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HIGHLIGHTS 

 Data on novel soybean varieties was used to calibrate and validate the Rothamsted 

Landscape Model  

 Simulations were run for 26 UK sites using current and future climate scenarios 

 Under current climate early-maturing varieties matured in the south of the UK 

 Under climate change soybean is predicted to mature as far north as Scotland 

 No meaningful increases in yield are predicted under climate change 
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ABSTRACT  

Soybean (Glycine max) offers an important source of plant-based protein. Currently much of 

Europe’s soybean is imported, but there are strong economic and agronomic arguments for boosting 

local production. Soybean is grown in central and eastern Europe but is less favoured in the North 

due to climate. We conducted field trials across three seasons and two sites in the UK to test the 

viability of early-maturing soybean varieties and used the data from these trials to calibrate and 

validate the Rothamsted Landscape Model.  Once validated, the model was used to predict the 

probability soybean would mature and the associated yield for 26 sites across the UK based on 

weather data under current, near-future (2041-60) and far-future (2081-2100) climate. Two 

representative concentration pathways, a midrange mitigation scenario (RCP4.5) and a high 

emission scenario (RCP8.5) were also explored.  Our analysis revealed that under current climate 

early maturing varieties will mature in the south of the UK, but the probability of failure increases 

with latitude. Of the 26 sites considered, only at one did soybean mature for every realisation. 

Predicted expected yields ranged between 1.39 t ha-1 and 1.95 t ha-1 across sites. Under climate 

change these varieties are likely to mature as far north as southern Scotland. With greater levels of 

CO2, yield is predicted to increase by as much as 0.5 t ha-1 at some sites in the far future, but this is 

tempered by other effects of climate change meaning that for most sites no meaningful increase in 

yield is expected. We conclude that soybean is likely to be a viable crop in the UK and for similar 

climates at similar latitudes in Northern Europe in the future but that for yields to be economically 

attractive for local markets, varieties must be chosen to align with the growing season.   

Keywords:  

Rothamsted Landscape model, soil processes, nutrient flow, soya bean, agriculture, future climate 
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GRAPHICAL ABSTRACT 

 

1. Introduction 

In 2019 the Eat-Lancet commission published a report that established clear scientific 

targets to guide transformation to a healthier more sustainable food system (Willett et al., 2019). At 

the top of the list of strategies to achieve this urgently needed change is a call to increase the 

consumption of plant-based foods and substantially reduce the consumption of animal source foods. 

This accords with the research of others who have quantified the relative inefficiencies of meat-

based food compared with plant-based (Reijnders and Soret, 2003; Sabate and Soret, 2014; 

Springmann et al., 2016). Tessari et al. (2016) countered the argument that plant-based proteins 

were less environmentally damaging than animal-based proteins by comparing production based on 

the delivery of essential amino acids. They demonstrate that animal production has a similar 

environmental impact to plant production on an essential amino acid basis, with the exception for 

soybean (Glycine max), which has a significantly smaller impact.  

Globally, soybean  is an important source of plant-based protein, with a percentage of crude 

protein larger than many other legumes or pulses in commercial production (Cheng et al., 2019). 

Total soya consumption in the UK is estimated to be 3.8 million tonnes, including soya beans and 
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meal, but also 0.7 million tonnes imported as soya embedded in other product (efeca, 2018). 

Currently much of Europe’s soybean is imported from the United States and South America 

(European Commission, 2019), with only modest amounts of it grown in Europe itself, particularly in 

the southeastern and eastern regions of the European continent, as locally produced, non-GM 

soybean for feed and oil, or for premium markets such as organic food and fresh vegetables (IDH and 

IUCN NL, 2019). The EU non-GM soy market accounts for around 15% of the total feedgrade market 

and growing consumer concerns over environmental and animal welfare issues are expected to 

further segment the livestock feed market between conventional and premium feed. Hence, the 

search for alternative protein sources in Europe is driven by a desire to increase self-sufficiency in 

these market niches, which enable European soybean farmers to charge premiums of €80 to €120 

per tonne of non-GM soybeans, with organic soy earning double this premium (Curtis et al., 2006). 

Besides such economic incentives, there are other reasons for  boosting more local 

production Direct consumption of soybean by humans is likely to rise due to shifts towards more 

plant-based diets (FarmingUK, 2018; Román et al., 2017; Tuorila and Hartmann, 2020).  Moreover, 

European agriculture is in dire need for diversification and would greatly benefit from an 

economically viable, N-fixing legume that breaks the pest, competitor or disease cycles in the main 

cash crops that dominate current rotations. New agricultural policies in the EU as well as in the UK 

will likely stimulate agronomic measures that diversify cropping and/or benefit soil health and other 

ecosystem functions. 

Soybean crops are grown in cold-temperate regions, such as the USA and Canada, as well as 

sub-tropical and tropical regions. Temperatures between 22 and 35°C are best suited for growth. If 

average temperatures fall below this then there is a delay in development lowering the chances of 

the crop reaching maturity. This is an issue for growing soybeans in Northern Europe. Despite this, 

soybean has been grown commercially in the UK since at least the late 1990’s but take up has been 

limited because the available varieties were not well suited to the UK climate and there were 
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difficulties in harvesting. Recent advances in breeding mean that there are now more varieties that 

mature earlier (which is essential for the UK’s colder, wetter climate) and have a canopy architecture 

that makes them easier to harvest. This means soybean could become a viable plant-based 

alternative source of protein for UK production systems.  

