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Abstract 

Neuronal activities underlying a percept are constrained by the physics of sensory signals. In 

the tactile sense such constraints are frictional stick-slip events, occurring, amongst other 

vibrotactile features, when tactile sensors are in contact with objects. We reveal new 

biomechanical phenomena about the transmission of these microNewton forces at the tip of 

a rat’s whisker, where they occur, to the base where they engage primary afferents. Using 

high resolution videography and accurate measurement of axial and normal forces at the 

follicle, we show that the conical and curved rat whisker acts as a sign-converting 

amplification filter for moment to robustly engage primary afferents. Furthermore, we present 

a model based on geometrically nonlinear Cosserat rod theory and a friction model that 

recreates the observed whole-beam whisker dynamics. The model quantifies the relation 

between kinematics (positions and velocities) and dynamic variables (forces and moments). 

Thus, only videographic assessment of acceleration is required to estimate forces and 

moments measured by the primary afferents. Our study highlights how sensory systems deal 

with complex physical constraints of perceptual targets and sensors.  



Oladazimi, Putelat, et al., Whisker biomechanics 2 

Introduction 

The study of perception needs to consider the special physical (and chemical) properties of 

the sensory objects and their interaction with the sensors. In the tactile system, and most 

prominently in texture discrimination, such physical constraints include friction, arising with 

moving mechanical contact of integument (hair and skin) and touched object. Frictional 

phenomena with presumptive high impact on tactile coding are the so-called ‘stick-slip 

events’ (slips), short jerky movements that originate from storing and releasing energy into 

elastic object deformations on the microscopic level 1.  

Here, we focus on rats’ vibrissae, or whiskers, tactile hairs that the animals actively move 

across textures. Rodent vibrissae are tapered giving them extraordinary elasticity 2,3, and 

pliability 4–6. Vibrissae movements vary in characteristic ways 7–9, such that, in principle, the 

animal could choose to vary properties of the whisking motion, in order to optimize its 

performance in a challenging perceptual context. Tracking a point on the vibrissae shaft 

when rats touched textured surfaces 10,11 has demonstrated that sequences of frictional stick-

slip events can carry a substantial amount of texture information, as well as information 

about the context, e.g. speed and distance to the texture surface 12. System identification 

methods have identified that microslip-like features in the vibrotactile domain are well 

encoded on the tactile neural pathway 13–19. Finally, behavioural studies suggest that such 

stick-slip signals determine perception 20,21. 

From the study of biomechanical properties of whiskers, it has been suggested that 

dynamical variables, such as force and moment, are likely to be the definitive factors for 

stimulation of the mechanoreceptors in the follicle 2,4. Unfortunately, observations of motion 

of intact whiskers used by a behaving animal are largely limited to whisker kinematics. It is 

therefore crucial to find out how kinematic variables associated with the whisker’s tip relate to 

dynamical variables. Moreover, it remains to establish the principles of mechanical 

transmission of signals along the whisker beam, from the highly pliable tip towards the much 

stiffer follicle, where neural signals are generated. It would seem that mathematical modelling 

is necessary to faithfully translate measured whisker kinematics into dynamics. 

At present, whisker mechanics has mainly been studied using either linear beam theory 4,22 
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or using a quasi-static approximation of a Euler elastica with non-uniform axial properties 23–

25. These approaches are useful for establishing the linear vibration frequencies in 

contactless whisking, and the quasi-static nonlinear deformations, like buckling, that likely 

occur when the pliable tip 6 is in continuous contact with a surface. For example, Goss and 

Chaouki 25, using elastic beam theory, worked out criteria for the establishment of tip and line 

contacts, depending on the distance of the beam to the surface (see also 26,27). Also, the 

quasi-static Elastica2D code introduced in 24 has been successfully used by 28 to measure 

the axial follicle force. But none of these techniques can be used to measure the rapid 

dynamic forces in the transmission of stick-slip waves from the tip to the follicle.  

In the spirit of this earlier work, we therefore adapt the elastica formulation to include rapid 

dynamical deformation while the whisker is in contact with a surface. To do this we employ 

Cosserat rod-mechanics formulation (e.g. 29), to model the dynamics of velocity, force and 

moment at every position along the central axis of the whisker, with complex boundary 

conditions that can capture the impulsive forces caused by transitions between stick and slip 

contact. The earlier models likely capture the DC component of the forces at the follicle 

(which is likely to sense proximity and hardness) whereas our model is able to capture the 

rapid AC component of these forces, which we argue is how texture is likely to be coded.  

In the present work we include the case of tip contact only, but following the approach 

outlined in 25 it is straightforward in principle to extend our mathematical formulation to 

include line contact. In particular, a simple argument mechanical argument shows that the 

forces transmitted in the presence of line contact are dynamically equivalent to those of a 

shorter rod undergoing tip contact.  

We combine modelling with a limited number of biomechanical measurements to identify new 

biomechanical phenomena about how slip-stick transitions at the whisker tip are transmitted 

to force and moment information at its base. We will show that deflections at the tip, 

characterized by low moments and large excursions, are rapidly transmitted and result in 

large moment / short excursion movements at the base, and we will demonstrate that the 

non-linear modelling can recreate these observed characteristics. Our results strongly 

suggest that slips generated at the tip are presented in robust fashion to the base, the 
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location of the neurites.  
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Results  

For videography, the follicle end of a plucked whisker (Fig. 1AB) was glued to a vertical shaft 

that was made to rotate at constant angular velocity, using a stepper motor (Fig. 1C). The 

gluing was such as to provide an effective clamped boundary condition, with the whisker free 

to bend in an approximately horizontal plane. The tip was allowed to contact with the interior 

of a vertically mounted semi-cylindrical arena, the midpoint of which coincided with the 

rotation centre of the whisker. We measured the fine-scale, spatio-temporal kinematics of the 

whisker shaft while the tip was in moving contact with the arena surface clad with 

sandpapers of different roughness 12. A rat whisker C4 was used for the experiments. Its 

length (�) was 28.36 mm, and its radius at base was 69 μm. (Core findings of the study were 

confirmed by measurement of two more whiskers, one C3 and the other D3. Whiskers within 

one animal or across animals vary in their geometric outline, a variance that we did not 

attempt to systematically explore with the present experiments). The whisker’s shape was 

conical with the exception that at the very tip it was truncated at the point where the radius 

assumed 3 μm. The shaft rotation speed was 420 °/s (in some runs also 840 °/s and 1260 

°/s). Two different surface distances were used, � = � − 1 mm or � = � − 7 mm. Care was 

taken to align the intrinsic curvature of the whisker with the horizontal plane and to measure 

only the movement toward the concave side of the whisker. In the rat’s face such movement 

would largely correspond to whisker protraction. The movement of the free whisker shaft (i.e. 

from the parts of the tip not in contact with the sandpaper to the parts close to the follicle that 

were not fixed and visually obstructed by the glue and rod) was monitored by a camera 

mounted above operating at ultra-high frame rate (4 kHz if not stated otherwise) (Fig. 1C).  

Image processing techniques were used to extract the position of the centreline of the 

whisker at every frame (resolution in space: 14 µm; in time: 0.25 ms, see Methods). From 

these data, the normal velocity (that is in the in-plane direction transverse to the arena 

surface) and acceleration at each point on the shaft were assessed. Kinematic traces of the 

point 3 mm from the base were used to define ‘sticking phases’ as intervals when the normal 

velocity reached below the rotational speed of the stepper motor, as well as ‘slipping phases’ 

as intervals in which whisker acceleration exceeded a value of two standard deviations of the 

distribution of acceleration measurements during contactless movement (‘movement in air’, 
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as done before in 12). Colouring the whisker positions according to these sticking and slipping 

phases reveals prominent and alternating frictional stick-slip events (Fig. 1D), as has been 

described before 10,11,30. Minimizing velocity in sticking phases and maximizing acceleration in 

slipping phases yielded the operationally defined ‘stick and slip events’ (or ‘sticks’ and ‘slips’ 

for short; green and red dots in Fig. 1E, cf. 12). Slip events can be clearly discerned in the 

acceleration traces of both whisker tip and base, and, confirming an earlier study 12, they 

change their appearance when in moving contact with either the P80 or P1200 sandpapers, 

or when the whisker is engaged with different distances to the texture (Fig. S1). As a note of 

caution, we wish to emphasize that while the definition of sticks and slips is useful to 

demonstrate the general relationship of biomechanical variables with stick and slip phases 

(see below), the precise distinction between slips and sticks in individual cases cannot 

always be done in straightforward ways, e.g. because in reality there can be complex 

frictional phenomena like micro-slips and creep-like movements.  

