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Abstract: Protected areas (PAs) are a key strategy to reverse global biodiversity declines, but they
are under increasing pressure from anthropogenic activities and concomitant effects. Thus, the
heterogeneous landscapes within PAs, containing a number of different habitats and ecosystem
types, are in various degrees of disturbance. Characterizing habitats and ecosystems within the
global protected area network requires large-scale monitoring over long time scales. This study
reviews methods for the biophysical characterization of terrestrial PAs at a global scale by means
of remote sensing (RS) and provides further recommendations. To this end, we first discuss the
importance of taking into account the structural and functional attributes, as well as integrating a
broad spectrum of variables, to account for the different ecosystem and habitat types within PAs,
considering examples at local and regional scales. We then discuss potential variables, challenges and
limitations of existing global environmental stratifications, as well as the biophysical characterization
of PAs, and finally offer some recommendations. Computational and interoperability issues are also
discussed, as well as the potential of cloud-based platforms linked to earth observations to support
large-scale characterization of PAs. Using RS to characterize PAs globally is a crucial approach to help
ensure sustainable development, but it requires further work before such studies are able to inform
large-scale conservation actions. This study proposes 14 recommendations in order to improve
existing initiatives to biophysically characterize PAs at a global scale.

Keywords: protected areas; remote sensing; biophysical characterization

1. Introduction

Protected areas (PAs) are one of the main conservation strategies to counter the current
biodiversity crisis [1]. However, PAs are under ongoing social, economic and environmental
threats, and so the conservation of biodiversity within PAs and the restoration of PAs
constitute one of the main current sociopolitical challenges [2]. The long-term conservation
benefits of PAs depend on timely management actions based on relevant data and models
that can predict the responses of ecosystems to various stress factors [3,4].

Anthropogenic activities and the changes in land use they generate have an impact on
how efficient PAs are at protecting biodiversity globally [5,6]. Moreover, climate change
impacts severely affect PAs, including increased frequency of flooding, soil erosion and
plant water stress [7]. It is increasingly recognized that even large, historically stable
ecosystems (such as the Amazon) are threatened and could undergo regime shifts to
alternative ecosystems within 50 years [8].

ISPRS Int. J. Geo-Inf. 2021, 10, 384. https://doi.org/10.3390/ijgi10060384 https://www.mdpi.com/journal/ijgi

https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0002-0825-7252
https://orcid.org/0000-0001-7025-4733
https://orcid.org/0000-0001-9534-9114
https://orcid.org/0000-0001-5873-2915
https://orcid.org/0000-0001-6794-7328
https://doi.org/10.3390/ijgi10060384
https://doi.org/10.3390/ijgi10060384
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijgi10060384
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi10060384?type=check_update&version=1


ISPRS Int. J. Geo-Inf. 2021, 10, 384 2 of 20

The 2030 Agenda for Sustainable Development (https://www.un.org/sustainable
development/sustainable-development-goals/; accessed 1 June 2021) recognizes that
social and economic development depends on the sustainable management of our planet’s
natural resources. The new EU Biodiversity Strategy for 2030 has further set ambitious
goals and objectives regarding PAs, which include (1) legally protecting 30% of the EU’s
land area and 30% of the EU’s sea area, (2) strictly protecting at least a third of the EU’s
PAs and (3) effectively managing and monitoring all PAs [9]. The forthcoming new global
strategy of the UN Convention on Biological Diversity (CBD) is also likely to set targets
that are more ambitious than those set for 2020. Addressing these challenges requires
large-scale integrated studies that characterize PAs as well as knowledge sharing platforms
where scientists, managers and policy makers can work together to address the challenges
mentioned above [10,11].

Recently, there has been an increase in the attention paid not only to the conservation
of biodiversity within PAs but also to the preservation of important habitat and ecosystem
functions and services [12–15]. Indeed, natural ecosystems provide us, among others, with
drinking water, timber, food, pollination and carbon storage, as well as cultural and spiri-
tual services. This was examined in detail in the Millennium Ecosystem Assessment [16]
and was further reflected in Aichi Target 11 (https://www.cbd.int/aichi-targets/target/11;
accessed 1 June 2021), adopted by CBD parties in 2010. Moreover, habitat and ecosystem
characterizations can provide important complementary insights to the more commonly
used species-based approaches to conservation [17–19].

