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15 Abstract

16 Projected changes to rainfall patterns may exacerbate existing risks posed by flooding. 

17 Furthermore, increased surface runoff from agricultural land increases pollution through 

18 nutrient losses. Agricultural systems are complex because they are managed in individual 

19 fields, and it is impractical to provide resources to monitor their water fluxes. In this respect, 

20 modelling provides an inexpensive tool for simulating fluxes. At the field-scale, a daily time-

21 step is used routinely, however, it was hypothesized that a finer time-step will provide more 

22 accurate identification of peak fluxes. To investigate this, the process-based SPACSYS 

23 model that simulates water fluxes, soil carbon and nitrogen cycling as well as plant growth 

24 with a daily time-step was adapted to provide sub-daily simulations. As a case study, the 

25 water flux simulations were checked against a 15-minute measured water flux dataset from 

26 April 2013 to February 2016 from a pasture within a monitored grassland research farm, 

27 where the data were up-scaled to hourly, 6-hourly and daily. Analyses were conducted with 

28 respect to model performance for: (a) each of the four data resolutions, separately (15-minute 

29 measured versus 15-minute simulated; hourly measured versus hourly simulated; etc.); and 

30 (b) at the daily resolution only, where 15-minute, hourly and 6-hourly simulations were each 

31 aggregated to the daily scale. Comparison between measured and simulated fluxes at the four 

32 resolutions revealed that hourly simulations provided the smallest misclassification rate for 

33 identifying water flux peaks. Conversely, aggregating to the daily scale using either 15-

34 minute or hourly simulations increased accuracy, both in prediction of general trends and 

35 identification of peak fluxes. For the latter investigation, the improved identification of 

36 extremes resulted in 9 out of 11 peak flow events being correctly identified with only 2 false 

37 positives, compared with 5 peaks being identified with 4 false positives of the usual daily 

38 simulations. Increased peak flow detection accuracy has the potential to provide clear field 

39 management benefits in reducing nutrient losses to water.
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41

42 1 Introduction

43 Flooding in the UK puts more than 5 million people in 2.4 million properties at risk each year 

44 (Environment Agency, 2009). Projected changes to rainfall patterns (Watts and Anderson, 

45 2016) may exacerbate the existing risks posed by flooding. Flash flooding or surface water 

46 flooding, defined as those flood events where the rise in water is either during or within a few 

47 hours of the rainfall that produces the rise, is one of the most common types of flooding in 

48 the UK. The utilised agricultural area, of which almost 60% is permanent grassland, covers 

49 71% of the total land of the UK (Department for Environment, Food and Rural Affairs, 

50 2019). Water fluxes or surface runoff generated from agricultural land can contribute 

51 significantly to local floods and nutrient losses that cause water pollution. Flooding of 

52 farmland is likely to become more frequent in some areas under projected climate change 

53 (Brown et al., 2016), although intriguingly, studies have found increases in precipitation 

54 extremes do not necessarily mean increases in flood magnitude, due to decreased soil 

55 moisture at storm onset and reduced storm durations (Sharma et al., 2018; Wasko et al., 

56 2019). Further, soil erosion is accelerating due to more intense rainfall, leading to the loss of 

57 valuable topsoil and the pollution of watercourses (Morison and Matthews, 2016). 

58

59 Accurate forecasting of water runoff (or water fluxes) from agricultural land is, therefore, not 

60 only a vital component of flood early-warning systems, but also for associated management 

61 strategies for nutrient loss and water pollution. Water fluxes from the soil surface are 

62 controlled by soil properties. Long-term hydrological studies have shown that sandy Alfisols 

63 can generate higher runoff compared to clayey Vertisols (Pathak et al., 2013), and a greater 
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64 risk of flooding on clay soils has been reported (Charlton et al., 2010). The wetness of the soil 

65 before a precipitation event (Merz and Plate, 1997) and soil compaction also affect water 

66 fluxes. Farm machinery and livestock (Adimassu et al., 2019; Alaoui et al., 2018; Newell 

67 Price et al., 2012) can cause serious compaction and so exacerbate flood risk. Natural events, 

68 particularly long and intense precipitation events (Archer and Fowler, 2018), and land cover 

69 variation (Dadson et al., 2017; Keesstra et al., 2018) also affect flux. 

70

71 Agricultural systems are complex because they are generally managed at the field scale and 

72 each field has its own unique set of soil conditions and topology. Monitoring water surface 

73 fluxes in fields is costly both in time and financially. In this respect, modelling provides an 

74 effective tool for simulating or forecasting water fluxes. The SPACSYS model (Wu et al., 

75 2007) is one such process-based model. It is a field scale and weather-driven dynamic 

76 simulation model. Since it was first published in 2007, it has been developed to provide 

77 added functionality (Bingham and Wu, 2011; Liu et al., 2013; Wu et al., 2019; Wu et al., 

78 2015). The model can simulate the interactions of soil carbon (C), nitrogen (N) and 

79 phosphorus (P), plant growth and development, water re-distribution and heat transformation 

80 in agricultural fields. The model has been used to investigate several issues including 

81 resource use efficiency by crops (Wu et al., 2009), greenhouse gas (GHG) emissions (Abalos 

82 et al., 2016; Perego et al., 2016), the responses of cropping/grassland systems to 

83 environmental change (Wu et al., 2016) and the forecasting of crop yield and stocks of C and 

84 nutrients (Zhang et al., 2016) under various climatic and soil conditions.

