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12

13 Collective behaviour in flocks, crowds, and swarms occurs throughout the biological world. 

14 Animal groups are generally assumed to be evolutionarily adapted to robustly achieve 

15 particular functions, so there is widespread interest in exploiting collective behaviour for 

16 bio-inspired engineering. However, this requires understanding the precise properties and 

17 function of groups, which remains a challenge. Here, we demonstrate that collective groups 

18 can be described in a thermodynamic framework. We define an appropriate set of state 

19 variables and extract an equation of state for laboratory midge swarms. We then drive 

20 swarms through “thermodynamic” cycles via external stimuli, and show that our equation 

21 of state holds throughout. Our findings demonstrate a new way of precisely quantifying the 

22 nature of collective groups and provide a cornerstone for potential future engineering design.

23



24 Introduction

25 Organisms on every size scale, from single-celled1 to highly complex2, regularly come together in 

26 groups. In many cases, such aggregations are collective, in that the group as a whole displays 

27 properties and functionality distinct from those of its individual members or simply their linear 

28 sum3,4. It is generally assumed that since evolution has led so many different kinds of animals to 

29 behave collectively, the performance of collective groups at whatever task they seek to achieve 

30 ought to be well beyond the capabilities of a single individual5, while also being robust to uncertain 

31 natural environments6,7 and operating without the need for top-down control8. For these reasons, 

32 there has been significant interest both in understanding how collectivity conveys these 

33 advantages9 and how to exploit it in engineered systems10,11.

34

35 Taking advantage of evolutionary adaptation for the design of such a bio-inspired artificial 

36 collective system requires both determining the interaction rules used by real animals and properly 

37 understanding the function of the group. Both of these tasks remain a challenge. Extracting 

38 interaction rules by observing group behaviour is a highly nontrivial inverse problem12 that can 

39 typically only be solved by assuming a modelling framework a priori13,14. Appropriate model 

40 selection is made more difficult given that interactions may change in different contexts7,8,15. Even 

41 less work has been done to precisely determine the tasks optimized by collective behaviour. 

42 Assumptions about the purpose of group behaviour typically come from ecological reasoning16 

43 rather than quantitative empirical evidence8—and in some cases, such as hypothesized 

44 aerodynamic benefits conveyed to flocking birds, such reasoning has proved to be incorrect17,18. 

45



46 We argue that the essential nature of the group functionality is encoded in its properties—and 

47 therefore that understanding these properties both allows one to quantify the purpose of the 

48 collective behaviour and to predict the response of the group to environmental changes. As recent 

49 work has demonstrated19-21, a powerful way to characterize these properties is to borrow ideas 

50 from other areas of physics. For groups on the move such as human crowds, hydrodynamics is a 

51 natural choice, and empirically measured constitutive laws have allowed the formulation of 

52 equations of motion that accurately predict how crowds flow20. But for stationary groups such as 

53 insect swarms, where the group as a whole does not move even though its constituent individuals 

54 are continuously rearranging, thermodynamics is a more natural framework, as it allows one to 

55 precisely describe the state of the system irrespective of its net motion22. The most fundamental 

56 relationship for doing so is the equation of state, which links the state variables that describe the 

57 macroscopic properties of the system and encodes how they co-vary in response to environmental 

58 changes. 

59

60 Here, we formulate such an equation of state for laboratory swarms of the non-biting midge 

61 Chironomus riparius (Fig. 1a). We define appropriate state variables, and empirically deduce their 

62 relationship by analysing a large data set of measured swarms23. Then, by applying a suitable 

63 sequence of external perturbations to the swarms, we show that we can drive them through a 

64 thermodynamic cycle in pressure–volume space throughout which our empirical equation of state 

65 holds.

