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ABSTRACT 

BACKGROUND: Alopecurus myosuroides (blackgrass) is a major weed in Europe with known 

resistance to multiple herbicide modes of action. In the UK, there is evidence that blackgrass has 

undergone a range expansion. In this paper, genotyping-by-sequencing and population-level 

herbicide resistance phenotypes are used to explore spatial patterns of selectively neutral genetic 

variation and resistance. We also perform a preliminary genome-wide association study and 

genomic prediction analysis to evaluate the potential of these approaches for investigating non-

target site herbicide resistance. 

RESULTS: Blackgrass was collected from 47 fields across the British Isles and up to eight plants 

per field population (N = 369) were genotyped by RAD-sequencing. 20,426 polymorphic loci 

were identified and used for population genetic analyses. Phenotypic assays revealed significant 

variation in herbicide resistance between populations. Population structure was weak (FST = 

0.024-0.048), but spatial patterns were consistent with an ongoing westward and northward range 

expansion. We detected strong and consistent Wahlund effects (FIS = 0.30). There were no spatial 

patterns of herbicide resistance or evidence for confounding with population structure. Using a 

combination of population-level GWAS and genomic prediction we found that the top 20, 200, 

and 2,000 GWAS loci had higher predictive abilities for fenoxaprop resistance compared to all 

markers. 

CONCLUSION: There is likely extensive human-mediated gene flow between field populations 

of the weed, blackgrass at a national scale. The lack of confounding of adaptive and neutral 

genetic variation can enable future, more extensive GWAS analyses to identify the genetic 

architecture of evolved herbicide resistance.  

 

Keywords: blackgrass, RAD-sequencing, population genetics, population structure, GWAS, 

metabolic resistance. 

This article is protected by copyright. All rights reserved.



 
 

 

1 INTRODUCTION 

Weedy plants are ideal models for studying plant adaptation in rapidly changing, human-

influenced environments1 and efforts to understand the environmental, genetic and management 

factors that shape the evolution of weeds are crucial for the design of sustainable weed 

management strategies.2 Since the middle of the 20th Century, weed control in agroecosystems 

has become dominated by the use of synthetic herbicides, with notable success.3,4 Now, however, 

the rapid and repeated evolution of resistance is reported in almost all cropping systems where 

herbicides have been used intensively for weed control.5,6 Rapid adaptation to the intense 

selection pressures imposed by herbicides is a classic example of human-directed evolution and 

has been extensively studied by weed biologists and plant physiologists.7 

The diploid, allogamous grass, Alopecurus myosuroides (blackgrass), is thought to be native 

to the eastern Mediterranean and to have subsequently spread throughout Europe and Western 

Asia.8 It is a major weed of autumn-sown cereal crops in England,9 France,10 and Germany.11 Its 

range as an agronomically damaging weed has recently expanded to include Denmark, Sweden, 

the Netherlands, Poland, and northern Italy. In the United Kingdom, a survey in 1988 identified 

blackgrass as the ninth most frequent weedy plant in cereal fields.12 However, now it is evidently 

the most problematic UK agricultural weed and there is clear evidence of a northwards and 

westwards range expansion in the last 30-40 years.9  

Blackgrass is also prone to the rapid evolution of resistance to herbicides, with populations 

from many European countries exhibiting resistance to multiple herbicide modes of action.13 Two 

major classes of herbicide resistance mechanisms have been reported in blackgrass.14 Target-site 

resistance (TSR) is usually endowed by single mutations in herbicide target genes and gives rise 

to ‘specialist’ resistance to a single herbicide mode of action. Non-target site resistance (NTSR) 

is thought to evolve via the coordinated up-regulation of a suite of metabolic and stress-
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responsive pathways and gives rise to a more ‘generalist’ resistance phenotype, with cross-

resistance to multiple herbicide modes of action. 

The increasing prominence of blackgrass as a major agricultural weed and its ongoing range 

expansion within Europe and the United Kingdom, raises several interesting questions about 

‘wild-to-weed’1 evolutionary dynamics in this species. Increasing weediness may be driven by 

rapid evolution of resistance to herbicides, which leads to weed control failures, increased 

population sizes and greater potential for blackgrass dispersal. However, there may also be 

agronomic and climatic drivers for blackgrass expansion. For example, in the UK, and in other 

parts of northern and western Europe, there has been a decline in cropping system diversity and 

an increase in the inter-annual proportion of autumn-sown cereal crops, which provide an optimal 

environment for blackgrass, an early autumn germinating weed,15 to thrive as a competitive 

weed. At the same time, climate change, rising average temperatures and changing precipitation 

patterns may be expanding the geographical range over which blackgrass can succeed as an 

agricultural weed. 

