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Abstract

Soil phosphorus (P) remains an ever-increasing topic of importance, notably
for its key role as a nutrient for driving food production but with parallel con-
cerns over damaging water quality, all against a backdrop of uncertainty of
long-term rock phosphate supplies. Soil is a key interface that holds P and reg-
ulates its onward flow to plants or leakage to waters. Often overlooked are a
ubiquitous group of P compounds that exist in alternative oxidation states to
that of phosphate (45). Redox cycling, and the behaviour that chemically
reduced P compounds exhibit in soils, introduces alternative routes of cycling
P that may become more important as the soil system itself alters, especially
due to the external pressures of climate change, bringing about critical dynam-
ics in rainfall and runoff and also wetting and drying. All of these factors are
known to affect soil redox potential and consequently the oxidation state of
soil P. This review considers the chemically reduced species in the P cycle,
exploring their sources and sinks, while considering their importance within
the primary global biogeochemical cycling of P and how this may be impacted
by climate change in the temperate climate of the northern hemisphere.

Highlights

« This paper addresses how climate change will affect soil phosphorus cycling.

» This review is novel as it considers the reduced phosphorus forms when dis-
cussing P transfer in soils.

« Climate change is likely to increase prevalence of reduced P and free phos-
phate in northern hemisphere temperate soils.

« Phosphorus cycling relies partly on redox P processes. Their importance will
increase as climate alters soils.
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1 | INTRODUCTION

Climate change is predicted to change patterns of annual
rainfall globally, with temperate parts of the northern hemi-
sphere expected to experience increases in the occurrence of
flash flooding in autumn/winter months and prolonged dry
spells in spring/summer months (Masson-Delmotte et al.,
2018). As a result, the soil system will experience noticeable
changes in hydrologic dynamics (Green et al., 2019; Borrelli
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et al., 2020). In the UK, for example, it is predicted that soil
water saturation levels will not only increase during winter,
but the period for which they remain saturated will also
increase (Ockenden et al., 2017). It has been estimated that
the Earth will experience an increase of between 16 and 24%
of heavy precipitation events by the year 2100 and will see
an average of 20% less rainfall during periods of drought
(Fischer, Sedlacek, Hawkins, & Knutti, 2014). These climate
predictions are expected to result in soil available phosphorus
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FIGURE 1 Climate change and consequent predicted changes in soil redox condition, demonstrating the suggested changes to the
reduced P cycle. Process 1: Increased mobility of P forms due to reduction of Fe-hydroxides (Fe*" to Fe*™). Process 2: Uptake of reduced P
forms, with phosphites/hypophosphites benefiting the plant and other reduced P acting negatively on plant life [Color figure can be viewed
at wileyonlinelibrary.com]|
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(P) concentrations significantly decreasing with increasing
mean annual temperature and precipitation (Hou
et al., 2018).

During intense precipitation events, an increase in
saturated soil conditions will promote reductions in soil
redox (Eh) values due to lower oxygen concentrations
associated with greater saturation. With the Earth's tem-
perature rising on average 0.18°C per decade
(NOAA, 2019) and the average soil temperature rising
0.47°C per decade (Fang, Luo, & Lyu, 2019), autumn/
winter soil microbial activity is also likely to increase,
assisting in driving down the Eh of many temperate
European and North American soils (Vaughan,
Rabenhorst, & Needelman, 2009) (Zhang, Wang, Chen,
Zheng, & Zeng, 2014). Increases in soil moisture will also
assist with heat transfer to soils, with moisture increasing
heat dissipation down the soil profile (Ochsner et al., 2001).
It has also been demonstrated that although soil microbial
enzymatic activity generally decreases during colder winter
periods, the activity of some fungal species increases (Isobe
et al., 2018; Wang Hai et al., 2018). In such circumstances,
anaerobic microorganisms use oxidized compounds in soils
as electron acceptors for respiration, thus converting them
to reduced chemical forms and lowering the overall Eh
value of the soil (Pezeshki & Delaune, 2012). This intro-
duces redox processes into soil P biogeochemical cycling.
There is considerable knowledge on redox processes associ-
ated with the primary biogeochemical cycles of nitrogen
(N) and carbon (C), for example denitrification and
methanogenesis (Andalib, Nakhla, McIntee, & Zhu, 2011),
but the impact of redox processes on P cycling in soils has
been studied to a much lesser extent, with P usually dis-
cussed as the stable oxidized P compound phosphate (+5).
However, P also exists as multiple reduced compounds
made up of the phosphonates (+3), phosphites (43),
hypophosphites (+1) and phosphines (—3) (Pasek,
Sampson, & Atlas, 2014), that are actively involved in P
cycling and are also thought to assist with other biogeo-
chemical soil processes such as methanogenesis (Cao, M,
N, & Smith, 2017; Redfield, 1958; Vaughan &
Malcolm, 1985). These forms currently attract much less
attention, but as discussed here, may well become more
important as climate change shifts the water saturation
and redox equilibrium in many soils (Figure 1).

1.1 | The introduction of phosphorus to
the soil system

In agricultural systems the largest inputs of P to soils are
primarily from fertilizer applications (Bhattacharya, 2019).
Fertilizers are applied commonly in both organic (com-
posed of natural ingredients of plant or animal origin) and

WILEY_L

inorganic forms (mined from mineral deposits or man-
ufactured from synthetic compounds) (Milne, 2018). Typical
soil concentrations of phosphate (in the form of orthophos-
phate, PO,’>") in a managed soil system range between
500 and 800 mg/kg of dry soil (Mengel, Kirkby,
Kosegarten, & Appel, 2001). Mineral phosphate fertilizers
added to soils are readily available to plants because they
are soluble. This is why mineral P fertilizer is the most pop-
ular choice of fertilizer over organic fertilizer worldwide
(Morgan & Connolly, 2013).