As well as providing an alternative to animal-based protein (being relatively rich in the 

amino-acids Lysine and Methionine unlike most other legumes currently grown in Europe) there are 

several other benefits to growing soybeans in the UK. First, as a leguminous crop soybean can fix 

nitrogen reducing the need for fertilizer and increasing system-level N use efficiency. Second, with 

increasing resistance of weeds, slugs, insect-pests and diseases to chemical control agents, and the 

loss of active ingredients due to more stringent legislation, diverse crop rotation, including a spring 

sown protein crop such as soybean is becoming of increasing agronomic interest to UK farming. A 

key question facing farmers, however, is what is the likelihood that the crop will grow successfully, 

and can this crop be a profitable part of a diverse crop rotation now and in the future? Research 

trials can help answer these questions in part, but they are both expensive and time consuming and 

questions related to the effects of climate change become infeasible to test: therefore, we turn to 

models.   

  In this study, we set out to determine the spatial extent over which soybean is a viable crop 

in the UK based on the current climate, and to determine how this is likely to alter under climate 

change. For this we consider both the probability that early maturing varieties of soybean will 

mature, and the yield that could be expected.  To achieve this we used data from field trials 

designed to test the viability of growing earlier maturing varieties of soybean in the UK to calibrate 

and validate the crop model in the Rothamsted Landscape Model (Coleman et al., 2017) for soybean. 

Once the model was validated, we used it with simulated weather data based on current and future 

climates for 26 sites across the UK to determine the probability that soybean crops would mature, 

and how this is affected by location and climate change.  
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2. Methodology 

2.1 Soybean trials 

Between 2016 and 2018, a total of six field trials were carried out at Rothamsted Research’s 

experimental farms located in Harpenden, Hertfordshire, UK (51o 48’ N, 0o 21’ W), and Brooms Barn, 

near Bury St Edmunds Suffolk, UK (52° 16' N, 0o 34’ E) to test the viability of early maturing soybean 

varieties under UK conditions. At each trial between two and twelve advanced breeding lines or 

varieties that had been developed in North America were grown in randomised replicated plot 

designs with variety as the treatment factor (S.I. Table S7). In 2018 two European varieties were also 

tested at each site (full details are given in S.I. Table S8). The materials were chosen in consultation 

with breeders working in the more northern growing areas of North America, where the 

temperatures are lower, and the day-length is similar to that in the UK. The maturity groupings of 

each variety tested ranged between 000 and 0 and are given in Table S8 (Song et al., 2019) For trial 

1701 sowing time was also used as a treatments factor (see Table 1). No inorganic fertilizer was 

applied to the experiments, but the soybean seed was inoculated with Bradyrhizobium japonicum 

(Legume Technology, Nottinghamshire, UK). Standard herbicide and molluscicide programmes were 

applied to control weeds and slugs, and some bird protection was required. Little disease was 

detected. The soil at Rothamsted is described as silty clay loam (Batcombe series) by Avery and Catt 

(1991) and Aquic (or Typic) Paleudalf (Soil Survey Staff, 1999). The soil at Broom’s Barn is a Sandy 

Loam belonging to the Moulton and Ashley Variant series.  Both sites are research farms with closely 

monitored soil physical condition and nutritional status. As such, we found no notable nutrient 

deficiencies or soil physical impediments in the soil.  

Soybean yields were measured on each of the six trials (see Table 1). The nitrogen (N) in the 

seed was measured in two trials (trial references 1702 and 1703). Leaf area index (LAI) was 

measured at two trials (trial references 1701 and 1702). To ensure we had both LAI and seed N 

measures in both the validation and calibration sets and to maximise site and season diversity in 
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both sets, we chose to use experiments 1601, 1701, 1703 and 1847 for our calibration set and 1702, 

and 1848 for our validation set.  

Table 1  

Details of the six trials at Harpenden (H) and Brooms Barn (B). The trials used as our validation set 

are marked by *.  

Trial  
ID 

Year Site Field Name 
Number of 
varieties 
grown 

Sowing Dates 
Seed Rates 
/seeds m-2 

Harvested† 

1601 2016 H Great Field 4 9 27th April 45 
22nd 
September 

1701 2017 H Great Knott 3 2 
3rd and 28th 
April 

60  4th October 

1847 2018 H Great Knott 3 6 25th April 60 13th November 

1703 2017 B Dun Holme 12 27th April 60 17th October 

1702 2017* H Fosters 12 28th April 60 4th October 

1848 2018* B Marl Pit 6 10th May 60 
19th 
September 

† Some trials were harvested over a number of days for practical reasons and the date given is the 

earliest of the recorded dates.  