A number of previous studies have explored genetic variation, population structure and 

diversity of herbicide TSR alleles in Alopecurus myosuroides, generally concluding that: (1) 

genetic diversity within populations is high, (2) differentiation between populations is low, (3) 

evolution of resistance has not reduced genome-wide patterns of genetic diversity and (4) 

resistance evolves as multiple independent events, though with some localized dispersal of 

resistance alleles via gene flow.10,16–18 

In this study, we explore patterns of genetic variation using 20,426 single-nucleotide 

polymorphisms (SNPs) and a sample of 369 blackgrass individuals from 47 fields across the 

British Isles to test if spatial patterns of population structure are consistent with general 

expectations under rapid range expansion (i.e. isolation by distance (IBD), allele frequency 

gradients along major vectors of migration and reduced diversity in more recently colonized 

areas19–21). We then quantify the extent to which population-level herbicide resistance is 

confounded with neutral population structure. Finally, and for the first time in blackgrass, we 
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perform a pilot-scale genome-wide association study (GWAS) and genomic prediction analysis 

to assess the potential of these approaches for dissecting the architecture of NTSR in the future. 

 

2 MATERIALS AND METHODS 

2.1 Populations and phenotypic data 

2.1.1 Population collection  

Alopecurus myosuroides (blackgrass) seed was collected from 206 winter-wheat fields from 

128 farms across the British Isles (126 in England, one in each of Scotland and Ireland) during 

July and August 2014. These sampling locations were identified by seeking farmer participation 

in a large project which explored the epidemiological drivers of blackgrass population expansion 

across the British Isles. The population sample therefore represents a diverse collection of 

agricultural blackgrass populations, albeit that participating volunteers were likely biased towards 

those with larger and difficult to control blackgrass populations. Seed was collected from 

multiple locations in each field, using either a stratified sampling design where seed was 

collected from mature plants within a 10 metre radius at 10 locations throughout a field, or by 

randomly collecting seed from several random locations in each field. Seed from all collection 

sites was bulked to create a single seed population from each sampled field (referred to hereafter 

as ‘populations’). For most populations, we generated data on herbicide resistance phenotype 

through glasshouse bioassays (see below), and for some populations we were able to gather data 

on historical (up to 10 years) field management histories.9 All but one of the collected blackgrass 

populations demonstrated some evolved resistance to at least one of the three herbicide resistance 

modes of action tested. Using principal components analysis, we identified 47 populations for 

inclusion in this study (Figure S1) based on (i) contrasting relative frequencies and levels of 

resistance to three different herbicides (fenoxaprop-p-ethyl, mesosulfuron and cycloxydim), (ii) 

geographical locations, and (iii) herbicide selection histories. In addition, a naïve control 

population which has never been exposed to herbicide was included. 
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2.1.2 Herbicide phenotyping greenhouse assay 

For 46 of the populations (all but P200), data were available for population-level sensitivity 

to three herbicides commonly used for blackgrass control in the UK; fenoxaprop-P-ethyl, 

cycloxydim (acetyl-coA carboxylase [ACCase] inhibitors), and mesosulfuron + iodosulfuron 

(acetolactate synthase [ALS] inhibitors).9 Briefly, herbicides were applied to glasshouse-grown 

plants (n = 18 per population) at a dose known to provide an efficacy comparable with herbicide 

application in the field. For mesosulfuron + iodosulfuron, this dose was 0.75x the recommended 

field rate (14.4 g ha-1). For fenoxaprop and cycloxydim, 1x of the field rate was applied (68.75 

and 150 g ha-1, respectively). Three weeks after herbicide application, sprayed and unsprayed 

plants were assessed for mortality, and above-ground leaf and shoot biomass was harvested, dried 

at 70˚C for 48 hours, and weighed.  