66

67

68



69 Results

70 State variables. The first step in describing the macroscopic properties of the swarm is to define 

71 a set of state variables that fully characterizes the state of the system. The equation of state then 

72 links these state variables in a functional relation. In classical thermodynamics, a complete set of 

73 state variables is given by the conjugate pairs of pressure P and volume V, temperature T and 

74 entropy S, and, if the number of particles is not fixed, chemical potential µ and number of particles 

75 N. We use an analogous set of state variables here to characterize swarms. The most 

76 straightforward state variable to define is the number of individuals N, which is given simply by 

77 the number of midges that are participating in the swarm at a given time (note that midges that are 

78 not swarming simply sit on the walls or floor of the laboratory enclosure). The volume V of the 

79 swarm can be straightforwardly defined and computed as the volume of the convex hull enclosing 

80 all the midges. Note that, while N and V are not independently controllable quantities, the ratio 

81 N/V is empirically approximately constant in large swarms25, meaning that the “thermodynamic” 

82 limit (that is,  and  with ) is approached in our swarms33. In typical swarming N→∞ V→∞ N
V→ ρ

83 events, N changes on a time scale that is very slow compared to the swarm dynamics; thus, a 

84 chemical potential is not needed to describe the instantaneous state of the swarm. Note, though, 

85 that since the number of midges varies between measurements that may be separated by many 

86 days, N remains a relevant state variable for capturing swarm-to-swarm variability.

87

88 The remaining three state variables are somewhat more subtle, but can be defined by building on 

89 previous work. It has been explicitly shown24 that a virial relation based on the kinetic energy and 

90 an effective potential energy holds for laboratory swarms of Chironomus riparius. For particles 

91 moving in a potential, this virial relation can be used to define a pressure24. As we have shown 



92 previously, swarming midges behave as if they are trapped in a harmonic potential well that binds 

93 them to the swarm, with a spring constant k(N) that depends on the swarm size24,25 (Fig. 1b). The 

94 difference between the kinetic energy and this harmonic potential energy thus allows us to compute 

95 a pressure4,24,26, which is conceptually similar to the swim pressure defined in other active 

96 systems27. The virial theorem thus provides a link between kinetic energy, potential energy, and a 

97 field that plays the role of a pressure, when coupled with the observation that individual midges to 

98 a good approximation behave as if they are moving in a harmonic potential24,25. We can write this 

99 virial pressure P (per unit mass, assuming a constant mass per midge) as

100 P = 1
3NV

N

∑
i = 1

(v2
i - 1

2〈k〈r2
i ),

101 where N is the number of midges in the swarm, V is the swarm volume, vi is the velocity of midge 

102 i, ri is its distance from the swarm centre of mass, and is the effective 〈k〈 = 〈 -ai ∙ ri / ri〈 

103 spring constant of the emergent potential well that binds midges to the swarm. In this expression, 

104 ai is the acceleration of midge i,  is the unit vector pointing from a midge towards the centre of ri

105 mass of the swarm (defined as given by ) and averages are taken over the individuals 1/N∑N
i = 1ri

106 in the swarm. This spring constant depends on the swarm size N (Fig. 1b). We note that we have 

107 previously simply used the directly computed potential energy  to define the - 〈ai ∙ ri〈

108 pressure4,26; here, we instead average the potential terms and fit them to a power law in N (Fig. 1b) 

109 to mitigate the contribution of spurious instantaneous noise in the individual accelerations 

110 positions that arises would be enhanced by differentiating them twice to compute accelerationsdue 

111 to the second-order differentiation in determining the accelerations. We use this power law to 

112 determine the spring constant k instantaneously at each time step. 

113



114 The results from the two methods for computing the pressure are similar and consistent, but the 

115 method we use here is less prone to noise. Physically, this pressure P can be interpreted as the 

116 additional, spatially variable energy density required to keep the midges bound to the swarm given 

117 that their potential energy varies in space but their mean velocity (and therefore kinetic energy) 

118 does not. Thus, compared to a simple passive particle moving in a harmonic well, midges have 

119 more kinetic energy than expected at the swarm edges; this pressure compensates for the excess 

120 kinetic energy. This pressure should be viewed as a manifestation of the active nature of the midges 

121 (similar to a swim pressure27), since the kinetic energy is an active property of each individual 

122 midge and the potential energy is an emergent property of the swarm.