2.2 The soybean model  

The Rothamsted Landscape Model (Coleman et al., 2017) is a daily process-based model that 

simulates soil processes (including soil organic matter, soil nutrient and water dynamics), livestock 

production, crop growth and yield of cereals (wheat, barley, and oats), oilseed rape,  field beans, 

sugar beet, forage maize, potato, onions and grass. The crop model, which is based on the LINTUL 5 

model (Wolf, 2012), uses daily weather variables to predict canopy development and resource 

accumulation.  The weather data required to run the model is minimum and maximum temperature, 

rainfall, solar radiation, vapour pressure and windspeed. The model can be run as a point scale 

model or in a spatially explicit fashion with adjacent pieces of land (fields or watercourses) linked to 

simulate spatial movement of water and nutrients. The model components are based on well-

established existing models such as RothC (Coleman and Jenkinson, 2014), LINTUL (Wolf, 2012),  

SUCROS (van Laar et al., 1997), and Century (Parton et al., 1994) as described in Coleman et al. 
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(2017), and water movement as described by Addiscott and Whitmore (1991) and  Van Ittersum et 

al. (2003).  

The crop model (which is based on LINTUL, Wolf (2012) is a generic plant growth model, 

which has a bespoke parameterisation for each crop modelled. It uses a light use efficiency (LUE, g 

dry matter MJ−1) based approach to calculate biomass production (Monteith, 1990; Monteith and 

Moss, 1977). The rate of biomass (     ) produced each day is given by  

      

  
                      ( )  

where   is the intercepted PAR (MJ PAR m−2 surface area) which depends on the solar radiation and 

canopy leaf area,   is the crop specific LUE,     is the transpiration reduction factor,     and      are 

nitrogen and phosphorus nutrition indices, which range from zero to one,      is a CO2  factor which 

allows dry matter production to change according to  

               (      
   )  ( )  

where CO2 is the atmospheric CO2 in ppm. This function is based on that in Wolf (2012). The biomass 

formed is partitioned between roots, stem, leaves and storage organs based on the development 

stage (D) which starts from zero at germination and finishes at a value of two which represents 

maturity (Boons-Prins et al., 1993; Wolf, 2012). Development stages accumulate as a function of 

photo-vernal-thermal time (as described in Wolf (2012) and Weir et al. (1984)). 

The uptake of plant nutrients (N and P) is determined by the crop demand and the supply of 

these nutrients by soil. The total nutrient demand of the crop is the sum of the nutrient demand 

from its individual organs, i.e. roots, stems and leaves excluding storage organs, for which nutrient 

demand is met by translocation from the other organs. Note that in our version of this model, 

translocation from roots follows similar dynamics to that of stem and leaves to avoid cases where 

the stem and leaves become depleted of N whilst large amounts remain in the roots, in all cases the 

translocation rate was set to 1. Nutrient demand of the individual organs is calculated as the 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

9 
 

difference between maximum and actual organ nutrient contents. The maximum nutrient content is 

defined as a function of canopy development stage. For most crops including soybean, the total 

nutrient uptake of the crop takes place before anthesis. Sub-optimal nutrient availability in the soil 

leads to nutrient stress in the crop. A detailed description of crop N dynamics is reported by Shibu et 

al. (2010). Further details for N and P are given in Coleman et al. (2017).  

To model soybeans and their interaction with soil nutrient cycling, we included processes 

related to daily biological N fixation (    ). For this, we adopted the model described in Bouniols et 

al. (1991) and Williams et al. (1989). Biological N fixation (    ) is assumed to be 

 

        [      (        )     ]  ( )  

 

where      is the maximum that      per day and assumed to take the value 6.0 (following LINTUL 

(Wolf, 2012)). The variable      is the total N demand of the crop,  (        ) is a function of 

crop development stage ( ), soil water ( ), and soil mineral-N content (    ), given by 

 (        )      ( )   [  ( )     (    )] ( )  

   

The functions     ( )   ( )         (    ) are scaling factors;     ( ) rises linearly from 

zero at       to reach a maximum of one at      . It then reduces linearly from a value of one 

at       to zero at      . Outside of the range    (       ) it is zero (see Bouniols et al. 

(1991) noting that their development stages are scaled by a factor of 0.5 compared with ours).  The 

function   ( ) is zero when   is less than 0.45 of the difference between field capacity and wilting 

point and rises linearly to a maximum of one at field capacity. The function     (    ) takes a 

value of 1 when the average      in the rooting depth  of the soil is less than 100 kg-N ha-1 m-1,  

falling linearly to zero at 300 kg-N ha-1 m-1. We note that in the model our soil profile is assumed to 

be 1-m in depth (see Coleman et al., 2017).  
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The biological N fixed each day (BNF) is added to the N in the root, stem and leaves. The 

proportional split is based on the N already in each part of the plant. For example, the addition N 

partitioned to the leaves (     ) is given by  

          
     

                 
 ( )  

 

where      ,         and       are the amounts of   in the leaf, stem and root prior to the daily 

addition of N from BNF. Santachiara et al. (2018) found no evidence to suggest that BNF constitutes 

a net extra energy cost to soybean crop in terms of growth or yield. Therefore, similar to Sinclair et 

al. (2003), we assume none in our model.  