 

2.2 Tissue sampling and DNA extraction 

Seeds were germinated in Petri dishes with filter paper and wetted with 3-4mL of 0.02M 

potassium nitrate; excess liquid was removed. Dishes were placed in incubators (Sanyo, MLR-

350) for seven days at 14/10-hour day/night cycles at 17°C and 11°C, respectively. Seedlings that 

had produced a shoot and radicle at day 7 were transplanted into larger pots and grown in a 

glasshouse set to maintain 16°C/10°C day/night temperatures with supplementary lighting 

provided over a 14-hour day length, until the five to six leaf stage. Eight individuals from each of 

the 47 populations were sampled. Leaf tissue was collected into 2-mL Eppendorf tubes and snap 

frozen in liquid nitrogen. 

Samples were ground using a mortar and pestle with liquid nitrogen and extracted using the 

DNeasy Plant mini-prep kit (Qiagen, Valencia, CA, USA). Extracted DNA was run on a 1.5% 

agarose gel to assess DNA quality and DNA concentration was measured using the Qubit dsDNA 

high sensitivity assay kit (Thermo Fisher Scientific, Waltham, MA, USA). DNA was then 

normalized to a concentration of 20 ng/µL. For four populations (P163, P175, P186, and P191), it 

was only possible to extract sufficient DNA for seven individuals, meaning that a total of 372 
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individuals were genotyped. The 372 samples were distributed across four plates with two 

individuals from each population placed in each plate. Samples were randomly assigned positions 

within the plates. 

 

2.3 RAD-sequencing and SNP calling 

RAD-sequencing was performed by Floragenex (Floragenex, Inc., Portland, OR, USA) using 

standard methodology.22 Libraries were created using the PstI restriction enzyme and all four 

plates were sequenced across all four runs of NextSeq 500 (Illumina, San Diego, CA, USA). A 

total of 1,024,832,390 reads were generated, with each individual covered by an average of 2.5 

million reads (Supporting information Table S1). SNPs were called using the UNEAK pipeline 

implemented in TASSEL v 3.0.23,24 The pipeline was run with default parameters, except for the 

UMapInfotoHapMapPlugin step, where the minimum minor allele frequency was 0.0025 and the 

minimum call rate was 0.8. This analysis resulted in 26,746 RAD-Seq tags, which were further 

filtered using VCFtools v 0.1.14.25 Individuals and loci were filtered according to percent missing 

data and allele frequency (Supporting information Table S2). Three individuals with more that 

45% missing data across all loci were removed, leaving 369 individuals for further analysis. Loci 

with a minor allele frequency (MAF) of less than 1% or more than 20% missing data were 

removed (n = 3,614), leaving 22,862 loci for further analysis. Linkage disequilibrium among 

SNPs was calculated using the --geno-r2 option. Thirteen locus pairs had r2 > 0.8, and the locus 

with the lower MAF was removed from the data set. Hardy-Weinberg Equilibrium (HWE) tests 

were performed independently in each population using the –hardy option. Loci that deviated 

significantly (P < 0.01) from HWE were removed (n = 2,423), leaving a final dataset of 369 

individuals and 20,426 loci (Supporting information Table S2.). 

 

2.4 Data analysis 

2.4.1 Population structure and relatedness 
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Population structure was detected and quantified using an individual-based principal 

component analysis (PCA)26 and an analysis of molecular variance (AMOVA),27 respectively. 

The PCA was performed using the smartPCA program in the EIGENSOFT v 7.2.1 software.26 

This program was also used to calculate pair-wise FST values based on Hudson’s estimator, which 

is robust to the effects of rare alleles.28 Arlequin v. 3.5.2.229 was used to perform a locus-by-locus 

AMOVA, resulting in estimates of F-statistics calculated as ‘ratios of averages’ following the 

recommendations of Bhatia et al..28 Identity By State (IBS) kinship matrices were calculated 

within each population to obtain measures of relatedness that are not affected by allele frequency 

differentiation.30 

To investigate the relationship of population structure with geography, Spearman rank 

correlations between an individual’s field location (i.e. latitude and longitude) and its principal 

component (PC) score for the first two PCs were calculated in R.31 Finally, to test for IBD, a 

simple Mantel test32 was performed for pair-wise FST and geographic distances. Geographic 

distance was calculated using the “geosphere” package v. 1.5-733 using the distGeo option to 

calculate the shortest distance on a ellipsoid. The Mantel tests were executed using the “vegan” 

package v. 2.4-634 in R.  