85

86 The SPACSYS model has been developed to investigate not only temporal dynamics, but 

87 also within-field spatial variation in processes such as water runoff, using a linked, grid-based 



5

88 approach (grid-to-grid) (Liu et al., 2018). As in all previous implementations of SPACSYS, 

89 and common to many agriculture-focused models (Ahuja et al., 2002), a daily time-step was 

90 used. However, model predictions of water flux did not increase in accuracy when 

91 considering grid connectivity. We hypothesise, that a finer time-step might provide this 

92 improvement instead; not only in the grid-to-grid model, but also in the (non-grid-to-grid) 

93 standard model, as investigated here. Although not demonstrated within this study, increasing 

94 the accuracy of water flux simulations should implicitly increase the accuracy of associated 

95 SPACSYS simulations, such as those for nutrient loss that use predicted water flux in their 

96 calculation.

97

98 For our case study, we used measured 15-minute water flux data from one field (or sub-

99 catchment) of the North Wyke Farm Platform (NWFP). The NWFP is a systems scale 

100 research facility in the south-west of England for investigation of the sustainability of 

101 lowland ruminant production systems (Orr et al., 2016). South-west England has a relatively 

102 wet climate where the greatest rainfall is in winter and the driest times are between April to 

103 July. August tends to show an increase in rainfall over July and starts the inexorable rise in 

104 rainfall into autumn and early winter. More recently, the number of flood events has 

105 increased (Stevens et al., 2016), mostly in the autumn and winter months; all as a likely 

106 consequence of increased surface water runoff (Palmer and Smith, 2013).

107

108 For this study, the NWFP’s 15-minute water flux data were up-scaled to hourly, 6-hourly and 

109 daily data and the SPACSYS model was adapted to provide corresponding downscaled 

110 simulations at 15-minute, hourly and 6-hourly resolutions (in addition to its usual daily 

111 output). This provided four measured water flux datasets and four simulated water flux 
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112 datasets over a study period of 34 months (April 2013 to February 2016). Simulations were 

113 generated using the same field management practices and parameter configurations. These 

114 rich water flux datasets enabled investigation of the effects of temporal scale on model 

115 performance not only in terms of extreme water runoff, which is the study focus and provides 

116 it’s novelty, but also in terms of general trends.

117

118 2 Materials and Methods

119 2.1 Model description

120 The SPACSYS model includes a plant growth and development component, an N cycling 

121 component, a C cycling component, a P cycling component, plus a soil water component that 

122 includes representation of water flow to field drains as well as downwards through the soil 

123 layers, together with a heat transfer component. The equations to quantify such different 

124 processes have been described elsewhere (Liu et al., 2013; Wu et al., 2019; Wu et al., 2007; 

125 Wu et al., 2015). Here, only the processes influencing directly the soil water component are 

126 presented.

127

128 For SPACSYS, the Richard’s equation for water potential and Fourier’s equation for 

129 temperature are used to simulate water and heat fluxes, which are inherited from the SOIL 

130 model (Jansson, 1998). If the water content in a layer rises above a specified value a 

131 proportion is held in macropores such that rapid downward water movement takes place due 

132 to gravitational forces alone. Water flow from the soil profile to a drainage pipe occurs when 

133 the ground water table is above the bottom level of the pipe and the soil below the ground 

134 water table is saturated. The Hooghoudt drainage flow equation with modification is adopted 

135 for the subsurface drainage flow.
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136

137 The main processes concerning plant growth in SPACSYS are plant development, 

138 assimilation, respiration, root growth and development, water uptake, nutrient uptake, 

139 biological N fixation for legume plants and partitioning of photosynthate and nutrients from 

140 uptake estimated with various mechanisms implemented in the model. N cycling coupled 

141 with C cycling covers the transformation processes for organic matter and inorganic N. The 

142 main processes and transformations causing size changes to mineral N pools are 

143 mineralization, nitrification, denitrification including N gaseous emission and plant N uptake. 

144 P cycling is linked to other components such as the plant component, heat transformation and 

145 the water cycle. Organic P is subdivided into certain sub-pools with different forms which are 

146 connected with transformation rates.

147

148 2.2 The North Wyke Farm Platform

149 The study site is located in south-west England, at the NWFP, Rothamsted Research, 

150 Okehampton, Devon (50°46’10’’N, 30°54’05’’W). For the period 1985-2015, the mean 

151 annual temperature in North Wyke ranges between 6.8 and 13.4 °C, the mean annual rainfall 

152 is 1033 mm and the climate is classed as cool temperate. The platform is a 63 ha systems-

153 based experimental facility divided into 15 hydrologically isolated sub-catchments across 

154 three 21 ha farmlets with five sub-catchments in each. At the time of this study, all three 

155 farmlets were used solely for grazing livestock research (sheep and cattle) where each farmlet 

156 was operating under different sward management strategies: no re-seeding (permanent 

157 pasture); re-seeded monoculture; and re-seeded legume mix. The platform monitors routinely 

158 water runoff and water chemistry in each of the 15 sub-catchments, together with other 

159 primary data collections (e.g. greenhouse gas emissions, livestock performance) so that each 
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160 farming system can be described, contrasted and compared according to its level of 

161 sustainability (Orr et al., 2016). Datasets are freely available from 

162 https://www.rothamsted.ac.uk/north-wyke-farm-platform, including those used in this study.