Remote sensing is considered a valuable source of information for the management of
natural resources and landscapes [20–22], as well as for the development of indicators for
monitoring progress toward international environmental targets such as the Sustainable De-
velopment Goals (SDGs) [23,24]. Available time series allow, among others, the monitoring
of vegetation conditions, landscape and habitat changes, land degradation, the assessment
of ecosystem services, the identification of disturbed areas and the monitoring of the spread
of invasive species [25–28]. They thus help to understand an ecosystem’s response and
resilience to multiple stressors [29]. In this regard, remote sensing has revolutionized our
ability to monitor PAs over the past decade [20,30–33].

Several broad types of applications can be supported by RS data and models in relation
to PAs. A first type would be the near real-time monitoring of biodiversity, pressures and
threats, environmental anomalies (such as weather and vegetation) and events such as
fires, floods and storms, all highly relevant to inform, among other things, day-to-day PA
management, enforcement and risk management [34–36]. A second type of application
would be the mapping and assessment of specific habitats and ecosystems, relevant for,
for example, management plans, monitoring strategies or condition assessment. This
latter type of study paves the way for a third type of application that extends specific
habitat or ecosystem mapping and assessment methods and integrates this information
to systematically characterize PAs based on their ecological complexity, relevant for, for
example, zoning plans, assessment of representativeness, prioritization of PAs or the
identification of new areas requiring protection [37–40]. This paper focuses on these
biophysical characterization applications.

While there have been a few attempts to characterize landscapes from an ecological
perspective from local to regional scales [41–45], global characterization of PAs is urgently
needed for the identification of gaps in current protection efforts, the systematic design
of complementary PAs, raising awareness about the ecological values of PAs and to sup-
port international policy initiatives aimed at preserving biodiversity and ensuring a high
provision of ecosystem services [46]. Moreover, global biophysical characterization of PAs
can also facilitate and complement biodiversity-based protection initiatives and charac-
terizations [47–49]. As an example of previous global efforts, the “terrestrial ecoregions
of the world” [6,50] represent a set of large, ecologically meaningful regions at the global
scale, containing distinct assemblages of natural communities and species, but they do not

https://www.un.org/sustainabledevelopment/sustainable-development-goals/
https://www.un.org/sustainabledevelopment/sustainable-development-goals/
https://www.cbd.int/aichi-targets/target/11
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provide additional information on ecosystems contained within those ecoregions and have
instead been used to prioritize the importance of conservation of larger regions [51].

This study seeks to provide recommendations for the biophysical characterization of
terrestrial PAs at the global scale by means of RS. To this end, in Section 2, we discuss the
importance of taking into account structural and functional attributes, as well as integrating
a broad spectrum of variables, to account for the different ecosystem and habitat types
within PAs, reviewing examples at the local and regional scales. In Section 3, we discuss
potential candidate input variables at the global scale for the characterization of PAs, as
well as the challenges and limitations of existing global environmental stratifications and
the biophysical characterization of PAs, and offer recommendations. Computational and
interoperability issues are also discussed, as well as the potential for cloud-based platforms
linked to earth observations to support large-scale characterization of PAs. Finally, Section 4
provides a summary list of recommendations. Although focusing on terrestrial areas, we
also mention a few examples of RS data used to characterize marine protected areas (MPAs).

2. Relevant Ecological Units and Descriptors

In order to comprehend the ecological complexity in PAs, biophysical characterization
of PAs should take into account the different ecosystem and habitat types that are present
within them and distinguish their ecological attributes as much as possible, including
structural and functional attributes. To this end, a wide range of environmental descriptors
should be included in the analysis, including drivers that ultimately shape ecosystems
(Figure 1).
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Figure 1. Overview of the different elements that need to be included and analyzed in the biophysical characterization of PAs.

The assessment of structural attributes, such as vegetation height or heterogeneity
by means of RS, helps distinguish characteristic ecosystems and habitats within PAs
such as forests, wetlands, grasslands, shrublands, dunes and riparian habitats, among
others. Furthermore, RS variables related to functional attributes, such as vegetation
phenology or energy fluxes, have been proven to complement and improve habitat and
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ecosystem classifications based only on structural features by capturing the occurrence of
natural disturbances and vegetation productivity, among others [52–54]. Several studies
have reviewed the use of RS for assessing habitat and ecosystem structure, functions and
condition in PAs at the local and regional scales [24,55–62].