High transmission speed along the whisker 

To elucidate the speed of biomechanical transmission from tip to base of the whisker, we 

plotted the acceleration of tip and base in the plane of whisker movement (tip: ��(
 =
24

); base: ��(
 = 3

)), and calculated their cross-correlation. We found that the 

acceleration at these two points is negatively correlated, i.e. when the tip speeds up, the 

base slows down (Fig 1D, inset). The negative correlation was precise in time: only 

accelerations at time lag 0 were negative, indicating that conveyance of vibrations are ultra-

fast, i.e. non-discriminable using our camera frame rate of 4000 Hz (time bin: 0.25 ms). This 

finding generalized to all contact conditions studied (i.e. textures, distances, Fig. S1).  

Whiskers vibrate in the second bending mode  

Next, we wanted to find out how the observed opposing movement directions near the tip 

and the base of the whisker plays out along the entire whisker beam. To that end, we 

estimated the local curvature (at all pixels on the whisker centreline) by determining the 

angle � spanned by the vector orthogonal to whisker base and the tangential force acting on 

the whisker beam (Fig. 2A inset). Curvature � is defined by the spatial derivative of � (�(
) =
 ��/�
). We plot curvature �� = �� − � (i.e. curvature relative to the intrinsic curvature ��of 
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the whisker), at all points along the shaft at each sampled time point during a single sweep 

(Fig. 2A-C). When moving in air (with the sandpaper-coated screen removed) the whisker 

oscillated between roughly its intrinsic shape (�� =  0; arrow heads in Fig. 2A), and a 

deflection with the tip curving backward (��(���)  >  0) and the base curving forward 

(��(��
�)  <  0; between arrow heads in Fig. 2A), corresponding to an oscillation in the 

second bending mode. The result of this vibration mode is that the change in curvature 

relative to the intrinsic shape changes along the beam, with a node located at about 8 mm 

distance from the follicle. The oscillation frequency was close to 200 Hz (Fig. 2A).  

When the whisker engaged with the smoother sandpaper (grain size P1200; at a distance 

1mm less than its length), �� at the tip changes to forward direction (��(���)  <  0) as 

expected (Fig. 2BC). Thus, the free vibrations of the whisker were damped, but they were 

nevertheless still visible at about the same frequency (arrow heads, Fig. 2B). In addition, 

rapid waves corresponding to the onset of a slip, became visible. These are seen as the 

irregular vertical stripes, two of which are marked by arrows. The vertical nature of these 

stripes again suggests their ultra-fast transmission along the beam. Similar results were 

observed with P80, the rougher sandpaper (Fig. 2C). The second bending mode was robust 

against variations of texture engagement. With stronger engagement, either by increasing 

roughness (Fig 2C) or decreasing distance (Fig. S1) the node shifted only slightly toward the 

base (to around 5 mm from the base).  

In summary, we note that second order bending with opposite curvature at the tip and base 

with a node at a distance of 5-8 mm from the base are a characteristic feature of whisker 

vibrations in varying contact situations. The spectra of whisker vibration when engaged at 

distance � − 1 mm are shown in Fig. 2D. The stable second harmonic of the oscillation 

stands out with movement in air (green) and against the smooth P1200 sandpaper (blue). 

The fundamental frequency was nearly absent. This oscillatory pattern breaks down when 

the whisker is engaged with the rough P80 sandpaper (red) because the signal from the slip 

and stick events begins to dominate the signal.  

Weak and wide tip excursions are transformed into strong and short ones at the base.  

The curvature measurements provide a basis to infer the moment �� (
, �) (spanned by the 
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normal force Fn and the axial force Fa see inset in Fig. 3B) about the vertical axis at every 

point along the whisker along its centreline 
 and time �. The effect of ��  is to locally bend 

the whisker beam at the point in question within its plane of movement. At each point position 


,  ��  can be calculated, from the beam’s Young’s modulus ("), its measured curvature 

�(
), intrinsic curvature of the whisker ��(
) (Fig. 3A), and the second moment of area of its 

circular cross-section 

#(
) = $4 %(
)&         (�'. 1) 
Assuming a linearly elastic constitutive model for a conical rod with circular cross-section, we 

then write 

�� (
, �) = "#(
))�(
, �) − ��(
)*,                (�'. 2) 
(see also equation 6 and related text in materials and methods). Combining equations 1 and 

2, given the highly tapered nature of the whisker, we note there will be a continuous build up 

in strength of moment along the whisker as we approach the base end. Thus, tiny forces 

deflecting the distal pliable part of the whisker lead to a build-up of moment along the whisker 

beam. This guarantees that the base of the whisker signals a robust moment signal in 

response to slight tip deflections (Fig. 3B). To quantify the amplification of moment we 

calculated the ratio of variances of moments measured at the site 1mm distance from the tip 

and same distance from the base of the whisker (
+ ,-./+ ,0123). This ratio was 1.4e-4 for the C4 

whisker shown in figure 3B. We studied two more whiskers (one C3 and one D3). These 

were measured with the drum rotating (cf. Fig. 4) instead of rotating whisker, and analysed in 

exactly the same way. They yielded still smaller ratios, i.e. higher amplification (C3, length 

44.56 mm, ratio: 2.6e-4; D3, length 45.22 mm, ratio: 2.57e-4). Interestingly, the intrinsic 

curvature �� acts to shift the range of moments experienced by the follicle and attached 

neurites such that a sign change results, a fact which likely contributes to the phenomenon 

that the whisker vibrates mainly in its second bending mode (cf. Figs. 2 and S1, S2). The 

time series of Mna at tip and base and their inverse relationship can be appreciated in Fig. 

3C. Triggering moment at the base by stick and slip events revealed a systematic 
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relationship between the two variables: on average, moment builds up during stick (Fig. 3D) 

and is released during slip (Fig. 3E). 

In summary these results suggest that the taper of the whisker together with its intrinsic 

curvature play an important role in determining the range of moments experienced in the 

follicle, the site of neurites of primary afferents, and that stick-slip events feature prominently 

in the robust moment signal that is received there. 

Acceleration is a proxy for whisker-beam forces and moments 

In order to verify the calculations of moment from kinematic data we chose to directly 

measure the force acting at the whisker base when in contact with the sandpaper. To this 

end we used a piezoresistive force sensor probe that is capable to measure multiaxial forces 

in the nano- to microNewton range (Fig. 4A; 31). The whisker was glued to the probe’s 

cantilever and the sandpaper was brought into contact with the whisker tip and moved past it 

using a rotating drum. In this configuration, the force sensor was able to measure the normal 

(Fn) and axial force (Fa) acting at the whisker base (light and dark blue arrows in Fig. 4A). At 

the same time, we used ultra-fast videography (at a 9.6 kHz frame rate) as described above 

to measure the acceleration close to the base (��, red in Fig. 4). We find that Fn , Fa, and ax, 

are strongly correlated (|%45 , 6| = 0.9349; |%41, 6| = 0.9302; |%45,41| = 0.9657; Fig. 4B). In 

consequence, the average force observed during sticks shows a clear peak, as exemplified 

by event-triggered average of Fn plotted in figure 4C. 

In summary, the time series of acceleration measured close to the base provides a 

reasonable approximation to the time series of forces acting on the base. However, we wish 

to emphasize that the usage of acceleration as a proxy for forces at the base suffers some 

limitation because moment (and possibly also forces) are subject to a large augmentation 

from tip to base while acceleration is not (Fig. S1).  

Cosserat mechanics with friction model recreates1 whisker-beam dynamics 

It has been shown that whisker bending in air can be estimated quite well by models based 

on linear beam theory 4,23. However, the conical whisker’s highly pliable tip together with 

frictional forces acting at it renders it highly unlikely that linear beam theory will be sufficient. 
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Rather, it is clear that a formulation is required that allows arbitrarily large, geometrically 

exact deformations. One way to see this is to calculate the critical Euler load <= ��>�?�� �@  
<= = $A"#4�A ,       (�'. 3) 

with " being the Young Modulus, # the second moment of area (eq. 1), and � the rod length. 