 

2.3 Model parametrisation and calibration 

We used the soybean model parameter values reported in Wolf (2012) for our model. We 

noted, however, that the maximum N in the seed from trial 1703 experiments was larger than the 

value allowed by the existing parameterisation and so we increased the value of the parameter 

defining this from  5.6 % to 7.35%, which is the maximum seed N content of our calibration trial  

1703. In addition, we expected the new varieties to have earlier flowering dates and a different 

canopy structure than those reported in Wolf (2012) and we noted that other LINTUL-based models 

of soybean (Corrêa, 2008) proposed smaller values for light use efficiency (LUE) and greater values 

for specific leaf area than those reported in the original LINTUL model. Therefore, we recalibrated 

the LUE, specific leaf area, anthesis and maturity parameters using the data from our experiments. 

Our aim was to minimise the root mean squared error (RMSE) between measured and modelled 

values of LAI and yield.  

2.4 Climate scenarios 

We ran the simulation model with weather data generated from current climate (1980-

2010), near-future climate scenarios (2041-2060) and far-future climate scenarios (2081-2100) for 26 
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sites across the UK (see Fig. 1).  The current climate was based on daily observed weather data 

during 1981–2010. The summary statistics for temperature and precipitation at each site are listed 

in the S.I. Table S10. The future weather scenarios were based on climate projections from 18 global 

climate models (GCMs) from the multi-model ensemble used in IPCC Assessment Report 5 (AR5) 

(Taylor et al., 2012), two representative concentration pathways (RCPs), a midrange mitigation 

scenario (RCP4.5) and a high emission scenario (RCP8.5) (van Vuuren et al., 2011), and two future 

points in time (near 2041-60 and far 2081-2100 future). This resulted in four future climate sets 

which we refer to as (i) near-future-RCP4.5, (ii) near-future-RCP8.5, (iii) far-future-RCP4.5 and (iv) 

far-future-RCP8.5. To generate the local-scale future daily weather scenarios for each set, we used 

the LARS-WG weather generator (Semenov et al., 2010), a stochastic weather generator used in 

many recent European climate change impact and risk assessments (Trnka et al., 2015; Trnka et al., 

2014; Vanuytrecht et al., 2014). For further details see (Semenov and Stratonovitch, 2015) and 

Harkness et al. (2020). Vapour pressure and windspeed, not generated by the LARS-WG, were 

estimated using methods described by the FAO (Allen et al., 1998). 

Due to the coarse spatial and temporal resolution of GCMs and large uncertainties in the 

model outputs, it is not appropriate to use daily output from GCMs in combination with nonlinear 

process-based models when analysing impacts of changes in climatic variability and extreme 

weather events (Semenov et al., 2010). Therefore, for each of our 26 sites, we downscaled the 

climate projections from GCMs to local-scale daily climate scenarios by using LARS-WG, a stochastic 

weather generator (Semenov and Stratonovitch, 2010). LARS-WG downscales the projections from 

the GCMs to a local scale, incorporating changes in the mean climate, climatic variability and 

extreme events derived from the GCMs, by modifying the statistical distributions of the weather 

variables (Semenov, 2007). 

For each [site] x [climate set] x [GCM], future synthetic daily weather data (300 realisations 

of single weather years) were generated by the LARS-WG weather generator based on changes in 
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distributions of climate variables derived from each GCM and emissions scenario. The CO2 

concentration for each climate sets listed in Table 2, along with the CO2 concentration assumed for 

the current climate set. To understand the relative effects of climate change and increases in CO2, 

we also ran the model with current climate weather data and the CO2 concentration associated with 

far-future-RCP8.5 (i.e. 844). The model was run for each year and the date of soybean maturity and 

yield were recorded. For soybean to be a viable crop it must mature early enough to not disrupt the 

sowing of the next crop in the rotation and also to avoid weather conditions unfavourable for drying 

the crop in the field, risking difficult harvest conditions and expensive artificial drying of the crop. On 

the advice of our agronomist (an author of this paper) we decided on a cut-off date of the 1st Oct 

with soybean crops maturing before this date deemed viable. Based on this, the variables of interest 

in our study are the probability that soybean will mature before 1st Oct and the yield. It should be 

noted, however, that this is a conservative cut-off date, i.e. in many years harvest of soybean and 

sowing of winter crops could still be feasible later in October. 

 

Table 2 

Concentrations of CO2 (ppm) for current, RCP4.5 and RCP8.5. The current values are based on 

measurements from 2017 and the future on those reported in Harkness et al. (2020). 

 Current RCP 4.5 RCP 8.5 

2017 405   

2041 – 2060  487 541 

2081 – 2100  533 844 

 

2.5 Statistical analysis 

For each Site by Climate combination, the probability of maturity was calculated as the 

proportion of simulations (out of 300) that resulted in maturity before the 1st October. Under future 

climate scenarios, this was averaged over the 18 GCMs,  
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 (        )  

{
 
 

 
 

        

   
  if current scenario

 
  
∑            
  
      

   
  if future scenario

 ( )  

 

For many Climate × Site combinations, the probability of maturity is estimated at the boundaries of 

the [0, 1] interval. Thus, for consistency, confidence intervals for the probability of maturity were 

obtained using the Clopper-Pearson (Clopper and Pearson, 1934) approach with interval defined by, 

    (
 

 
        )      (  

 

 
        )   ( )  

where   is the numerator in Equation (6),   is the denominator and      (     ) is the   th quantile 

from a beta distribution with parameters   and  . 