163

164 2.3 Model configuration

165 For this study, we focused on water fluxes for one sub-catchment in the permanent pasture 

166 farmlet called ‘Golden Rove’; a single field that has been under permanent pasture since the 

167 outset of the platform in 2010 (Fig. Figure 1). The soil class for this field is primarily 

168 Halstow, which comprises a slightly stony clay loam topsoil (approximately 36% clay) that 

169 overlies a mottled stony clay (approximately 60% clay), derived from underlying 

170 Carboniferous Culm rocks (Harrod and Hogan, 2008). The study field also has a smaller, but 

171 not insignificant area of Denbigh-Cherubeer soil class. In the simulations, the soil type was 

172 ignored.

173

174 To mimic the grazing system, daily grass intake and excretion of sheep and cattle in the field 

175 was estimated before running the simulations (Carswell et al., 2019; Wu et al., 2016). Soil 

176 physical and chemical properties of the field were adopted from a previous study of the same 

177 field (Wu et al., 2016). The temporal frequency for the measured water fluxes (l s-1) from a 

178 NWFP water flume has been 15-minutes since the outset of the platform’s setup in October 

179 2012. However, meteorological measurements at the same 15-minute resolution were only 

180 initiated from 30 April 2013. Thus, to ensure consistency in the frequency of the driving 

181 variables and the water flux as an output variable, simulations also started from 30 April 

182 2013. An end-date of 15 February 2016 was chosen to give an interrupted data collection 

183 time period of 34 months. A longer time period would entail having significant periods of 

https://www.rothamsted.ac.uk/north-wyke-farm-platform
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184 missing data due to instrument failure (i.e. there were no measurements on water flux 

185 between 15 February and 24 October 2016). A previous scale-focused study, analysing the 

186 measured 15-minute water fluxes together with aggregations at 30-minute, hourly, 3-hourly, 

187 6-hourly, 12-hourly and daily resolutions, indicated that 15-minute, hourly, 6-hourly and 

188 daily resolutions is sufficient to communicate all key outcomes adequately (Curceac et al., 

189 2020). Thus, the same four temporal resolutions were adopted for the model simulations of 

190 this study.

191

192

193 Figure 1. Details of the NWFP sub-catchment selected for this study (sub-catchment number 

194 6 of 15, consisting of a single field called Golden Rove).

195
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196 2.4 Statistical analysis

197 Two distinct sets of statistical analyses were conducted with respect to model performance 

198 and data resolution: (a) model performance for each of the four data temporal resolutions, 

199 separately (i.e. 15-minute measured versus 15-minute simulated; hourly measured versus 

200 hourly simulated; 6-hourly measured versus 6-hourly simulated; daily measured versus daily 

201 simulated); and (b) model performance conducted at the daily temporal resolution only, 

202 where 15-minute, hourly and 6-hourly simulations were each aggregated to the daily scale. 

203 The latter analyses provide valuable insights into the worth of using fine temporal resolution 

204 data to increase the accuracy of daily simulations, especially with respect to the accurate 

205 identification of extremes. This is important as many process-based models in the literature 

206 simulate only at a daily time-step (e.g. Del Grosso et al., 2009).

207

208 2.4.1 Model performance graphics

209 Model performance graphics consist of time-series plots, density plots and scatterplots of 

210 measured and simulated datasets. For the latter, the ideal 1:1 line, a linear regression fit, and a 

211 non-linear regression fit (i.e., a Loess smoother fit; Cleveland, 1979) are given where he 

212 estimated intercept and slope parameters from the linear fit should equal zero and one for 

213 perfect model simulations, respectively. Results (p-values) from a linear hypothesis test are 

214 reported comparing this ideal model with the estimated model using a finite sample F test 

215 (see Fox, 2016). The non-linear regression provides added insight into where the simulated 

216 values tend to over- or under-predict (e.g., at measured low or high values, respectively). 

217 Time-series plots for the errors (i.e. measured minus simulated data) are also given.

218
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219 2.4.2 Model performance indices

220 To further assess the accuracy of the simulations, six accuracy indices were calculated: the 

221 mean absolute error (MAE), the normalized root mean square error (NRMSE), the percentage 

222 bias (PBIAS), the Nash-Sutcliffe efficiency (NSE), the index of agreement (d) and the Kling-

223 Gupta efficiency (KGE), as given in Table 1.

224

225 Table 1. Accuracy indices formulae, where  are the simulated values,  are the measured zi zi

226 values,  is the mean of the measured values,  is the Pearson product-moment correlation zi r

227 coefficient (between measured and simulated) and  is the standard deviation.σ

