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Abstract 13 

Machine learning (ML) expands traditional data analysis and presents a range of opportunities in 14 

ecosystem service (ES) research, offering rapid processing of ‘big data’ and enabling significant 15 

advances in data description and predictive modelling. Descriptive ML techniques group data with 16 

little or no prior domain specific assumptions; they can generate hypotheses and automatically sort 17 

data prior to other analyses.  Predictive ML techniques allow for the predictive modelling of highly 18 

non-linear systems where casual mechanisms are poorly understood, as is often the case for ES. We 19 

conducted a review to explore how ML is used in ES research and to identify and quantify trends in 20 

the different ML approaches that are used. We reviewed 308 peer-reviewed publications and 21 

identified that ES studies implemented machine learning techniques in data description (63%; n= 22 

308) and predictive modelling (44%), with some papers containing both categories. Classification and 23 
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Regression Trees were the most popular techniques (60%), but unsupervised learning techniques 24 

were also used for descriptive tasks such as clustering to group or split data without prior 25 

assumptions (19%). Whilst there are examples of ES publications that apply ML with rigour, many 26 

studies do not have robust or repeatable methods. Some studies fail to report model settings (43%) 27 

or software used (28%), and many studies do not report carrying out any form of model 28 

hyperparameter tuning (67%) or test model generalisability (59%). Whilst studies use ML to analyse 29 

very large and complex datasets, ES research is generally not taking full advantage of the capacity of 30 

ML to model big data (1138 medium number of data points; 13 median quantity of variables). There 31 

is great further opportunity to utilise ML in ES research, to make better use of big data and to 32 

develop detailed modelling of spatial-temporal dynamics that meet stakeholder demands. 33 

Keywords: Machine learning; Ecosystem services; Big Data; Methodology; Validation; Data-driven 34 

modelling. 35 

1. Introduction 36 

Ecosystem service (ES) research involves the study of complex systems comprising interactions 37 

between biodiversity, human activity and the abiotic environment (MEA, 2005). The interactions 38 

underpinning ES  are highly nonlinear and our mechanistic understanding of these processes is 39 

under-developed (Daw et al., 2016; Spake et al., 2017). This complexity makes implementing 40 

standard process-based modelling and statistical null hypothesis testing in ES problematic  (Mouchet 41 

et al., 2014; Villa et al., 2014; Martínez-López et al., 2019). Furthermore, data relevant to ES 42 

research, e.g. remotely sensed data, often has high-dimensionality, can be unstructured, and the 43 

volume of data is increasing at a rate beyond our ability to make sense of it using traditional 44 

approaches (Reichstein et al., 2019). 45 

Machine learning (ML) is an emerging and rapidly developing discipline and what constitutes ML, as 46 

opposed to other, more traditional statistical approaches, remains fuzzily defined (Bock et al., 2019). 47 

Here we broadly define ML according to (Reichstein et al., 2019) as ‘a field of statistical research for 48 
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training computational algorithms that split, sort and transform a set of data to maximize the ability 49 

to classify, predict, cluster or discover patterns in a target dataset’. Using ML, data are empirically 50 

modelled with few or no prior assumptions about the system, using computer algorithms that can 51 

automatically learn from data. Since ML techniques can make data inferences without relying on 52 

causal theory, they can have useful application in highly non-linear, complex, and poorly 53 

characterised systems such as those producing ES. Furthermore, due to automation, ML approaches 54 

are particularly advantageous considering recent developments in social and environmental ‘big 55 

data’ relevant to ES research (Ghani et al., 2019; Xia, Wang and Niu, 2020). ML approaches are 56 

therefore a valuable expansion to traditional data analyses and the diversity of ML techniques 57 

presents a range of opportunities as a data-driven approach to ES research (Willcock et al., 2018). As 58 

such, ML is increasingly utilised within ecology and the environmental sciences and is enabling useful 59 

data inferences in domains in which traditional data analyses have had limited utility (Lucas, 2020). 60 

