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Supplementary Material 

I: No evidence for long-range interactions in laboratory insect 

swarms 

Tetrahedra are the minimum configuration required to describe the 3-dimensional movements 

of midges (since 3 midges will always lie in a plane). Here I show that the statistical properties 

of these tetrahedra mirror expectations for Gaussian, independent individual positions; 

thereby bolstering the analysis of Puckett et al. [2014] who reported the acceleration 

measurements show a clear short-range repulsion but do not provide conclusive evidence of 

long-range interactions between individuals and their nearest neighours. 

 

Here the tetrahedra are studied using the approach of Pumir et al. [2000] and Biferale et al. 

[2005]. To characterize the shapes of the tetrahedra, it is useful to introduce the change of 

coordinates: 𝝆0 = (𝒙1 + 𝒙2 + 𝒙3 + 𝒙4)/2, 𝝆1 = (𝒙2 − 𝒙1)/√2, 𝝆2 = (2𝒙3 − 𝒙2 − 𝒙𝟏)/√6, 𝝆3 =

(3𝒙4 − 𝒙3 − 𝒙𝟐 − 𝒙𝟏)/√12 and to introduce the ‘inertia-like’ matrix 𝑰 = 𝝆𝑇𝝆 where ρ is the 

square matrix [𝝆1, 𝝆2,𝝆3] (ρ1, ρ2, ρ3 are a minimal representation of the shapes of tetrahedra; 

these shapes do not depend on the centre of mass, ρ0). The eigenvalues of I, 𝑔1 ≥ 𝑔2 ≥ 𝑔3 

provide a way to characterise the shapes of the tetrahedra:  𝑔1 = 𝑔2 = 𝑔3 corresponds to an 

isotropic object; 𝑔1 ≈ 𝑔2 ≫ 𝑔3 corresponds to a pancakelike (coplanar) object; and 𝑔1 ≫ 𝑔2, 𝑔3 

corresponds to a needle-like (co-linear) object. The tetrahedra within the midge swarms tend 

to have almost two-dimensional, strongly elongated geometries; exactly mirroring 

expectations for Gaussian, independent individual positions (Fig. S1). Moreover, these 

tetrahedra do not have a preferred spatial orientation. Distributions of the volumes, 𝑉 =

1

3
𝐷𝑒𝑡𝜌 =

1

3
√𝑔1𝑔2𝑔3, of the tetrahedra also mirror expectations for Gaussian independent 

individual positions (Fig. S2). The tendency of midges and their nearest neighbours to form 

almost two-dimensional structures therefore has mostly an “entropic” origin. 

 

Following Biferale et al. [2005] the dynamics of the tetrahedra can be analysed by introducing 

the relative velocities: 𝑾1 = (𝒖2 − 𝒖1)/√2, 𝑾2 = (2𝒖3 − 𝒖2 − 𝒖𝟏)/√6, 𝑊3 = (3𝒖4 − 𝒖3 −

𝒖𝟐 − 𝒖𝟏)/√12. The evolution of a tetrahedron is given by 

𝐾 ≡
1

2

𝑑

𝑑𝑡
𝜌𝜌𝑇 =

1

2
(𝑊𝜌𝑇 + 𝜌𝑊𝑇) 
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Geometrical information about these velocities can be obtained from the eigenvalues. 𝑘1 ≥

𝑘2 ≥ 𝑘3,  of K. The velocities of the tetrahedra tend to have one extensional component and 

one compressional component: exactly mirroring expectations for Gaussian, independent 

individual positions (Fig. S3). Note also that the alignment of the eigenvectors associated with 

g1 and k1 mirrors expectations for Gaussian, independent individual positions; indicating that 

strong velocity differences are not preferentially associated with intense elongations 

approximately in the same direction.  

 

Following Biferale et al. [2005] the dynamics of the tetrahedra were further examined by 

determining the average times, 〈𝑇(𝑔𝑖)〉 for the eigenvalues, g1, g2, g3 to double (Figs.S4a and 

S5a). Midge swarms exhibit a scaling regime, 〈𝑇(𝑔𝑖)〉~𝑔𝑖
1 . The stochastic model of Reynolds 

et al. [2017] for the trajectories of non-interacting individuals, within which velocities and 

positions evolve jointly as Markovian process, predicts such a scaling regime, albeit with a 

scaling exponent of 2 rather than 1. The presence of the scaling regime and the self-similarity 

are more evident after applying simple multiplicative factors on the g-axis (Fig. S4b and Fig. 

S5b). The presence of a range where the doubling times for different eigenvalues are the 

same is equivalent to stating that the typical shape of the tetrahedra is preserved while its size 

increases. Stochastic modelling suggests that the difference between the observed and 

predicted scaling exponents cannot be attributed to short-range repulsion as reported by 

Puckett et al [2014]. Nor can it be attributed to interspecific variability of model parameters. 

These do not change the prediction for the scaling exponent. It may instead to be attributed 

to having presupposed that the acceleration autocorrelation approaches a δ function at the 

origin, corresponding to an uncorrelated (white noise) component in the acceleration, and 

hence a Markov process. When the white-noise in the model of Reynolds [2017] is replaced 

by noise with exponential autocorrelation, i.e., when the white-noise is replaced by an OU-

process, the predicted scaling exponent can in brought into line with observations (Fig. S6). 