123

124 We can define a Shannon-like entropy S via its definition in terms of the joint probability 

125 distributions of position and velocity. This entropy is defined as

126 S = -
∞

∫
-∞

p(x,v)log2 p(x,v)dxdv,

127 where p(x,v) is the joint probability density function (PDF) of midge position and velocity. S here 

128 is measured in bits, as it is naturally an information entropy. Empirically, we find that the position 

129 and velocity PDFs are nearly statistically independent for all components and close to Gaussian, 

130 aside from the vertical component of the position (Fig. 1c-f). However, the deviation from 

131 Gaussianity in this component (which occurs because of the symmetry breaking due to the ground) 

132 does not significantly affect the estimate of the entropy; thus, we approximate it as Gaussian as 

133 well. Making these approximations, we can thus analytically write the (extensive) entropy as

134 S = 3N
ln 2ln (2Nπeσxσv),



135 where  and  are the standard deviations of the midge positions and velocities, respectively. In σx σv

136 practice, we calculated  by averaging the instantaneous root-mean-square values of all three σv

137 velocity components rather than a time-averaged value; the difference between these components 

138 was always less than 10%. This expression makes it more clear why the Gaussian approximation 

139 for the vertical component of the position is reasonable here: only the mean and variance of the 

140 PDFs are required to compute the entropy, and these low moments are very similar for the true 

141 data and the Gaussian estimate.

142 Although there is no obvious definition of temperature for a swarm, we can define one 

143 starting from the entropy, since temperature (when scaled by a Boltzmann constant) can be defined 

144 as the increase in the total physical energy of the system due to the addition of a single bit of 

145 entropy. Given our definitions, adding a single bit of entropy (that is, setting ) for S→S + 1

146 constant  and N (that is, a swarm of fixed number and spatial size) is equivalent to setting σx σv→

147  Adding this entropy changes the total energy of the system by an amount21/(3N)σv .

148
3
2σ2

vN(2
2

3N - 1) ≡ k *
B T,

149 which we thus define as the temperature . Even though this temperature is nominally a k *
B T

150 function of the swarm size N, it correctly yields an intensive temperature as expected in the limit 

151 of large N, as the explicit N-dependence vanishes in that limit since . In lim
n→∞

k *
B T = σ2

vln 2

152 practice, this limit is achieved very rapidly: we find that this temperature is nearly independent of 

153 N for N larger than about 20, consistent with our earlier results on the effective “thermodynamic 

154 limit” for swarms33. The effective Boltzmann constant  is included here to convert between k *
B

155 temperature and energy, though we note that we cannot set its value, as there is no intrinsically 

156 preferred temperature scale. 



157

158 Equipartition. With these definitions in hand, we can evaluate the suitability of these quantities 

159 for describing the macroscopic state of midge swarms. First, we note that proper state variables 

160 ought to be independent of the swarm history; that is, they ought to describe only the current state 

161 of the system rather than the protocol by which that state was prepared. Although this property is 

162 difficult to prove incontrovertibly, none of the definitions of our state variables have history 

163 dependence. We further find that when these state variables are modulated (see below), their 

164 correlation times are very short, lending support to their interpretation as true state variables. We 

165 can also compare the relationships between these state variables and the swarm behaviour to what 

166 would be expected classically. In equilibrium thermodynamics, for example, temperature is 

167 connected to the number of degrees of freedom (d.o.f.) in a system via equipartition, such that each 

168 d.o.f. contributes an energy of . We can write the total energy E of a swarm as the sum of 
1
2k

*
B T

169 the kinetic energy  and potential energy  for all the individuals, Ek(t) =  12v
2 Ep(t) =  12k(N)r(t)2

170 where r is the distance of a midge to the swarm centre of mass, v is the velocity of a midge, and 

171 k(N) is the effective spring constant. Surprisingly, even though individual midges are certainly not 

172 in equilibrium due to their active nature, we find that the total energy is linear in both T and N (Fig. 