ML has enabled useful data inferences using data that has been collected automatically i.e. via 61 

remote sensing or other autonomous sensors (Lary et al., 2016),  or without experimental design 62 

(e.g. recording of species sightings by the public; (Torney et al., 2019)), or open data that has been 63 

collected often for another purpose (Rammer and Seidl, 2019). ML is also used to analyse 64 

environmental data collected via social media platforms (Wäldchen and Mäder, 2018) or that has 65 

been generated synthetically via another modelling process (Chen, Roy and Hutton, 2018).  66 

ML approaches can be divided to two main categories according to the type of task or research 67 

objective being pursued: descriptive (e.g. identifying unknown groups) and predictive (e.g. 68 

projections of future outcomes; Box 1) (Delen and Ram, 2018). Descriptive ML approaches group 69 

data with little or no prior domain specific assumptions, they can aid in hypothesis generation and 70 

can be used to automatically sort data prior to other data analyses. This allows for rapid processing 71 

of ‘big data’, where dataset size and high-dimensionality make organising or describing ES data by 72 

traditional methods not practically viable (Willcock et al., 2018). ML clustering and ordination can be 73 

viewed as descriptive techniques, and in ES research they can identify ES bundles or hotspots in ES 74 
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supply and demand, i.e. areas where two or more ES are consistently associated (Raudsepp-Hearne 75 

et al., 2010; Mouchet et al., 2014). ML classification of remotely  sensed images involves describing 76 

large and complex datasets by grouping the data into meaningful classes, often for further analyses 77 

or to aid in hypothesis generation (Maxwell, Warner and Fang, 2018). 78 

Predictive ML techniques are used to complete classification and regression tasks to use in models 79 

and make predictions about a system. This can allow for predictive modelling of highly non-linear 80 

systems where causal mechanisms are poorly understood (Huntingford et al., 2019).  The potential 81 

for the use of ML in a data-driven approach to predictive modelling of ES has already been 82 

highlighted and ML ES models have been shown to have comparable accuracy to conventional 83 

predictive modelling techniques (Willcock et al., 2018). ML has a range of potential advantages over 84 

other modelling approaches in ES. Firstly, the inherent difficulty in making inferences with patterns 85 

in ‘noisy’ biological data results in high levels of uncertainty, and different models of the same 86 

system often diverge in their predictions (Knudby, Brenning and LeDrew, 2010; Willcock et al., 2019). 87 

As such ES models may not meet the needs of stakeholders (Willcock et al., 2016; Martínez-López et 88 

al., 2019). ML models often have in-built measures of uncertainty that may be useful to stakeholders 89 

(Willcock et al., 2018). Secondly, ML often allows the combination of continuous with categorical 90 

predictor variables (Cutler et al., 2007), which is a particular advantage in modelling ES where data is 91 

often of disparate forms (Burkhard et al., 2012). Thirdly, datasets relevant to ES research can have 92 

missing or unknown data that can be problematic to model construction (Willcock et al., 2020). 93 

However, several ML algorithms (e.g. Classification and Regression Trees, some Support Vector 94 

Machines, and Neural Networks) can operate with gaps in the data without the need to impute 95 

missing data points (García-Laencina, Sancho-Gómez and Figueiras-Vidal, 2010). Finally, ML 96 

approaches can deal with many predictors, are robust to correlations in explanatory variables, and 97 

can allow for varying functional relationships between predictor and response variables (Hochachka 98 

et al., 2007). These features make ML well suited to the analysis of complex systems with high 99 

dimensionality such as those producing ES. 100 
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Although automation in ML allows for rapid processing of large and complex datasets, which is 101 

clearly advantageous for both descriptive and predictive tasks considering the current challenges of 102 

‘big data’, the lack of reliance on causal theory is also a potential pitfall of ML approaches. 103 