The majority of soil P remains in phosphate form, usu-
ally accounting for up to 70% of total P in soils
(Harrison, 1987). However, it is thought that, as soils are
increasingly affected by extreme rainfall events predicted
under climate change, saturated soil systems will result in
further increases in P availability with regard to phosphate
forms (Wright, Lockaby, & Walbridge, 2001). In recently
flooded dried soils, soil solution phosphate concentrations
increased drastically, leading to an initial boost in P avail-
ability, which has been shown to assist crop growth in
areas that are P fertilizer deficient. The phenomenon of
phosphate release can be explained through enhancement
of the concentration gradient, which increases the rate of
diffusion of P to plant root systems (Turner &
Gilliam, 1976). In this instance, the oxidized forms of
Fe(IIT) and Mn(IV) are reduced, allowing them to become
the major electron acceptors for anaerobic microbes. This
process releases iron and manganese-bound phosphates
into solution through reductive dissolution (Gotoh &
Patrick, 1974). If the climate continues to change in a way
in which flooding events are seasonally followed by
droughts, then it is predicted that this may positively affect
crop growth and ease the need for P fertilizer dependency
in P-deficient soils, subject to availability of sufficient
water (Brodlin, Kaiser, Kessler, & Hagedom, 2019).

ience

1.2 | Scope of review

Soil P transport models typically only consider direct
phosphate impacts on environmental health (Das, Huth,
Probert, Condron, & Schmidt, 2019; Shiri et al., 2020;
Ziadi, Whalen, Messiga, & Morel, 2013), with very little
or no account of reduced P species and their influence on
global P cycling. Table 1 shows common reduced P com-
pounds from a variety of everyday sources, demonstrating
how easily they can find their way into the environment
for subsequent cycling. As the climate changes, specifi-
cally focusing on changes to the European temperate cli-
mate, we predict P redox cycling to become an
increasingly important part of the global P cycle within
the time frames of the climate changes predicted by the
IPCC (Masson-Delmotte et al., 2018). The mechanisms
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and drivers for the cycling of these compounds are not
fully wunderstood and characterized (Roels &
Verstraete, 2001; White & Metcalf, 2007), but research is
recognizing some of the critical biochemical pathways
that are almost entirely driven through the action of
reduced P species in the environment (MetCalf & Van
der Donk, 2009; Pasek et al, 2014; White &
MetCalf, 2007). Here we describe in detail the chemistry,
sources and cycling of the reduced P groups in order of
their degree of reduction and how an altering soil climate
will have an impact on them. Following this, their analyt-
ical limitations will be discussed in order to shed light on
the difficulties encountered that have prevented this area
of science from progressing at pace.

Soil Science

2 | SOIL PHOSPHONATES

Phosphonates are a broad family of organic molecules that
are characterized by a functional group, which consists of
two hydroxyl moieties, a double bonded P=0 bond and a
single bonded C-P bond (Figure 2) (Demmer, Krogsgaard-
Larsen, & Bunch, 2011). It is the characteristic stable cova-
lent C-P bond that sets the phosphonates apart from other P
compounds (Glindemann, Eismann, Bergmann, Kuschk, &
Stottmeister, 1998) and in soils most phosphonates are found
aslong chain phosphonic acids (Sevrain, Berchel, Couthon, &
Jaffres, 2017) that, within microbially driven systems, have
the primary metabolic functions of cell signalling, metabo-
lism and synthesis of natural antibiotics (McGrath, Chin, &
Quinn, 2013).

2.1 | Formation and inputs of the
phosphonates to the soil system

There are two entry routes for phosphonates into the soil sys-
tem: through biogenic processes within the soil or through
external anthropogenic inputs. There is now a general under-
pinning knowledge of the pathways involved for nearly all
biogenic phosphonate compounds, which involves intramo-
lecular rearrangement of the intermediary metabolite phos-
phoenolpyruvate, a phosphate bonded ester molecule, into
phosphonopyruvate, a carboxylic acid that contains the C-P
bond (Figure 3) (Metcalf & Van der Donk, 2009). This
rearrangement is known to be synthesized by the pho-
sphomutase enzyme (PEP) (Bowman, Mcqueney, Barry, &
Dunawaymariano, 1988; Metcalf & Van der Donk, 2009).
Certain phosphonate-utilizing genes are required to access P
from a C-P bond, with the specific pepM gene associated with
microbial phosphonate production. Around 5% of microbes
present in global soils contain this gene (Yu et al,, 2013). In
soils, phosphonates are found as side groups, typically on

exopolysaccharides and glycoproteins and additionally in the
polar head groups of membrane phosphonolipids. This is
suspected to provide structural rigidity for certain molecules,
as the covalent C-P bond is strong enough to resist the action
of phosphatases in soil systems, resulting in immunity to
enzymatic degradation (Hilderbrand & Henderson, 1983).