 

2.4.2 Analysis of phenotypic data 

For each of the six phenotypic traits (mortality and biomass for each herbicide, see herbicide 

phenotyping greenhouse assay), we used the “lme4” package in R v. 0.999375-4235 to fit the 

following linear mixed model: 

  

Xijklm = μ + Dosi + Ghj + Trk(Ghj) + Posl(TrGhkj) + Popm(PosTrGhlkj) + Popm(PosTrGhlkj)×Dosi + 

εijklm 

 

where Xijklm is the phenotypic measurement for the mth population at the lth pot position within the 

kth tray within the jth glasshouse treated with the ith herbicide dosage; μ  is the overall mean, Dosi 
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is the fixed effect of the ith herbicide dosage; Ghj is the random effect of the jth glasshouse; 

Trk(Ghj) is the random effect of the kth tray within the jth glasshouse; Posl(TrGhkj) is the random 

effect of the lth pot position within the kth tray within the jth glasshouse; Popm(PosTrGhlkj) is the 

random effect of the mth population at the lth pot position within the kth tray within the jth 

glasshouse; Popm(PosTrGhlkj)×Dosi is the population-by-dosage interaction (random effect); and 

εijklm is the experimental error. These models were used to estimate the respective variance 

components for all random effects using restricted maximum likelihood, and confidence intervals 

were constructed using likelihood profile (i.e., for variance components) and bootstrapping 

functions (i.e., for ratios of variance components, based on 100 samples) available within the 

“lme4” and “boot”36,37 R packages. In addition, we extracted best linear unbiased predictor 

(BLUP) values for each population by phenotype by herbicide combination. These BLUP values 

were used to calculate population-level genetic correlations (i.e., as Pearson correlations of 

BLUPs). BLUP values were used as population-level herbicide resistance phenotypes in 

subsequent redundancy, genome-wide prediction and association analyses (see below). In 

addition, we used Spearman rank correlations to test for associations between phenotypic PCs 

(calculated using the prcomp function in R) and geographic coordinates (i.e. to enable 

comparisons with spatial patterns of neutral population structure, see above). 

 

2.4.3 Partitioning variance with redundancy analysis 

A redundancy analysis38 was used to estimate how much of the variance for multivariate 

resistance phenotypes is explained by neutral population structure. For each model, significant 

PCs (P < 0.05, based on the Tracy-Widom test) from the smartPCA program were used to 

explain the variation in population-level phenotypic BLUPs (see Analysis of phenotypic data). 

Using ordistep in the “vegan” package and initially considering all significant PCs as explanatory 

variables, backward elimination was implemented at α = 0.05. Using the PCs significant from the 

backward elimination, an RDA was then performed in “vegan”. A model was run using both 
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biomass and mortality phenotypes as the response variables for each herbicide alone and all three 

herbicides collectively. 

 

2.4.4 Population level GWAS and genomic prediction 

To further assess the relationship between population-level herbicide resistance phenotypes 

(i.e. both mortality and biomass, see Analysis of phenotypic data) and SNP allele frequencies, we 

performed genome-wide association study (GWAS) and prediction analyses using standard 

methodology as in previous studies.22 Briefly, we used the EMMAX39 and G-BLUP/ridge 

regression40 approaches as implemented in the “rrBLUP” R package41 for population-level 

GWAS and prediction analyses, respectively. Instead of individual SNP genotypes, we used 

population-level allele frequencies in rrBLUP. To account for multiple testing in GWAS, we 

calculated false discovery rate q-values using the “qvalue” R package v. 1.34.0.42 Genomic 

predictive ability was calculated as the correlation between predicted and observed phenotypic 

BLUP values based on 100 iterations of random 11-fold cross-validations (i.e., training set = 40 

populations and prediction set = 4 populations, excluding two strongly differentiated populations, 

see Results). Finally, prediction analyses were also performed using the 20 (~ 0.1%), 200 (~ 1%), 

2000 (~ 10%), and 20000 (~ 98%) markers with lowest P-values in GWAS analyses of the 

training set.   

 

3 RESULTS 

3.1 Population structure 

An AMOVA was used to assess variation for three levels - among populations, within 

populations, and within individuals. From this analysis, variation among populations accounted 

for 2.4% of the total variation (i.e. FST = 0.024), while the variance components within 

populations and within individuals were much higher, accounting for 28.9% (FIS = 0.289) and 

68.7% of the total variation, respectively (Table 1). As expected, based on the known effects of 
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SNPs with low-frequency alleles,28 FST based on Hudson’s estimator was slightly higher (average 

= 0.048 across all pairs of populations, Supporting information Fig. S2). 