Index form Index formula Min. Max. Ideal

Error
MAE = 1

N

N

∑
i = 1

|zi - zi|
0 ∞ 0

Error

NRMSE = 100

1
N∑N

i = 1(zi - zi)2

zmax - zmin

0 ∞ 0

Error

PBIAS = 100
∑N

i = 1(zi - zi)

∑N
i = 1zi

0 ∞ 0

Agreement

NSE = 1 -
∑N

i = 1(zi - zi)2

∑N
i = 1(zi - zi)2

-∞ 1 1

Agreement

d = 1 -
∑N

i = 1(zi - zi)2

∑N
i = 1(|zi - zi| + |zi - zi|)2

0 1 1



12

Agreement
KGE = 1 - (r - 1)2 + (σz

σz
- 1)

2
+ (zz - 1)

2 -∞ 1 1

228

229 2.4.3 Simulation accuracy of measured peaks

230 To investigate model accuracy in simulating water flux peaks, a threshold at the 99th 

231 percentile of each measured water flux dataset was used to identify peak flows. Model 

232 simulations were then assessed to determine if they could similarly exceed this threshold 

233 coinciding with a measured exceedance. Incidences of correct peak flow simulations, false 

234 negatives (simulation does not exceed threshold when measured flow does), false positives 

235 (simulation exceeds threshold when measured flow does not) and corresponding Kappa 

236 values are reported. The Kappa statistic provides a measure of agreement beyond the level of 

237 agreement expected by chance alone. General guidelines for Kappa values are as follows: less 

238 than 0.2 slight agreement, 0.2 to 0.4 fair agreement, 0.4 to 0.6 moderate agreement, 0.6 to 0.8 

239 substantial agreement, greater than 0.8 almost perfect agreement, and equal to 1 perfect 

240 agreement.

241

242 3 Results

243 3.1 Model performance for each of the four data temporal resolutions, separately

244 Comparisons between the measured and simulated water flux rates at different temporal 

245 resolutions are shown in Fig. Figure 2. Visually, it appears that simulations of daily and 6-

246 hourly water fluxes tend to under-predict the measured data, often missing high peaks, while 

247 simulations of 15-minute and hourly data possibly tend to over-predict. However, the 

248 scatterplots of the measured and simulated data, together with the ideal 1:1 line, a linear 
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249 regression fit, and a Loess smoother fit (Fig. Figure 3) present a more complete picture. 

250 Simulations for all four temporal resolutions clearly tend to over-predict, with the level of 

251 over-prediction increasing as the resolution increases. Over-prediction is shown with each 

252 linear regression fit lying below the 1:1 line; and increasingly so, as the resolution increases. 

253 All linear regression fits were found to be significantly different to the 1:1 line, each with F-

254 test p-values < 0.0001.

255

256

257 Figure 2. Time-series plots for measured and simulated water flux data (not aggregated) for 

258 15-minute, hourly, 6-hourly and daily data (in units of mm 15min-1, mm h-1, mm 6h-1 and mm 

259 d-1, respectively). All plots are shown with a threshold at the 99th percentile of measured data 

260 (at 0.138 mm 15min-1, 0.553 mm h-1, 3.45 mm 6h-1 and 14.9 mm d-1, respectively).

261

262 For all four temporal resolutions, the tendency to over-predict decreases at the largest 

263 measured water fluxes, as shown by the concave behaviour of the loess smoother fit (Fig. 
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264 Figure 3), with daily simulations tending to under-predict at very large fluxes, thus, missing 

265 extreme events that may cause flooding and associated nutrient and sediment losses. Clearly, 

266 ‘smoothing bias’ increases as temporal resolution decreases. The 15-minute simulations 

267 maintain the variation shown in the measured data (i.e. observations range from 0 to 2.306 

268 mm 15min-1 while simulations range from 0 to 2.310 mm 15min-1), while the daily 

269 simulations do not (i.e. observations range from 0 to 36.97 mm d-1 while simulations only 

270 range from 0 to 22.20 mm d-1). As each ‘simulation-to-observation’ comparison is on a 

271 different scale, it is not useful to present further model fit diagnostics, such as error and 

272 agreement indices.

273

274
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275 Figure 3. Scatterplots of the measured and simulated data (not aggregated) for 15-minute, 

276 hourly, 6-hourly and daily data. Scatterplots are shown with the 1:1 line, a linear regression 

277 fit and a loess smoother fit. Units are in mm 15min-1, mm h-1, mm 6h-1 and mm d-1, 

278 respectively.

279

280 3.2 Model performance for simulations aggregated to the daily scale

281 Comparisons between the measured and simulated water flux rates aggregated to the same 

282 daily scale are shown in Fig. Figure 4. There are clear instances of both over- and under-

283 prediction for all four daily outputs. The scatterplots (Fig. Figure 5) of daily measured and 

284 daily simulated data from different aggregations, together with the 1:1 line, a linear fit, and a 

285 loess smoother fit, again provide a clear visualisation of the relations in the time-series plots. 

286 Simulations for all three aggregations to daily (15-minute, hourly and 6-hourly) again tend to 

287 over-predict (as their linear fits lie below the 1:1 line), but this over-prediction is broadly 

288 similar across the four datasets, and not as great as that found with the unaggregated data, 

289 above. The 6-hourly aggregations appear to be the least accurate. Again, all linear regression 

290 fits were found to be significantly different to the 1:1 line, each with F-test p-values < 

291 0.0001.