Phosphonate-utilizing microorganisms typically reside in
anaerobic environments, such as wetlands or deep in unsat-
urated soils where redox values are lower (Schowanek &
Verstraete, 1990). The cycle of seasonal soil saturation and
drying may promote the release of phosphates temporarily,
but in the long term, as these cycles become exacerbated, we
propose phosphonate formation will increase. This is
because, although P availability is enhanced in this cycle, as
time progresses, anaerobic processes will dominate. When a
dry soil experiences the initial release of P upon flooding, it
also experiences an increase in bacterial activity. With
increased productivity and no oxygen replenishment, even-
tually the onset of anoxia will occur and consequently, an
increase in anoxic microbial processes (Baldwin &
Mitchell, 2000). Based on the formation processes involved
in phosphonate C-P bond production, it is likely that during
the predicted increases in frequency and duration of
saturated soil conditions in autumn/winter seasons, an
increase in concentrations of phosphonates will occur
(Wu et al., 2005). During soil saturation, it is shown that soil
moisture positively affects microbial biomass (Iovieno &
Baath, 2008). Extended periods of soil saturation, for exam-
ple over 3 months, are expected to increase expression of
the proteins within anaerobic bacteria that control metabo-
lism (Wu et al., 2005). Often, in anaerobic soil systems,
there is an increase in diversity and abundance of pho-
sphonate biosynthetic genes that are required to process the
reduced P forms (Yu et al., 2013).

Anthropogenic sources of phosphonates for the soil sys-
tem originate largely from the agricultural industry,
through application of herbicide treatments. Most widely
applied is the compound N-(phosphonomethyl) glycine,
known more commonly as glyphosate (Benbrook, 2016).
Through enzymatic degradation of this compound by
Arthrobacter  atrocyaneus ATCC 13752 (Pipke &
Amrhein, 1988), the metabolite aminomethyl phosphonic
acid (AMPA) is formed (Figure 4), which is a simple chain
phosphonate (Botta et al., 2009; Forlani, Mangiagalli, Niel-
sen, & Suardi, 1999). Glyphosate usage in soils is common,
with usage having increased 14.6-fold in the space of just
20 years as weed resistance increases (Benbrook, 2016).
Since 1974, 8.6 billion kg of this compound have been
applied to soils globally, leaving a multitude of phosphonate
breakdown products in soils (Benbrook, 2016). Given the
predicted increase in soil moisture and consequent reduced
redox potential of most soils under climate change, these
compounds are more likely to persist. However, pressure is
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increasing to ban this phosphonate compound globally,
with expectations that it will no longer be in circulation by
2024 (European Commission, 2020).

2.2 | Degradation and fate of
phosphonate compounds in the soil system

Phosphonates frequently undergo adsorption in soils
(Held, 1989), as they have a strong tendency to adsorb
onto mineral surfaces at a pH of around 6.5-8.5 (Stone,
Knight, & Nowack, 2002). Certain surfaces favourable for
phosphonate bonding include calcium carbonates (Xyla,
Mikroyannidis, & Koutsoukos, 1992), barium sulphates
(Black et al., 1991), zinc oxides (Nowack & Stone, 1999a),
iron oxides (Nowack & Stone, 1999b) and clays
(Fischer, 1992). Adsorption of a phosphonate will impact
its ability to degrade in a soil system, with formation of
metal complexes commonly known to decrease biode-
gradability. This phenomenon has been demonstrated on
the phosphonate nitrilotriacetate by the bacteria Che-
latobacter heintzii, where rate of degradation slowed but
did not completely stop under the influence of metal
complex surface adsorption (Bolton & Girvin, 1996).
Additionally, it is theorized that phosphonates with a
higher adsorption affinity will be more slowly degraded
in a heterogenous soil system than in a homogenous sys-
tem, which has been found to be true for glyphosate
(Zaranyika & Nyandoro, 1993). Degradation can occur
via biodegradation, chemical degradation and oxidative
degradation (Nowack, 2003).

OH
/
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O

T
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H
FIGURE 2 Phosphonate structure demonstrating the

arrangement of single and double bonds to the P element (Svara
and Hofmann (2008))
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2.3 | Biodegradation

Biodegradation occurs via the enzymatic degradation of
the C-P bond by adaptive microorganisms, which metabo-
lize phosphonates as nutrient sources for growth
(McMullan & Quinn, 1993). Phosphonate degradation and
utilization is common among prokaryotes, eubacteria and
fungi (Wanner, 1994). Certain bacterial strains, including
Arthrobacter, were found to degrade amino pol-
yphosphonates from a variety of soils (Schowanek &
Verstraete, 1990). Phosphonobutane tricarboxylic acid has
also been shown to degrade under microbial action when
P scarcity occurs, with rapid degradation by Pseudomonas
(Raschke, Rast, Kleinstuck, Sicius, & Wischer, 1994). It is
useful to note, however, that it is possible for simultaneous
utilization of phosphonates and phosphate to occur, with
Pseudomonas paucimobilis strain MMM101la demonstrat-
ing this (Schowanek & Verstraete, 1990). The predominant
route for microbial utilization and therefore breakdown of
phosphonates is through the C-P lyase enzymatic pathway
(Ternan, McMullan, & Quinn, 1998). The broad specificity
of the C-P lyase multienzyme complex is not fully charac-
terized (Hove-Jensen, McSorley, & Zechel, 2011). How-
ever, research conducted on Escherichia coli is
beginning to shed some light on the catalytic machin-
ery for the C-P lyase reaction (Chen, Ye, Zhu, Wan-
ner, & Walsh, 1990; Yakovleva, Kim, & Wanner, 1998).
C-P lyase activity is only inducible under conditions of
phosphate limitation (Chin, McGrath, & Quinn, 2016).
This enzyme is capable of dephosphonation of a wide
range of structurally diverse phosphonates (Chin
et al., 2016). These polypeptides catalyze C-P bond
cleavage, in which alkylphosphonates are converted to
the corresponding alkanes and inorganic phosphate
(Wackett, Shames, Venditti, & Walsh, 1987).