Applying reasonable assumptions about material constants of a homogenous, isotropic 

conical rod, this equation yields critical Euler loads in the order of 1 nN. Buckling of the beam 

is thus expected with minimal forces - widely exceeding those we have measured to be 

acting at the whisker’s tip. We therefore turned to Cosserat mechanics, which is able to 

account for gross geometrical non-linearities (see e.g. 29). Cosserat models capture the 

dynamics of the space-centroid line (the line intersecting the centre of all circular cross-

section areas of the conical rod) using a set of coupled partial differential equations in space 

and time. We deem such spatio-temporal coupling essential to recreate rapidly propagating 

and highly fluctuating frictional movements at the whisker tip. Such motion could not be 

captured by a quasi-static Euler-Bernoulli formulation, in which the temporal dimension is 

neglected. It is noteworthy that the whisker used here has an aspect ratio (length � to cross-

sectional radius %) of more than 400. For such slender objects it is widely accepted that the 

effect of shear along the rod’s longitudinal axis is negligible and can be ignored. In this case, 

a simpler mathematical formulation can be used, which assumes that cross-section areas are 

normal to the tangent of the space-centroid line (see materials and methods for details).  

The whisker is modelled as a truncated cone with length � (from base to truncation point, the 

latter is called ‘tip’ throughout the paper), and homogeneous linearly elastic material 

properties (i.e. a constant Young Modulus "). The elasticity of the rod for bending movement 

perpendicular to its longitudinal axis will increase significantly from base to tip, because the 

circular cross section decreases (see eqns. (1) and (2)). The central variable to describe the 

whisker mechanics is the local curvature �(
, �) defined as the first derivative of the local 

curvature angle B�(
, �)/B
. We suppose that the rod has an intrinsic curvature profile ��(
) , 

which we obtained from measurements of the real whisker. As in the experiments, we 

assume that the rod moves in the horizontal plane laid out by the intrinsic curvature (with tip 

bent in the direction of sandpaper movement, Fig. S4).  
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Accurate modelling the effects of high-speed dynamical friction between two dry surfaces is a 

current topic of active research within the field of tribology, with no consensus emerging on 

which, if any, closed-form low-order model is able to capture the dynamical consequences of 

surface roughness (see e.g. 32). We have chosen to use a so-called rate-and-state frictional 

law (see 33–35). This approach models the dynamical friction coefficient D and resulting friction 

force EF = D� (Fig. S4) based on parameters of past sliding history (the interface ‘state’), and 

the relative velocity between the contacts (the ‘rate’ of deformation, see 34). This formulation 

is richer than classical Coulomb friction as it additionally allows setting a parameter G called 

‘slip length’, sometimes considered a proxy for roughness. Many geometric and material 

property parameters were taken as measured. A full list of model parameters is given in table 

1. 

Modelling details of frictional movements of whiskers in contact with specific surfaces will 

need future versions of the frictional model including also material properties and asperity 

size and distributions of surface materials. Here we content ourselves with varying G to adjust 

model behaviour qualitatively to match our principal experimental findings. In particular we 

asked whether stick-slip can be captured with our approach, and how they are represented 

by kinematic and dynamical model outputs. We further aimed at capturing the experimentally 

observed generation of increasing moments along the whisker beam, second bending mode 

and the rapid transmission of slip events along the beam.  

Model dynamics 

Analysing model kinematic output in steady state conditions (using G =  10 μm, H = 0.2 m/s, 

I =  1) showed that stick and slip phases and events were readily generated by the model. 

The choice of parameter values is explained in materials and methods (see table 1 for a full 

list). Note that H =  0.2 m/s corresponds to a shaft rotation of 420 °/s. Base angular velocity 

(Fig. 5A) undershot driving velocity regularly and was followed by transients surpassing 

accelerations observed without contact. Searching for local extremes in these cases 

identified a stick-slip pattern similar to that seen in experiments (Fig. 5AB) (cf. Fig. 1B). The 

model also captured the experimental fact that the whisker tended to vibrate at the second 

bending mode: tip and base accelerations were negatively correlated (Fig. 5BC; correlation 
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coefficient % = −0.36; the experimental data of comparable conditions [distance � − 1 mm 

and smooth sandpaper surface, cf. Fig 2B] yielded % = −0.47). Further, the experiment 

showed a tight correlation between kinematic and dynamical variables, a fact which the 

model captured: acceleration and normal force were correlated at a coefficient % = 0.44. This 

correlation coefficient is lower than that seen in the experiment, perhaps reflecting that the 

model contact is with a smooth surface while the experiment used sandpaper surfaces 

containing asperities. Tip and base moment occur in opposite directions reflecting the 

second mode of bending (Fig. 5DEF, cf. Fig. 3C) (please note that the model used �� = 0 for 

ease of computing [see materials and methods] explaining the shift of moment toward 

negative values, and therefore, a more moderate negative correlation [% = −0.34] as 

compared to the experiment). Plotting the average moment around stick events (Fig. 5G) we 

note that, as observed with the real whisker (cf. Figs. 3E and 4C), stick events are followed 

by an increase in moment along the whisker. Thus, it appears that during a stick event, the 

moment builds up, and is subsequently released during the slip.  

To adjust G we ran the model varying G (in the range from 5 to 500 μm). The resulting 

position spectra (Fig. 5H) revealed that the predominance of the second bending mode as 

observed in the experiment were best represented by middling values of G (here 50 μm). 

Using the model with G = 50 D
, to plot curvature �� = �� − � as done for experimental data 

in figure 2, yielded qualitatively similar oscillations to the ones observed with real whisker 

movement in contact with a smooth surface (Fig. 5I; cf. Fig. 2B). Calculating moments along 

the whisker beam revealed a strong increment from tip to base with the node of bending 

located in the lower half of whisker length (Fig. 5J), as seen in the experiment (Fig. 3B). As 

reported above, nodes (the signature of the second bending mode) were observed between 

5 and 15 mm. The range of node locations are demonstrated by the four moment excursions 

highlighted in figure 5J. 
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Discussion 

This study provides fundamental insights about how vibrations are conveyed from tip to base 

of a rat conical whisker in moving contact with a texture. Biomechanical measurements 

reveal that conveyance of vibrations from tip to base is ultrafast, and utilizes the second 

mode of bending. Tip movements are transmitted to the base as moment, a dynamical 

variable. Due to tapering, the moment, which is vanishingly small at the tip, builds up to 

significant amounts at the follicle. A relative measure of forces acting on the follicle - their 

change in time - is available from kinematic data in the form of acceleration of the whisker 

beam close to the follicle. Stick-slip frictional movements feature prominently in dynamical 

signals conveyed down the beam. We demonstrate the novel mechanistic principles in a 

limited number of whiskers, such that the detailed intra and inter-individual variation of these 

phenomena has to be worked out in the future. We further established a realistic model of 

moving-contact whisker biomechanics based on Cosserat geometric theory linked to a state-

rate friction law, which is the first to capture the rapid spatio-temporal transmission of 

frictional stick-slip movements along the whisker. This model qualitatively recreated the fast 

conduction, second order bending, and the conversion of frictional stick-slip movements at 

the whisker tip into robust bending moment at its base. 

Ultrafast transmission and second-order bending mode 

The measurements of conveyance speed exceeded the temporal resolution of our ultrafast 

camera system (conveyance time from tip to base (<  0.25 

). The conical shape of 

whiskers and the keratinous material suggest high pliability of the whisker, as has been 

previously observed 6. This is reflected by our observation of a strong correlation between 

lateral deflection (��) and normal force (E�). The inverse relationship of bending at tip and 

base was a surprising finding, and is explained by the robust observation that the static 

deformation of the whisker is in its second bending mode. Our mathematical model captured 

the phenomenon in relative terms (antagonistic relative movement) and partially in absolute 

terms (absolute direction of movement). We therefore conclude that the second bending 

mode is mechanistically brought about by the elastic and geometrical properties of the beam 

incorporated in the Cosserat model. A further role in specifying details of second bending 
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mode vibration is played by the intrinsic curvature of the whisker. The typical movement 

direction in strongly whisking species (like the rat studied here) has been associated with 

distinct innervation patterns most conspicuously at the inner conical body of the follicle 35. 

The observed inverse relationship of tip vs. base deflection (and amplified moment; see next 

paragraph) will likely be instrumental to decipher the mechano-electrical transduction in 

those specifically formed and distributed end organs.  