Two populations (P128 and P163) were strongly differentiated from the other populations 

(Figs. 1a, S2), presumably because of substantially higher relatedness among the sampled 

individuals (Supporting information Fig. S2). This high-level of relatedness may be a sampling 

artifact, whereby low population sizes necessitated sampling of seeds from a restricted set of 

individuals from a single or few locations within these fields. The following results are therefore 

reported without P128 and P163; although results do not change substantially with their 

inclusion. 

After removing populations P128 and P163, the individuals from the remaining 45 

populations were distributed more continuously along the first two principal components (PC1 

and PC2) of population structure, but apart from one population (P148) a priori populations 

could not be discriminated (Fig. 1b). However, population genetic variation was structured 

geographically. As expected from our a priori demographic model, which assumes a recent 

northwards and westwards range expansion for blackgrass in the UK, SNP PC1 was significantly 

correlated with both latitude (Spearman rho = 0.46, P < 0.001; Fig. 2a) and longitude (Spearman 

rho = -0.17, P = 0.001; Fig 2b), whereas PC2 was significantly correlated with latitude 

(Spearman rho = -0.13, P = 0.017; Supporting information Fig. S3a), but not longitude 

(Spearman rho = -0.048, P = 0.36; Supporting information Fig. S3b). Furthermore, both observed 

and expected heterozygosity were positively correlated with longitude (Spearman rho = 0.40, P = 

0.0072 and Spearman rho = 0.45, P = 0.0022, respectively; Fig. 3), though no linear relationship 

was detected with latitude (Spearman rho = 0.034, P = 0.82 and Spearman rho = 0.021, P = 0.89, 

respectively). Finally, pair-wise FST and geographic distances were significantly correlated 

(Mantel r = 0.50, P-value < 0.001; Supporting information Fig. 4a), consistent with IBD models.  

Upon the removal of the two geographically disjunct populations (i.e. the Irish and Scottish 

populations, n = 43), PC1 was still significantly correlated with both latitude (Spearman rho = 

0.45, P < 0.001; Supporting information Fig. S4a) and longitude (Spearman rho = -0.13, P = 
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0.021; Supporting information Fig. S4b). While this was no longer the case with PC2, English 

populations exhibited a similarly strong IBD pattern (Mantel r = 0.41, P < 0.001; Supporting 

information Fig. S5).   

 

3.2 Phenotypic variation for resistance to herbicides 

Phenotypic data for six quantitative traits (i.e., mortality and biomass for each of three 

herbicides) were analyzed using a linear mixed model to assess the relative importance of 

population effects, herbicide dosage and their interaction. The population-by-dosage interaction 

was consistently significant (95% confidence intervals did not include zero) and accounted for at 

least 50% and as much as 84% of the phenotypic variance, after removing the effects of 

glasshouse, tray and pot position (Supporting information Table S3, S4). Furthermore, the main 

population effects were consistently very weak and genetic correlations between BLUPs with 

herbicide treatment versus without were close to zero (Supporting information Table S5). Finally, 

biomass and mortality BLUPs under the herbicide treatment were strongly but not perfectly 

correlated (r ~ 0.9), suggesting that both measures of population level herbicide resistance could 

be useful in downstream analyses. Taken together, these results suggested that the large 

population differences were almost exclusively due to the interaction with herbicide treatment, 

reflecting differences in the herbicide resistance status of populations. However, there were no 

significant correlations between individual resistance phenotypes (or their first two PCs) and 

geographic coordinates.  

 

3.3 Partitioning of variance and Redundancy analysis 

A redundancy analysis was used to quantify the extent to which variation for population 

resistance phenotypes (i.e. BLUPs for biomass and mortality for each herbicide) can be explained 

by presumably neutral population genetic structure. Using backward elimination, PCs 

representing population structure were selected if they significantly explained variation in the 

resistance phenotypes (Table 2). For all six phenotypes in combination, population structure (PC 
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6; Supporting information. Fig. S6) explained 6.5% of the variation. For cycloxydim biomass and 

mortality, 29% of the variation was explained (PC 6, PC 9, and PC16), whilst 16% of the 

variation was explained for mesosulfuron + iodosulfuron biomass and mortality (PC 6 and PC 

14). From the backward elimination, no PCs were found to significantly explain variation for 

fenoxaprop. Similar patterns were detected using univariate regression analyses for each 

resistance phenotype (data not shown). 