292

293 In this instance, ‘smoothing boas’ increases as aggregation resolution decreases, where 

294 simulations for 15-minute and hourly aggregations both increase the variation shown in the 

295 measured daily data (i.e. 0 to 36.97 mm d-1); with 15-minute daily aggregations ranging from 

296 0 to 38.94 mm d-1 and hourly daily aggregations ranging from 0 to 39.64 mm d-1. Conversely, 

297 the 6-hourly daily aggregations and the daily simulations reduce variation with the 6-hourly 

298 daily aggregations ranging from 0 to 31.70 mm d-1 and the (unaggregated) daily simulations 
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299 ranging from 0 to 22.20 mm d-1. In summary, daily simulations based on component 15-

300 minute and hourly aggregations have the potential to identify peak water fluxes (and, thus, 

301 flood events) and predict their magnitudes more accurately, relative to 6-hourly aggregations 

302 and (unaggregated) daily simulations.

303

304 Figure 4. Time-series plots for daily measured and daily simulated water flux data (with the 

305 first three plots having data aggregated from: 15 minutes to daily; hourly to daily; 6 hourly to 

306 daily). All units in mm d-1. All plots are shown with a threshold at the 99th percentile of 

307 measured data (14.90 mm d-1).

308
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309

310 Figure 5. Scatterplots of the daily measured and daily simulated water flux (with the first 

311 three plots having data aggregated from: 15 minutes to daily; hourly to daily; 6 hourly to 

312 daily). Scatterplots are shown with the ideal 1:1 line, a linear regression fit and a loess 

313 smoother fit. All units in mm d-1.

314

315 Further clarity on bias is provided in the density plots for the measured and simulated data 

316 (Fig. Figure 6). Here, daily simulations based on 15-minute and hourly aggregations have a 

317 lower density at small daily water fluxes than that found with the measured data, while the 6-

318 hourly aggregations and (unaggregated) daily simulations have a higher density at small daily 

319 water fluxes. This is combined with a longer tail in the density curve for the 15-minute and 
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320 hourly aggregations, as each can simulate large daily water fluxes, while the 6-hourly 

321 aggregation and (unaggregated) daily simulations do not have this property.

322

323

324 Figure 6. Density plots for daily measured and daily simulated data (with the first three plots 

325 having data aggregated from: 15 minutes to daily; hourly to daily; 6 hourly to daily). All units 

326 in mm d-1.

327

328 The error indices (MAE, NRMSE and PBIAS) are reported for each daily aggregation in Fig. 

329 Figure 7, where the 15-minute and hourly aggregations clearly perform more accurately than 

330 the 6-hourly aggregation and (unaggregated) daily simulations. Errors (i.e. residuals) are also 
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331 reported over the study time period in Fig. Figure 8, where errors tend to be larger for the 

332 daily simulations based on the 6-hourly aggregation and the (unaggregated) daily simulations.  

333 Interestingly, the 6-hourly aggregation consistently is the least accurate, including being less 

334 accurate than the (unaggregated) daily simulations.

335

336

337 Figure 7. Error (MAE, NRMSE, PBIAS) indices with respect to daily measured and daily 

338 simulated data (with 15-minute, hourly, 6-hourly data aggregated to daily).

339

340
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341 Figure 8. Time-series of errors (simulated minus measured data) aggregated to the daily 

342 temporal resolution. All units in mm d-1. Positive errors represent over-prediction by the 

343 model.

344

345 Agreement indices (NSE,  and KGE) are reported for each daily aggregation in Fig. Figure d

346 9, where again the 15-minute and hourly aggregations perform more accurately than the 6-

347 hourly aggregation and (unaggregated) daily simulations (although daily simulations perform 

348 relatively well according to the KGE index). From the given accuracy diagnostics, it is not 

349 immediately apparent whether daily simulations based on 15-minute or hourly aggregations 

350 are the most accurate, and as such, both appear to increase the accuracy relative to 

351 SPACSYS’ daily simulations. Again, the 6-hourly aggregation is the least accurate.

352

353

354 Figure 9. Agreement (NSE, d, KGE) indices with respect to daily measured and daily 

355 simulated data (with 15-minute, hourly, 6-hourly simulations aggregated to daily).

356

357 3.3 Simulation of measured peaks

358 To investigate the ability of the model to simulate and identify water flux peaks, the 99th 

359 percentile of each measured water flux dataset was used as a threshold to identify peak flows, 

360 as highlighted in Figs. Figure 2 and Figure 4 (the dashed blue line). Incidences of correct 
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361 peak flow simulations, false negatives, false positives and the resultant Kappa values are 

362 given in Table 2. It appears that hourly simulations provide the largest correct classification 

363 rate (Kappa = 0.553) for the unaggregated approach, but with only moderate success in 

364 identifying measured peak flows (as a promising 92% identification rate is tempered by a 

365 poor mis-identification rate). Conversely, aggregating to the daily scale using either 15-

366 minute or hourly simulations was able to provide much greater agreement in identifying 

367 measured peak flows at the daily scale, with each identifying 9 out of 11 peak flow events 

368 correctly, coupled with only 2 false positives (Kappa = 0.816 in both cases). This level of 

369 agreement was far greater than that found through directly simulating the daily data, which 

370 provided only moderate success in identifying measured peak flows (Kappa = 0.495). Again, 

371 the 6-hourly aggregation is the least accurate with a relatively high number of false positives 

372 (simulated flow exceeds the threshold when measured flow does not).