Transmission of frictional stick-slip movements to the follicle  

Combining measurement of acceleration and force acting at the whisker base we found that 

the acceleration time series is a good proxy for the forces acting on the base: It is highly 

correlated with normal force E� and axial force E . This observation is likely to be of benefit 

for investigators, who work with behaving animals and who can thus only measure kinematic 

variables (positions, velocity and acceleration) but wish to infer dynamical variables (forces 

and moments) acting on the follicle. By direct measurement of acceleration, one could hope 

to capture at least the relative amplitude of dynamical variables. Absolute values of 

acceleration fluctuations at the whisker base, however, seem to vary significantly with the 

overall position of the node point of the second bending mode. A more robust measurement 

seems to be curvature fluctuations, and hence fluctuations of moment at the follicle. Indeed, 

we showed that the whisker appears to be an effective device for turning large distance, 

weak excursions of the pliable tip into short excursion, high moment fluctuations at the 

follicle.  

The above-mentioned correlation of normal and axial forces, E� and E , acting on the whisker 

can be intuitively understood: Whenever normal force builds up – i.e. during stick phases - 

axial force (directed toward the tip) is increased because during a stick, the tip of the whisker 

stays behind and thus tends to pull out the base from its fixture. During slip the situation is 

roughly the inverse. In this study we were able to verify these intuitive relationships directly 

by assessing stick and slip events from videographic velocity and acceleration data 12, with 

simultaneous assessment of moment (calculated from curvature, Fig. 3), and direct 

piezoresistive force measurements (Fig. 4). We found that moment ��  and normal and axial 

forces E�,  E  build up during whisker stick events. In reverse, slip events are associated with 
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the relaxation of these variables. Thus, we demonstrate that slips are robustly represented 

by dynamical variables along axial and normal dimensions. Experiments that found vivid 

responses of primary afferents after ramp-and-hold movements of the whisker along the two 

dimensions 36 support the notion that the existent highly specialized classes of end organs 37 

partly have evolved to pick up follicle forces and moments along the two dimensions. The 

prominence of representations of stick-slip sequences in dynamic variables, shown here, 

suggests that it is those stick-slip events that dominate transduction into primary afferent 

action potentials. Prominent coding of temporally local deflection waveforms in primary 

afferents 14, and the reported sparse but reliable response of S1 neurons to slips 16 provide 

supporting evidence for this conjecture. As previous studies have concordantly shown that 

the kinematic profile of slips contains substantial texture information 10–12, we hypothesize 

that the biomechanical transmission of stick-slip sequences, revealed here, sets the stage for 

neuronal coding of frictional movements and their hypothesized exploitation for purposes of 

texture discrimination 1. 

Variation of biomechanical phenomena across whiskers and individuals 

Mystacial whiskers are all long conical structures, the principle feature giving rise to the 

experimental data and modelling results reported here. In this initial study we focussed on 

the identification of new biomechanistic principles and did not attempt to give a detailed view 

about the variability of these principles. Slip transmission across whisker types on the snout, 

across animals, across the growth cycle of hair, and to different types of whiskers found in 

other species, are all topics left to be studied in future work. This said, we expect the core 

features reported here to generalize in some way across cone-shaped whiskers, as they are 

uniquely related to the tapering and pliability of the whisker tip. The fact that different 

whiskers (e.g. the small and immobile microvibrissae vs the mobile macrovibrissae) are used 

in different behavioural contexts 38, imply that variations of slip coding might be found there. 

Specific behavioural functions of the well-described systematic changes in whisker 

morphology across the mystacial pad5 are unknown. The fact that encoding textures with 

slips varies systematically across the rat’s mystacial pad 12, and whiskers of different 

locations show different frequencies of vibration when moving in free air 2,3, point to a 

possible gradient in biomechanical mechanisms, also when in touch with a surface, that need 
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to be aligned to the yet unknown functional aspects of whiskers ordered along arcs and rows.  

Mathematical model of whisker bending when in moving contact  

We have established a mathematical model that, to our knowledge, is the first that exceeds 

quasi-static approaches as implemented before 6,23,24, and uses an analytic mathematical 

formulation to capture critical dynamical features of whisker vibration under conditions of 

moving contact with a surface. Amongst them are the generation of stick-slip sequences and 

their transmission and translation into dynamical variables, the increment of moment along 

the beam, the second bending mode of vibration, and the correlation of kinematic variables 

with forces acting on the whisker base. The output of the model thus provides access to 

dynamical mechanical quantities (moments and forces), supposedly critical for tactile 

perception. We hold that the model will be well suited for future parametric studies towards 

understanding texture identification, as it implements two novel features that set it apart from 

previous approaches. Firstly, the model for the first time incorporates a frictional model, 

which we deem critical to study the sweeping touch across surfaces (which necessarily 

involves frictional contact), typically executed with the aim of texture identification. Secondly, 

the model is the first to use the Cosserat formulation of the whisker beam, which allows for 

arbitrarily large, geometrically exact deformations. With these two novel features in place, our 

model prepares the ground to model texture identification - without doubt an important 

function of whisker movements.  

There are several aspects of the whisker vibrations described here that will benefit from non-

linear geometry and friction model. The first is the ultra-rapid transmission of texture 

information from tip to follicle. Another particular aspect of tapered whiskers will surely 

require both novel aspects of the model: compared to hair of cylindrical shape (e.g. vellum 

hair), tapered whiskers rather quickly buckle when in moving contact to a surface. Such 

buckling will happen at the tapered parts close to the whisker’s tip, and will switch ‘point 

contact’ (only tip in contact with surface) to ‘line contact’ (contact made by a longitudinal 

stretch of the tapering whisker close to the tip). If, as appears highly likely, buckling is an 

issue in whisker related touch, both novel elements of our model, the frictional as well as the 

Cosserat sub-models, will be indispensable tools. In the present work, we simply followed the 

mathematical prediction that force is only transmitted from the lift-off point of the line contact. 
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Thus, we assumed that a whisker with line contact over a length JK is dynamically equivalent 

to whisker of length J − JK in point contact. While this may be correct at a first level of 

approximation, details in changing frictional forces when going from line to point contacts and 

vice versa may still turn out to be an important aspect in texture discrimination.
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Methods 

Kinematic measurement using videography 

Moving contact in a constant context (i.e. fixed whisker speed and object distance) was 

established using a published protocol (Fig. 1A-C) 12. In short, the whisker C4 was plucked 

from a dead animal (Sprague-Dawley, male, age 4 months), sacrificed for an experiment 

unrelated to the present report. Three whiskers (C4, C3, D4) were used in this study. Care 

was taken to secure the whisker in its entire length, that the follicle was included, and the hair 

shaft was devoid of kinks. Length, diameter and intrinsic curvature were measured using 

microscopic pictures before and after imaging the whisker. These measurements did not 

yield any measurable difference before and after the experiment. Confirming previous 

reports, the whisker was approximately of a conical shape 5,22. The most salient divergence 

from a pure cone shape were shape irregularities on the last hundreds of microns of the tip. 

The cone’s tip was cut at the point where the beam measured 3 μm in diameter. The exact 

measurements of the whisker cone were: follicle length: 1056 μm; diameter at the base: 

138.6 μm; tip diameter: 3.08 μm; length (s) from follicle to tip; 28.48 mm. Sandpapers of two 

grades were used: P80 (rough) and P1200 (smooth), both part of the standard series issued 

by the Federation of European Producers of Abrasives with mean grain diameters of 201 and 

15.3 μm respectively. Free movement in air (contactless) of the whisker was also recorded 

for reference. Rotation speed was set to 420 °∕s which is representative of a lower speed of 

whisking observed in vivo 39. In some cases velocities of 840 and 1260 °/s were used in 

addition (Fig. 3DE). The whisker was clamped at its follicular site so that the whisker’s axis 

was perpendicular to the rotational axis of a shaft rotated by a stepper motor (Orientalmotor, 

Tokyo, Japan). A high-speed camera (GMCLTR1.3CL-SSF LTR Mikrotron, 

Unterschleissheim, Germany) with a Tokina objective (Tokina 100 mm f/2.8, AT-X PRO – 

Macro, 16 × 16 μm2/ pixel size, Kenko Tokina Co.,Ltd., Japan) was positioned above the 

rotational plane of the whisker in order to record its planar motion. The acquired videos had a 

resolution of 480x270 pixels at 4 kHz (data in Fig. 3). Sandpapers were mounted on a 

cylindrical rigid plastic shield that was positioned in such a manner that its central axis 

coincided with the axis of the rotational shaft. Two different plastic shields were used, each 

precision-made using a 3D printer, having the geometry of cylindrical segments with radius 1 
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mm and 7 mm less than the whisker length (Fig. 1A). Hence the distance of the follicle to the 

textured surface can be varied, although it was held constant for the duration of a particular 

rotational movement. One measurement cycle consisted in forward movement of 60° across 

the sandpaper (convex surface of the whisker leading, as with protraction in the intact 

animal). The first 15 ms of trial time containing movement transients from rest to steady state 

were discarded. 

