidodera aurata’s wing
is without a rigid structure along the complete length of the
hind wing (Nadein & Betz, 2016). Compare this flight appa-
ratus with aphids that have coupled fore- and hind-wings, no
hardened wing casing and do not fold their wings on land-
ing (Franielczyk-Pietyra & Wegierek, 2017). Aphids, in con-
trast, have a thickened membrane on the forewing beyond the
anterior costal margin, the pterostigma, that increases wing flap
performance due to a stiffer leading edge that drives speed
(Franielczyk-Pietyra & Wegierek, 2017). Yet, aphid wings still
retain a flexible wing membrane due to sparse venation, and
this flexibility provides greater lift than a completely stiff wing

(Mountcastle & Daniel, 2010). We therefore conjecture, ahead
of any detailed study of wing bioacoustics, that differences in
wing venation and morphology must play a minor role in gen-
erating unique wing harmonics for this group (or instead that if
present, such differences cannot be detected in the current sen-
sor through the exclusion of light principle), and, our models
support this, stressing both the dominant and fundamental fre-
quencies for splitting beetles and aphids, rather than higher har-
monics or more complex indices relating to energy or mechan-
ics. It is also possible one source of increased variability in
higher-order harmonics is the fact that wing movements may
not be ‘clean’, for example, wings can touch each other or other
parts of the body producing stridulations with ultrasonics or
other harmonics, which would modulate the production of wing
harmonics.
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Figure 5 Identifying an unknown species. (A) Boxplots of the maximum class probability of the validation set for the full species model, separating
between observations correctly and incorrectly classified. (B) Confusion matrix of each single species exclusion model showing the proportion of
allocations to each of the known species. Boxplots of the maximum class probability are shown for each associated model. [Colour figure can be
viewed at wileyonlinelibrary.com].

Our study shows that predicted mean (median) wingbeat
frequencies for aphids at average temperature and humidity
vary between species (Table S2; the exponentiated fundamental
frequencies for six aphid species: A. fabae = 134 Hz (119 Hz); D.
platanoidis = 104 Hz (95 Hz); M. persicae = 130 Hz (130 Hz);
P. testudinaceus = 113 Hz (101 Hz); R. padi = 119 Hz (118 Hz);

S. avenae = 106 Hz (99 Hz)) but fall within an expected range
for hemipterans (90–152 Hz) (Tercel et al., 2018). The wing-
beat frequencies of the cabbage stem flea beetle and pollen
beetle are not known in the literature, but our values are not
remarkably different from other confamilial species recorded
by Tercel et al. (2018)) and Brackenbury and Wang (1995))

© 2021 The Authors. Agricultural and Forest Entomology published by John Wiley & Sons Ltd on behalf of Royal Entomological Society.
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(Table S2; the exponentiated fundamental frequencies for P.
chrysocephala = 121 Hz (119 Hz) cf Oulema melanopus 123 Hz
Tercel et al. (2018) and Chalcoides aurata 118 Hz (Brackenbury
& Wang, 1995). B. aeneus = 139 Hz (136 Hz)). These means
are skewed somewhat when compared with the median, sug-
gesting an increase in variation according to temperature. Pre-
vious studies have shown temperature to be positively corre-
lated with the fundamental frequency, for example, female Aedes
aegypti (L.) mosquitoes with a fundamental wingbeat frequency
of ≈450–550 Hz, increase their flap rate ≈ 8–13 Hz per unit
change in degree centigrade as the air becomes less dense, rep-
resenting a rate of increase of 1.5–2.9% (Villarreal et al., 2017).
‘Frozen flight’ is another source of variation that can impact
fundamental frequency estimates when the wingbeat is effec-
tively zero (Thomas et al., 1977). Wing muscle autolysis in some
of the aphids studied (i.e. A. fabae, M. persicae and R. padi),
during which flight muscle breakdown removes the ability to
fly, is yet another source of variation (Johnson, 1953; Leather
et al., 1983). Wing muscle autolysis was particularly notable
with R. padi that were largely grounded once in the flight arena.
Despite these covariates, fundamental frequency remains key to
discrimination, having a predictable relationship with wing area
and to a lesser extent, body mass (Byrne et al., 1988; Tercel
et al., 2018).