With regard to structural attributes, wetlands, riparian forests and dune habitats, for
example, have been mapped by means of texture- and object-based RS data analysis and
machine learning algorithms in order to characterize and monitor changes in PAs [63–73].
Grasslands have been accurately mapped using time series of RS data [74]. Forest and
shrubland structure has been mapped by means of very high resolution imagery [75–77].
Tree species richness across the tropics has been mapped by means of full-waveform
lidar data [78]. Vegetation structure has been mapped at the local and regional levels in
PAs by means of manned and unmanned aerial vehicles carrying airborne LiDAR and
multi- and hyperspectral sensors [79–81]. Chetan and Dornik [82] quantified changes in
vegetation greenness and structures within Natura 2000 sites over 20 years. The vegetation
heterogeneity and pattern was characterized by means of image texture measures (e.g.,
gray-level co-occurrence matrix) derived from RS data [83–89].

In relation to functional attributes, several studies have quantified vegetation produc-
tivity over time by means of remote sensing-derived indices and found correlation with
biodiversity patterns [90–93]. Moreover, the effect of disturbances such as post-fire forest
vegetation regrowth was studied by means of different RS vegetation indices [94,95]. For
a recent review of methods, sensors and ecosystem structural and functional attributes
assessed by means of RS in PAs, see [33].

Furthermore, given the inherent ecological complexity that can be found within PAs,
their systematic characterization needs to extend specific habitat or ecosystem mapping and
assessment methods so that all habitat and ecosystem components that are present within
them are taken into account [96,97]. By stratifying the natural landscape into homogeneous
regions defining ecological units, the complexity of PAs can be converted into something
that is more manageable and understandable [98]. For example, if a protected landscape
contains both a lake and mountains, separating both elements cartographically would help
inform and support adaptive management. In this regard, methods to characterize PAs
should rely on a comprehensive list of environmental quantitative descriptors based on RS
data, which could be categorized into different topics: (1) vegetation, including structure,
phenology and disturbances; (2) climate; (3) water budget; (4) energy exchanges; (5) terrain
and (6) soil, among others.

As was previously mentioned, vegetation-related variables, such as the amount of
woody and herbaceous biomass or different vegetation indices, can help us distinguish
between broad ecosystem types (such as forests, grasslands or wetlands) by capturing their
structure, phenology and productivity [99]. Climatic descriptors, such as precipitation
and temperature, are also important variables to be included in biophysical assessments
to represent seasonality, extremes and limiting climatic factors [100–103]. Topographic
gradients drive many patterns and processes in hydrology and ecology and are key to
understanding the variation of habitats and biodiversity [104,105]. Water-related variables
are also a good proxy for plant water stress and the presence of aquatic ecosystems and can
therefore supplement the information on climate and vegetation by distinguishing differing
responses to available water [106–108]. Variables that describe the energy exchanges
between the land surface and the atmosphere, as well as the partition of energy into ground
and vegetation, are also essential for ecological assessment and modeling [109].

Soil data are often ignored when characterizing PAs, but more than 25% of the Earth’s
species live only in the soil [110]. Aside from that, soils form the foundation for many
vegetation types and provide key supporting ecosystem services that are crucial for the
maintenance of other types of services [111]. Given that soil biodiversity cannot be directly
monitored by RS, soil descriptors that can be directly or indirectly monitored by RS and
modeling can act as proxies [112,113]. In this regard, soil organic carbon appears to be one
of the main drivers of soil microbial biodiversity at the global scale [114–116], particularly
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in extreme environments with low net primary productivity such as polar [117] and
dryland regions [118]. Soil texture is also a relevant descriptor, since previous research has
demonstrated that soil biota abundance and biodiversity, particularly soil microorganisms,
increase with a decreasing soil particle size [119].

3. Global Characterization of Protected Areas
3.1. Global Input Variables and Data Sources

In the previous section, we reviewed the importance of taking into account the struc-
tural and functional attributes as well as integrating a broad spectrum of variables to
account for the different ecosystem and habitat types within PAs. In this subsection,
we give a list of potential candidate input variables mapped at global scale for global
characterizations of PAs and discuss some limitations and recommendations.

Data sources presenting time series and regular updates at the global scale should be
favored over single records in time to allow for the assessment of change over time and
identify reference conditions. When correlated variables are used, principal component
analysis can often be applied in order to compress them and use the resulting uncorrelated
axes as input for the models to avoid redundant predictors [120].