With a known abundance of phosphonate-utilizing
microbes located in anaerobic environments compared to
aerobic systems (van der Wal, de Boer, Lubbers, & van
Veen, 2007), it is our conjecture that biodegradation of
phosphonate compounds is likely to increase under cli-
mate change as a result of increases in the occurrence
and duration of seasonally saturated soil systems. With a

Phosphoenolpyruvate Phosphonopyruvate Phosphonoacetaldehyde
(I)H O OH I (|)H
HO e} /Lk PEP mutase PnPy decarboxylase 0
- HO CH, C CH
\ﬁ/ \ﬁ oH =—— \||3/ zr SoH T Ho\ﬁ/ e
0 CH, g o) 0

FIGURE 3

Pathway for the formation of C-P compounds through the rearrangement of phosphoenolpyruvate to phosphonopyruvate by

the phosphomutase enzyme (PEP) mutase enzyme (White & Metcalf, 2007)
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predicted increase of anaerobic C-P bond-breaking micro-
organisms in saturated soils, reduced P cycling will
increase as phosphonate compounds in the soil system
will be utilized in a higher capacity. It is likely that the
process of methanogenesis will also be affected by an
increase in phosphonate bond-breaking processes (Pasek
et al., 2014). During more intensive dry seasons, generally
predicted under climate change, there is likely to be a
negative impact on the biodegradative processes that are
involved in C-P bond cleavage. Lower microbial growth
rates are observed on air-dried soils (Iovieno & Bééth,
2008) and in extreme drying events microbial mortality is
common (Baldwin & Mitchell, 2000). In instances of
extreme drought, the death of microbes will increase
mineralization of P (Baldwin & Mitchell, 2000).

24 | Chemical degradation

The strength of the covalent C-P bond in phosphonate
compounds requires long timescales for its breakdown,

N\

Glycine

Sarcosine
oxidase

biomass O|
HZN\)\
O OH

|

Microbial
biomass

The breakdown products of glyphosate via the enzymatic action of microorganisms (Grandcoin et al., 2017)

along with extreme chemical conditions (Kononova &
Nesmeyanova, 2002). It has been proven, however, that
chemical degradation does occur naturally in the environ-
ment. In one study, the phosphonate EDTMP
(ethylenediaminetetra (methylene phosphonic acid)) was
left at room temperature and at a pH range of 6.5-8.5, and
hydrolysis resulted in the formation of phosphate, phos-
phite, and a simpler chain phosphonate (Tschabunin,
Schwedt, & Fischer, 1989). It is suspected that the metal
that a phosphonate is bound to has a large impact on its
ability to chemically degrade (Nowack, 2003).

Under saturated autumn/winter soil conditions, the dif-
fusion of atmospheric oxygen into the soil is reduced.
Anaerobic microbes flourish under these conditions and
due to their microbial activity, CO, accumulation will
occur. This will cause the soil solution pH to drop in cal-
careous alkaline soils specifically (Fageria, Carvalho, San-
tos, Ferreira, & Knupp, 2011; Nikoli¢ & Pavlovi¢, 2018). In
these soils, the lowering of soil pH is likely to result in a
reduction in the chemical degradation of phosphonates
(Lesueur, Pfeffer, & Fuerhacker, 2005). Soil saturation will
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Fe(Il) (Pezeshki & DeLaune, 2012), which in turn will
facilitate the chemical conversion of phosphonates to phos-
phates in metal-phosphonate complexes (Nowack, 2003).
Despite this, degradation is negligible for Fe(I)-
phosphonate complexes in saturated systems despite the
reaction being hydrolysis (Steber & Wierich, 1987). In a cir-
cumstance where the seasonal change from saturated soil
conditions to dry soil conditions is occurring much more
rapidly, chemical degradation of phosphonates is likely to
increase. This is because, as waterlogging encourages for-
mation of Fe(II)-phosphonate complexes, and as seasonal
change occurs, subsequent rapid soil drying will result in
the rapid introduction of oxygen to the soil. This will result
in a proportion of the residual Fe(II)-phosphonate com-
plexes degrading before converting to Fe(III)-phosphonate
complexes. The overall effect of this is that during rapid
seasonal changes a decrease in soil phosphonate concentra-
tions is likely to occur.

2.5 | Oxidative degradation

Oxidative degradation of phosphonates occurs in soils
when metal oxides are abundant. A study conducted by
Barrett and McBride (2005) demonstrated an accumula-
tion of orthophosphate in common soils from the short
chain phosphonate AMPA (aminomethylphosphonic
acid) with the addition of an oxide. Abiotic degradation
is the process responsible for this, with manganese
(Mn) in particular, driving C-P bond cleavage at the
metal oxide surface. As with all other phosphonate deg-
radation processes, the metal itself plays the largest part
in whether a phosphonate compound remains bound to
soils or is released and degraded. Cu®' appears to
inhibit degradation, with the metal-phosphonate com-
plex formation favoured, thus limiting the transition of
the phosphonate to reactive oxidation sites (Barrett &
McBride, 2005).

The oxidative degradation of metal-phosphonate
complexes does not appear to be connected to whether
a soil environment is oxic or anoxic and for this reason
is unlikely to be affected by the climatic changes
predicted by the IPCC (Barrett & McBride, 2005; Mas-
son-Delmotte et al., 2018). However, with more oxygen
sites available to bond for non-metal phosphonate com-
plexes during periods of extreme soil drought in many
northern-hemisphere temperate spring/summer seasons,
there is likely to be an increased conversion of pho-
sphonate to phosphate (Yu et al., 2013). Oxidative pro-
cesses, however, will not affect soil phosphonate
transformation and cycling during flooding events
(Pasek et al., 2014).