In emphasizing the data processing pipeline on feature extrac-
tion, we have been able to link indices of both the temporal and
frequency domain to morphological characteristics. Thus, allow-
ing us to gain understanding of the mechanisms contributing to
differences in species flight behaviour. Such insight is unavail-
able in the convolutional neural network approach of inputting
frequency spectra only. Furthermore, through our processing, we
identified the importance of the flight movement (estimated via
smoothing splines). Although this has previously been identified
(Potamitis et al., 2015), to our knowledge it has not directly been
incorporated into any classification algorithm. We have shown
that relatively simple summaries of the temporal domain, such
as the power indicative of the energy of a flight, contain impor-
tant information for classification purposes, and perhaps explain
why convolutional neural networks on wavelet transforms per-
form well (Kiskin et al., 2020) as wavelet transforms will account
for both the time and frequency domain. This conceivably indi-
cates that it is not only the short-term flight behaviour such as
wing-flaps that are important for species identification but also
the longer-term trends in an insect flight. Future studies will
investigate this further in the context of these weak-flying agri-
cultural pests.

Study design is one of the most important factors in any data
collection activity. As with any study, there have been a number
of limiting factors not least the high imbalance in observation
numbers for each individual species. This does not appear to
be uncommon in the literature as Moore and Miller (2002))
also had similarly imbalanced sample sizes ranging from 340
to 3325. Using balanced random forest approaches to account
for the data imbalance, class-specific error rates can be reduced
albeit at the cost of higher out-of-bag error rates. Tuning
these algorithms requires a trade-off between false positive and
false negative detections balanced across species. The optimal
balance will depend on individual study aims; for instance,
in-field monitoring of pests would require a minimization of

false negative detections of key agricultural pests, whereas
for population monitoring it is preferable not to bias false
detections to any one species. In this study, we have opted
for the latter approach and to tune the algorithms aiming to
balance class-specific error rates. It remains the long-term aim
to deploy this technology in-field enabling automatic insect
pest-detection at local spatial scales; however, further work is
needed in the collation of robust labelled data. Furthermore, we
envisage algorithmic development through the incorporation of
prior knowledge, such as aphid migration patterns, as an essential
component to obtain good accuracy in-field.
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Appendix S1: Additional file 1: Supplementary Information

Supplementary information provides further details on the selec-
tion of features and the performance of the classification algo-
rithms. Also included in this file are:

Table S1. detailing the chosen features for each random forest
model
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Table S2. containing the summary statistics of each extracted
feature calculated per species.

Appendix S2. randomForest_dataSlice.R: script containing the
random forest models for different data subsets (features and
species).

Appendix S3. randomForest_speciesModel.R: script containing
the random forest model for all species and associated analytics.

Appendix S4. Folder containing R scripts for running the
random forest models and producing the presented analyses.
Files included are: randomForest_tuning.R: script containing the
tuning process of (a) the balanced random forest and (b) the
tuning parameters of the random forest algorithm.

Figure S1. Photograph of the experimental setup where the
opto-acoustic sensor is contained within a large jar allowing
aphids to fly freely through the sensor. Photographs of illus-
trative wings from R. padi, D. platanoidis, B. aenus and P.
chrysocephala. Each tick mark on the scale bar is 0.1 mm.

Figure S2. Data processing. Figure illustrates how each record-
ing is trimmed to remove periods of silence at the start or end of
a recording. Lower panel is the audio recording, red lines are the
threshold of ±0.0061 arbitrary amplitude units, above and below
which sound is considered silence. The upper panel shows a
box plot of the temporal indices exceeding this threshold. Audio
is then trimmed to the whiskers of the boxplot defined as the
largest (smallest) temporal index not exceeding three times the
interquartile range away from the upper (lower) quartile, shown
by the blue lines.

Figure S3. Identification of a minimal feature set. (A) The cor-
relation matrix between features calculated after standardisation.
(B) Dendrogram of a hierarchical cluster analysis using complete
linkage on 1 – r, where r is the correlation matrix of the standard-
ised feature set. Features are coloured according to cutting the
dendrogram into (i) 3 groups, (ii) 5 groups (iii) 14 groups. Fea-
tures deemed most representative of each group are indicated by
the box.

Figure S4. Species classification error rates. (A) shows the class
specific error rates where clErr is the class error rate (or 1 – true
positive rate per class), TNR is the class specific true negative
rate, TPR is the class specific true positive rate and wAcc is
the weighted accuracy (wAcc = 0.5× TNR+ 0.5× TPR). (B)
shows the confusion matrices of classification predictions on the
validation dataset, presented as a proportion per species.

Figure S5. Species classification. (A,B) give the mean decrease
in accuracy and Gini index respectively for each feature variable
considered in the model and (C) presents the within species
importance of each feature variable. Feature variables denoted
by (g) are derived after a detrending step (see Fig. 1)

Figure S6. Comparison of feature sets. (A) The mean accuracy
rate on the out-of-bag predictions from the training set and on the
validation set for both omitting and imputing observations with
missing values. (B) the class specific error rates for each feature
set for both omitting and imputing observations with missing
values. Each model corresponds to a different subset of feature
variables as detailed in Table 3.
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