In such models, accelerations, velocities and positions are jointly Gaussian and evolve 

collectively as a Markov process [Reynolds and Ouellette 2016]. Predicted scaling exponents 

depend on model parameters, suggesting that the scaling is species dependent.  

 

‘Perceived velocity gradients’ were examined following the approach reviewed in Pumir and 

Naso [2012 and references therein]. Perceived velocity gradients, M, are defined by 

minimizing the quantity Γ = (𝑊 − 𝜌𝑀)2. This gives 𝑀 = 𝜌−1𝑊. M is characterized by two 

invariants,  𝑅 = −
1

3
𝑇𝑟𝑀3 and   𝑄 = −

1

2
𝑇𝑟𝑀2. This is because the eigenvalues of M are given 
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by the roots of 𝜆3 + 𝑄𝜆 + 𝑅 = 0 . The quantity Δ = 4𝑄3 + 27𝑅2 separates purely real solutions 

(𝛥 < 0 ), physically interpreted as the flow being locally non-rotational, from one real and a 

complex conjugate pair of roots (𝛥 > 0), corresponding to a flow that is locally rotating  The 

distribution of the two invariants, R and Q, mirror predictions from stochastic models for non-

interacting individuals (Fig. S7). In accordance with observations, the model predicts that the 

flow is locally rotating 88% of the time. The 𝑇𝑟𝑀 ≠ 0 indicating that the flows are compressible. 

Observed and predicted values of  𝑇𝑟𝑀 have heavy power-law tails; 𝑃(𝑇𝑟𝑀)~(𝑇𝑟𝑀)−2.  

 

The above approaches can in principle be extended to include accelerations, e.g. via 
𝑑𝐾

𝑑𝑡
 and 

via perceived gradients in accelerations, 𝜌−1𝐴. It is, however, potentially problematic to 

compare observations with expectations for independent individuals derived from 1st-order 

stochastic trajectory models. This is simply because accelerations per se, as opposed to 

average accelerations, are not well-defined model quantities. Nonetheless, plots of 𝑘1′ against 

𝑘2′ etc. (ala Fig. S3) where 𝑘1′ ≥ 𝑘2′ ≥ 𝑘3’ are the eigenvalues of  
𝑑𝐾

𝑑𝑡
 closely match model 

predictions.  
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Figure S1. The tetrahedra within the midge swarms tend to have almost two-

dimensional, strongly elongated geometries mirroring expectations for Gaussian, 

independent individual positions. Distributions of the dimensionless shape parameters 𝐼𝑖 =

𝑔𝑖/𝑅2 where 𝑹 = √𝑔1 + 𝑔2 + 𝑔3 is the radius of gyration. Distributions are shown for swarms 

containing on average 94 (Ob1) and 19 (Ob18) individuals. Data are taken from Sinhuber et 

al. [2019]. Shown for comparison are simulation data for Gaussian, independent individual 

positions. Covariances 〈𝑔𝑖𝑔𝑗〉 also closely mirror expectations for Gaussian, independent 

individual positions. 
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Figure S2. Distributions of space volumes have power-law tails that are indicative of 

self-similarity exactly mirroring expectations for Gaussian, independent individual 

positions. Data are shown for a swarm (Ob1) containing on average 94 individuals. Data are 

taken from Sinhuber et al. [2019]. 
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Figure S3. The velocities of the tetrahedra tend to have one extensional component and 

one compressional component exactly mirroring expectations for Gaussian, 

independent individual positions. Data are shown for a swarm (Ob1) containing on average 

94 individuals. Data are taken from Sinhuber et al. [2019]. 
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Figure S4.  a) Doubling times for the eigenvalues, gi, of the inertia matrix,  𝑰 = 𝝆𝑇𝝆. b) 

Same data rescaled on the horizontal axis with the proportions g1:g2:g3=10:5:1. Data are 

shown for all 19 swarms in the dataset of Sinhuber et al. [2019]. 
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Figure S5.  a) Predicted doubling times for the eigenvalues, gi, of the inertia matrix,  𝑰 =

𝝆𝑇𝝆. b) Same data rescaled on the horizontal axis with the proportions g1:g2:g3=10:5:1. 

The trajectories of N=100 non-interacting individuals with Gaussian positions and velocities 

were simulated simultaneously using the stochastic model of Reynolds et al. [2017] with 𝜎𝑅 =

2, 𝜎𝑢 = 1, 𝑇 = 1. The same scaling relationship were obtained when model parameters 

including N were increased or decreased by a factor of 2. The same scaling exponent was 

obtained for individuals with Gaussian positions and exponential velocities. 
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Figure S6.  Predicted doubling times for the eigenvalues, gi, of the inertia matrix,  𝑰 =