Phosphites (+3) are compounds that contain the phos-
phite ion (HPO;)*~ and are the salts of phosphorous acid.
Despite phosphites being a group of highly soluble com-
pounds, they are kinetically stable in the soil environ-
ment and can account for between 10 and 30% of all P
compounds on the planet (Figueroa & Coates, 2017). This
group of compounds is bio-accessible and although
this fact has been known since the 1950s, its role in bio-
geochemistry is frequently overlooked (Adams &
Conrad, 1953). Hypophosphites (41) are the next reduced
P group along from phosphonates in the P reduction
chain (Rhodehamel, Pierson, & Leifer, 1990).

3.1 | Formation and inputs of the (hypo)
phosphites to the soil system

Whether microorganisms can biogenically produce phos-
phite compounds is poorly understood; theories exist that
suggest the reduction of phosphonates as the primary
pathway for (hypo)phosphite biogenic formation
(Metcalf & Wanner, 1991; Pasek et al., 2014; White &
Metcalf, 2007). Phosphonate degradation has been shown
to produce methane and inorganic phosphate upon the
breakdown of the C-P bond (Karl et al., 2008). Through
this process, via the action of the C-P lyase enzyme, a
phosphate radical intermediate is formed (Buckel, 2013)
and under a reduced redox environment, such as a satu-
rated soil, the facilitation of phosphate radical
rearrangement into phosphite occurs (Pasek, 2008; Pasek
et al., 2014). Additionally, phosphonates that contain
hydroxyl or carbonyl groups tend to favour formation of
phosphites over phosphates during C-P bond cleavage
(Freeman, Irwin, & Schwalbe, 1991).

In a changing soil climate, the process of phosphite
formation is likely to increase through the formation of
anoxic conditions and subsequent increase in pho-
sphonate bond-breaking processes (Bains, Petkowski,
Sousa-Silva, & Seager, 2019; Pasek, 2008). With an
increase in soil anoxia, along with a chemically induced
increase in soil phosphite concentration, the concentra-
tion of phosphite-utilizing microbes will also increase.
This will amplify the rate at which phosphite is con-
sumed within soils (Bisson et al., 2017). The counter
effect is likely to be periods when soils start to dry and
there is an increase in oxygen concentration as the
increased presence of phosphate may inhibit the uptake
of phosphite by microorganisms that otherwise would
have been capable of utilizing phosphite for growth, with
phosphate being favoured as a substrate (Foster,
Winans, & Helms, 1978).
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Anthropogenic inputs of phosphite to the environ-
ment are well documented, with the agricultural industry
annually introducing phosphite products marketed as
biostimulators into the soil system (Gomez-Merino &
Trejo-Tellez, 2015). Typically, they are applied as potas-
sium phosphite to soils, which has the benefit over phos-
phate of its fast P release capability, due to the high
mobility of phosphite molecules to plant root systems.
This occurs because phosphite has one less oxygen
molecule than phosphate, resulting in higher solubility
(Gomez-Merino & Trejo-Tellez, 2015; Lovett &
Mikkelson, 2006). In many regions of expected increased
winter rainfall, predicted climate change will result in
increased phosphite concentrations through chemical
reduction of phosphate in saturated soils, resulting from
decreases in Eh (Pasek et al., 2014). This means there will
be an increase in free phosphite ions that can easily be
taken up through plant root systems (Gomez-Merino &
Trejo-Tellez, 2015). As discussed above, phosphite is
more readily available for plant uptake than phosphate,
and therefore is likely to have a positive effect on plant
growth throughout periods of extended soil saturation
(Lovett & Mikkelson, 2006).

3.2 | Degradation and fate of (hypo)
phosphite compounds in the soil system

The pathways for phosphite and hypophosphite oxida-
tion are relatively well studied for assimilatory phos-
phite oxidation (APO) (Figueroa & Coates, 2017),
alongside dissimilatory phosphite oxidation (DPO)
(Schink & Friedrich, 2000). Assimilatory phosphite oxi-
dation is the process in which P from phosphite sources
is converted into phosphate, whereas DPO is the biolog-
ical process by which phosphite acts as an electron
donor and energy source for growth and C fixation
(Schink & Friedrich, 2000). Both phosphite and
hypophosphites have been identified as sole P sources
for some common soil microorganisms, such as E. coli,
Bacillus  sp., Pseudomonas fluorescens, Klebsiella
aerogenes and Erwinia sp. (Foster et al., 1978; Lauwers &
Heinen, 1977; Metcalf & Wanner, 1991). Utilization is
preferable under P scarcity, with phosphite and
hypophosphite metabolization often linked together in
their mechanisms of degradation. Research suggests
that hypophosphite oxidation occurs through a phos-
phite intermediate as the genes involved in phosphite
oxidation are the same as those used for growth when
hypophosphite is utilized (MetCalf & Wolfe, 1998).
With phosphite being up to 1,000 times more soluble
than phosphate and the phosphate/phosphite redox
potential being low, utilization of phosphite and

hypophosphite is completed efficiently (Pasek, 2008;
Roels & Verstraete, 2001; White & Metcalf, 2007).

The microbial process of APO occurs in around
20 microbial isolates (Figueroa & Coates, 2017) and,
unlike the phosphonates, a multitude of enzymes are
capable of completing the oxidation process through
bond breaking and oxygen acquisition (White &
MetCalf, 2007). This includes some C-P lyases, but not
all, which are known to be the only group of enzymes so
far identified for phosphonate breakdown, implying that
specific microbes have the ability to utilize multiple
forms of reduced P species to access P (MetCalf &
Wanner, 1991). It is theorized from the knowledge of the
workings of C-P lyase-driven degradation, that the P-H
bond undergoes radical cleavage (Kamat, Williams, Dan-
gott, Chakrabarti, & Raushel, 2013).