373

374 Table 2. Accuracy at peak water fluxes according to simulation resolution. Peaks taken at 99th 

375 percentile of measured data (see the dashed blue line in Figs. Figure 2 and Figure 4).

Simulation 

resolution

Sample 

size

Measured 

Peaks

Correctly 

Simulated

False 

Negative

False 

Positive

Kappa

Unaggregated

15-minute 97920 980 759 (77)* 221 1224 0.506

hourly 24480 245 225 (92) 20 335 0.553

6-hourly 4080 41 32 (78) 9 52 0.503

daily 1020 11 5 (45) 6 4 0.495

Aggregated to daily

15-minute 1020 11 9 (82) 2 2 0.816
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hourly 1020 11 9 (82) 2 2 0.816

6-hourly 1020 11 6 (55) 5 9 0.455

daily 1020 11 5 (45) 6 4 0.495

376 * Value in brackets shows a percentage of correctly simulated peaks to measured peaks.

377 4 Discussion

378 4.1 Model performance

379 4.1.1 Unaggregated data

380 The statistical analyses for model performance suggested that the SPACSYS model simulates 

381 the general trend of water fluxes at the four different temporal resolutions reasonably well 

382 (Figs. Figure 2 and Figure 3). All simulations tended to over-predict water flux, however, and 

383 only simulations at the finest resolutions maintained the variation in the measured data. The 

384 accuracy of water flux peak simulations varied among the four resolutions (Table 2). Almost 

385 92% of the measured peaks over the simulated period were modelled correctly at an hourly 

386 resolution, the resolution with the smallest misclassification rate. However, this was tempered 

387 by a high rate of predicting peaks that did not exist. A previous statistical analysis of peak 

388 flows at different scales from a different NWFP sub-catchment (similar in size to the one 

389 used here), modelled and simulated by a Generalized Pareto distribution, also showed the 

390 greatest agreement at the hourly resolution (Curceac et al., 2020).

391

392 4.1.2 Aggregated to Daily

393 When simulations at a finer temporal resolution were aggregated to a daily rate, the 

394 simulation results using both the 15-minute and hourly aggregations showed the greatest 

395 accuracy broadly equally, both in the prediction of general trends (Figs. Figure 4 to Figure 9) 
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396 and the identification of peak flows (Table 2). This demonstrates clearly that the daily 

397 simulation of water fluxes with the SPACSYS model, informed by finer temporal resolution 

398 data, can increase simulation accuracy. This result is an important advance relative to 

399 previous SPACSYS studies, which only used a daily time-step, and which similarly used sub-

400 catchments of the NWFP as the study site (Liu et al., 2018).

401 The simulation results using both the 15-minute and hourly aggregations showed the greatest 

402 accuracy broadly equally. When the simulation time step is getting longer, average 

403 precipitation intensity might be weaker, which causes simulated water fluxes smoother and 

404 the deviations with monitored water fluxes larger. Given the complexity of the soil-water 

405 processes that operate across the field, it is not surprising to see substantial variation around 

406 the 1-1 line when predicting flow at 15-minute to 6-hour scales due to inherent variability. 

407 We would expect to see a similar phenomenon with any similar process-based model.  What 

408 is important is that when these fine-scale predictions are aggregated we get substantial 

409 improvements to daily predictions.

410 4.2 Results in context and their generalisation

411 Results are consistent with other studies that similarly showed that differences in the 

412 (unaggregated or aggregated) time-step have the greatest impact on runoff simulation 

413 accuracy relative to other factors, some of which, also investigated changes in spatial 

414 resolution (i.e. aggregating over different spatial units) (Choi et al., 2018; Huang et al., 2019; 

415 Jeong et al., 2010; Kavetski et al., 2011; Merz et al., 2009). Thus, the value of using 

416 aggregated fine temporal resolution simulations to increase the accuracy of daily simulations 

417 can be said to hold generally for other process-based models provided the hydrological 

418 process is described appropriately. However, it does not follow that daily simulation accuracy 

419 will continue to increase as the temporal resolution of the aggregated data becomes finer. 

420 This study found aggregating hourly simulations to daily to be just as accurate as aggregating 
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421 15-minute simulations to daily, while aggregating 6-hourly simulations to daily performed 

422 less well than the usual daily simulations.

423

424 The temporal resolution for process-based models should be chosen carefully to balance 

425 between capturing all important processes, the study objectives and data availability. For our 

426 study, with flooding as context, the identification of water flux extremes in a grassland field 

427 (or small sub-catchment) with a heavy clayed soil, is viewed as the important process, more 

428 so than capturing broad trends in water flux. It is well-known that running a model at a finer 

429 resolution, then aggregate, will increase the prediction accuracy in a broad sense (see above). 