Yield was analysed only where maturity occurred, a total of 419 386 simulation runs. The following 

linear model was fitted  

         (         (                               ))              ( )  

where    are iid Normal random variables. The factor Climate has two levels;         and       . 

Levels of the factors RCP, Period and GCM vary only in        climate scenarios, whilst levels of 

AtmCO2 vary only in         climate scenarios. High levels of imbalance in the number maturing 

results in unequal numbers of yield observations across the different factors. Consequently, results 

are analysed through both the marginal (respecting marginality) and conditional F-statistics. 

Clopper-Pearson intervals were calculated in the R software environment (RStudio Team, 2020). The 

linear model for Yield was fitted in Genstat 20th edition (VSN International, 2019). 

 Maturity is based on climatic data and day length, and so longitude, latitude and elevation 

are plausible covariates to support spatial prediction. Therefore, to support spatial prediction 

(mapping) of the probability of maturity we fitted linear models to the logit of the probability of 
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soybean maturing with these covariates as explanatory variables, and then used these covariates to 

predict the probability of maturity across the UK.  

 

  

Fig. 1. A map of the UK showing the location of the climate stations (black dots) that were used in 

the simulations. The map was produced using the R software. We use OSGB cartesian co-ordinates 

as measures of easterly and northerly distance. The location of the UK in Europe is shown the in 

inset pane.  
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3. Results  

3.1 Soybean trials 

The soybean crop successfully matured in all field trials conducted. Yields ranged between 

0.4 t ha-1 in 2018 to 2.9 t ha-1 in 2017 with an average of 1.7 t ha-1 (Table 3 and Supplementary 

Information). In general, yields at Brooms Barn were greater than those at Harpenden. In all 

experiments, varietal performance differed significantly in terms of yield (Table S8).  

 Across the 2016 and 2017 variety trials the highest yielding cultivars gave moderate yields 

with the means over replicate plots having maximum of 2.72, 2.34 and 2.61 t ha-1. Yields in 2018 

were substantially lower with a maximum of 1.08 t ha-1 (Harpenden) and 1.61 t ha-1 (Brooms Barn) 

primarily due to the exceptionally dry weather during the months of June and July (see 

Supplementary Information Tables S2–6) which affected the soil moisture. Despite the reasonable 

water holding capacity of the silty clay loam soil at Harpenden it is not unusual for later spring sown 

crops to suffer from drought as rooting fails to extend sufficiently rapidly to maintain water supply 

to the plant.  

Analysis of trial 1701 showed significant differences in yield according to sowing date (F1,3=24.15, 

p=0.016) with late drilling yielding an average of 0.18 t ha-1 more.  Given that variety was not 

accounted for in our model we calibrated our simulations to the mean values of yield and seed N 

across varieties for each site, season and sowing time (Table 3 and 4). A complete analysis of the 

trials data for all years is given in the Supplementary Information. 

There was no consistent response of variety between seasons, and this is disappointing from 

the point of view of selecting well adapted genetics for UK agriculture. It was noted that the 

rhizobium applied to the seeds in 2016 was poor quality (the peat-based carrier had dried out) 

resulting in few root nodules and low seed nitrogen contents (data not presented). The seed of two 

of our varieties sown in 2016 was poor quality and this was reflected in low plant counts (see 
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Supplementary Information Table S8, varieties Canada 4 and 6). Fresh seed was sown in 2017 and a 

new, liquid, formulation of rhizobium was applied. 

  

Table 3 

The summary statistics for soybean seed yield for each trial. The trials used as for validation are 

marked by *.  

Trial  

ID 

Sowing time Seed yield / t ha-1 at 14% moisture content 

  Mean Variance Number of plots Standard error Min Max 

1601 Standard 1.929 0.292 27 0.104 0.860 2.822 

1701 Early 2.113 0.0951 8 0.109 1.645 2.527 

1701 Standard 2.235 0.182 8 0.151 1.786 2.805 

1703 Standard 1.992 0.271 33 0.0907 0.491 2.888 

1847 Standard 0.898 0.0390 30 0.0360 0.392 1.325 

1702* Standard 1.714 0.178 33 0.0734 0.808 2.490 

1848* Standard 1.283 0.0729 30 0.0493 0.639 1.696 

 

Table 4 

The summary statistics for soybean seed N. The trials used for validation are marked by *.  

Trial  

ID 

Seed N / % 

 Mean Variance Number of plots Standard error Min Max 

1702* 6.600 0.121 33 0.0607 
 

5.912 7.1 

1703 6.670 0.133 33 0.0608 6.013 7.345 
 

 

3.2 The soybean model calibration and validation 
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The smallest RMSE between observed and predicted LAI and yield results (Fig. 2) when the LUE 

equals 1.6, specific leaf area equals 0.03, photo-vernal-thermal time for anthesis (DVS = 1) equals 

745 and maturity is a further 400 units of photo-vernal-thermal. Validation sets performed 

consistently well (Fig. 3).   Modelled biological N fixation, crop N uptake and N in the seed are shown 

in Table S9. In the model the low yields were clearly caused by water stress and lower levels of 

biological fixation also resulting from the unfavourable soil moisture conditions (Table S9, trials 1847 

and 1848 and Table S4 and S6). Our biggest discrepancy in predicted date of maturity was site 1847, 

where the observed crop was harvested much later than predicted.  