173 2a), and that there is no apparent anisotropy, suggesting that equipartition holds for our swarms. 

174 This result is highly nontrivial, especially given that our definition of T does not contain the spring 

175 constant k(N), which is only determined empirically from our data. Moreover, the slope of the E/
176  curve is well approximated as (9/2)N, implying that each midge has 9 effective d.o.f. (or 6 k *

B T
177 after discounting the factor of  in our definition of )  These d.o.f. can be identified as 3 ln2 k *

B kT
178 translational and 3 potential modes, given that the potential well in which the midges reside is 

179 three-dimensional. These results demonstrate the surprising applicability of equilibrium 

180 thermodynamics for describing the macroscopic state of swarms28. 

181

182 Equation of state. The fundamental relation in any thermodynamic system is the equation of state 

183 that expresses how the state variables co-vary. Equations of state are thus the foundation for the 

184 design and control of thermodynamic systems, because they describe how the system will respond 

185 when a subset of the state variables are modulated. Any equation of state can be written in the form 



186  for some function f. Although the form of f is a priori unknown, it can typically P = f(V, T,N)

187 be written as a power series in V, T, and N, in the spirit of a virial expansion. We fit the equation 

188 of state to our data assuming the functional form

189 ,P = f(V, k *
B T,N) = c4Vc1(k *

B T)c2Nc3

190 and using non-linear least-squares regression. We chose to fit to the pressure for convenient 

191 analogy with a thermodynamic framework, but any other variable would have been an equivalent 

192 possibility. We note that when fitting, we normalized all the state variables by their root-mean-

193 square values so that they were all of the same order of magnitude. These normalization pre-factors 

194 do not change the exponents, but are instead simply absorbed into . Thus, to leading order, we c4

195 assume  and fit this relation to the swarm pressure (Fig. P = f(V,k *
B  T,N) ∝ Vc1(k *

B T)c2Nc3

196 2B,C), obtaining c1=-1.7, c2=2, and c3=1, with uncertainties on the order of 1%. Although the 

197 expression for the pressure does depend on three parameters in a nonlinear fashion, the resulting 

198 estimates for these parameters are remarkably stable and consistent across all measurements. 

199 Hence, we arrive at the equation of state PV1.7 ∝ N(k *
B T)2.

200

201 This equation of state reveals aspects of the nature of swarms, particularly when compared with 

202 the linear equation of state for an ideal gas (where ). In both cases, for example, to PV = NkBT

203 maintain a fixed pressure and volume, smaller systems need to be hotter; but this requirement is 

204 less severe for swarms since the temperature is squared, meaning that midges have to speed up 

205 less than ideal gas molecules do. Likewise, to maintain a fixed temperature, volume expansion 

206 must be counteracted by a reduction in pressure; but midges must lower the pressure more than a 

207 corresponding ideal gas, which is reflective of the decrease of the swarm spring constant with size. 

208



209 Thermodynamic cycling. Beyond such reasoning, however, the true power of an equation of state 

210 in thermodynamics lies in specifying how the state variables will change when some are varied 

211 but the system remains in the same state, such as in an engine. To demonstrate that our equation 

212 of state similarly describes swarms, it is thus necessary to drive them away from their natural state. 