𝝆𝑇𝝆. The trajectories of N=100 non-interacting individuals with Gaussian positions and 

velocities were simulated simultaneously using the stochastic model of Reynolds et al. [2017] 

with 𝜎𝑅 = 1, 𝜎𝑢 = 1, 𝑇 = 1. Predictions are shown for the model driven by white noise and by 

exponentially correlated noise with autocorrelation timescale tA=0.1 (o) and 1.0.(•). 
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Figure S7. Observed (a) and predicted (b) distributions of the two invariants of the 

perceived velocity gradients,  𝑅 = −
1

3
𝑇𝑟𝑀3 and   𝑄 = −

1

2
𝑇𝑟𝑀2. Data are pooled from all 

19 swarms in the dataset of Sinhuber et al. [2019]. Predictions are shown for a swarm 

containing 100 non-interacting individuals. Predictions were obtained using the stochastic 

model of Reynolds et al. [2017] with all parameters set to unity.  
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II: Indirect speculative evidence of confinement to horizontal slabs 

Slab confinement can be assessed quantitively following the methodology of Pumir et al. 

[2000] and Biferal et al. [2005] since 4 points along an individual’s trajectory will form a 

tetrahedron. At short times, individual trajectories are, as expected, colinear (as 𝑔1 ≫ 𝑔2, 𝑔3) 

but at longer times they are coplanar (as 𝑔1 ≈ 𝑔2 ≫ 𝑔3); and as expected mirror expectations 

for Gaussian, independent positions (Figs. S8). The tendency to form almost two-dimensional 

structures therefore has mostly an “entropic” origin: indeed, there are many pancake-like 

tetrahedra (very small I3) when positions are decorrelated. At long times the proportions of 

midge trajectories elongated in the x-, y- and z-directions are approximately 5:5:1, indicating 

that confinement is mostly on horizontal planes.   

 

In this regard, it is interesting to note that Cavagna et al. [2017] showed that wild swarms 

appear to belong to a novel dynamical universality class: as correlations exhibit scaling 

behaviour that is atypical 3-dimensional systems. The observed scaling is distinctly different 

from the scaling that characterizes the 3-dimensional Vicsek et al. [1995] model of swarming 

self-propelled particles and much more like the scaling that characterizes the 2-dimensional 

form of this model [Baglietto and Albano 2008]. That is, the apparent novelty of the scaling 

may be attributed to slab confinement. 
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Figure S8. Individual trajectories are colinear at short times and coplanar at long times. 

Distributions of the dimensionless shape parameters 𝐼𝑖 = 𝑔𝑖/𝑅2 where 𝑹 = √𝑔1 + 𝑔2 + 𝑔3 is 

the radius of gyration. Data are taken from Sinhuber et al. [2019]: swarm Ob1 which on 

average contains 94 individuals. 
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III: Slab structure does not develop systematically with swarm size 

for arbitrarily defined density profiles and associated mean 

accelerations are non-physical 

The density profiles of laboratory swarms are skewed perhaps because of the energetic 

demands of flying upwards and/or because they are bounded at ground level [Kelley and 

Ouellette 2013]. Such density profiles could for argument sake be crudely represented as 

mono-modal, gamma distributions 𝑝(𝑧) =
1

Γ(𝑘)𝜃𝑘 𝑧𝑘−1𝑒−𝑧/𝜃. Here I show that the number of 

Gaussians in the best representations of an such arbitrarily defined density profile does not 

increase monotonically with swarm size, contrary to the analysis of natural swarms (Fig. 3). I 

also show that the mean accelerations associated with such mono-modal distributions are 

non-physical and incompatible with observations. These results are consistent with the claims 

in the main text that the multi-Gaussian fits to the swarm density profiles are indicative of 

actual structure and with swarm growth proceeding slab by slab. 

 

As for natural swarms (see main text) the best representation of the putative gamma 

distributions in terms of multi-Gaussians was found using maximum likelihood method and the 

best multi-Gaussian distribution was identified objectively using the Akaike information 

criterion. Typically, the number of Gaussians in the best representation does not increase 

monotonically with swarm size (Fig. S9). 

 

The mean acceleration (effective force) of an individual in the vertical direction and the density 

profile 𝑝(𝑧) are related by 〈𝐴𝑧|𝑧〉 = − ∫ 𝑝̂(𝑤)𝑑𝑤
𝑤

−∞

𝑑

𝑑𝑧
𝑙𝑛𝑝(𝑧) where 𝑝̂(𝑤) is the distribution of 

vertical velocities [Reynolds and Ouellette 2016]. For gamma distributions 〈𝐴𝑧|𝑧〉 =

− ∫ 𝑝̂(𝑤)𝑑𝑤
𝑤

−∞
(

𝑘−1

𝑧
−

1

𝜃
) . The singularity at z=0 is non-physical and incompatible with the 

observed near linear form [Okubo 1986, Kelley and Ouellette 2013]; a form predicted by the 

multi-Gaussian representation of the density profile (Fig. S10). Singularities arise in other 

putative skewed density profiles such as beta prime, chi-squared and Rayleigh distributions. 
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Figure S9. Slab structure does not develop systematically with swarm size for arbitrarily 

defined density profiles. Results are shown for gamma distributions 𝑝(𝑧) =
1

Γ(𝑘)𝜃𝑘 𝑧𝑘−1𝑒−𝑧/𝜃 

with θ=1 (black lines). The number of Gaussians, N, in the best fit multi-Gaussian 

representations (red lines) does not increase monotonically with increasing width (k) of the 

distribution.  
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Figure S10. Mean accelerations associated with arbitrarily defined density profiles 

unlike those associated with their multi-Gaussian representation do not resemble the 

observed near-linear forms. Results are shown for a gamma distribution 𝑝(𝑧) =

1

Γ(𝑘)𝜃𝑘 𝑧𝑘−1𝑒−𝑧/𝜃 with k=3 and θ=1 (black line) and for the best fit tri-Gaussian (see Fig. S9). 