 

3.4 Population level GWAS and Genomic Prediction 

After accounting for multiple testing, population level GWAS found no significant 

associations between herbicide resistance phenotypes and SNP allele frequencies. However, 

genomic prediction based on the 0.1-10% of markers with lowest GWAS P-values tended to be 

substantially more accurate than using randomly selected markers (Fig. 4). Remarkably, the top 

20, 200, and 2,000 GWAS loci for fenoxaprop biomass all had higher predictive abilities 

compared to using nearly all markers.  

 

4 DISCUSSION 

We have shown that the herbicide resistance-prone, outcrossing, agricultural weed, A. 

myosuroides (blackgrass), exhibits low genetic differentiation amongst UK field-collected 

populations, but with some geographical structuring of genetic variation and evidence for 

latitudinal and longitudinal clines in genetic diversity, and isolation by distance. Our results are 

also suggestive of significant blackgrass sub-population structure within agricultural fields. The 

47 populations used in this study exhibit phenotypic variation for resistance to three herbicides 

commonly used for blackgrass control. In this study system, there appears to be relatively little 

confounding between neutral population genetic structure and herbicide resistance, presenting a 

generally favourable situation for the design of GWAS type studies to unravel the genetic basis 

and genetic architecture of herbicide resistance traits. Although no significant associations 

between SNPs and resistance phenotype were found using a population level GWAS, a genomic 
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prediction analysis suggested that a subset of SNPs (0.01-10%) tended to have a higher predictive 

ability for resistance phenotype than all of the SNPs collectively. 

 

4.1 UK blackgrass exhibits low genetic differentiation, but with clear spatial patterns of range 

expansion 

Aside from two strongly differentiated populations, whose differentiation appeared to arise 

from a high degree of relatedness between individuals, PCA did not detect strong discontinuities 

among a priori (geographically sampled) populations. Genetic differentiation amongst blackgrass 

populations in this study (average FST = 0.024 – 0.048 across two estimators chosen for their 

robustness to the effects of rare alleles) was much lower than the average (0.16) for an annual, 

outcrossing, monocotyledonous species.43 Notwithstanding this, our results were notably similar 

to those previously reported for blackgrass populations in France, the UK, Germany, and Israel 

and for a similar, weedy grass species in North America. Menchari et al.18 used AFLPs to 

investigate the population structure of 36 French blackgrass populations, and found similarly low 

levels of population differentiation (FST = 0.023), concluding that this was indicative of the recent 

expansion of the species as a weed in France. An allozyme study of 19 populations, collected 

from the UK, France, Germany, and Israel, calculated mean (seven allozyme loci) FST values of 

0.023.16 In populations of the outcrossing grass weed, Lolium perenne ssp. multiflorum, sampled 

from vineyards in northwest California, only 3.5% of the total observed genetic variation was 

distributed amongst populations.44 

In contrast to previous studies of blackgrass populations from France,10,18 the genetic 

variation in UK populations was found to be geographically structured. Our results were 

consistent with all three expectations from our a priori demographic model of recent range 

expansion. Firstly, we identified a clear and robust signature of IBD. Secondly, there were 

significant latitudinal and longitudinal clines in the first principal component of population 

structure. Finally, there was also a positive correlation between heterozygosity (both observed 

and expected) and longitude, with western (i.e. more recently colonized) populations having 
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lower heterozygosities (n = 44; rho = 0.41, P-value = 0.0055). Taken together, our analysis of the 

structure of genetic diversity within the UK blackgrass population is consistent with the relatively 

recent demographic history of a species introduced to the UK from a few hundreds to a maximum 

of one to two thousand years ago with frequent human-mediated long-distance dispersal 

associated with agricultural practices. Low genetic differentiation is also consistent with large 

effective population sizes as changing farming systems and the herbicide resistance epidemic 

increase population sizes and persistence in UK agroecosystems.9 At the same time, agronomic 

factors and, potentially, climate change are facilitating a westwards and northwards range 

expansion for the species, which is entirely consistent with the patterns of geographical structure 

that we observe in this study. It is believed that blackgrass seed can be dispersed through 

agricultural machinery and crop seed, but the evolutionary effects of this long-distance seed 

dispersal need to be assessed. 