213 Although it is impossible to manipulate the state variables directly in this system of living 

214 organisms as one would do with a mechanical system, we have shown previously that time-varying 

215 acoustic29 and illumination26 stimulation lead to macroscopic changes in swarm behaviour. Here 

216 we therefore build on these findings and use interlaced illumination changes and acoustic signals 

217 to drive swarms along four distinct paths in pressure-volume space, analogous to a thermodynamic 

218 engine cycle. The stimulation protocol is sketched in Fig. 3a. The “on” state of the acoustic signal 

219 is telegraph noise (see Experimental details), while the “off” state is completely quiet. The 

220 illumination signal simply switches between two different steady light levels. Switching between 

221 the four states of “light-high and sound-on,” “light-high and sound-off,” “light-low and sound-

222 off,” and “light-low and sound-on” with a 40-second period (Fig. 3a) produces the pressure-

223 volume cycle shown in Fig. 3b. We suspect that the loops in the cycle stem from the swarm’s 

224 typical “startle” response after abrupt changes in environmental conditions, followed by a rapid 

225 relaxation to a steady state26,29. 

226

227 In addition to the pressure and volume, we can also measure the other state variables as we perturb 

228 the swarms. Given that we do not observe any evidence of a phase transition, we would expect 

229 that our equation of state, if valid, should hold throughout this cycle. To check this hypothesis, we 

230 used the measured V, T, and N values during unperturbed experiments along with the equation of 

231 state to predict the scaling exponents, and in turn the pressure P. We then use these baseline, 



232 unperturbed exponents and V, T, and N during the interlaced perturbations to predict a pressure P. 

233 This pressure prediction matches the measured signal exceptionally well (Fig. 3c,d) even though 

234 the equation of state was formulated only using data from unperturbed swarms, highlighting the 

235 quality of this thermodynamic analogy. Although we might expect that a strong enough 

236 perturbation might lead to qualitatively different behaviour (if the swarm went through the analog 

237 of a phase transition), our results give strong support to the hypothesis that our equation of state 

238 should hold for any perturbation that does not drive such a transition.

239

240 Discussion

241 Our findings demonstrate the surprising efficacy of classical equilibrium thermodynamics 

242 for quantitatively characterizing and predicting collective behaviour in biology. Even though 

243 individual midges are certainly not in equilibrium and need not obey the same rules as, for 

244 example, particles in an ideal gas, we find that the collective behaviour of ensembles of these 

245 individuals is surprisingly simple. The existence of a well-defined equation of state for this system 

246 gives us a new way both of illuminating the purpose of collective behaviour, given that it encodes 

247 the nature of the collective state, and quantitatively distinguishing different kinds of animal groups 

248 that may have similar movement patterns but different functions1,2,3,8. Importantly, we note that 

249 this equation of state is not a swarm model per se, in that it does not make any detailed predictions 

250 about the dynamics of individuals. Rather, it gives us a quantitative way of analysing and 

251 interpreting swarm data at the mascroscale.  In contrast to studies that rely on modelling the 

252 individuals behavioural rules, our findings opens a path to a more general description of collective 

253 behaviour.  Finally, these results also provide a natural starting point for designing artificial 

254 collective systems by outlining a framework for adapting intuition and expertise gained from 
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criticality?
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based models at all; indeed, I think it should be possible to 
implement our analysis on the results of those models! It’s 
really more about the level of description (e.g., macro vs. 
micro). 



255 engineering thermodynamic systems to this new situation. This approach could, for example, be 

256 useful to guide the design of engineered drone swarms via machine learning techniques346 and to 

257 provide a precise and quantifiable global properties that includedescription of the collective nature 

258 of swarms.

259

260 Methods

261 In our laboratory we maintain a colony of C. riparius midges in an (122cm)3 acrylic tank. C. 

262 riparius larvae develop in eight 10 litre breeding tanks filled with dechlorinated, aerated water and 

263 a cellulose substrate. The colony is regulated on an artificial circadian rhythm with 16 hours of 

264 light and 8 hours of night using an overhead light on a timer. Over the roughly 2-week life cycle 

265 of the midges, larvae become pupae and eventually mature into flying adult midges. Females in 

266 the colony mate with males, fertilizing eggs that they lay in the breeding tanks, thus closing the 

267 life cycle. 