 

Fig. 2. Modelled (red) and measured (black) (a) leaf area index for early sown soybean in experiment 

1701. The bars show the range of observations from four replicates.  (b) leaf area index for standard 
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sown soybean in experiment 1701. The error bars show the range of our four observations.  (c) 

mean yield across experiments with standard error bars. (d) the modelled maturity date and 

measured harvest date (grey) which indicated an upper bound for maturity.  

 

 

Fig. 3. Modelled (red) and measured (black) (a) leaf area index with bars showing the range of 

observations from six replicates.  (b) mean yield across experiments with standard error bars. (c) the 

modelled maturity date and measured harvest date (grey) which indicated an upper bound for 

maturity.  

 

3.3 Scenario Results 

Under the current climate scenario only a single site (BD) could guarantee maturity by 1st October 

(95% CI: 0.988, 1.000), whilst under the most extreme climate scenario (far-future-RCP8.5 ) 16 sites  

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

19 
 

matured 100% of the time, and only a single site (WK)  matured less than half of the time (95% CI: 

0.125, 0.213). In the more southerly sites, the greatest increase in probability of maturity is seen in 

the near-future-RCP4.5, scenario (Fig. 4). Little difference is observed between near-future-RCP8.5 

versus far-future-RCP4.5 (Fig. 4). In the more northerly sites, there is a general trend of increasing 

the probability of maturity from near-future-RCP4.5 to far-future-RCP8.5 (Fig. 5). See Fig. S5 in the 

Supplementary Information for the numbers of simulations that successfully matured under each 

climate scenario. The spatial predictions illustrate clearly that the probability of maturity increases 

under future climate predictions, particularly in the south (Fig. 5). See Supplementary Information 

(Table S11, Fig. S6, S7) for the parameters of the spatial models and maps of predictions of the 

probability that soybean crops will mature and associated errors of prediction. 

 

 

Fig. 4.  Probability of maturity calculated for each climate scenario. Error bars are the 95% Clopper-

Pearson confidence intervals. Colour indicates the Site, with colour scale defined by the order of 

latitude (Red=Southernmost site and Blue=Northernmost site). 

Although future climate scenarios predict an increase in the probability of soybean maturing, the 

magnitude of the associated yields is less certain (Fig. 6, Supplementary Information Fig. S5). 
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Investigating the partition of variability between the different simulation scenarios (Table 5), 

location is the main factor for different yield predictions (marginal F25,417825 = 7261) ranging from an 

average (over all climate scenarios) of 1.23 t ha-1 (MA) to 2.16 t ha-1 (SQ). It is clear that where 

maturity can already be reached under the current climate, substantive increases in yield are 

expected with increasing atmospheric CO2 (F1,417825 = 339). However, given the large variation 

observed from different GCMs (marginal F1,417825=1334), little overall effect can be observed in the 4 

future climate scenarios on the predicted soybean yield. When accounting for site to site variation 

and the variation due to GCMs, future time period (conditional F =903) has a larger impact on yield 

predictions than RCP (conditional F =274) overall. We note that there are levels of confounding 

between these variables and so caution against over interpretation. The yield trends over future 

climate scenarios are not consistent across sites (Fig. 7). There is a slight decrease in yield at the 

majority of the sites as RCP changes from 4.5 to 8.5 or when period changes from 2041–2060 to 

2081–2100. However, there is a small subset of sites where the yield increases substantially. In 

general, those sites with large predicted increases in yield (SQ, ES, KI, SF, DY, WK) are also the sites 

with least probability of maturing.  
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Fig. 5.  Predictions of the probability that soybean crops will mature for (a) current weather, (b) near-future-RCP4.5, (c) near-future-RCP8.5, (d) far-future-

RCP4.5, (e) far-future-RCP8.5, (f) far-future-RCP8.5  with areas where crops are not currently grown masked out (grey). 
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Fig. 6. – Boxplots of the expected yield under different climate scenarios at 26 locations in the UK. 

Values shown under current climate are the average of up to 300 individual simulations. Boxplots 

under future scenarios are constructed from up to 18 individual values (actual values indicated 

above each box in figure), one per GCM, each of which is the result of averaging over a maximum of 

300 individual simulations. 
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Fig. 7. Average yield per site under each future climate scenario after having adjusted for GCM 

(points). Predictions are obtained by first forming the full table of predictions for all Site x GCM x RCP 

x Climate combinations that are present and then by averaging over GCM. The shading around each 

point indicates the standard errors based on marginal weights, which here reflects the number of 

unique GCMs for each scenario.  We note that the interpolations between each point are an to aid 

visual interpretation but have no physical meaning.  
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Table 5 

F-statistics assessing the effect of each term on soybean yield. Marginal F-statistics are associated 

with including that term to the simplest possible model (respecting marginality), e.g. For a model 

fitting A + B + A.B, the marginal statistic for A is associated with fitting only A, the marginal statistic 

for B is associated with fitting only B, the marginal statistic for A.B is associated with A.B after fitting 

the respective main effects A and B. Conditional F-statistics are associated with including that term 

to the most complicated model (excluding terms to which it is marginal). E.g. for a model fitting A + B 

+ A.B, the conditional statistic for A is associated with fitting A after accounting for B, the conditional 

statistic for B is associated with fitting B after accounting for A, the conditional statistic for A.B is 

associated with fitting A.B after fitting A and B. 