4.2 Spatial scale of blackgrass random mating population 

We detected persistent heterozygote deficiency relative to Hardy-Weinberg Equilibrium 

(HWE) expectations in all populations and across the vast majority of SNP markers. A very 

similar pattern (FIS = 0.176) was reported previously based on an allozyme study of 19 

blackgrass populations from the UK, France, Germany, and Israel.16 While there are different 

possible explanations for these deviations from HWE,45,46 unaccounted population subdivision 

resulting in ‘Wahlund effects’47,48 appear to be the most plausible. This is because positive FIS 

values were estimated for the vast majority of SNPs (77%) and in all populations, while the 

correlation between FIS and FST was weak (r = 0.19), consistent with simulated Wahlund effects 

shared across all populations.46  

Population substructure is commonly detected in plants with life histories ranging from 

nearly obligate self-pollination, such as Arabidopsis thaliana49 to nearly or completely obligate 

out-crossing, with frequent long-distance seed and pollen dispersal, such as in pines 50 and 

poplars.51 Furthermore, both pollen and seed dispersal are believed to occur predominantly over 
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very short distances (< 1 m) in blackgrass,52 and computer simulations demonstrated that the 

resulting genetic patchiness and nearest-neighbour pollination can drive FIS to the values 

observed in our study in as few as 20-30 generations, even in the absence of self-fertilization.53 

Thus, the precise spatial scale of a random-mating population in blackgrass remains unknown 

(i.e. because our sampling scheme did not allow analyses of fine-scale genetic structure), but our 

results suggest that this scale is likely to be much smaller than hundreds of metres (i.e. the typical 

dimensions of the fields we sampled). In any case, the finding that genetic structure within fields 

appears to be an order of magnitude stronger than that at broader spatial scales will inform the 

design and sampling approaches in future genetic studies. 

4.3 Population genetic structure of herbicide resistance 

In addition to depicting patterns of putatively neutral population structure using a genome-

wide set of SNPs, we performed a preliminary assessment of the extent of confounding54 that 

these patterns would cause in GWAS aimed at dissecting the genomic architecture of quantitative 

(non-target site-based) herbicide resistance.55 Although we detected some associations between 

population structure PCs and resistance phenotypes, these correlations consistently involved 

minor axes of population structure (i.e. not PC1-4) and explained relatively small proportions of 

the variation for resistance (i.e. only 6.5% in the RDA across all traits). This is in stark contrast 

with broadly distributed model plants,56–61 major crops62–65 and a cosmopolitan agricultural weed, 

Capsella bursa-pastoris,66 in which geographic, climatic variables, adaptive, and/or growth traits 

and primary axes of population structure tend to be moderately to strongly inter-correlated. Thus, 

the general pitfalls of association mapping may be largely mitigated in UK blackgrass 

populations.  

Consistent with this hypothesis, the highest genomic predictive abilities for resistance to 

fenoxaprop (i.e. the least stratified phenotype) were achieved based on very small numbers of 

loci (i.e. as few as 20) selected using GWAS in the training population. Furthermore, it was 

notable that when the top SNPs from the GWAS analysis for fenoxaprop resistance were mapped 
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to reference genomes for related graminaceous species, the most significantly associated SNP 

was a cytochrome P450 (P450 72A15, Brachypodium distachyon). The large cytochrome P450 

gene family performs a range of plant defense-related roles in plants and has been widely 

implicated in evolution of non-target site herbicide resistance,7 including the sub-class 72.67 This 

analysis also identified several other genes previously associated with drug and herbicide 

metabolism amongst the top 200 SNPs. 

4.4 Designing GWAS studies to determine genetics of herbicide resistance in blackgrass. 

Despite these encouraging anecdotal observations, the feasibility of GWAS approaches for 

dissecting NTSR in blackgrass is largely unclear and will depend on several currently unknown 

factors. Firstly, this study was based on very few data points as it used population-level estimates 

of resistance phenotype (n = 44), and therefore focused entirely on variation among populations 

as have the majority of GWASs in plants so far.68  However, within-population and even within-

family variation in herbicide resistance may be extensive within these wild populations which are 

undergoing contemporary and ongoing adaptation to herbicides, and future GWAS efforts should 

be based on individual rather than population-level phenotypes. Given the weak differentiation 

but strong Wahlund effects we observed at the field level, the optimal design for constructing a 

homogeneous GWAS population (i.e. without cryptic relatedness and with as little differentiation 

as possible) may involve sampling individuals spaced at least several hundred meters apart, even 

if this means a relatively large overall sampling area.  