268

269 Just after dusk and dawn, male midges will form mating swarms over ground-based visual features 

270 known as swarm markers30. In our laboratory, this feature is a black square plate. Swarms are 

271 consistently spheroidal with a swarm diameter that depends on the number of swarming 

272 individuals25. Typical swarm sizes in our laboratory range from 10 to 100 individuals. Note that 

273 individuals that are not participating in the swarm do not fly; rather, they sit on the walls or floor 

274 of the enclosure. The swarm behaviour is recorded by three cameras placed outside the enclosure. 

275

276 The cameras used to image the swarms were hardware-synchronized Point Grey Flea3 1.3 MP 

277 Mono USB3 Vision cameras running at 100 frames per second, synchronized via an external 



278 function generator. To illuminate the midges without interfering with their natural behaviour, we 

279 used 20 3W near-infrared LED arrays placed on top of and inside the measurement tank. C. 

280 riparius do not see in the infrared, but it is detectable by the cameras, thus allowing non-intrusive 

281 imaging of the swarming events. The cameras were placed on tripods outside the midge enclosure, 

282 and were arranged in a horizontal plane with angular separations of 30 and 70 degrees23 and placed 

283 far enough from the experimental enclosure to ensure that the full swarm was always fully within 

284 the field of view of each camera. Calibration of the imaging system was done via Tsai’s method31, 

285 using a flat plate with a regular dot pattern placed inside the tank (and removed before the initiation 

286 of swarming) as a calibration reference. During each acquisition session, each of which typically 

287 occurred on different days, we recorded between 30000 and 100000 frames of data, corresponding 

288 to 5 minutes to 16 minutes and 40 seconds of swarming. To obtain three-dimensional trajectories 

289 from the individual camera recordings, we first processed each image to obtain 2D midge positions 

290 in each camera’s frame of reference, matched the data between the cameras to obtain 3D midge 

291 positions for every midge in the swarm, and finally tracked all the 3D positions in time. The 

292 observed swarms are dilute. Even in statistically unusual cases of close midge encounters, 

293 individuals can still be identified23. To process the images, we first removed the background 

294 illumination field (obtained by averaging over the full image sequence) and then detected midges 

295 simply by computing the centroids of connected regions that were brighter than an empirically set 

296 threshold and larger than a minimal pixel size. Regions that were highly non-spherical and very 

297 large indicated the overlap of the images of multiple midges in the camera’s field of view, and so 

298 were split into multiple midges (see ref. 23). The 2D midge coordinates were stereo-matched 

299 between the cameras by projecting the lines of sight connecting each camera’s centre of projection 

300 and each midge’s 2D location into 3D space using the calibrated camera model and then 



301 identifying near-intersections. In principle, two cameras are sufficient for this purpose, but 

302 additional cameras have been shown to significantly improve the confidence and yield of this 

303 procedure32. To connect the 3D positions temporally and create trajectories, we used a multi-frame 

304 predictive tracking algorithm23,32. Velocities and acceleration were then computed by 

305 differentiating the trajectories in time23. At each time-step, we additionally removed midges that 

306 were sitting or walking on the walls or marker rather than flying, identifying them based on a 100-

307 frame moving average of their speed. If this average speed at a given time step was less than 60 

308 mm/s, we discarded the individual at that time-step.

309

310 In this study, we applied interleaved perturbations of two different classes to the swarms in 

311 conjunction to the observation of unperturbed swarming events. For the first perturbation type, we 

312 induced illumination perturbations, generated by a 6500 K Luxeon Star LED array mounted above 

313 the midge enclosure, as described in ref. 26. For this study, we modulated the brightness of the 

314 LED between 1.4 lux and 2.4 lux, switching every 20 seconds for a period of 40 seconds. A second 

315 class of perturbations were acoustic signals that were generated by a small (~5 cm) omnidirectional 

316 speaker placed on the swarm marker. We alternated between a quiet state (that is, no sound played 

317 through the speaker) and playback of a telegraph noise acoustic signal, again with a 40-second 