Velocities are taken to be Gaussian distributed with mean zero and unit variance. 
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IV: Speculative ideas about slab formation 

Model 1 

In this model, as the population size of the swarm increases, existing slabs move apart to 

accommodate more individuals and in doing so become less stable (become noisier). This 

noise creates new centres of attraction, spawning ‘embryonic’ slabs and is thereby 

constructive. The swarm population then redistributes, re-establishing equilibrium, and the 

intrinsic noise diminishes. The cycle then repeats. In this regard it is interesting to note that 

swarms are analogous to self-gravitating systems [Okubo 1986, Reynolds 2019a and 

references therein] and that the model of slab formation is analogous to Hoyle’s Steady State 

Model. Near constancy of average density is a hallmark of laboratory swarms [Kelley and 

Ouellette 2014]. Motivation for the approach comes from: the association of tensile strength 

with intrinsic noise [Reynolds 2019b]; the subsequent identification of intrinsic noise in 

quiescent swarms [Reynolds 2021]; the presence of an embryonic-like slab located about mid-

way between two more prominent slabs in laboratory data (Fig. 1b main text). 

 

A swarm with equi-spaced, equi-size slabs can be represented in simple stochastic models 

by a periodic potential 

𝑈(𝑧) = 𝑘0𝑠𝑖𝑛(𝑧)                   (S1) 

since the associated vertical density profile is 

𝑝(𝑧) = exp (−𝑘0𝑠𝑖𝑛(𝑧))                  (S2) 

[Reynolds and Ouellette 2016, Supplementary Material V]. The potential wells can be 

expected to be noisy. For simplicity and for illustrative purposes it is instructive to consider the 

case of fast, spatially-independent stochastic variability  so that  the strength of the potential 

because 𝑘 = 𝑘0 + 𝑘1(𝑡)  where 𝑘1(𝑡) is a white noise component such that 〈𝑘1(𝑡)𝑘1(𝑡/)〉 =

2𝐹𝛿𝑡,𝑡/. At long times (compared with the velocity autocorrelation timescale) vertical 

movements can be modelled stochastically by 

𝑑𝑧 = − cos(𝑧) (𝑘0𝑑𝑡 + √2𝐹𝑑𝜉1) + √2𝑑𝜉2                 (S3) 

where 𝑑𝜉1 and 𝑑𝜉2 are independent white noise processes. [For details of model formulation 

see Reynolds and Ouellette 2016, Reynolds 2019b, Supplementary Material V]. As expected, 

the noise changes the shape of the potential well [Reynolds 2019b], resulting in new minima 

that lie between the original minima (Fig. S11). The equilibrium vertical density profile now 

becomes 
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𝑝(𝑧) = (√𝐹(𝐹 + 1) − 𝐹𝑠𝑖𝑛(𝑧))

1

2√𝐹(𝐹+1)
−1

(√𝐹(𝐹 + 1) + 𝐹𝑠𝑖𝑛(𝑧))
−

1

2√𝐹(𝐹+1)
−1

              (S4) 

The emergent ‘embryonic’ slabs could seed new centres of attraction that are directly 

analogous to the original centres.  

 

Attanasi et al. [2014] posited that wild swarms are at near criticality, i.e., poised at the cusp of 

a phase transition. This was motivated by the detection of scaling behaviour in correlation 

functions; behaviour that was subsequently identified in simulation data for swarms of non-

interacting interactions [van der Vaart et al. 2020]. Although the original motivation is 

unjustified (and although putative phases were not identified), the above analysis again raises 

the spectre of near criticality because the number of slabs is predicted to be near to a doubling 

transition; more generally near a slab-creation transition.  

 

Model 2 

In this model, increases in acoustic interference that accompany increases in population size 

are offset by increases acoustic clustering [Aldersley et al. 2017] and so by increases in the 

number of slabs. As the number of slab increases, intrinsic noise naturally causes the physical 

size of the swarm to increase thereby maintaining near-constancy of the average density. In 

the analogy with self-gravitating systems, this is analogous to Hoyle’s Steady State Model. 

Near constancy of average density is a hallmark of laboratory swarms [Kelley and Ouellette 

2014]. The model predicts, as observed, that small (laboratory) swarms are weakly 

axisymmetric [Kelley and Ouellette 2014] whereas large (wild) swarms are cylindrical [Attanasi 

et al. 2014].  In accordance with observations [Sinhuber, Private Communication] this model 

predicts that external noise can cause explosive growth of the swarm.  

 

Compared with model 1, this model is more realistic because simulated density profiles are 

spatially localized. It does not appear to be analytically tractable when F>0. 