Secondly, the extent of genome-wide linkage disequilibrium in blackgrass is currently 

unknown, but ongoing linkage mapping and genome sequencing efforts69 will soon make it 

possible to estimate the marker density required for adequate genome coverage. We have recently 

determined that the blackgrass genome size is approximately 3.4 Gb (data not shown) and this 

large genome size likely means that the ~ 20,000 markers that we used tagged a very small 

fraction of the genome. Other genotyping approaches will likely be needed in the future.  
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Finally, and most importantly, the success of GWAS will depend on the actual genomic 

architecture of NTSR. The level of complexity of NTSR traits remains unknown. An increasing 

number of transcriptomics studies to explore differences in gene expression between NTSR and 

herbicide sensitive weed populations are being undertaken. Often, these studies identify hundreds 

to thousands of differentially expressed genes,70,71 though confounding with population structure 

means that the rate of false positives is likely high. Where functional validation of a small 

number of putative over-expressed NTSR loci has been carried out, herbicide resistance 

phenotypes have been demonstrated,72,73 suggesting that effect sizes are relatively large and that 

NTSR traits may be oligogenic rather than truly polygenic. Regardless, few studies in herbicide 

resistance have attempted to determine the genetic basis of NTSR and GWAS based approaches, 

enabled by increasing access to the genomes of weedy plants69 offer great potential to unravel the 

genomic architecture of quantitative herbicide resistance traits.74 
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Table 1. Analysis of molecular variance and F-statistics averaged over 20,408 SNP loci for 47 

blackgrass populations across the UK. 

 

Source of Variation df 
Sum of 

Squares 

Variance 

components 

Percentage 

Variation 

F-statistic 

averaged over 

loci 

Among populations 46 120926.87 39.40 2.40% FST  0.024 

Among individuals within 

populations 
322 583429.47 475.70 28.93%* FIS  0.30 

Within individuals 369 376329.00 1128.96 68.67%* FIT 0.31 

Total 737 1080685.34 1644.065   
*  P < 0.05 
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Table 2. The percentage of variance explained and adjusted R2 for RDAs using population 

structure to explain the variation of population level phenotypic BLUPs for mortality and 

biomass of 44 blackgrass populations. All six combinations of phenotypes and herbicides 

(fenoxaprop, mesosulfuron + iodosulfuron, and cycloxydim) were assessed together as “All 

Herbicides”. The RDA for fenoxaprop was not reported as no PCs were significant in the 

backward elimination selection process. Model significance from an ANOVA is denoted by 

asterisks.  

 

Model Percentage of variance 

explained 
Adjusted R2 

All Herbicides ~ PC6 8.68%* 0.065 

Mesosulfuron + iodosulfuron ~ PC6 + 

PC14 
20.22%* 0.16 

Cycloxydim ~ PC6 + PC9 + PC16 34.00%** 0.29 
* P < 0.05 ** P < 0.01 *** P < 0.001 
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FIGURE LEGENDS 

 

Figure 1. (A) PC1 and PC2 from the smartPCA for 47 UK blackgrass populations using 20,426 

SNPs. The percent variance explained is in parenthesis. The two outlier populations (P128 and 

P163) are colored in red and blue. (B) PC1 and PC2 from the smartPCA after the removal of the 

two outlier populations (n = 45). 

 

Figure 2. Spearman rank correlations of PC1 from the smartPCA (A) with latitude and (B) 

longitude using 45 blackgrass populations. (C) The average PC1 score for each population using 

inverse distance weighted interpolation across a map of the UK (n = 45). 

 

Figure 3. Spearman rank correlations of (A) observed heterozygosity and latitude and (B) 

longitude using 45 blackgrass populations. (C) The observed heterozygosity for each population 

using inverse distance weighted interpolation across a map of the UK (n = 45). Population 

observed heterozygosity increases from blue to red, with populations with a higher observed 

heterozygosity in red. 

 

Figure 4. Genomic predictive ability (i.e. correlation of predicted and observed phenotypic 

values) for different sets of markers selected at random (black circles) and based on GWAS P-

values (red triangles) in the training set of populations. Error bars correspond to standard 

deviations across 10 random cross-validations. 
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