Given that global RS data usually shows greater inaccuracies than local or regional
datasets, the use of ensembles of different input data or models corresponding to the
same variable might be advantageous, providing more accurate outputs as well as better
conveying uncertainty [121–125]. Aside from that, many biophysical variables mapped
at the local or regional scales are not available at a global scale, which might limit the
relevance of global analyses for local scale management. Therefore, global characterization
of PAs should be primarily aimed at informing larger scale conservation and management
actions and plans, unless no better information is available at the local or regional scales.

Table 1 lists a set of recommended variables that can be used at a global scale for the
biophysical characterization of terrestrial PAs. The list is not exhaustive, but it provides
a wide range of relevant variables, including potential data sources. A more compre-
hensive list of potential variables can be found at the Global Climate Observing System
Programme (https://public.wmo.int/en/programmes/global-climate-observing-system
/essential-climate-variables; accessed 1 June 2021) or the Copernicus Global Land Ser-
vice (http://land.copernicus.vgt.vito.be/PDF/portal/Application.html#Home; accessed
1 June 2021). A table with additional information, including the URLs of data sources,
can be found as supplementary material. For MPAs, previous studies have highlighted
candidate variables measurable by RS which are relevant to characterizing marine habi-
tats [126–130]. They include, among others, bathymetry, the concentration of chlorophyll-
a, sea surface temperature and sea surface salinity. A comprehensive list of these ma-
rine variables—together with access to the RS measurements of these variables—can be
also found at the Copernicus Marine Service (https://resources.marine.copernicus.eu
/?option=com_csw&task=results; accessed 1 June 2021) and the Living Wales Geopor-
tal (https://wales.livingearth.online/data/environmental-variables/marine/; accessed
1 June 2021).

https://public.wmo.int/en/programmes/global-climate-observing-system/essential-climate-variables
https://public.wmo.int/en/programmes/global-climate-observing-system/essential-climate-variables
http://land.copernicus.vgt.vito.be/PDF/portal/Application.html#Home
https://resources.marine.copernicus.eu/?option=com_csw&task=results
https://resources.marine.copernicus.eu/?option=com_csw&task=results
https://wales.livingearth.online/data/environmental-variables/marine/
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Table 1. Relevant biophysical input variables that can be used for the characterization of terrestrial protected areas at
a global scale. Acronyms used: NASA; National Snow and Ice Data Center (NSIDC); U.S. Geological Survey (USGS);
European Space Agency (ESA); Global Land Analysis and Discovery (GLAD); hydrological data and maps based on Shuttle
elevation derivatives at multiple scales (HydroSHEDS); General Bathymetric Chart of the Oceans (GEBCO).

Topic Variable Based on RS Temporal Extent and
Resolution

Spatial
Resolution Producer

Climate

WorldClim bioclimatic
variables (a set of temperature

and rainfall variables
specifically developed for

ecological modeling)

No
Monthly average climate
datasets from the period

1970–2000 and future
climate data

1 km
WorldClim version 2.1:

[101]

Climate Mean annual precipitation

Climate Potential evapotranspiration Yes Multi-daily datasets
from 2001 to present 500 m USGS

Climate Cloud cover Yes
Monthly average from a

15-year period
(2000–2014)

1 km EarthEnv [131]

Vegetation Fire frequency Yes Monthly data from 2001
to present 250 m ESA Copernicus

[132–134]

Vegetation Percentage of woody
vegetation cover Yes Yearly datasets from

2000 to 2020
250 m USGS

Vegetation Percentage of grassland cover

Vegetation
Mean of the maximum and

minimum normalized
difference vegetation index

Yes Multi-daily datasets
from 2000 to present 250 m USGS

Vegetation Leaf area index Yes Multi-daily datasets
from 2014 to present 300 m ESA Copernicus

Vegetation Vegetation height Yes 2019 30 m GLAD [135]

Soil Surface soil moisture Yes Daily datasets from 1978
to present 27.75 km ESA Copernicus

Soil Soil organic carbon
No Reference period:

1905–2016
250 m SoilGridsSoil Soil texture

Soil Soil acidity
Terrain Slope, elevation and aspect Partially 2020 500 m GEBCO

Terrain
Modified topographic index
(can be derived from flow

accumulation)
Partially 2008 500 m HydroSHEDS [136]

Water

Mean Normalized Difference
Water Index (can be derived

from surface reflectance
composites)

Yes Daily datasets from 2000
to present 500 m USGS

Water Water seasonality Yes Reference period:
1999–2018 30 m GLAD [108]

Water
Snow water equivalent

(amount of water contained
within the snowpack)