Essentially, by modelling correlations ML does not standardly incorporate any process-based theory, 104 

and this limits the generalisability of ML inferences outside of the input space of the data. It is 105 

therefore especially important that predictive ML models incorporate a process of validation 106 

whereby models are tested on independent data (Lucas, 2020). Likewise, any hypotheses or 107 

subsequent analyses based upon descriptive applications of ML should consider that the inference 108 

may not be transferable outside the parameter space (Spake et al., 2017). ML approaches are also 109 

criticised as being ‘black-box’, in that it can be difficult to understand how or why they work (Zednik, 110 

2019). Whilst, to some extent, opacity can be an inherent characteristic of some ML algorithms, it is 111 

nevertheless important that ML methodologies are as transparent as possible if research utilising ML 112 

is to be robust. As such, the input data used should be available to other researchers and any model 113 

settings, software used or relevant computer code necessary to run the model should be reported. 114 

Considering these possible benefits but also pitfalls of using ML, here we conduct a review to 115 

quantify the use of ML in ES research. The aim is to explore how ML is used in ES research for 116 

descriptive and predictive tasks, to identify and quantify trends in ML approaches for ES, and to 117 

assess ML methodological repeatability. Specifically, we: 1) quantify the use of ML for descriptive 118 

and predictive modelling tasks in ES; 2) assess the extent to which applications of ML in ES research 119 

follow transparent and repeatable methodologies; 3) quantify the extent to which ES publications 120 

report model generalisability; and 4) review the size and complexity of datasets that have been used 121 

in ML approaches to ES.  122 

Box 1. Machine Learning (ML) techniques 123 

ML algorithms can broadly be divided into two kinds, from a learning perspective: supervised and 124 

unsupervised learning. In supervised learning a response variable is specified a priori. The user first 125 
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labels and groups the system input variables and supplies the algorithm with the target output 126 

variable. The algorithm then finds a function that links the inputs with the outputs such that it can 127 

then make predictions of what the output will be from a given set of input variables. Classification 128 

and regression tasks are carried out using supervised learning approaches (Jordan and Mitchell, 129 

2015). Types of supervised learning methods include Classification and Regression Trees (CARTs), 130 

Support Vector Machines (SVMs) and Maximum Likelihood approaches. In supervised ML the 131 

dataset is split into two subsets. One subset, the training data, is used to ‘train’ the algorithm how to 132 

carry out the task e.g., how to classify. This training data contains the target output and the user 133 

indicates what this is. The second subset, the test data, is reserved to ‘test’ the performance of the 134 

algorithm in carrying out its task. In this phase the target is not supplied to the algorithm so that the 135 

output produced by the algorithm can be compared to target output data (Breiman, 2001). When 136 

model tuning is involved, a part of the training set is held out from training and used for evaluating 137 

the training performance (during training) and to assist in selecting the optimal hyperparameter 138 

values. Model tuning can substantially increase the accuracy of the ML model, with only the optimal 139 

(i.e. most accurate) model being then used on the test set (Willcock et al., 2018). However, we note 140 

that there is potential for confusion as both the tuning and testing processes are sometimes referred 141 

to as validation in the ML literature. Some studies also test the generalisability of the model to either 142 

arbitrary model decisions (e.g. how the datasets are subset into training and testing data) and/or to 143 

data outside the parameter space of the training and testing data subsets. Supervised learning 144 

approaches are especially useful in predictive modelling and in the analysis of variable importance.  145 