 

Vertical movements are modelled stochastically by 

𝑑𝑧 = Ωsin(Ω𝑧) (𝑑𝑡 + √2𝐹𝑑𝜉1) − 𝑧𝑑𝑡 + √2𝑑𝜉2                 (S5) 
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[For details of model formulation see Reynolds and Ouellette 2016, Reynolds 2019b, 

Supplementary Material V]. For F=0, the equilibrium density profile is composed on equi-

spaced, equi-size slabs that lie within a swarm having a Gaussian envelope, 

𝑝(𝑧) = exp (−𝑐𝑜𝑠(𝑧Ω) −
𝑧2

2
))                 (S6) 

(Fig. S12). Intrinsic noise, which here acts on the slabs rather than on the confining potential, 

causes the swarm size to grow exponentially with the number of slabs (Figs. S13); thereby 

providing a mechanism for the regularization of the average density. By inducing acoustic 

clustering, acoustic interference can thus cause explosive growth of the swarm. 

 

Adaptation 

Finally, it is worth remarking that ‘adaptation’ may also be implicated in slab formation. As 

noted by Gorbonos et al. [2016] midges interact acoustically and the perception of sound may 

not be fixed but instead adapts to the local sound intensity so that acoustic intensity drops 

when there is a strong background noise; preventing damage and saturation of the sensory 

organs. Gorbonos et al. [2016] utilized the similarity in form between the decay of acoustic 

and gravitational sources to construct an ‘adaptive gravity’ model of swarming that agrees well 

with experimental observations of laboratory swarms. In the outskirts of a swarm, where the 

background noise is weak, the effects of adaptivity on the cohesive forces that bind the swarm 

together are weak. But in the centres of large swarms where the background noise is strong, 

adaptivity can sufficiently weaken the cohesive force that holds the swarm together. This led 

Gorbonos et al. [2016] to speculate on the appearance of a maximal swarm size, beyond 

which they become unstable and split. Here, this possibility is examined within the context of 

stochastic models of the trajectories of swarming insects. 

 

Midges are, to good approximation, bound to the centre of the swarm by an effective mean 

acceleration (mean force) that grows linearly with distance from the swarm centre [Okubo 

1986, Kelley and Ouellette 2013]. This is consistent with the results of stochastic model which 

predicts that the effective mean acceleration is given by 𝐴 = −
𝜎𝑢

2

𝜎𝑥
2 𝑥  when, as observed, the 

swarm density profile, 𝑝(𝑥), and velocities are Gaussian distributed, where x is the distance 

from the swarm centre [Reynolds and Ouellette 2016]. More generally, 𝐴 = 𝜎𝑢
2 𝑑𝑙𝑛𝑝

𝑑𝑥
.  

Adaptation is expected to reduce effective mean accelerations within the cores of swarms 

(|𝑥| < Λ) so, for example, 



22 

 

 𝐴 = −
𝜎𝑢

2

𝜎𝑥
2

𝑥3

Λ2+𝑥2                  (S7) 

   

In this case the equilibrium density profiles is given by 

 𝑝(𝑥) = 𝑁𝑒𝑥𝑝 (−
𝑥2

2𝜎𝑥
2) (1 +

𝑥2

Λ2)

Λ2

2𝜎𝑥
2

                 (S8) 

          

where N is a normalization factor. Adaptation thereby results in a near flat density profile within 

the core of the swarm (Fig. S14a). This increases the likelihood that the swarm will split 

because fluctuations in number density are now more likely to result in the spontaneous 

appearance of clusters of individuals away from the centre of the swarm and so result in the 

spontaneous appearance of new centres of attraction (Fig. S14b). 

 

Note also that according to Eqn. S8, the physical size of the swarm increases as the strength 

of the adaption increases, i.e., increases as the population size and so the background noise 

increases. This is consistent with Gorbonos and Gov [2017] who reported that adaption 

stabilizes swarms against ‘gravitational’ collapse (Jean’s instability). And it is consistent with 

the observed near constancy of the number density of Chironomus riparius midges in 

laboratory swarms [Kelley and Ouellette 2013]. 
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Figure S11. Intrinsic noise is constructive, seeding embryonic slabs. New slabs are 

seen to form between established slabs as the noise (F) increases. Simulation data was 

obtained with the random walk mode, Eqn. S3, with k0=1 is shown together with the analytical 

predictions, Eqn. S4.  
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Figure S12. Equilibrium density profiles produced by the stochastic model, Eqn. S5, in 

the absence (•) and in the presence of intrinsic noise (•). Analytic predictions, Eqn. S6, 

(solid line) are shown for comparison. Intrinsic noise causes the swarm size to increase as the 

number of slabs increases. 
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Figure S13. Predicted growth of swarm size with (a) increasing intrinsic noise and (b) 

with increasing number of slabs (Ω is the density of slabs).  
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Figure S14a). Adaptation is predicted to flatten density profiles within the cores of 

swarms. b). Adaptation increases the potential for splitting. The likelihood that there are 

more individuals located outside the core, |𝑥| > 1 than within it as a function of Λ2. Results are 

shown for a swarm of size 𝜎𝑥 = 1 containing 100 (red line) and 1000 (blue line) individuals. 