Force measurements 

The force measurements (Fig. 4) were done using piezoresistive force sensors 31, specially 

designed and fabricated for this purpose in the laboratory of authors I.S. and K.N. Design 

and the dimensions of the piezo-resistive force sensor is shown in figure S3. The sensor 

lever thickness and width was 20 μm, and 195 μm respectively. This type of sensor is 

sensitive to forces as small as 10 nN (see details in 31). The whisker was mounted using 

micromanipulation on the lever using UV activated glue. The force sensor plus attached 

whisker were then carefully mounted on a central ledge, such that the whisker base was 

located in the centre of a rotational drum holding a sandpaper-clad cylindrical arena, identical 

to the one used for videography. The difference to the videography was that force sensor 

and vibrissa were held in place and the arena moved around them (sensor/vibrissa 

movement proved incompatible with the integrity of the sensor). Rotation velocity was 420 °/s 

and distance of the arena to the whisker was 1 mm less than the whisker length. Thus, the 

relative speed and distance of movement of whisker across sandpaper was identical in 

experiments depicted in figures 1-3 vs. 4. For videography during force measurement a 

camera (Fastcom Mini WX100, Photron, Tokyo, Japan) at a resolution of 1600x360 pixels at 

9.6 kHz was used (data in Fig. 4).  

Data analysis 

We used Matlab to write a bespoke algorithm based on image contrast to track the whisker’s 

coordinates in the plane of its motion from each frame, leading to a time-series for a set of 

discrete points L��(�), @�(�)M along the whisker’s axis with the spatial resolution of 42 µm. 

Briefly, lighting was adjusted such that the acquired images were close to pure black and 

white with the white whisker on a black background. Starting from a manual starting point at 
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the base the algorithm iteratively traced out the outline of the whisker by detecting the two 

steps in contrast (black to white and white to black) on a circle with radius of 154 µm around 

the last point that indicated the contours of the whisker. The centreline of the whisker was 

constructed as the centre between the contour steps and the starting point for the next 

iteration was chosen as end of the so-far constructed centreline (Fig. 1D shows a time 

sequence of centrelines). The resolution of the image was 14x14 µm. The data at each time-

step was used to compute an arclength coordinate 
 and the signed curvature at each 

material point along the whisker, respectively given by  


 = N�
�O

P1 +  R�@��SA  ��, � =  �T(
)@TT(
) −  @T(
)�TT(
),               (�'.  4) 
where the prime refers to the derivative with respect to the arclength 
, the derivatives being 

numerically evaluated by finite differences and the integral using the cumulative trapezoidal 

method. In keeping with simple estimation of axial stiffness, we make the assumption that the 

whisker is inextensible. Note that, as the spatial sampling frequency varied slightly from one 

frame to another (mostly due to loss of data points near the whisker’s tip), we used spline 

interpolation (via the Matlab function interp1 to form a regular spaced grid of the arclength 

from the raw data, imposing an arclength increment of ds = 1μm. The trajectory of any 

material point labelled by its arclength coordinate is then stored in an array of 

points (�(
, �), @(
, �)). 

We also monitored the time series of the position angle U(
, �) ≔ ��?WX)@(
, �)/�(
, �)* . The 

angular velocity is then UY = BU(
, �)/B� , as obtained from the numerical time derivative of 

U(�). Subtracting the solid rotation of the whisker, from the imposed motion, we finally derive 

the rotation fluctuations kinematic variables 

UZ = U − [\] ^_� and BUZ/B� = UY − [\] ^_. 

Mathematical model of a clamped conical rod  

The whisker is modelled as an inextensible elastic rod of length � that is constrained to move 

in a plane, as depicted in Fig. S4. In figure S5 and related mathematical formulations, we 

present precise details of parameter, step sizes, boundary conditions needed to implement 
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the model. The rod is assumed to have uniform material properties, but to have non-uniform 

cross-section representing the tapered nature of the whisker. The shape of the non-deflected 

beam corresponds to a truncated cone of cross-sectional area  

`(
) = $%(
)A ,    
and second moment of area given respectively by eq. 1. Here % is the whisker’s radius, which 

is assumed to vary linearly with the arclength coordinate 
 ∈ )0, �*, via 

%(
) = %b R1 − 
�c + �S ,     (�'. 5) 
where %b is the base radius and �c  is the truncation length (i.e. the length of the tiny tapered 

whisker that would need to be added to make a perfect cone). This means the ratio of tip to 

base radius is  
,d,O = efefge. 

As is common in rod mechanics, we assume the rod to be unshearable and inextensible, 

and, in the absence of any evidence to the contrary, we suppose the rod to be linearly elastic 

(in an Euler-Bernoulli sense) with material properties that are uniform along its length. That 

is, the density h and Young’s modulus " are taken to be constant, with the only longitudinal 

variation of the corresponding linear density of mass h`(
) and flexural rigidity "#(
), due to 

the rod’s tapered geometry. Similarly, inspired by 40 and to tame high frequency vibrations, 

we also include a geometrically spatially varying Kelvin-Voigt damping with coefficient j. 

With these assumptions, the mechanics of the whisker is described in terms of the local 

angle �(
) between its centerline and the � axis. It follows that the strain variable of the rod is 

measured in terms of its local curvature �(
, �) =  B�(
, �)/B
. For whiskers, it may be 

assumed furthermore that the rod has intrinsic curvature, such that � = ��(
) in a load free 

configuration. As a result, only the moment (bending couple) constitutive equation is needed, 

which, in terms of the rod’s curvature � is written following 40 as  

�(
, �, �Y) = "#(
))� − ��(
)* + j`(
) �Y .      (�'. 6) 
For simplicity, all numerical results presented here were computed in the case ��(
)=0, which 

was found to make negligible difference to the transmission of dynamic information. This 

simplification can also be argued mathematically because rotary inertia is several orders of 
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magnitude smaller than bending forces.  

The rod was modelled to be in contact with a plate fixed at a finite distance @k < � from the 

base of the rod, and moving tangentially at a constant speed H in the direction normal to the 

undeflected rod’s axis. Speed H can be related to the angular velocity used in the 

experiments via the simple relation H =  @k[\] ^_ . In all computations we assume tip contact, 

between the whisker and the plane. The normal pressure �(�) at the tip is an unknown 

dynamical variable that is solved for as part of the problem. The base (follicle end) of the rod 

is assumed to be fixed within some rigid substrate representing the experimental shaft, 

leading to ideal clamped boundary conditions,  

Under the above assumptions, the mathematical model is developed as follows. Material 

points of the rod are labelled by the Lagrangian coordinate 
 ∈ )0, �* measured in the 

undeformed rectilinear configuration. The goal of the model is to describe the motion of each 

material point %(
, �) = )�(
, �), @(
, �)* along the centreline of the rod. Let > and l be the 

Cartesian components of the force at each material point and let the corresponding moment 

be 
. Under these hypotheses, conservation of linear momentum in each Cartesian direction 

and of angular momentum lead to the equations of motion 

h`(
)�m = >T, h`(
)@m = lT,       h#(
)�m = � + l no
 � − > 
�? � ,          (�'. 7) 
in which partial derivatives with respect to time and arclength are denoted with a dot and a 

prime respectively. Inextensibility means that the forces > and l at each position 
 are 

Lagrange multipliers, i.e. determined by kinematics not determined by constitutive laws. The 

inextensibility constraint requires that 

�′A + @′A = 1  ,   (�'. 8) 
which is automatically satisfied by the differential equations 

�T =no
  � , @T =
�?  � .         (�'. 9) 
Hence, with appropriate initial and boundary conditions, the eqs. 9 can be integrated to 

obtain the position of the rod )�(
, �), @(
, �)* at each point along the rod and each instance in 

time. The base-end boundary conditions are straightforward. We suppose that this end is the 
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origin of the Cartesian co-ordinates and that the rod is clamped, which gives 

�(0, �) = @(0, �) = 0,   �T(0, �) = 0,   �(0, �) = 0.     (�'. 10) 
The boundary conditions at the tip end are less straightforward. The plate is assumed to 

occupy the half-space @ = @k and be rigid. The tip is assumed to experience tangential and 

normal pressures >F  (�) and �(�), which leads to boundary conditions of the form 

@(�, �) = @k,     >(�, �) = >F ,     l(�, �) = −�,      �(�, �) = 0.     (�'. 11) 
Condition (eq. 11, 1) when combined with (eq. 9) leads to the integral constraint 

@k = N 
�?  � �
e
b ,     (�'. 12) 

which allows for determination of the unknown pressure �(�). 