In unsupervised learning prior knowledge of what the output should be is not given to the algorithm; 146 

no variables are labelled as outputs by the user. Unsupervised algorithms structure data by 147 

identifying groups that the user has not indicated a priori. Cluster analysis is an example of 148 

unsupervised learning. Some types of ML e.g., Artificial Neural Networks (ANNs), include supervised 149 

and unsupervised approaches. Unsupervised techniques are useful for data exploration and 150 

hypothesis generation because they allow insights into unstructured data (Solomatine, See and 151 
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Abrahart, 2009). As with other forms of data analyses, a variety of ML techniques can be used to 152 

carry out different tasks within a single study and ML can also be used in combination with tradition 153 

techniques. For example, a clustering algorithm might be used to group data prior to a regression 154 

either by ML or another statistical approach  (Crisci, Ghattas and Perera, 2012). Generally, 155 

unsupervised approaches are used for descriptive/organisational tasks whilst predictive modelling 156 

tasks tend to be carried out using more supervised approaches.  157 

 158 

2. Methods 159 

We followed a quantitative review methodology that involved a two-step search strategy. We used 160 

the Web of Science database to find publications from which information was extracted according to 161 

categorisation criteria.  The aim of step one was to generate a list of relevant machine learning (ML) 162 

terms that represent the use of ML in ecosystem service (ES) research. In step one we entered the 163 

search string: “machine learning” AND (“ecosystem services” OR “ecosystem service”). The 164 

Keywords and Keywords Plus were taken from all the resulting articles, and these were then 165 

classified as being terms either relevant to ML or not according to the mutual agreement of the 166 

review team. Thus, we generated a list of 33 relevant ML terms that represent the use of ML in ES 167 

research e.g., ‘data mining’, ’neural network’, ‘decision tree’, etc. (see SI1 for list of all Keyword and 168 

Keyword Plus terms and how they were classified). We then ran a new search by entering the search 169 

string: “relevant-key-word” AND (“ecosystem services” OR “ecosystem service”) for all the relevant 170 

ML terms identified in step one. All papers for each relevant term were assessed according to 171 

inclusion criteria: a) papers with no mention of ES in the title or the abstract were not included in the 172 

review; b) papers which did not use a machine learning algorithm as part of the data analyses were 173 

not included. Here an ML algorithm was defined as one which splits, sorts and transforms a set of 174 

data enabling it to classify, predict, cluster or discover patterns in a target dataset (Reichstein et al., 175 

2019). Those that did not meet the inclusion criteria were not included in this review. Papers that 176 
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met the inclusion criteria were categorised and data extracted (below). If there were over 100 177 

papers for each term, then random numbers were used to select 100 for inclusion in the review. For 178 

example, for the relevant-key-word ‘classification’ there were 1779 papers, so we selected a random 179 

sample of 100; while for relevant-key-word ‘support vector machine’ there were only 74, so all 180 

papers were reviewed. Note the search was not exhaustive because the Web of Science database is 181 

not totally comprehensive (Martín-Martín et al., 2018) but provides a representative sample of 182 

important research in this area.    183 

2.1. Data extraction and categorisation criteria 184 

From our pool of articles, we categorised all applications of ML as either descriptive or predictive. 185 

Publications that had applications of both descriptive and predictive ML were included in both 186 

descriptive and predictive categories. Such articles included, for example, studies that carried out an 187 

ML cluster analysis prior to predictive modelling. All applications of unsupervised ML (i.e., clustering, 188 

PCA etc., see Box 1) were classed as descriptive methods. We also categorised ML applications used 189 

in the classification of remotely sensed data, and ML image recognition, as descriptive because the 190 

primary aim is to describe the data by sorting it into meaningful classes, with those descriptive 191 

papers not falling into this category termed ‘organisational’. All other applications of ML were 192 

classed as predictive. These predictive models either directly predicted specified ES (hereafter ‘direct 193 

ES prediction’), or the model did not directly predict a specified ES but was indirectly relevant to ES 194 

(hereafter ‘indirect ES prediction’). For example, if a study predictively modelled carbon 195 

sequestration this would be categorised as direct ES prediction but if it predictively modelled forest 196 

land cover then this could be used to indirectly predict ES. Thus, descriptive publications could be 197 

subdivided into either a) organisational or b) remote sensed / image recognition; and predictive 198 

publications could be subdivided into either a) direct ES prediction; b) indirect ES prediction. Note 199 

that membership of the subdivisions is mutually exclusive (i.e., ‘a’ or ‘b’) but a publication could be 200 

categorised as using both descriptive and predictive approaches.  201 
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The following information was also extracted from each manuscript: 202 