The process of DPO works by conserving energy
through coupling with the reduction of sulphate
(S0,%), carbon dioxide (CO,) or nitrate (NOs-), which
produces energy to drive ATP formation. Dissimilatory
phosphite oxidation uses phosphite as its sole electron
donor to build up a source of phosphate in the medium
(Poehlein, Daniel, Schink, & Simeonova, 2013). The
process requires a higher concentration of phosphite
than APO and is the likely reason that APO is more
commonly used as a method of P accumulation from
phosphite/hypophosphite compounds. The DPO pro-
cess, however, produces more phosphate than APO
and is perhaps why areas of phosphite enrichment,
such as marine sediments, would prefer DPO pathways
to access P (Figueroa & Coates, 2017).

With both APO and DPO occurring under redox condi-
tions only (Sosa, 2018), the conversion of phosphite to phos-
phate will require highly saturated conditions with low
redox, which is unlike the other reduced P compounds,
which require oxic environments to push the transformation
of reduced P to the fully oxidized phosphate form. In satu-
rated soil systems, it is likely that phosphite will become
depleted (Figueroa & Coates, 2017), even though its biogenic
existence is dependent on the very same soil conditions.

4 | PHOSPHINES AND THE SOIL
SYSTEM

Although considered negligible in the environment, it is
suggested that up to 10% of the global P flux is attributed
to phosphine release into the atmosphere (Morton &
Edwards, 2005). The lowest P valence state compounds
are known as the phosphines, with a P oxidation state of
—3. Phosphines are primarily volatile compounds that
are released under biogenic conditions where an environ-
ment is highly reducing (Niu et al., 2013), such as



KEHLER ET AL.

u Ppe.m ‘zpumalcpég;—._;‘: b

waterlogged soil systems. Phosphine (PH;) can also be
matrix-bound within soils and sediments, typically
increasing in concentration with depth due to increasing
anaerobia and lowered redox (Ding et al, 2005;
Gassmann, 1994; Yu & Song, 2003; Han et al., 2011b). Pure
phosphine gas is odourless and colourless, but when pro-
duced biogenically in the natural environment it has a
garlic-like odour (Lyubimov & Garry, 2010). It is toxic to
most living things (Latimer, 1952); however, concentrations
detected in our environment are significantly lower than in
the human health risk concentration of 1 mg/m’
(WHO, 1988), with typical trophospheric concentrations at
around 1 ng/m3 (Glindemann, Bergmann, Stottmeister, &
Gassmann, 1996).

4.1 | The formation and inputs of
phosphine to the soil system

The occurrence of phosphine in the natural environment,
as well as its role in the biogeochemical cycling of P, has
been in dispute for over half a century due to the poor
characterization of its origin (Cao, Liu, Zhuang, &
Glindemann, 2000; Mackey and Paytan, 2009). It is under-
stood that phosphine gas is formed through the break-
down of alkali metal or alkali earth metal phosphides in
soil systems with the addition of water, which comprises
several chemical reactions (Mackey and Paytan, 2009).
Phosphine gas release is focused around areas of organic P
abundance, such as wetlands, slurries and marshlands,
and around decaying matter (Eismann, Glindemann,
Bergmann, & Kuschk, 1997; Han et al., 2010). Reducing
conditions are a key factor for natural phosphine release
from soils, as it is likely to be formed through the reduction
of phosphate upon acceptance of electrons from donor spe-
cies, such as glucose, starch, methanol and sodium acetate
(Cao et al., 2017). This explains why anaerobic soils and
other environments with these conditions have been identi-
fied as areas of high phosphine gas release (Devai &
Delaune, 1995; Glindemann et al., 1996).

Matrix-bound phosphine is present in soils at increas-
ing concentration with depth (Gassmann, 1994). It has
been reported that matrix-bound phosphine is promoted
at low pH; this is likely to be a result of acidic bio-
corrosion of metal particles or of metal phosphides (Ding
et al., 2005). Research conducted by Yu and Song (2003)
demonstrated a strong correlation (©* 0.82) between
organic P and matrix-bound phosphine concentrations.
Preliminary investigations have indicated that phosphine
content is positively correlated with total anaerobic
microorganisms, organic phosphate compound-dissolving
bacteria, denitrifying bacteria, and the activities of alka-
line phosphatase and dehydrogenase. An example is

WILEY_L =

manure fermentation processes, such as those induced by
anaerobic microbial metabolism, which produces mea-
surable phosphine release (Eismann et al., 1997). The
strong correlation between highly anaerobic conditions
and phosphine gas production (Glindemann et al., 1996;
Han et al., 2010) suggests that as soils become increas-
ingly waterlogged under climate change, phosphine pro-
duction is likely to increase.

The agricultural industry is the largest producer of
anthropogenically produced phosphine globally, with
9,800 t of phosphine fumigant products per year being
manufactured (Degesch America, Inc., personal commu-
nication, 2002). Its primary use is as an agricultural fumi-
gant, widely used for its effective disinfestation of stored
grains (Tyler, Taylor, & Rees, 1983), often in the form of
magnesium, aluminum or zinc phosphide pellets, which
release phosphine upon contact with atmospheric mois-
ture. Alternatively, the fumigant can be applied directly as
phosphine gas to crops (Gurusinghe, 2014). This market is
expected to grow rapidly due to climate change, with
increases in insect pest populations expected. A compound
annual growth rate in sales of 5.31% is expected to occur
up until the year 2025 (Verified Market Research, 2020).