Friction model 

A friction law was required to determine the tangential force >F(�) in terms of the pressure � 

and the velocity H of the plate’s motion. There is no single accurate model for frictional 

contact, especially in high-frequency dynamic environments, (see 32). It is common to 

assume that the normal and tangential interfacial forces are related by a ‘coefficient’ of 

friction D with a Coulomb or generalised Coulomb law between the slip velocity if the ratio of 

tangential to normal forces exceeds D. For solid interfaces, experimental evidence (see 

references in 33,41) suggests that a match with experimental data may be obtained if D is 

considered as a function of the past sliding history often modelled as an internal state 

variable that measures the state evolution of the frictional surface. Such so-called rate-and-

state friction laws also have the advantage that they avoid the singularities associated with 

non-smooth Coulomb-like friction laws. Here we use a formulation 34 in which we suppose D 

to depend both on the velocity H and a dimensionless, internal relaxation variable s(�), which 

measures the state of the interface and quantifies the interfacial resistance to slip.  
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Specifically 

⎩⎪
⎨
⎪⎧ >F = D(x, s)�     (�'. 13.1)

D = E(x, s) =  � 
�?ℎWX z{∗ RH}∗S s~ �  ≈ D∗ + � �?  RH}∗S +  � ln(s) ; {∗ ≡ ��� �D∗� � 2  (�'. 13.2)
sY = −�(x, s) ≈ − s − s\\(x)�⋆(H) ;      s\\(x) ≡ }∗x ;      �⋆(x) ≡ Gx .        (�'. 13.3)

 

The downside of the rate-and-state approach is that there are extra parameters that must be 

chosen (note that 33,41 discuss ways for the experimental determination of such rate-and-state 

parameters). Specifically, D∗ ≡ D)}∗, s\\(}∗)* is a kinetic coefficient of friction of reference and 

the parameters � and � respectively characterise the strength of the instantaneous velocity 

and state dependence. Note that, in the steady-state sliding situation, it is customary to 

distinguish between “velocity-strengthening” (� − � > 0) and “velocity-weakening” 

(� − � < 0) friction laws, the latter case allowing the possibility of stick-slip oscillations to 

exist. These parameters, as well as the parameter }∗, which is a characteristic reference 

velocity, can be associated to the microphysics of creep (see e.g. 34 and references therein). 

The phenomenological sliding memory parameter G represents a “slip-length” whose 

microscopic origin is still a matter of debate (see e.g. 32 and references therein). The slip-

length G in the state evolution law (eq. 13.3) models the characteristic length (or equivalently 

the timescale of order G/H ) over which the frictional response to velocity jumps relaxes to a 

new sliding equilibrium 42,43 and therefore we use L as a proxy for surface roughness.  

We stress that the rate-and-state framework of friction is now well established for multi-

contact interfaces over a wide range of scales. Nevertheless, dry friction modelling at the 

macro-scale based on microscopic measurements remains a topic of active research in the 

field of tribology, and further microscopic experimental work would however be needed to 

experimentally determine parameter regions of applicability of the rate-and-state formalism to 

whisker tribology. 

Numerical implementation and parameter fitting 

The set of equations (eqs. 7) with constitutive equation (eqs. 6) and boundary conditions (eq. 

10 and 11), associated with constraints (eq. 9 and 12) constitute a well-posed system of 

algebraic partial differential system to be solved for the unknowns �(
, �), >(
, �), l(
, �) as 
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well as the unknown scalars �(�) and s(�). 

The equations of motion of the whisker are numerically solved using the method of lines 48. 

The discretization in space is achieved from the first order finite difference scheme proposed 

by 40. The resulting large system of ordinary differential-algebraic equations of index 2 is then 

integrated in time using the implicit Runge-Kutta method of order 5 Radau IIA 44 ( see 45 for a 

Matlab implementation). 

With respect to parameter fitting, the whisker truncation length �c  and density h are readily 

calculated from the rod conical geometry that we assume. The value of Young’s modulus is 

based on the natural frequency of the second mode of vibration of the whisker that is 

exhibited from the power spectral density computed from the free-on-air data (see Fig. 2D). 

We tuned the value of " from computing the frequency response of the whisker with a set of 

ringdown numerical experiments, i.e. the oscillatory response of the whisker whose tip has 

been displaced by applying a force. Our value is consistent with previous published 

estimates (e.g. 2,3,46,47). The speed of sound n\ = �"/h then follows directly. The driving plate 

location @k/� = 0.98 is chosen for the present geometry so that regional contact of the whisker 

tip is avoided, the tip contact remaining close to tangency. In absence of any tribological data 

for the system whisker/sandpaper, our choice of parameter values for the friction model is ad 

hoc and based on orders of magnitude commonly used in the relevant literature (see also 

Fig. S5 and related mathematical formulations). 
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Figure legends 

Fig. 1: Whisker and biomechanical measurement. (A) Rat whisker C4. The rat‘s head and 

location of whisker field is shown. The position of C4 is the green dot in the magnified 

whisker field. Conical shape, length � and distance � (cf. panel C) are shown. (Note that we 

repeated core measurements using also a C3 and a D3 whisker, the locations of which are 

indicated by grey dots) (B) Microscopic images of whisker tip (left) and base (right). (C) 

Experimental set up (view from the recording camera). The rotating rod is seen on top. At the 

bottom, the half-cylinder holding the sandpaper is shown. Experimental variables position on 

whisker (length) �, driving speed H, and distance � are indicated. (D) Stick-slip events in a 

whisker moving across a texture. Videographic analysis of whisker shape and location in � 

and @ during one protraction (all frames of the video are shown, the sandpaper was located 

at distance 1 mm less than whisker length: i.e. at � = 27.36 mm). Red: all frames below the 

driving velocity – pointing to sticking periods. Green: instances with local maximum of 

acceleration – pointing to slips. The first frame captured when the whisker was moving free in 

air (no texture) is shown for comparison (violet). Inset: Cross-correlogram of accelerations at 

the tip (� = 24 mm, top white line) vs. that at the base (� = 3 mm, bottom white line). The 

grey lines indicate time lag � = 0 (abscissa) and correlation coefficient % = 0 (ordinate). (E) 

Method to identify stick and slip events. Sticks (red) were found by thresholding the velocity 

trace (at driving speed 420°/s) and minimizing the trace below that limit. Slips (green) were 

found by maximizing the acceleration strips above threshold (2 standard deviations found 

with movement in air/no contact).  



Oladazimi, Putelat, et al., Whisker biomechanics 31 

Fig. 2: Curvature of the whisker in moving contact. (A) Movement in air. Curvature of each 

point along the beam and across time is colour coded. Inset: Calculation of curvature �. The 

angle � at each point of the beam is measured and the curvature calculated as �(
) =
�′(
) = ��/�
. We plot ��, in which the intrinsic curvature of the whisker (at rest in air) is 

subtracted. (B) Curvature as in A when in contact with a smooth sandpaper (P1200) and (C) 

a rough sandpaper (P80). For both the distance was (distance � = � − 1 mm; speed H =
420 °/s). Arrows point to curvature changes evoked by stick-slip events being transmitted 

rapidly along the beam and therefore appearing as vertical stripes. (D) Spectra of base 

movements shown in ABC. Inset shows the same data rescaled to dB. Note the prominent 

peak in the spectrum at ~200 Hz in the ‘free in air’ condition, indicating the 2nd bending mode. 
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Fig. 3. Moment amplification during transmission from whisker tip to base. (A) Curvature of 

whisker in contact with P80 (speed 420 °/s). Each line represents one time bin (0.25 ms). 