Yes Daily datasets from 2002
to 2011 25 km NSIDC

Water Snow cover fraction or
frequency Yes

Daily datasets from 2000
to present 500 m NSIDC

Energy Surface albedo

Energy
Land surface temperature

(LST, a mixture of vegetation
and soil temperature)

Yes Multi-daily datasets
from 2000 to present 5.6 km USGS

Energy Mean solar radiation No
Monthly average climate
datasets from the period

1970 to 2000
1 km WorldClim version 2.1:

[101]
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3.2. Global Environmental Stratifications

There are several biophysical characterizations available at the global scale, par-
tially or totally based on RS data and modeling. Metzger et al. [137–139] used a broad
set of bioclimatic variables to stratify the world in 18 environmental zones in order
to support global ecosystem research and monitoring. Ivits et al. [53] mapped global
ecosystem functional types using vegetation phenology and productivity variables by
means of principal components and cluster analysis. Sayre [140] developed a map of
global ecological land units using bioclimate, landforms, lithology and land cover vari-
ables. Tuanmu and Jetz [141] developed 14 remote sensing-based metrics to characterize
habitat heterogeneity at a 1 km resolution at a global scale based on textural informa-
tion extracted from the enhanced vegetation index (EVI) [142] and found out that bird
species richness was strongly associated with habitat heterogeneity. Jung et al. [17] devel-
oped a global map of terrestrial habitat types following the IUCN habitat classification
scheme (https://www.iucnredlist.org/resources/habitat-classification-scheme; accessed
1 June 2021) based on land cover, climate and land use data. Sayre et al. [51] developed
a global classification of world climate regions and world ecosystems based on environ-
mental descriptors, such as landforms, moisture, temperature, vegetation type and land
use. Finally, in [143], a global ecosystem typology, including indicative distribution maps
based on a large set of different environmental descriptors, existing global occurrence
maps of specific ecosystem types and previous global environmental characterizations, was
developed. They used a hierarchical classification system that first characterized ecosys-
tems by their ecological functions and then distinguished ecosystems with contrasting
species assemblages.

These global stratification initiatives are not limited to PAs and are indeed useful for
prioritizing the conservation importance of larger regions. However, RS and modeling
efforts specifically aimed to systematically characterize PAs could provide more relevant
information needed to inform several policy initiatives as well as support management
applications in PAs at regional or global scales, such as the assessment of ecological
representativeness, the prioritization of PAs, connectivity assessments and the mapping of
new areas requiring protection.

3.3. Global Characterization of Protected Areas

In relation to global characterizations within PAs by means of RS and modeling,
in [144], the EODHaM system for characterizing habitats in PAs and surrounding areas
was developed using earth observation data and expert knowledge. They used a semi-
automated statistical procedure based on data related to the terrain, vegetation, water
balance and land use. As part of the Digital Observatory for Protected Areas (DOPA) [145],
in [120], PAs were systematically stratified globally into different habitat functional types
based on remote sensing data and modeling, allowing for the quantification of the similarity
between a reference area (representing a habitat functional type) and the surrounding areas
based on a set of ecological indicators [146–148]. The method also graphically compares
the ecological features of each habitat functional type found in a PA to help identify their
main characteristics and understand the main biophysical gradients that occur at the PA
level (Figure 2). The methodology uses a combination of several multivariate statistical
analyses based on different global predictors that account for the climate, topography,
vegetation and water exchanges. One of the advantages of this methodology is that the
analysis is fully automated and can be performed at different spatial resolutions, which is
especially important when dealing with smaller PAs. Furthermore, the similarity maps that
are produced can also be used to identify new potential areas to be protected to strengthen
ecological connectivity. When used in conjunction with forecasted bioclimatic data, the
approach can further help identify new areas for conservation by considering current and
climate change scenarios [147].

https://www.iucnredlist.org/resources/habitat-classification-scheme
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Figure 2. Example map of the habitat functional types (HFTs) identified in Udzungwa Mountains National Park (Tanzania)
and normalized mean values of the biophysical variables used in the eHabitat+ model (EPSG:4326). NDVI stands for the
normalized difference vegetation index, and NDWI stands for the normalized difference water index. A detailed description
of the study variables and the methodology followed can be found in [120].