318 period. This corresponds to up to 25 full cycles per acquisition session. The telegraph noise was 

319 constructed by passing a white-noise signal through a low-pass 700 Hz filter, and then playing 

320 short pulses of this signal during the acoustic “on” state with varying length and amplitude. We 

321 empirically found that filtering the white-noise signal was necessary to induce a persistent response 

322 of the swarm. This may be due to swarms’ tendency to adapt to and ignore static changes in their 

323 environment while responding persistently to dynamic changes26,35. might potential be connected 



324 to the intrinsic sound of the wingbeat frequency of male Chironomus riparius of 575Hz34,35. The 

325 pulse length ranged from 0.1s to 0.3s and the pause between pulses ranged from 0.25s to 0.5s. The 

326 noise amplitude was clearly audible over the ambient sound levels in the laboratory, and we varied 

327 it only slightly.

328

329
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432 Figure 1 | Swarm kinematics. a, Trajectories (>40 s long) of individual midges (each colour 

433 corresponding to a different midge) are individually convoluted but remain spatially localized 

434 over a ground-based swarm marker (black square). b, Averaged spring constant  as < k|N >

435 function of the swarm size N (symbols). The black line is a power-law fit to the data. c, 

436 Probability density function (PDF) of midge positions in the horizontal plane (blue) along with a 

437 Gaussian fit to the data (red). d, PDF of midge positions in the vertical (gravity) direction (blue) 

438 and a Gaussian fit to the data (red). The deviation from Gaussianity in the vertical component of 

439 the position arises from the symmetry breaking due to the bottom floor of the experimental setup. 

440 e,f, PDFs of the horizontal (e) and vertical (f) midge velocities (blue) along with Gaussian fits to 

441 the data (red). 

442

443

444

t ( a. u.)

445 Figure 2 | Equipartition and the equation of state. a, The total energy of the system  E
446 normalized by  as a function of swarm size (blue) along with the kinetic energy  (yellow) k *

B T Ek



447 and potential energy  (blue). The total normalized energy of the system is well approximated Ep

448 by (9/2)N (black dashed line), indicating that each individual midge contributes  to E (9/2)k *
B T

449 and thus has 9 degrees of freedom (6 after discounting the factor of  in our definition of ln2 k *
B k

450 ). The deviations from that behaviour for the largest swarms can be attributed to a growing T
451 uncertainty in the energy due to the smaller number of experiments with such large swarms. b, A 

452 portion of our ensemble of data of the measured pressure (blue). The yellow line is the 

453 reconstruction of the pressure from our equation of state. The inset shows a zoomed-in portion of 

454 the data to highlight the quality of the reconstruction. c, PDF of the pressure for our entire data 

455 ensemble23. The statistics of the directly measured pressure (blue) and reconstructed pressure 

456 from the equation of state have nearly identical statistics for the full dynamic range of the signal.

457

458



459 Figure 3 | Thermodynamic cycling of a midge swarm with <N>=27.  Schematic of the 

460 perturbation cycle showing the illumination (solid) and sound (dashed) signal timings. The 

461 symbols indicate the switching points identified in (b). b,c, Phase-averaged swarm behaviour 

462 during the perturbation cycle plotted in the pressure-volume phase plane for (b) the pressure 

463 signal as measured and (c) as reconstructed using our equation of state. denotes a phase 〈〈ϕ 

464 average of a quantity over a full cycle The four different states of the perturbation signal are . 

465 indicated. The data has been averaged using a moving 3.5-second window for clarity. The swarm 

466 behaviour moves in a closed loop in this phase plane during this cycling, as would be expected 

467 for an engine in equilibrium thermodynamics, and the equation of state holds throughout even 

468 though it was developed only for unperturbed swarms. d, Phase-averaged pressure  of the 〈P〈φ

469 swarm during a continuous cycle through the four light and sound states. The blue line shows the 

470 directly measured pressure and the yellow line shows the reconstruction using the equation of 

471 state.

472