Two frames toward the extremes of the curvature are coloured to demonstrate a node of 

vibration at around 10 mm from the tip (2nd bending mode). (B) Moment ��  as calculated 

from eq. 2. Left Inset: Schematic of normal and axial forces (E�, E ) and moment (�� ) acting 

in the plane of whisker movement. Moments are negligible at the tip and small negative 

moment builds up a short distance from the tip. (cf. right inset). The left bundle of lines 

indicate moment calculated using � (instead � − ��, cf. eq. 2). Two arbitrary frames are 

highlighted in green to demonstrate the node of vibration. (C) Moment ��  at tip (s=24mm) 

and base (s=3mm) of the whisker (note the three orders of magnitude difference in scale). 

The red areas indicate periods of sticking (H < 420 °/s). (DE) Average moment ��  with 

respect to stick (red) and slip (green) events (as identified using the method in Fig. 1B). Nine 

correlograms taken from traces measured with three different sandpapers and using three 

driving speeds are shown. 
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Fig. 4: Micro-force measurement at the whisker base. (A) Left inset: Photograph of the 

measurement set-up. The sensor was mounted on an immobile ledge directly above the 

rotation axis of a rotating drum. The drum was perforated to save weight and contained a 

wall to fix the sandpaper. Centre: Schematic of measurement set-up. The whisker (green) 

was mounted on the sensor (dark grey and pink), and brought in contact with the sandpaper 

(violet), which in turn was rotated by the drum (grey arrow). Two measurements were 

performed. First, the forces in the plane of whisker movement (E� , E ) were directly measured 

by the piezoresistive sensor (right inset). Second, the lateral acceleration at the base (s=3 

mm) (��) was assessed by videography (cf. Fig. S1). (B) The top graph plots �� (red) on top 

of E�., the bottom one plots E� and E . Acceleration is in excellent correspondence to the 

forces acting on the base. (C) Average normal force triggered on stick events. E� builds up 

during sticks (as well as E , not shown). Compare with the parallel increment of moment ��  

as calculated from curvature measurements (Fig. 3D).  
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Fig. 5: Kinematic and dynamical output variables of the model (see full set or output 

variables in table 2). Stick and slip events were identified as in the videographic 

measurements (cf. Fig. 1B, dots in base kinematic traces in which the identification was 

done, and lines throughout, red: sticks; green: slips) (ABC) Kinematic variables (DEF) 

Dynamical variables. (G) The average normal force to the whisker base builds up to a 

maximum around a stick event. (H) Spectra of moments for model runs using different values 

of G [5,50,500]. Top and bottom are the same data plotted as dB or PSD. Medium values of G 

match the experimental data (cf. Fig. 2D) best, as this model best recreates the dominance 

of the 2nd bending mode (2nd harmonic is marked by an asterisk). (I) Curvature output (∆�) of 

the model using G = 50 μm. (experimental data cf. Fig 2B). (J) Moments �� (
, �) (each line 

represents moments at one time point along 
). A few lines have been coloured green to 

demonstrate the node of vibration at 2nd bending mode. Comparable experimental data are in 

figure 3B.  
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Table 1 

Parameter (measured) symbol units value 

whisker length 
base radius 
tip radius 
intrinsic curvature 
whisker mass 
2nd mode natural frequency 

� = 
� �  %b %X ��  
�  �A/(2$) 

mm 
μm 
μm 

rad/m 
mg 
Hz 

28.36 
69 
2.5 
0 

0.19 
230 

truncation length 
density 
Young modulus 
sound speed 

�c  h " n\  
mm 

kg m-3 
GPa 
m s-1 

1.066 
1295.1 

3.3 
1596.3 

Parameter (fixed)    
driving plate location 
damping constant 

@k/� j = 0.5 Ihn\%b� ∅ 
kg m s-1 

0.98 3.396 × 10W� I 
dimensionless damping constant I ∅ 0.1-1 

friction velocity variation strength 
interfacial state variation strength 
friction velocity reference 

� � }∗ 
∅ ∅ 

μm s-1 

0.035 
0.049 

1 

Parameter (varied)    
memory length G μm 5-500 

List of all input parameters of the Cosserat and the friction model.  
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Table 2 

Kinematics  symbol arguments 

Angular position, velocity, acceleration U, H = UY , � = UY  
, � 
Curvature � 
, � 
Dynamics   

Normal, axial force E�, E  (? �?� � �? �ℎ� 
o���) 
, � 
Moment ��  (� �? �ℎ� 
o���) 
, � 
Friction  EF  � 
Pressure � 
, � 

List of all output parameters of the Cosserat and the friction model.  
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Supplementary Material (Figures S1, S2, S3, S4, S5, Supplemental text about the 1 

implementation of the model) 2 

 3 

Conveyance of texture signals along a rat whisker   Maysam Oladazimi, Thibaut 4 

Putelat, Robert Szalai, Kentaro Noda, Isao Shimoyama, Alan Champneys, Cornelius 5 

Schwarz 6 
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Fig. S1. Speed of transmission along the whisker beam. Moving contact at a distance 7 

� − 7 mm (A) and �– 1 mm (B). In both panels the contact with the rough p80 sandpaper 8 

is shown at the top, contact with smooth p1200 sandpaper at the bottom. In the left 9 

columns acceleration traces measured at the tip (s=24mm) and base (s=3mm) are 10 

shown. The right columns show cross-correlograms of acceleration traces at tip vs. 11 

base, calculated from all trials measured in this configuration. The central negative 12 

peaks (vertical grey line) are located at time delay 0, up to measurement precision.  13 
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Fig. S2 Curvature data as shown in Fig. 2 but for smaller texture distance (� = � − 7 14 

mm). With the whisker more engaged with the sandpapers, resonant phenomena are 15 

largely missing. A node with curvature change being zero is, however, preserved at 7-8 16 

mm from the base. Arrows mark slip events that are transmitted from tip to base within 17 

one videography frame of 0.25 ms.  18 
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Fig. S3: Design and dimensions of the piezoresistive force sensor Four piezo-resistors 19 

are formed on to measure multi-axis forces applied to the tip of this cantilever type 20 

structure; two of them are formed on the surface of the beams as R1 and R4, and the 21 

others are formed on the side walls as R2 and R3. x and y directional forces applied to 22 

the tip of the sensor can be detected by comparing the resistance changes of these 23 

piezo-resistors formed on the spring type beams. The measured directional forces are 24 

then the and latitudinal (normal, x) and longitudinal (axial, y) forces acting on the whisker 25 

base (see figure 4 in the main text for orientation of the whisker mounted on the sensor). 26 
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Fig. S4: Cosserat Model. A: Conical whisker of length �. The model estimates the space-

centroid line over time (�(
, �) = ��(
, �), �(
, �)�,   ���ℎ 0 < 
 < �, green). At each point of � a 

cross-section circle exists (�����
 �(
); a few circles are shown). The assumption of absence of 

shear along the beam guarantees orthogonality of circular cross-sectional planes to the tangent 

at �(
, �). Proportions are not to scale (arbitrarily chosen to optimize visualization). B: The 

whisker is assumed to be in contact with a moving flat plate (violet, constant velocity �). The 

schematic shows the situation at one time point �. A characteristic variable of all points 
 is the 

angle � between the horizontal axis and the tangent at �(
), which defines the curvature � =

��/�
. At each point �(
) the acting force can be decomposed into axial and normal forces � 

and  , as well as normal and axial forces � and ! (denoted "# and "$ in Fig. 4; note the frame of 

reference of the modelling is different from the one used for measurements, cf. Fig. 4). The inset 

is an explanatory blow up from the site in the schematic marked by a grey rectangle. The time 

series of the angle (%(�(
, �))) provides a simple measure of movement of any point on �. The 

(instantaneous) dynamical friction coefficient & is used to define the friction force "' = & (, with 

pressure ( = ((�, �). "' is determined by a ‘rate and state friction’ sub-model (see materials and 

methods for details).  
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Fig. S5: Model Implementation. Chain of rigid elements (µ) composing the model of the 44 

whisker beam. Index of elements: �; Number of elements: !; Forces:  , �; Moments: m. 45 

See supplementary text for more details.  46 

 47 
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Supplementary text related to figure S5.