When prioritizing and ranking PAs, most studies have focused on species diversity
to measure uniqueness [149,150]. However, biophysical characterizations have also been
used along with biotic variables to perform gap and representation analyses in PAs [51,151].
Dubois et al. [147] proposed a methodology to assess the uniqueness of PAs based on
biophysical variables. However, they lacked the means to decompose each analyzed area
into areas with similar ecological features. The methodology proposed by [120] partially
solved this issue by identifying habitat functional types and mapping similar areas at the
ecoregion scale. This approach could be used to further create a composite indicator for
each PA that reflects the biophysical richness of PAs and the uniqueness of their habitats.
Coastal PAs in particular should be taken into account when developing indices of this
type, given their inherent complexity as ecotones and the higher pressures they are exposed
to because of human developments that are often concentrated along the coasts [152–156].

Perhaps the main limitation of global biophysical assessments using RS is the lack of
ground truthing and comparison maps in order to evaluate results [157]. In this regard,
resulting habitat and ecosystem types based on RS methods could be classified according to
existing global typologies in order to serve and support different initiatives of habitat and
ecosystem monitoring globally. For example, a hierarchical classification framework could
be applied to the ecological features resulting from the methodology developed in [120],
in which some key variables guide the first broad set of typologies and other variables
help distinguish more specific subclasses according to existing typologies. The previously
mentioned recent global environmental stratification initiatives already provide potential
comparison maps, such as the IUCN Global Ecosystem Typology [158] and the set of world
climate regions and world ecosystems [51]. The proposed approach would allow for taking
similar regional features into consideration as well as going deeper into a specific global
ecosystem type (e.g., tropical moist forests and mangroves).

In relation to the marine realm, current efforts to globally characterize PAs by means
of RS have focused on the use of bathymetry. As such, DOPA uses a model of global
bathymetry that is partially based on RS data to compute a marine habitat diversity index
for MPAs [145]. The fact that (1) most RS methods can only derive information from the
upper layer of the ocean (with the exception of altimeters for coarse scale bathymetry),
(2) the spatial resolution of available RS data may be too coarse to characterize MPAs
and (3) RS-based management of MPAs requires large financial and human resources
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constitutes major impediments to the use of RS data for characterizing MPAs [130]. This
may explain why global characterization of MPAs using RS is limited. However, initiatives
to characterize PAs using a broader set of RS-measured variables are more numerous
at the regional [130,159,160] and local scales [161,162]. Beyond the characterization of
MPAs, RS data have been used to assess the connectivity of MPA networks [154,163] and
to delineate bioregions that can be further used as a basis to inform the design of MPA
networks [164–167].

3.4. Computing Infrastructures

Computational capacity is another important limitation when characterizing PAs at
the global scale. Most models and processing workflows developed so far are limited
by the fact that there is no direct integration with external data sources and models,
with most of them being standalone desktop or server applications. In this regard, large
computational advances have occurred in recent years based on cloud-based infrastructures
that support remote sensing data acquisition and processing [168]. Several tools have
already been developed at a global scale to serve different purposes, such as the Global
Surface Water Explorer (GSWE; https://global-surface-water.appspot.com/map; accessed
1 June 2021; [169]), the Map of Life (https://www.mol.org/; accessed 1 June 2021), the
Global Forest Watch (https://www.globalforestwatch.org/map; accessed 1 June 2021), the
remote sensing application for land cover classification and monitoring (https://remap-ap
p.org/remap; accessed 1 June 2021), EarthMap (http://earthmap.org; accessed 1 June 2021)
and the Living Atlas of the World (https://livingatlas.arcgis.com/en/home/; accessed
1 June 2021). Bastin et al. [170] used the GSWE to assess the level of protection of inland
open surface waters and their trends within PAs globally.

Among other options, Google Earth Engine (GEE; [171]), ArcGIS Online (https://ww
w.esri.com/en-us/arcgis/products/arcgis-online/overview; accessed 1 June 2021) and
European Copernicus Data and Information Access Services (DIAS; https://www.copern
icus.eu/en/access-data/dias; accessed 1 June 2021) offer data and services for cloud-based
processing and remote sensing on large scales. Typical environmental applications include
detecting deforestation, classifying land cover, estimating forest biomass and carbon or
mapping the world’s roadless areas [172]. The advantage of using those services lies in the
easy data access (including time series), the possibility to create graphical user interfaces
and their remarkable computation speed, as processing is outsourced to cloud servers.
Moreover, OpenEO (https://openeo.org/; accessed 1 June 2021) allows interoperability
with big earth observation cloud backends for several programming languages.