With the consumption of phosphine in the agricultural
industry growing, the predicted IPCC increase in annual
rainfall is likely to bring with it an increased deposition of
phosphine-derived phosphate from the atmosphere as phos-
phine gas has a relatively short half-life. Depending on the
type of fumigant used, a fumigant that has not had time to
convert to other P forms may have implications for phos-
phine fluxes to saturated soils from the atmosphere. Eismann
et al. (1997) reported that soils act as sinks to phosphine gas
when in the presence of the oxidized Fe(IIT) form, but not in
the presence of Fe(II). However, flux rates remain
unchanged in both aerobic and anaerobic sites, implying that
climate change will not directly affect the ability of soils to
act as phosphine sinks. With phosphine concentrations likely
to increase over the coming years due to increased use in
agriculture, alongside a suspected sharp rise in Fe(III) soil
concentrations in summer months as Fe(Il) is easily oxi-
dized, it is likely that dry soils will act as a successful sink of
phosphine gas, thus leading to a general increase in soil/
matrix-bound phosphine concentration.

ience

4.2 | Degradation and fate of phosphine
compounds in the soil system

Unlike other reduced P compounds, phosphine is not
biologically accessible and is toxic to both microorgan-
isms and plants (Glindemann, Edwards, & Morgenstern,
2005). Matrix-bound phosphine is liberated into the toxic
gaseous form through either acid (typically H,SO, or
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HCI) or alkaline (typically NaOH) digestion, as proven in
laboratory experiments (Han et al., 2010). Alternatively,
the acid or alkaline digestion will hydrolyze non-volatile
solid phosphides located readily in soils as phosphine gas
(Glindemann et al., 2005).

Gaseous phosphine release from rice paddy fields is
higher during the evening, when compared to concentra-
tion fluxes measured during the daytime (Gassmann and
Glindemann, 1993); this is explained purely by the autox-
idation of phosphine in the atmosphere. During evening/
night-time hours UV levels are reduced, thus PH; is not
autoxidable and can accumulate and disperse. During the
daytime the UV light induces cleavage of PH; through
the reaction PH; — H + PH,, with theoxidation of these
radicals into soluble phosphate (Gassmann and
Glindemann, 1993). Due to phosphine's high vapour
pressure and high Henry's Law Constant, phosphine near
the soil surface diffuses into the atmosphere, where it
degrades (Frank & Rippen, 1987).

Autoxidation is rapid and phosphine gas does not per-
sist in the atmosphere for long (Mackey and Paytan,
2009). As a highly reactive compound, it reacts with
hydroxyl radicals in the air at the rapid rate of
1.5 x 107'* cm?®/mol/sec, meaning that in conditions
with a typical concentration of hydroxyl radicals, the
half-life of phosphine is 28 h (Gurusinghe, 2008). The
eventual oxidation products from this process are P oxy-
acids and inorganic phosphate, which are then deposited
back into the soil system through rainfall, closing the
reduced P cycle (Gurusinghe, 2008). Within the atmo-
sphere, upon exiting the soil system, phosphine also can
compete with other greenhouse gases such as CO, and
CH, for the acceptance of the hydroxyl radicals, conse-
quently having a coupled greenhouse effect and indi-
rectly contributing to the deterioration of the ozone layer
(Han, Zhuang, Liu, & Glindemann, 2000).

Based on the knowledge that autoxidation is common
for phosphine that persists in the atmosphere, if it is unable
to find a sink then it is likely that soils will see an increase
in phosphate deposition as mean rainfall increases for the
autumn/winter months. This is demonstrated within the N
cycle, where heavy rainfall increases the deposition of N
from previously gaseous forms (Hornung & Langan, 1999).
Further to this, wetland soils are known to be a common
source of phosphine gas (Eismann et al, 1997, Han
et al., 2010, Han et al., 2011a), thus an increase in phos-
phine production is likely to follow. With an increase of
phosphine production, a proportion will be fixed in the soil,
creating an increase of soil phosphine flux from the soil to
the atmosphere (Eismann et al., 1997). Positive phosphine
emission flux is also increased with the addition of phos-
phate to a system (Devai & Delaune, 1995), so there is an
expectation that as soil phosphate levels increase as a result

Soil Science

of climate change, residual soil phosphate will further
encourage phosphine emission under extreme saturated soil
conditions.

5 | ANALYTICAL METHODS AND
LIMITATIONS

The limited range of literature about the reduced P com-
pounds is almost entirely due to the analytical limitations
that exist for their accurate quantification. Reduced P com-
pounds, although ubiquitous, appear in trace levels within
the natural environment. Although only existing in low con-
centrations, different forms may be significant pathways, but
due to their transient nature, we do not appreciate their
importance. In addition, much of the natural environment is
highly oxidizing and a sample removed from its low redox
formative environment may have a tendency to oxidize if
unstable. Currently, a range of instrumental techniques exist
which allow analysis of these compounds with a high level of
accuracy able to quantify typical environmental concentra-
tions. However, these techniques are expensive and specialis-
tic, often requiring multiple preparation steps to complete an
analysis. Due to the distinctive nature of each of the reduced
P forms, each has a different preferred and suitable method
for its analysis. It is often the case that a specific form of
reduced P is analysed differently depending on the type of
environmental sample in which it occurs.

5.1 | Phosphonates

Phosphonates are by far the simplest to analyse and quantify
and currently three methods exist for their measurement.
The most commonly used method is *'P—NMR, which is
well suited to the analysis of environmental samples as the
samples are treated in a way that preserves their condition
close to collection. >'P-NMR itself has a low detection limit,
typically down to 0.8 mg/L (Oromi-Farrus, Minguell, &
Canela-Garayoa, 2013), with a chemical shift range of —20 to
+5 for phosphonates. Recent developments mean that it is
now known how to use this method and it is widely accepted
as the best method available (Kiihl, 2008).