Numerical implementation.

Here we present a full and condensed description of our Cosserat rod model of whiskers in
dimensionless form, together with a finite difference semi-discretization scheme allowing its
translation into a set of first order differential algebraic equations (DAEs) at the heart of the
method of lines that we use to solve the equations of motion of the whisker.

The method of lines is a general technique for solving partial differential equations (e.g. see [48]
for a didactic description of the method). It relies on the discretization of the spatial domain
and derivatives which yields a large set of differential equations whose time integration can be
performed using numerical routines developed for the numerical integration of ODEs and DAEs.
Complete details are given to make the numerical implementation our method into a computer
code in any computing language relatively straightforward.

We point out that our dimensionless formulation, explained below, renders our approach very
generic in the sense that any whiskers with the same dimensionless characteristics will behave
in exactly the same fashion. Another important feature of our formulation relies on the shape
function σ(s), which describes the rod geometry and its mechanical characteristics (like inertia
and bending stiffness). The whisker geometry in this study is based on a linear cone, but any
other shape could be assumed in principle from modifying σ to any other relevant and realistic
function of the arclength s. With this view in mind, our formulation could be particularly useful for
the study of vibrissae across the animal kingdom and for the design of synthetic whiskers to ex-
plore their mechanical response to dynamic contacts. Finally note that the present formulation
is not restricted to a particular point contact model either.

All in all only slight modifications of the dimensionless formulation and its numerical implemen-
tation presented below would be required for the study of natural or synthetic whiskers with
different shapes and with more complex inner structure.

Non-dimensionalisation and notations.

To non-dimensionalise system (7)–(13) in the main document and to resolve short wavelengths
and high frequencies, we use b/2, (b/2)/c and πEb2 as characteristic scales of length (s)
and displacement (x , y), time (t) and force (f , g), respectively. Note that the rod longitudinal
wavespeed is denoted c =

√
E/ρ and that moments are measured in units of πEb2`.

With abuse of notation, denoting the rod aspect ratio ε = b/(2l), the dimensionless dynamics
of the rod is governed by the partial differential-algebraic system,

σ2 ẍ = f ′,

σ2 ÿ = g ′,

σ4θ̈ = (σ4θ′ + δσ2θ̇′)′ + g cos θ − f sin θ,


x ′ = cos θ,

y ′ = sin θ,

ȳ/ε =
∫ 1/ε
0 sin θds.

(1)

The associated boundary conditions are straightforward to write down. The whisker shape
function σ(s) (i.e. dimensionless whisker radius) is defined as

σ(s) = (1 + λc − εs)/(1 + λc), (2)

for a truncated linear cone with a dimensionless truncation length λc = `c/` and a dimension-
less arclength s ∈ [0, 1/ε]. Note that different whisker geometries could be considered from
assuming different functions σ(s).

The semi-discrete formulation of system (1) needed for the method of lines is obtained as
follows. We have adapted the spatial finite difference discretization scheme of McMillen and
Holmes (2006) [40] consisting in decomposing the rod over the discrete arc-length grid si := ih
(i ∈ {0, 1, ... , n}), h = 1/(nε), as a chain of small rigid segments (labelled by index i) of length h,
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mass µi and moment of inertia νi defined by

µi := σ(ih)2h, νi := σ(ih)4h. (3)

See figure S5. Correspondingly, the discrete version of the equations of motion reads

µi ẍi = fi+1 − fi , µi ÿi = gi+1 − gi , νi θ̈i = mi+1 −mi + ni , (4)

where the discrete shear force and moment are given by

ni = (h/2)[(gi+1+gi ) cos θi−(fi+1+fi ) sin θi ], mi = σ4i−1[(θi−θi−1)/h−κ0i−1]+δ σ2i−1(θ̇i−θ̇i−1)/h.
(5)

The discretization of the constraint of inextensibility yields

xi+1 − xi = (h/2)(cos θi+1 + cos θi ), yi+1 − yi = (h/2)(sin θi+1 + sin θi ), (6)

while the quadrature formula that approximates integral conditions (1)6 reads

ȳ/ε = h/2 + h
n∑

j=1

sin θj . (7)

A discrete Differential Algebraic Equations (DAE) scheme.

We now express the system of equations above as a first order system of ODEs.

In the following, we denote ∆+ = E+ − I the matrix corresponding to the difference opera-
tor ∆+fi = fi+1 − fi , denoting the shift matrix E+ after the shift operator E+fi = fi+1. The vector
ei is the Euclidian basis vector that has unity in its i-th position and zeros elsewhere.

Hence, the discretization above translates into

µ� ẍ = ∆+f + fn+1en, µ� ÿ = ∆+g + gn+1en, ν � θ̈ = ∆+m + n (8)

where the symbol � denotes the Hadamard (element-wise) product (i.e. w � v = diag(w)v).
The discrete versions of the shear force and bending moment are given by{

n = (h/2)[((E+ + I)g)� cos(θ)− ((E+ + I)f)� sin(θ) + gn+1 cos(θn)en − fn+1 sin(θn)en],

m = (1/h)(E−σ4)�∆−θ − θ0e1/h, θ0 = π/2.

(9)
We denote σ4 the vector of component (σ4)i = σ(ih)4 = σ4i . The discretization scheme of the
constraints (1)4,5,6 gives the set algebraic constraints

0 = ∆−x− (h/2)(I + E−) cos(θ)− (h/2) cos(θ0)e1,

0 = ∆−y − (h/2)(I + E−) sin(θ)− (h/2) sin(θ0)e1,

0 = ȳ −
[
h/2 + h tr(diag(sin(θ)))

]
,

(10)

necessary to solve the force vectors f and g and the tip pressure p. The symbols tr(•) and
diag(•) respectively represent the trace of a matrix and the diagonal matrix made out of a
vector argument.

Writing the vector of unknown variables

z := (x, y,θ, ẋ, ẏ, θ̇, f, g, p)T, (11)

denoting for instance x = (x1, ... , xn)T := (x(s1), ... , x(sn))T ((•)T being the transpose of a vec-
tor), we then construct from (8)–(10) the DAE system to be solved

Mż = F(z) + F0, (12)
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by defining the mass matrix, the ‘body’ force and ‘contact’ vectors as

M =



In 0 0 0 0 0 0 0 0
0 In 0 0 0 0 0 0 0
0 0 In 0 0 0 0 0 0
0 0 0 diag(µ) 0 0 0 0 0
0 0 0 0 diag(µ) 0 0 0 0
0 0 0 0 0 diag(ν) 0 0 0
0 0 0 0 0 0 0n 0 0
0 0 0 0 0 0 0 0n 0
0 0 0 0 0 0 0 0 0


, (13)

F(z) =



ẋ
ẏ

θ̇
∆+f + fn+1en
∆+g + gn+1en

∆+m + n
∆−x− (h/2)(I + E−) cos(θ)− (h/2) cos(θ0)e1
∆−y − (h/2)(I + E−) sin(θ)− (h/2) sin(θ0)e1

ȳ/ε−
[
h/2 + h tr(diag(sin(θ)))

]


, F0 =



0n

0n

0n

µ(vr ,ϕ) p en
−p en

0n

0n

0n

0


. (14)

We denote In the n-dimensional identity matrix, 0n representing either the zero matrix or vector
of the relevant size.

When rate-and-state friction is assumed (see Eqs. (13) in the main document), this DAE system
is augmented with the state evolution law equation (appropriately rescaled), the tip velocity
relative to the driving surface (speed V ) being evaluated with

vr = V − [ẋn − (h/2) sin(θn)θ̇n]. (15)

Note that a change in the tip contact model would be implemented by modifying the non-zero
components in the contact force F0.

In practice, the first order system of ODEs (12) was fed to the order 5 Radau IIA integrator [44]
with automatic step-size control using the Matlab routine radau5Mex [45]. Note that the IDAS
package for the solution of DAE systems from the SUNDIALS solvers [49] can be used as an
alternative to the Radau integrator. The numerical results presented in the main document were
computed with a spatial discretization based on a regular grid consisting of n = 26 grid points,
the solution being evaluated in time at nodes equally spaced with ∆t = 1000. Dimensionally,
this corresponds to one material point every 0.44 mm with temporal snapshots every 22 µs.
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