4. Concluding Remarks and Recommendations

While the methods for mapping and assessing habitats and ecosystems are equally
useful within and outside PAs, integrated assessment methods that systematically charac-
terize and measure the diversity of habitats and ecosystems within a region are especially
relevant when applied within PAs at a global scale. The global characterization of PAs
can provide multiple benefits and applications, such as (1) supporting short-, medium-
and long-term management actions, especially at the regional and global scales, that can
ensure the maintenance of biodiversity and maximize the provision of ecosystem ser-
vices [173,174], (2) evaluating the effects of climate change in PAs [175] and (3) informing
policy initiatives, such as the European Biodiversity Strategy or the post-2020 Global
Biodiversity Framework, on how to develop monitoring tools and indicators to promote
sustainable management of PAs [176]. These kinds of analyses not only need to be done at
a global scale, but also repeated if possible (e.g., annually) to document the changes that
occur [177]. In this regard, the use of variables representing longer-term periods is also
useful for capturing the presence of potential habitats and ecosystems, which can then
be used as a reference for monitoring and condition assessment purposes. Furthermore,
although locally derived variables are better descriptors of the ecosystems, global data

https://global-surface-water.appspot.com/map
https://www.mol.org/
https://www.globalforestwatch.org/map
https://remap-app.org/remap
https://remap-app.org/remap
http://earthmap.org
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https://openeo.org/


ISPRS Int. J. Geo-Inf. 2021, 10, 384 10 of 20

sources are needed in order to systematically compare PAs across the globe and inform
larger scale conservation actions.

In the last decade, cloud-based infrastructures have greatly improved the access
to time series of relevant earth observation variables, which are crucial to the proper
monitoring and assessment of ecosystems [178], bringing new opportunities for the global
characterization of PAs. However, it is also necessary to translate the results from the
global characterization of PAs into information that can be used in the real world, such as
by sharing all data and models generated using online interoperable tools [179–182]. As
an example of this, DOPA provides access to various global datasets and indicators that
can inform decision-making and PA management [148], such as climate and topographic
statistics, information about pressures, the occurrence of extreme events, land cover, land
degradation and fragmentation, ecosystem services and species. Moreover, the Protected
Planet website allows for exploring the World Database on Protected Areas (WDPA),
maintained by the UN Environment Programme World Conservation Monitoring Centre
(UNEP-WCMC). The CBD-mandated WDPA is the key reference dataset for any global
protected area analysis, and it includes both spatial (mapped boundary or point location)
and nonspatial (e.g., name, type, size, age and status) information for over 230,000 protected
areas worldwide [183]. Despite accelerated efforts to improve the global PA data, the quality
of the WDPA data still varies greatly between countries and regions, and this should be
acknowledged in any analysis using the WDPA. Only limited information related to the
systematic global biophysical characterization of PAs can be found online thus far, such as
the terrestrial habitat diversity index in DOPA [145].

Systematic information related to the uniqueness or the importance of PAs based on
biophysical variables could, among other things, further support the ranking and prioriti-
zation of PAs based on the diversity of their habitats and ecosystems. Biophysical studies
also allow us to study the role of habitats and ecosystems in maintaining biodiversity in
the context of climate change, since species populations can adapt to changes by moving
to new areas that meet their ecological requirements [146]. Several applications of habitat
models have shown a high correlation between biodiversity and the diversity of habitat
types, and they can help identify potential new areas that should be protected in order to
maintain species protection into the future [120,184,185].

Table 2 gives an overview of applications of different environmental descriptors,
including methods and data, which are relevant for the biophysical characterization of PAs,
highlighting the importance of taking into account structural and functional attributes as
well as integrating a broad spectrum of environmental descriptors in the global biophysical
characterization of PAs.
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Table 2. Summary table with example applications of different environmental descriptors, including data and methods,
that are relevant for the biophysical characterization of PAs. Acronyms used: object-based image analysis (OBIA); normal-
ized difference vegetation index (NDVI); normalized difference water index (NDWI); machine learning (ML); principal
components analysis (PCA); light detection and ranging (LiDAR); digital elevation model (DEM); normalized difference
blue/red ratio (NDBR); wide dynamic range vegetation index (WDRVI); soil-adjusted vegetation index (SAVI); green–red
vegetation index (GRVI); plant senescence reflectance index (PSRI); and water band index (WBI).

Application Environmental Descriptors RS and Ancillary Data Methods

Wetland and dune habitat
mapping [63–70,73,178]

• Vegetation greenness
• Vegetation and soil

water content
• Water seasonality
• Topography
• Soil

RS-based vegetation (NDVI, WDRVI,
SAVI) and water (NDWI) indices;

LiDAR- or radar-derived DEMs; soil
depth layer interpolated from ground
collected data points; modeled spatial

and temporal distribution of water.