430 What has received less attention in the literature is the effects of temporal resolution on a 

431 model’s ability to capture extremes (e.g. see Schaller et al., 2020, in the context of 

432 streamflow). In this respect, our study has found daily peak flows to be more accurately 

433 identified using aggregations of simulations at finer resolutions, than using coarse daily 

434 simulations directly. Of course, measurement at a finer resolution comes at a cost and this 

435 needs to be balanced with associated improvements in model accuracy. In this instance, this 

436 interplay is simple to resolve since aggregating to the daily scale using both 15-minute and 

437 hourly simulations were equally as accurate, meaning measuring at an hourly interval would 

438 be sufficient for the case study site.

439

440 The appropriate temporal resolution to simulate water fluxes using a hydrological model 

441 depends on hydro-climatological and geophysical characteristics, and the scale of the process. 

442 It has been suggested that an appropriate temporal resolution could be between 12 hours for 

443 middle-sized upstream areas and 48 hours for a complete river basin (Booij and Tran, 2005). 

444 As the size of the field for this study is < 4 ha, the indicated hourly resolution appears 
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445 reasonable. Observed and projected changes in the UK’s climate suggest an increase in heavy 

446 rain events and wetter winters (Committee on Climate Change, 2017), where some UK 

447 regions will be more affected than others. This will inevitably change agricultural 

448 management practice and land use across the UK. Taking as an example the grazed pasture of 

449 this study, introducing a deep-rooting grass suited to its heavy clay soils (Macleod et al., 

450 2013) and/or the mechanical loosening of topsoil (Newell-Price et al., 2011) would reduce 

451 water runoff, whereas conversion to an arable crop (e.g. wheat) would provide its own set of 

452 water runoff influences. Such changes would alter the characteristics of the water fluxes 

453 generated, as the field’s soil properties will change, meaning the determination of an 

454 appropriate resolution to simulate water fluxes may also change from the hourly resolution 

455 suggested here. This is analogous to other hydrological studies where, for example, different 

456 overflow designs in roof drainage structures have markedly variable responses to rainfall 

457 intensity increases (Verstraten et al., 2019).

458

459 4.3 Inputs that impact hydrological model performance

460 Key model input variables such as precipitation can determine the impacts of simulation 

461 time-steps on the performance of hydrological models; for example, the duration and 

462 temporal variability of a precipitation event in relation to the rainfall–runoff lag time (Ficchì 

463 et al., 2016). A multiple-day precipitation event is the main cause of continuous runoff events 

464 and related peaks. For example, for this study, there was almost an unbroken measured 

465 precipitation period from 14 December 2013 to 5 March 2014, which brought a total of 541 

466 mm of precipitation, 78% of which was measured as surface runoff (i.e., measured water 

467 flux). Study simulations showed 70, 70, 81 and 85% as water fluxes over the period at the 15-

468 minute, hourly, 6-hourly and daily resolutions, respectively. Previous studies showed that 

469 wetter soils had less capacity to store water, resulting in greater runoff volumes (Huang et al., 
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470 2017; Kibet et al., 2014; Zehe et al., 2010). Both observations and simulations in this study 

471 confirmed this finding. Conversely, for a single day event, a measured 92% of 40.2 mm daily 

472 precipitation was discharged on 23 December 2013. The simulations generated 99, 99, 90 and 

473 44% water losses at the 15-minute, hourly, 6-hourly and daily resolutions, respectively. Thus, 

474 almost all of the precipitation contributed to the water loss on this day, where only the daily-

475 scale simulation did not capture this. However, although heavy rainfall is necessary to 

476 generate water fluxes, it is not a sufficient condition for a higher surface runoff rate to occur 

477 (Ledingham et al., 2019). For example, there was about 25 mm precipitation on 14 May 2013 

478 and on 13 August 2015, but both the simulations and the observations (at all four resolutions) 

479 did not show apparent water fluxes. Further, a daily precipitation of 4 mm on 27 February 

480 2015 generated a measured 120% water loss, together with simulated values of 48, 148, 125 

481 and 75% water loss at the 15-minute, hourly, 6-hourly and daily resolutions, respectively.

482

483 The generation of water fluxes not only depends on the intensity of precipitation, but also 

484 surface coverage, topology and soil physical properties of the field. In hydrology, lag time, 

485 defined as the time difference between the peak runoff and mass centre of rainfall excess 

486 (Hall, 1984), is usually used to determine a runoff rate. Although the SPACSYS model does 

487 not use this parameter to estimate the surface runoff rate, it uses the Richard’s equation to 

488 calculate soil water redistribution where soil hydraulic conductivity, saturated water content 

489 and plant uptake play critical roles in water infiltration and consequently surface runoff. A 

490 trial study on the spatial variation of soil hydraulic conductivity (unpublished data) in a 

491 NWFP field, nearby to the study field, highlighted clear within-field variation, partially 

492 because of compaction caused by grazed animal movement. However, the soil physical 

493 properties used in the simulations were estimated based on soil texture, and at the field-scale 

494 only. The error and uncertainty introduced by this approach are likely to be transferred to the 
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495 errors in simulating infiltration and surface runoff rates. To improve model simulation 

496 accuracy, soil physical properties as core information should be provided wherever possible.