Positions were drawn at random from the distribution, Eqn. S8.  
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V: Outline of stochastic model formulation 

The formation of stochastic models for the trajectories of swarming insects was originally 

presented in Reynolds and Ouellette [2016] and is, here, outlined for completeness. The 

simplest such models, like Eqn. 4 in the main text, assume that the positions, z, of individual 

insects can be described by the stochastic differential equation  

𝑑𝑧 = 𝑎(𝑧, 𝑡)𝑑𝑡 + 𝑏(𝑧, 𝑡)𝑑𝜉(𝑡)                           (S9) 

where 𝑑𝜉(𝑡)
 is an incremental Wiener process with correlation property 𝑑𝜉(𝑡)𝑑𝜉(𝑡 + 𝜏) =

𝛿(𝜏)𝑑𝑡. The deterministic term, 𝑎(𝑧, 𝑡), is determined by the requirement that the statistical 

properties of the simulated positions be consistent with a prescribed density profile, 𝑝(𝑥). 

Mathematically, this consistency condition, under the Ito interpretation of the noise term, 

requires that 𝑎(𝑥, 𝑡) be a solution of the Fokker-Planck equation 

𝝏𝑷

𝝏𝒕
= −

𝝏

𝝏𝒛
(𝒂𝑝) +

𝟏

𝟐

𝝏𝟐

𝝏𝒛𝟐
(𝑏2𝑝)

                               (S10)
 

Therefore,  

𝑎𝑝 =
1

2

𝜕

𝜕𝑧
(𝑏2𝑝)                   (S11) 

for statistically stationary swarms having, 
𝜕𝑝

𝜕𝑡
= 0. 

It follows that for swarms with Gaussian density profiles, i.e. with 𝑝 =
1

√2𝜋𝜎𝑧
𝑒𝑥𝑝 (−

(𝑧−𝑧̅)2

𝜎𝑧
2 ), and 

having purely additive (position-independent noise), 𝑏 = √2𝐹 where F is a constant, that  

𝑑𝑧 = −𝐹2 (
𝑧−𝑧̅

𝜎𝑧
2 ) 𝑑𝑡 + √2𝐹𝑑𝑊                         (S12) 

Stochastic models for the joint evolution of an individuals’ position and velocity are formulated 

in an exactly analogous way [Reynolds and Ouellette 2016]. 
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VI: Interpreting the pressure-density relation for the ‘vapour phase’ 

Laboratory insect swarms consist of a core ‘condensed’ phase surrounded by a dilute ‘vapour’ 

phase [Sinhuber and Ouellette 2017]. These two phases coexist in equilibrium but have 

distinct macroscopic properties. In the condensed phase, pressure, P, is approximately 

proportional to density, n, (i.e., its ‘isothermal’) whereas in the vapour phase 𝑃 ∝ 𝑛𝜉with 

1/ 2   [as predicted by the model of Reynolds et al. 2018a]. The vapour phase relationship 

does not have a thermodynamic analogue, but it does have a gravitational analogue, 

corresponding to descriptions of interstellar dust clouds [Shu et al. 1972, Viala 1972], as 

prefigured by Reynolds [2021]. The core is analogous to the globular cluster [Reynolds 2018b], 

as anticipated by Gorbonos et al. [2016]. The association of the vapour phase with interstellar 

dust clouds adds to a long-standing [Okubo 1986] and productive analogy between insect 

swarms and self-gravitating systems [Reynolds 2018b, 2019, 2020, Gorbonos et al. 2016, 

Gorbonos and Gov 2017, Gorbonos et al. 2020]. In this regard it is interesting to note the 

smallest swarms (with less than 10 individuals) are predicted to lack condense cores and be 

entirely analogous to interstellar dust clouds [Reynolds 2021].  
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VII: Critical Damping 

Here I show that laboratory swarms of Chironomus riparius midges are critically damped and 

I show that critical damping arises freely in simple 3-dimensional stochastic models. 

 

Laboratory swarms of Chironomus riparius midges [Sinhuber et al. 2019] are found to be either 

weakly overdamped (as the negative lobe is barely evident) or weakly underdamped (as there 

is no evidence of a secondary positive lobe on the velocity autocorrelation functions, i.e., the 

midges just fail to overshoot) (Fig. S15). Moreover, estimates for the frequencies of oscillatory 

modes are typically close to zero. This suggests that the laboratory swarms are close to being 

critically damped, poised between being over- and underdamped; contrary to the observations 

of laboratory swarms of Anarete midges [Okubo 1986] and observations of wild swarms of 

Anopheles gambiae [Butail et al. 2013]. Consequently, the Chironomus riparius midges tend 

to return to their equilibrium position – the centre of the swarm – in the minimum time; typically, 

just failing to overshoot and not making single oscillations. A precursor of this critical damping 

can be found in Kelley and Ouellette [2013] who showed that mean-squared displacements 

saturates when 〈𝑑2〉 ≈ 𝑅𝑠
2 ; i.e., when the average midge has reached the edge of the swarm. 