OBIA; ML; PCA; texture
analysis; cluster analysis

Riparian, forest, grassland
and shrubland habitat

mapping [71,72,75–77,81]

• Vegetation greenness
• Vegetation height
• Topography

RS-based vegetation indices (NDVI,
EVI; GRVI); LiDAR-derived vegetation

height; radar-derived DEM.

OBIA; texture analysis;
PCA; ML; cluster analysis

Assessment of habitat
quality, diversity and
extent [59,60,83,85,88]

• Vegetation greenness
• Vegetation height
• Primary productivity
• Vegetation seasonality
• Canopy shadow

fraction (CSF)
• Vegetation and soil

water content
• Topography

RS-based vegetation indices (NDVI,
EVI); LiDAR-derived vegetation height;
Slope derived from a DEM; RS-based

water index (NDWI); CSF from
RS-based NDBR; vegetation seasonality

and productivity products derived
from the analysis of temporal dynamics

of seasonal changes in NDVI;

Cluster and landscape
pattern analysis; texture

analysis; PCA

Environmental
stratifications

[17,51,57,139–141]

• Vegetation greenness
• Bioclimatic variables
• Altitude
• Geomorphology and

landforms
• Land cover
• Lithology

RS-based vegetation indices (EVI);
long-term average climate data, such as
temperature, precipitation and aridity,

interpolated from meteorological
stations; geomorphological, landforms

and altitude data from a LiDAR- or
radar-derived DEM; global lithology

map integrating existing surficial
lithology maps; land cover classes

interpreted from satellite data.

Cluster analysis; PCA;
texture analysis

Mapping of ecosystem
and habitat functional

types [52,53,96,120,144]

• Vegetation greenness
• Vegetation and soil

water content
• Vegetation phenology

and productivity
• Vegetation structure
• Land surface

temperature (LST)
• Albedo
• Soil moisture (SM)
• Bioclimatic variables
• Topography

RS-based vegetation (NDVI, PSRI) and
water (WBI, NDWI) indices; vegetation
phenology and productivity products
derived from the analysis of temporal

dynamics of seasonal changes in NDVI;
LST derived from satellite thermal

infrared bands, such as MODIS;
RS-derived albedo; RS-based soil

moisture products, such as the ESA CCI
Soil Moisture; slope derived from a

DEM; RS-based percentage of woody
and grassland vegetation cover;

long-term average climate data, such as
temperature, precipitation and aridity,

interpolated from
meteorological stations.

PCA; cluster and
landscape pattern analysis;

ML; OBIA

Finally, we give a summary of the recommendations proposed to improve the global
biophysical characterization of PAs in relation to different aspects, which are listed below.

Environmental attributes and descriptors:
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• The structural and functional attributes of ecosystems and habitats within PAs should
be addressed;

• A broad set of variables representative of key biophysical quantitative descriptors
should be used to produce integrated assessments, potentially including vegetation,
energy, climate, water, terrain and soil.

Data sources and processing:

• Global data sources presenting time series and regular updates should be preferred;
• Dimensionality reduction techniques are often used to deal with correlated input

variables;
• The use of ensembles of different input data or models corresponding to the same

variable is recommended to provide more accurate outputs and deal with uncertainty.

Methods:

• The use of interoperable RS cloud-based infrastructures is recommended for large-
scale processing;

• Analyses should be regularly repeated to document changes;
• The analysis should extend beyond specific habitat or ecosystem mapping and assess-

ment methods so that a variety of habitats and ecosystem types can be identified;
• The resulting habitat and ecosystem types within PAs should be, to the greatest extent

possible, comparable with existing global typologies;
• There is a clear need and potential to develop methodologies for assessing the bio-

physical uniqueness of PAs that could support prioritization analyses;
• Methods should allow the prediction of climate change impacts on ecosystems by

using forecasted bioclimatic data.

Application in policy and practice:

• Translate the results into information that can be used by policy and decision-makers;
• Ensure transparency and reproducibility by sharing all data and models generated

using online interoperable tools;
• Global characterization of PAs should be specifically aimed at informing larger scale

conservation and management actions and plans, unless no better information is
available at the local or regional scales.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/1
0.3390/ijgi10060384/s1. Table S1: Supporting information for Table 1 including URLs with relevant
data sources.
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