497

498 4.4 Further considerations of scale 

499 The processes controlling water fluxes operate across a range of spatial and temporal scales, 

500 and the time-series that are recorded represent an aggregation of these effects. For example, 

501 effects of evapotranspiration will dominate at annual scales whereas more local impacts of 

502 precipitation will manifest at finer scales (Rust et al., 2014). As noted above, the 

503 characteristics of the study area, (e.g. size, soil condition and topography) will impact the 

504 dominant scales of variation and hence the frequency at which it is most appropriate to model 

505 or measure water fluxes. Rust et al. (2014) presented an analysis which aimed to determine 

506 whether the process-based model they studied captured the scale-dependent variation 

507 measured in catchment runoff. They analysed model residuals using wavelet-based signal 

508 processing methods and found that although their model captured broadly the scale-

509 dependent variation in the data, fine scale variation was always under-predicted. Our results 

510 shed light on their observation as we confirm that if the scale of the model prediction is not 

511 sufficiently fine then model-damping will result in an under-prediction of extreme events. 

512

513 5 Conclusions

514 For the grassland study site, the adapted process-based model (SPACSYS) could adequately 

515 simulate the trends in measured water fluxes and identify their extremes. At a daily time-step, 

516 model accuracy increased when simulations were run at finer temporal resolutions, 

517 specifically 15-minute and hourly, and then aggregated to daily (a coarse output resolution 
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518 commonly used in field-scale agricultural settings). Aggregating using 6-hourly simulations 

519 was less accurate. For the study site, which constitutes a field of a grassland research farm 

520 platform (NWFP), simulation of water fluxes at an hourly resolution is likely optimal since 

521 use of the 15-minute resolution did not increase prediction accuracy or the ability to identify 

522 extremes in flow further. Therefore, for modelling purposes, monitoring frequency could be 

523 reduced safely to hourly from the current 15-minute resolution.

524

525 Results provide information not only for the NWFP experiment, but also and indirectly, the 

526 UK grassland farming regions that its outputs upscale to (Pulley and Collins, 2019). Study 

527 results are crucial in relation to meeting the increasing demand for reliable simulation-based 

528 runoff forecasts at daily and sub-daily resolutions, where accurate knowledge of peak 

529 discharge and stage are essential not only for flood protection, but also to help increase the 

530 forecast accuracy of associated emissions such as nutrient or sediment loss, that each use 

531 water flux as a component. Further research is called for in specifying the temporal resolution 

532 amongst the wide range of field-scale hydrological/agricultural models currently applied. 

533 This needs to be coupled with linked changes in climate and land use to increase model 

534 forecast accuracy and to optimise data acquisition schemes on farms generally.

535
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721 Figure captions

722 Figure 1. Details of the NWFP catchment selected for this study (catchment number 6 of 15, 

723 consisting of a single field called Golden Rove).

724 Figure 2. Time-series plots for measured and simulated water flux data (not aggregated) for 

725 15-minute, hourly, 6-hourly and daily data (in units of mm 15min-1, mm h-1, mm 6h-1 

726 and mm d-1, respectively). All plots are shown with a threshold at the 99th percentile 

727 of measured data (at 0.138 mm 15min-1, 0.553 mm h-1, 3.45 mm 6h-1 and 14.9 mm d-1, 

728 respectively).

729 Figure 3. Scatterplots of the measured and simulated data (not aggregated) for 15-minute, 

730 hourly, 6-hourly and daily data. Scatterplots are shown with the 1:1 line, a linear 

731 regression fit and a loess smoother fit. Units are in mm 15min-1, mm h-1, mm 6h-1 and 

732 mm d-1, respectively.

733 Figure 4. Time-series plots for daily measured and daily simulated water flux data (with the 

734 first three plots having data aggregated from: 15 minutes to daily; hourly to daily; 6 

735 hourly to daily). All units in mm d-1. All plots are shown with a threshold at the 99th 

736 percentile of measured data (14.90 mm d-1).

737 Figure 5. Scatterplots of the daily measured and daily simulated data (with the first three plots 

738 having data aggregated from: 15 minutes to daily; hourly to daily; 6 hourly to daily). 
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739 Scatterplots are shown with the ideal 1:1 line, a linear regression fit and a loess 

740 smoother fit. All units in mm d-1.

741 Figure 6. Density plots for daily measured and daily simulated data (with the first three plots 

742 having data aggregated from: 15 minutes to daily; hourly to daily; 6 hourly to daily). 

743 All units in mm d-1.

744 Figure 7. Error (MAE, NRMSE, PBIAS) indices with respect to daily measured and daily 

745 simulated data (with 15-minute, hourly, 6-hourly data aggregated to daily).

746 Figure 8. Time-series of errors (simulated minus measured data) aggregated to the daily 

747 temporal resolution. All units in mm d-1. Positive errors represent over-prediction by 

748 the model.

749 Figure 9. Agreement (NSE, d, KGE) indices with respect to daily measured and daily 

750 simulated data (with 15-minute, hourly, 6-hourly simulations aggregated to daily).

751