• Dataset size and complexity – The number of data points (often referred to as the number of 203 

instances in a machine learning problem) and the number of variables (attributes) in the 204 

dataset used by the ML algorithm were recorded. If more than one application of ML was 205 

used in the analysis, then the largest of the sample sizes and number of variables is 206 

recorded.   207 

• Data availability – The data used in the ML analysis were classed as being freely available if 208 

the data could be accessed for free. 209 

• ML rationale given – Papers were considered as presenting a rationale for their use of ML if 210 

they provided an explanatory justification for its use in the analysis with reference to 211 

supporting literature.  212 

• Generalisability – Papers were classified as having tested the generalisability of the model if: 213 

i) the impact of the training-testing subsets on the model were investigated (e.g. using cross 214 

validation to indicate how robust the model is to different subsets of the data), and/or ii) the 215 

transferability of the model outside the parameter set of the training and testing data were 216 

investigated (i.e. how well the model performs in a different geographic location or time 217 

frame;  Box 1). 218 

• Model tuning – A paper was classed as carrying out model tuning if adjustments were made 219 

to the standard parameters of the ML algorithm and either these adjustments were justified 220 

with reference to the literature or through testing of the effects on the ML output (Box 1).   221 

• Software – A paper was classed as reporting the software if the software used to carry out 222 

the ML analyses was detailed.  223 

• ML technique – The type of approach(es) used was recorded for each study. Approaches 224 

included: Classification and Regression Trees, Artificial Neural Networks, Bayesian, 225 

Maximum Likelihood, Support Vector Machines, Clustering algorithms.   226 
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Firstly, the percentage of reviewed publications using each ML approach was calculated per category 227 

of ML study (Organisational, Remote sensed and Image recognition, Direct ES prediction, and 228 

Indirect Prediction). Secondly, the percentage of publications meeting each of the other above 229 

criteria was calculated per category of ML study. Finally, the median, maximum, and minimum 230 

number of data points and variables for each category were also calculated. All analyses were 231 

carried out in R (version 4.0.4.)  232 

3. Results  233 

A pool of 1012 publications resulted from the search with a total of 308 publications applying 234 

machine learning (ML) in ecosystem service (ES) related research between 01/2008 and 07/2021 235 

(Fig. 1; see SI2 for a comprehensive list). ML is increasingly being used in ES research and a wide 236 

variety of ML techniques are utilised for provisioning, regulating and cultural ES. In some ES studies 237 

(e.g. Funk et al., 2019; Schirpke et al., 2019; Havinga et al., 2020), ML represents part of a 238 

methodology involving a range of other statistical and modelling techniques, sometimes involving 239 

application of more than one type of ML technique. In other studies (e.g. Richards and Tunçer, 2018; 240 

Nguyen, Nong and Paustian, 2019), ML represents the entire modelling process. In a further set of 241 

studies, different approaches are compared in terms of their ability to model similar data, either a 242 

range of ML techniques (e.g. Hirayama et al., 2019; Sannigrahi et al., 2019; Wu et al., 2019) or ML in 243 

comparison to process based modelling (e.g. Willcock et al., 2018). The median number of data 244 

points in each publication using ML was 1138 (maximum = 9,500,430; minimum = 17; n = 225; Table 245 

1). The median number of variables was 13 (maximum = 2317; minimum = 3; n = 215). 246 