Term Marginal F 
Statistic 

Conditional F 
Statistic 

 ndf ddf  
(full model) 

Climate 368.54 1072.42 1 417825 

Site 7261.41 7529.58 25 

Climate.RCP 585.61 274.75 1 

Climate.Period 118.82 903.93 1 

Climate.GCM 1334.72 1529.34 17 

Climate.AtCO2 339.24 339.24 1 

Climate.Site 8.46 8.47 10 

Climate.RCP.Period 365.99 96.56 1 

Climate.RCP.GCM 62.58 86.88 17 

Climate.Period.GCM 76.32 102 17 

Climate.Site.RCP 259.86 83.73 25 

Climate.Site.Period 202.45 71.53 25 

Climate.Site.GCM 46.3 40.47 400 

Climate.Site.AtCO2 3.19 3.19 10 

Climate.RCP.Period.GCM 78.6 115.86 17 

Climate.Site.RCP.Period 32.32 24.66 23 

Climate.Site.RCP.GCM 4.8 5.38 333 

Climate.Site.Period.GCM 4.59 5.43 329 

Climate.Site.RCP.Period.GCM 2.92 2.92 305 
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4. Discussion  

Our results suggest that by 2050 soybean should be a viable crop across most of England and 

south Wales under both RCP scenarios. In southern England the soybean early-maturing variety 

parameterised in our model is predicted to be certain to mature and so it is extremely likely that 

varieties that mature later will also be viable. This could have implications for increased yield as the 

growing season would be extended. To test this further we would need to calibrate the soybean 

model for these different types of variety, including a maturity group specific functions of the effect 

of daylength on development (Setiyono et al., 2007). Only after 2040 and with the RCP85 prediction 

does soybean appear viable for Scottish agriculture.  

A number of soybean models exist in the literature (Jego et al., 2010; Sinclair et al., 2003). 

These range from quite complex models such as the CROPGRO-soybean model (Hoogenboom et al., 

1992; Jones et al., 2003)which has successfully simulated a number of cultivars and in a range of 

environments including Australia and across the USA (sites ranging from Florida to Idaho), and 

SOYDEV (Setiyono et al., 2010; Setiyono et al., 2007; Setiyono et al., 2008) which was developed to 

simulate soybean development under high-yield conditions of North-Central U.S. Corn Belt, to 

simpler models such as Sinclair-Soybean (Setiyono et al., 2010; Sinclair et al., 2003). Soybean have 

also been parameterised in the WOFOST (Abadi et al., 2018) and LINTUL (Corrêa, 2008) crop models 

for studies in Indonesia and Brazil respectively.  Most parameterisations are cultivar specific, 

although efforts have been made to make models more parsimonious by parameterising according 

to maturity grouping and cultivar stem termination type (Setiyono et al., 2010).  For our analysis we 

chose to use a more generic model to simulate our early maturing varieties, and to avoid issues of 

overfitting, the model parameter values were largely based on crop physiology-based values from 

the literature with only four parameters fitted to the data. The data provided by our trials proved a 

good resource to parameterise our model. In particular, data on canopy expansion (which are 

relatively rare) gave us confidence that the crop development was captured by the model.   The 

calibrated model was able to reproduce the canopy expansion and decline well (Fig. 2) and 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

26 
 

accurately predicted the variation in expected yield across the seasons. This was born out in our 

model validation (Fig. 3). In particular, our simulation predicted the drought conditions in the soil in 

2018 (as described above) and the poor yields that resulted (Table 3, trials 1847 and 1848). Our 

values of crop N uptake (156 kg N ha-1, S.I. Table S9 average of all trials) are in accordance with those 

reported in Bender et al. (2015), which were 164 kg N ha-1 for Soybean yielding 2 t ha-1. In our model 

we chose not to include an energy cost to the plant for biological N fixation. Whilst we acknowledge 

that any form of BNF in crops has an energy cost associated with it (Liu et al., 2011; Minchin and 

Witty, 2005; Vance and Heichel, 1991),  Santachiara et al. (2018), found no evidence to suggest that 