 

Critical damping seemingly requires fine tuning. It occurs in 1-dimensional models for swarms 

with Gaussian position and velocity statistics when 2𝜎𝑢
2𝑇 = 𝜎𝑥

2 [Okubo 1986]. 3-dimensional 

models do not appear to be not analytically tractable. Nonetheless, the results of numerical 

simulations indicate that overshooting (resulting in a secondary positive lobe in the velocity 

autocorrelation) is generally absent or weak in the 3-dimensional versions of Okubo’s [1986] 

model [Reynolds et al. 2017] when ‘spin’ (a preferred sense of rotation of individual 

trajectories)  is the absent or is sufficiently weak (Fig. S16). [This is also true of second-order 

models wherein accelerations, velocities and positions rather than just velocities and positions 

evolve jointly as Markovian processes. And it is true of simulated spinless swarms as they 

relax back to their equilibrium positions after being displaced]. Stochastic models with spin 

produce looping trajectories [Borgas et al. 1997]. Spin has been detected in laboratory swarms 

of Chironomus riparius midges [Reynolds 2019, see also Reynolds 2020] but it may be 

stronger in laboratory swarms of Anarete midges [Okubo 1986] and in wild swarms of 

Anopheles gambiae [Butail et al. 2013]. Spin suppresses dispersion, thereby promoting 

cohesiveness but impedes a swarms’ return to its’ equilibrium form after being perturbed. This 

may account for the observations of Butail et al. [2013] who reported that the frequencies of 

oscillation increased with mean wind speed: environmental disturbances may excite the spin 

degrees of freedom because spin pushes the swarm into a more robust state. Robustness 
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may be further enhanced by the formation of transient, local order (synchronized subgroups) 

[Butail et al. 2013, Shishika et al. 2014, Reynolds 2019].  

 

Critical damping (or nearly so) also arises freely in 2-dimensional stochastic models and is 

evident at the population level in two species of zooplankton, Daphnia and Temora, that swarm 

around light shafts [Banas et al. 2003]. Individual velocities decorrelate almost entirely in less 

than one period of the harmonic attractive force. 
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Figure S15. Examples of over- and underdamped swarms together with best fit velocity 

autocorrelations for Okubo’s [1986] 1-dimensional model. Data are taken from Sinhuber 

et al. [2019]. 
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Figure S16. Near critical dampening arises freely in 3-dimensional stochastic models 

when spin is sufficiently weak [Okubo 1986, Reynolds et al. 2017, Reynolds 2019]. It occurs 

for many values of the model parameters.  
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VIII: Anticipated emergence of auxetic material-like properties 

Laboratory swarms of the midge Chironomus riparius have macroscopic mechanical 

properties similar to solids, including a finite Young’s modulus and yield strength [Ni and 

Ouellette 2016]. Reynolds [2019] showed somewhat counterintuitively that the emergence of 

these properties can be attributed to the presence of intrinsic noise. Here I remark that the 

analysis of Reynolds [2019] is readily extended from 1- to 2-dimensions and that 2-

dimensional analysis predicts that the swarms behave like auxetic materials which have 

negative Poisson ratios, i.e., when swarms are pulled apart in one direction, as in Ni and 

Ouellette [2016], they expand rather than contract in the perpendicular direction. This suggests 

that swarms do not become inherently weaker when stretched because they thicken in 

response to a force, rather than becoming thinner like positive-Poisson-ratio material.  

 

Auxetic material-like properties are predicted to arise because stretching a swarm in one 

direction will, by virtue of diluting the population, tend to increase the fluctuations in the 

resultant centrally attractive force. Such fluctuations (intrinsic noise) will tend to further 

increase the overall size of swarm (see main text). 
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IX: An illustrative example of a further application: modelling of 

honeybee drone congregation areas and flyways. 

Males of many insect species form dense, lek-like aerial swarms, above visual cues known as 

swarm markers. These often maintain a relatively stable size and shape even as individuals 

leave and others arrive, leading Sullivan [1981] to hypothesise that individual males move 

between adjacent swarms. Woodgate et al. [2021] provide the best evidence for a mating 

strategy in which individuals, honeybee drones, travel between multiple aerial leks whose 

locations are fixed. Woodgate et al. [2021] used harmonic radar technology [Riley et al. 1996] 

to record the flight paths of individual drones. They found clear evidence that drones favour 

certain areas in which to congregate, and that these areas (drone congregation areas, DCAs) 

were stable over two sequential years. Surprisingly, drones often visit multiple potential lekking 

sites within a single flight and take shared flight paths, ‘flyways’ between them. Flights between 

such sites, and between such sites and the hive are relatively straight. Once inside a drone 

congregation area, drones display convoluted, looping flight patterns those velocity and 

acceleration statistics closely resemble that of midges [Okubo 1986, Kelley and Ouellette 

2013]. Drones thus use the same mechanisms for swarm cohesion as midges or mosquitos 

but on a far larger spatial scale (the congregations had a radius of approximately 50m, c.f. 

approximately 10cm for swarms of Chironomus riparius midges [Kelley and Ouellette 2013]). 

Here I suggest that the flyways and the unidirectional flights between them are emergent 

properties of the DCAs rather than being distinctly different entities and with distinctly different 

behaviours. The suggestion stems from the results of numerical simulations for the trajectories 

of individuals in the presence of 2 DCAs. Model formulation directly mirrors that for swarming 

midges [Reynolds and Ouellette 2016]. 