5.2 | (Hypo)phosphites

Ion chromatography followed by inductively coupled
plasma mass spectrometry (ICP-MS) or inductively
coupled plasma optical emission spectrometry (ICP-OES)
analysis are the preferred methods for analysis and quan-
tification of phosphite and hypophosphite compounds
(Borza et al., 2014; McDowell et al., 2004).
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5.3 | Phosphines

The development of phosphine analytical techniques has
continued over many years, with a universally agreed
robust methodology using gas chromatography with the
addition of a nitrogen-phosphorus detection unit (NPD)
(Glindemann et al., 1996, 1998, 2005; Morton, Glindemann,
& Edwards, 2003). The NPD add on can detect concentra-
tions as low as picomolar concentrations, which are vital for
such a trace gas. The standard method of environmental
sampling is through a closed chamber system placed
directly over a soil or sediment sample, to prevent gas escap-
ing and allow for a concentration build up prior to analysis.
The chambers are always opaque as photodegradation
occurs rapidly for phosphine compounds. The sample is col-
lected from the closed chamber with a polypropylene
syringe and then passed through a drying tube for the
removal of H,O, CO, and H,S. This sample is inserted into
a gas chromatography system (GC), where cryotraps cool
the samples to -110°C before entering the injection port.
The thermo-ionic NPD is capable of detecting phosphine at
concentrations as low as 0.1 ng/m3 (Han et al., 2000;
Glindemann and Gassman, 1993).

When considering matrix-bound phosphines, they
need to be released from the soil profile prior to GC-NPD
analysis, through acid digestion using sulphuric acid
(Nowicki, 1978). The soil sample must be extracted under
an N atmosphere to preserve its integrity and extraction is
carried out at 100°C. The released phosphine is collected
directly into a polypropylene syringe ready for GC analysis
(Han et al., 2000). This is regarded as the only accurate
method for phosphine measurement that currently exists.

6 | GAPSIN KNOWLEDGE AND
OPPORTUNITIES FOR FUTURE
RESEARCH

A basic understanding exists of the processes that govern
the cycling of reduced P compounds, but major gaps exist
in our understanding of the biogenic redox processes that
transform and cycle P. However, with developments in the
methods of reduced P analysis, the difficulties associated
with the study of reduced P are being overcome and their
relevance is beginning to be recognized. Studies reveal that
reduced P is in fact an important source of nutrients for
some microorganisms that rely on phosphonate and (hypo)
phosphite to complete biological processes (Figueroa &
Coates, 2017; Nowack, 2003; Raschke et al., 1994; White &
MetCalf, 2007). Despite the knowledge that cycling of
reduced P compounds occurs and is important in some
ecosystems, there is still a lack of knowledge on how P
redox biochemistry impacts P cycling in soils.

ience

The cycling of chemically reduced forms of P, has the
potential to influence a large amount of soil processes, espe-
cially in a changing soil environment. Although chemically
reduced P compounds are often found only in small concen-
trations, this is likely in part to be due to the difficulties in
measuring and quantifying them as outlined above, but also
due to their often transient nature, and in many cases their
overall rates of production and role in the P cycle in soils
could be much higher than currently considered. Climate
change poses many questions about the future of our soils
globally, with changes to P cycling undoubtedly a huge cause
for concern (Ockenden et al., 2017). The predicted increase
in patterns of drought followed by flooding in many regions
may promote phosphate release that would otherwise be
trapped in soils, aiding plant growth in some low-P soils
(Bunemann et al., 2013; Forber et al., 2017), but in other soils
these weather patterns may have more negative impacts
(Bunemann et al., 2013). The processes involved in the
cycling of reduced P compounds are not usually taken into
account when theorizing how climate change will impact
our soils, but their behaviour under different soil conditions
provides sources and sinks of P that are not accounted for.

In summary, in regions where climate change results
in increases in soil saturation levels, reduced P com-
pounds will have an impact not only on an increased
release of phosphate to soils, but also on the plant ecosys-
tems associated with those soils through mineralization
processes and P availability (Table 2). During periods of
drought, the impacts of reduced P forms are predicted to
be negligible, but the soil biochemical changes that occur
during periods of flooding will have a secondary impact
on soils during periods of drought. External influences
will impact heavily on this as agricultural consumer mar-
kets develop. The quantity of chemicaly reduced P com-
pounds entering soils will drive microbial processes to
cycle some synthetic compounds through the biogenic P
utilization methods described throughout this review.

Although we review changes that might be observed
through the effects of climate change within Europe and

TABLE 2 Predictions of the changes in reduced P prevalence
in soils under the changing climate conditions of prolonged
drought and saturation.

Predicted Predicted

prevalence in prevalence in
Phosphorus soils under soils under
group saturated conditions drought conditions
Phosphate Increased Increased
Phosphonate Increased Decreased
(Hypo)phosphite Increased Decreased
Phosphine Increased Decreased
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other temperate northern hemisphere climates, a full
quantification of chemically reduced P within soils has
not been conducted due to lack of data and difficulties in
measurement and it is therefore difficult to predict how
much of an impact reduced P cycling will have on soil
health. However, the world's soils are changing, and with
a prediction that heavy precipitation events will increase
by up to 24% and decrease by 20% during droughts
(Fischer et al., 2014), soil environment alterations are
expected to be drastic (Green et al., 2019). With so many
issues surrounding the future of P in soils, it is important
to focus on the developments in the reduced P sector, not
only regarding alternative ways of cycling P through
microorganisms and plant systems, but also to account
for the chemical changes the available forms of phos-
phate are likely to undergo. This will allow for improved
accuracy in modelling the true impact climate change
will have on P in soils.
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