 247 
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248 

Fig. 1. Publications utilising Machine Learning (ML) for predictive or descriptive tasks and number 249 

of ML applications per ML technique. All publications = 308 papers. Height of black nodes are 250 

proportionate to number of publications. Height of white nodes proportionate to number of 251 

applications of ML (all applications = 477). 252 

 253 

3.1. ML for descriptive tasks 254 

ML was used for data description in 63% (n = 308) of studies., which can be divided into those using 255 

remotely sensed data or image recognition (52% of all studies; section 3.2.) and organisational 256 

studies (11%; Fig. 1). Clustering or ordination algorithms were commonly used to identify groupings, 257 

splits or other structure in data without theoretical assumptions (19%). Organisational studies used 258 

clustering algorithms to identify ES bundles or hotspots (7% of all studies). For example, K-means 259 

cluster analysis was used to describe bundles of supply, flow and demand of ES by identifying groups 260 

of ES according to spatial concurrence (Schirpke et al., 2019), hierarchical cluster analysis was used 261 

to identify groups of ES according to social preferences (Martín-López et al., 2012), and an Artificial 262 

Neural Network (ANN) with a clustering function was used to identify bundles of ES (Liu et al., 2019). 263 

In 16% of studies, ML clustering or dimensionality reduction was used in an additional 264 

methodological step for predictive modelling with a supervised learning technique. For example, 265 
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Agglomerative Hierarchical Clustering was utilised to identify groups of structurally similar forest 266 

stands prior to the application of Random Forest to assess importance of structural variables on 267 

carbon storage (Thom and Keeton, 2019); and K-means cluster analysis was used to identify areas of 268 

homogeneous sets of species prior to the predictive modelling of floodplain biodiversity using a 269 

Bayesian Belief Network (BBN) (Funk et al., 2019).   270 

3.2. ML for remote-sensing and image recognition 271 

ML was implemented in publications using remotely sensed data (53%; n= 308) for feature 272 

extraction or the classification of remotely sensed images to produce land cover maps (Zhang et al., 273 

2016; Traganos and Reinartz, 2018; Erker et al., 2019; Pouliot et al., 2019; Trinder and Liu, 2020) or 274 

landscape or vegetation feature extraction from remotely sensed images (Chen et al., 2018; Jiang et 275 

al., 2018; Dash et al., 2019; Fujimoto et al., 2019). In other studies (12%), remotely sensed data is 276 

used but as one of a range of spatially explicit predictor variables to model, e.g., carbon storage 277 

(Sanderman et al., 2018; Silveira et al., 2019; Havinga et al., 2020), land use and ES change (Liu, 278 

2014; Mahmoud and Gan, 2018; Hashimoto et al., 2019), or for other ecological predictions such as 279 

Bark Beetle outbreaks (Rammer and Seidl, 2019). Ten studies utilised Deep Learning (an example of 280 

a Convolutional Neural Network which is a type of ANN) to model spatial-temporal dynamics from 281 

remote sensing images (Poggio, Lassauce and Gimona, 2019; Rammer and Seidl, 2019; Barbierato et 282 

al., 2020; Du et al., 2020; Samarin et al., 2020; Timilsina, Aryal and Kirkpatrick, 2020; Arruda et al., 283 

2021; Bhargava, Sarkar and Friess, 2021; Caretti, Bohnenstiehl and Eggleston, 2021; Guo et al., 284 

2021). 285 

ML was also utilised in descriptive image recognition tasks, such as cultural ES studies involving the 286 

analysis of large datasets from social media platforms using an ANN (3%). Online ANN image analysis 287 

models, specifically Deep Convolutional Neural Networks on cloud computing platforms Google 288 

Cloud Vision (Google Cloud Vision, 2021) and Clarifai (Clarifai General Model, 2021), were used to 289 

analyse the thematic content of user uploaded geo-tagged photographs on Flickr and clustering 290 
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algorithms were used to group the photographs according to the themes. These themes were used 291 

as indicators of cultural ES, and were combined with spatial and temporal information associated 292 

with the photographs, enabling modelled cultural ES mapping (Richards and Tunçer, 2018; Bernetti, 293 