BNF constitutes an extra energy cost to soybean crops in terms of growth or yield. This suggests that 

under agronomically relevant conditions this energy cost is somewhat compensated for, and that it 

does not substantially alter the relationship between crop biomass and crop N accumulation, 

particularly when yields and N uptake are relatively low (as observed in our field trials). We note 

however, that some models represent such C-N interactions in more detail, whereas others do not 

and treat N uptake more independently (see Fisher et al., 2010). Tamagno et al. (2018) list a number 

of mechanisms by which soybean might yield as well from BNF as it does from chemical fertiliser: 

increased photosynthesis, the availability of N throughout growth as opposed to dosage at a specific 

time and change in the nitrogen harvest index. In their experiments, however, Tamagno et al. (2018) 

found that at the crop level, soybean met the cost of BNF by a reduction in seed yield mediated by 

lower harvest index (HI), particularly in stressful environments, and a secondary contribution from 

reduced seed oil concentration. The soybean crops in our experiments did not receive fertiliser N 

and so we are unable to assess the contribution of fertilizer N compared to BNF.  Given the low 

yields and the lack of data on the cost of BNF, we chose to disregard it in our model, which is also in 

line with how other soybean models have treated N fixation, uptake and partitioning.  See, for 

example, Sinclair et al. (2003). Should yields improve through breeding or climate change, it might 

become necessary to revisit this part of the model and determine what mechanisms, if any, 

compensate for the carbon cost of N fixation. 
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The yields from our experiments ranged between 0.4 t ha-1 and 2.9 t ha-1 with an average of 

1.7 t ha-1 (Table 3 and Supplementary Information). These yields are slightly low within the context 

of global and European average yields which are reported to be closer to 2.8 t ha-1 and 2.08 t ha-1 

respectively (Terzid et al., 2018).   It follows that our predicted yield across the UK are generally low 

(for current climate average yields for a given site-year range between 0.9 and 2.0 t ha-1). There was 

no obvious spatial pattern in determining where yields were likely to be greatest under current 

climate, and this is likely to be because yield depends on both soil and weather (unlike phenological 

timing which is driven by temperature and daylength). Our predictions show that increasing CO2 

levels will have a significant effect on yield increase (Fig 6). However, there is a slight decrease in 

yield at the majority of the sites as RCP changes from 4.5 to 8.5 or when Period changes from 2041–

2060 to 2081–2100. This suggests that the effects of water and heat stress may compensate for the 

positive effects on yield of increased CO2. These factors could be addressed through variety choice 

and breeding as explored by Semenov (2009) for wheat crops in the UK.   

Despite the observed and predicted low yields of soybean in UK conditions the crop may still 

be financially viable for farmers. Besides land rental, the operational cost of production of soybeans 

is currently modest. Few pests or diseases have been observed meaning that no pesticides other 

than herbicides are needed, although it is acknowledged that growing a greater area of soybean is 

likely to results in greater pest and disease incidence (Engering et al., 2013; Legg, 1999). Based on 

the estimated price of soybean and associated variable costs a 2 t ha-1 crop could result in a gross 

margin of 468 £ ha-1  which is comparable to the profit margin of field beans (Nix, 2020; Soya UK, 

2018).  When the rotational benefits of soybeans (as described in the introduction) are also 

considered the crop is an attractive proposition for farmers. More viable, however, would be a 

scenario in which soybean consistently yields around 2.5-3 t ha-1 under UK conditions. Our 

experiments suggest that this is possible in principle, but will require further genetic and agronomic 

fine-tuning. 
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Hence, a key question is what are the major crop phenological or physiological constraints 

that need to be overcome to make soybean a competitive crop in the UK and other parts of 

Northern Europe nearby maritime Northern Europe that are at similar latitudes to the UK but have 

slightly warmer summers and so where soybean is equally or more likely to mature. Our canopy 

measurements showed that peak LAI values were similar to crops grown in Nebraska, USA that 

typically yield 4.5 – 5 t ha-1 (Setiyono et al., 2008). That is to say, canopy development and closure 

did not seem to play a major role in limiting the yields we observed. Setiyono et al. (2008) found that 

their green leaf persisted longer than ours; this may be because they irrigated their crops. It is worth 

noting that our experiments report on early-developing varieties chosen for the current UK climate. 

To our knowledge, there are no breeding programmes for soybean in the UK at this current time, 

which raises the question for breeders of   whether it is possible to breed varieties that retain green 

leaf for longer than at present. In the future, the last frost day in spring is likely to occur up to one 

month earlier than now (data not shown).  Although this does not necessarily translate into one 

month’s earlier sowing and longer growing season, it suggests that later developing, and potentially, 

higher yielding varieties will become viable in the UK and other Northern European countries in 

coming decades. There is also need to better tailor agronomic practices of growing soybean to UK 

soil and climatic conditions. Tillage, row spacing, seed rate, inoculation, starter fertilizer along with 

the seed, other nutrient applications, or irrigation are all practices we did not study in our work, but 

which are likely to be critical for exploiting the attainable yield potential.  

5. Conclusions  

Model-based prediction shows that early maturing varieties of soybean can be grown in the 

UK at latitudes lower than approximately 52.3o, although yields are slightly less than the average for 

other European countries. Under climate change, the potential for successfully growing soybean 

increases enormously, with predictions under far-future-RCP8.5 suggesting the crop could be viable 
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as far North as southern Scotland with site DY (latitude 57.21 and longitude -2.2) predicted to 

mature 76% of the time.  

Yields are expected to respond positively to increases in CO2, with average increases 

associated with CO2 only ranging from 9.1% (site EH) and 29.4% across sites (site RG),  but this is 

tempered by increased water stress due to more evaporation meaning that only certain sites might 

see a positive effect of climate change on yield. With climate change, however, varieties that mature 

later will become viable in the south and this will also have positive implications on yield potential.  
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