Woodgate et al. [2021] reported that DCAs, like midge swarms [Okubo 1986, Kelley and 

Ouellette 2013] have to good approximation Gaussian density profiles. Consequently, the 

overall density profile for 2 DCAs can be represented by a bi-Gaussian distribution, 

𝑝(𝑥) =
1

2

1

√2𝜋𝜎𝑥
 ( 𝑒𝑥𝑝 (−

(𝑥−𝑥̅)2

2𝜎𝑥
2 ) + 𝑒𝑥𝑝 (−

(𝑥+𝑥̅)2

2𝜎𝑥
2 ))                    (S13) 

Woodgate et al. [2021] also reported that velocities within the DCA’s are to good 

approximation Gaussian distribution. A 1-dimension stochastic trajectory simulation model 

that is consistent with a bi-Gaussian density profile and Gaussian velocity statistics is given in 

𝑑𝑢 = −
𝑢

𝑇
𝑑𝑡 + 𝜎𝑢

2 𝑑𝑙𝑛𝑝

𝑑𝑥
𝑑𝑡 + √

2

𝑇
𝜎𝑢𝑑𝜉               (S14) 
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𝑑𝑥 = 𝑢𝑑𝑡 

where x and u are the position and velocity of an individual at time t, T is a velocity correlation 

timescale and 𝑑𝜉(𝑡)
 is an incremental Wiener process with correlation property 

𝑑𝜉(𝑡)𝑑𝜉(𝑡 + 𝜏) = 𝛿(𝜏)𝑑𝑡 [Reynolds and Ouellette 2016, Supplementary Material V]. In 

accordance with observations [Woodgate et al. 2021] individuals located within the cores of 

the DCAs are effectively bound to the centre of the DCAs by a force (mean 

acceleration 𝜎𝑢
2 𝑑𝑙𝑛𝑝

𝑑𝑥
) that to good approximation grows linearly with distance from the centres. 

These effective restorative forces ensure that the positions of the simulated individuals are 

consistent with the prescribed density profile (Fig. S17a).  In accordance with observations 

[Woodgate et al. 2021] the model predicts that convoluted flight patterns within the DCAs are 

interspersed with occasional unidirectional flights between the DCAs (typically along routes 

where the density profiles for individual DCAs overlap most strongly) that are is reminiscent of 

the observed unidirectional flight behaviours on the flyways (Fig. S17b,c). Similar results (Fig. 

S18) were obtained with 2-dimensional trajectory simulation models. This suggests that the 

flyways and the unidirectional flights along them are emergent properties of the DCAs as the 

flyways and directed flights do not enter the model formulation. This may explain why, as 

observed [Woodgate et al. 2021]: DCAs occur where flyways converge; almost nowhere in 

the vicinity of the DCAs is unvisited; and if the DCAs are stable then so are the flyways. The 

simple, minimal model may therefore have explanatory capacity, accounting for various 

observations of honeybee drones. Moreover, it can be readily extended. More elaborate 

modelling [Reynolds 2019, 2020] that takes account of intrinsic noise may, for example, 

explain why the DCAs appear to be in tension [Woodgate et al. 2021] and why DCAs, like 

some midge swarms [Poda et al. 2019], are not located directly over swarm markers 

[Woodgate et al. 2020].   

 

One big question raised by the study of Woodgate et al. [2021] is why do drones switch 

between DCAs when lekking vertebrates are faithful to a single location? Although the 

switching between DCAs is here predicted to be accidental it may nonetheless be 

advantageous: either because when queens are rare in the environment, a regular patrol 

between multiple locations gives a better chance of finding a queen than staying in a single 

place; or because gatherings of drones have properties that are attractive to queens and that 

drones hunt around for a particularly good DCA to join. This suggests that there could be 

selection for maintaining switching rather than selection for switching. Nonetheless, switching 

is only predicted to occur when the DCAs are sufficiently close together. This is consistent 
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with Feugère et al. [2021] who reported that remote mosquito swarms are acoustically 

isolated. 
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Figure S17a). Simulated trajectories are consistent with the presence of DCAs. 

Distribution of positions of simulated individuals (•) matches the prescribed bi-Gaussian 

density profile. b) Simulated flight pattern as a function of time. In accordance with 

observations [Woodgate et al. 2021] the model predicts that convoluted flight patterns within 

the DCAs are interspersed with occasional unidirectional flights between the DCAs that are 

reminiscent of the observed flight behaviours on the flyways. c) Velocity autocorrelation 

functions for trajectories starting from the centre a DCA (red line), within a DCA (green line) 

and between DCAs (blue line). Motions are underdamped (oscillatory) within the DCAs and 

nearly critically damped (unidirectional) between DCAs. Results are shown for 𝑥̅ = 3 and with 

all other model parameters set to unity. 
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Figure S18. Example simulation data from a 2-dimensional stochastic model. The heat 

map (left) shows the locations of 4 prescribed DCA’s. The trajectory (right) shows, as observed 

[Woodgate et al. 2021], convoluted flights within DCAs and unidirectional flights between 

DCAs. 

 

 