Chirici and Sacchelli, 2019; Gosal et al., 2019; Chang et al., 2020; Gosal and Ziv, 2020; Runge et al., 294 

2020) Similarly, an ANN image analysis model was used to classify geo-tagged photographs from 295 

Wikiloc – a sports photo-sharing platform – (Wikiloc , 2021) according to thematic content, and 296 

inferred cultural ES were mapped (Callau et al., 2019). 297 

3.3. ML for predictive modelling  298 

ML was used in predictive modelling in 44% (n = 308) of publications. A wide range of ML techniques 299 

were used for predictive modelling of ES (Fig. 2). Classification and Regression Trees (CARTs) – a 300 

form of supervised learning (Box 1) – are the most widely used approach (60 %, n = 308; Fig. 2.), and 301 

Random Forest (RF) (44 %; Fig.2.) is an especially popular example of a CART. CARTs were used in 302 

supervised classification tasks to predict membership of a user-labelled class. For example, RF was 303 

used in the process of modelling timber production by predicting the age-class of forestry tree 304 

species from remotely sensed and historic forestry data (Gao et al., 2016). CARTs were also used in 305 

supervised regression tasks. For example, RF was used in modelling carbon-diversity hotspots in 306 

agricultural soil from remote sensing, terrain and climate variables (Silveira et al., 2019) and a 307 

regression tree model was used to predict soil carbon stocks under future land use and climate 308 

change from soil survey data (Adhikari et al., 2019). 309 

ES studies have used other supervised ML techniques in predictive modelling, 26% used an ANN, 4% 310 

used a BBN, 24 % used a Support Vector Machine (SVM). For example, an ANN was used in a 311 

regression task to predict rice crop yields from environmental and socio-economic variables (Dang et 312 

al., 2019), and a BBN was used in a classification task to predict firewood use from environmental 313 

and socio-economic variables (Willcock et al., 2018). ANNs were also used to predict future land use 314 

change (e.g. Akinyemi and Mashame, 2018; Beygi Heidarlou et al., 2019; Hashimoto et al., 2019). In 315 
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addition to the prediction of target variables some techniques, most notably CARTs, were used to 316 

assess variable importance or for the selection of relevant predictor variables. For example, RF was 317 

used to identify the most important variables controlling organic carbon stocks in agricultural soils 318 

(Mayer et al., 2019) and in forest stands (Thom and Keeton, 2019), and a CART was used to assess 319 

variable importance for the supply of a range of provisioning and regulating ES in an agroecosystem 320 

(Rositano et al., 2018). 321 

3.4. Repeatability, model tuning and generalisability. 322 

Altering ML model settings can optimise model performance (Box 3). However, 67% (n =308; Fig. 3) 323 

of publications reviewed applied ML techniques ‘off-the-shelf’ without reporting any 324 

experimentation by altering model settings or model tuning. Indeed, 43 % of publications did not 325 

report the model settings used. 33% of all publications (n = 308) report model tuning (35% of 326 

organisational publications [n =34]; 35% of remote sensing [n = 162]; 23% of predictive ES direct [n = 327 

56]; and 36% of predictive indirect [n =80]).  328 

56% of all publications report model settings used (50%, organisational; 57%, remote sensing; 50% 329 

predictive direct; 63% predictive indirect). For those studies that do detail the model setting used, 330 

but do not experiment with model tuning, 51% (n = 102) give justification with reference to 331 

literature, but the rest of the studies provide no explanatory justification for the use of the particular 332 

model settings chosen. Some publications (4%; n = 308) do not report in their methods the kind of 333 

data used (e.g., categorical or nominal) as input or output in the ML model. Most publications (61%) 334 

give a rationale for the use of ML rather than an alternative modelling approach, but many studies 335 

do not. Publications tend to detail the software and the version used, but 28% do not report what 336 

software is used to carry out the ML technique. Model input data is sometimes freely available via 337 

supplementary material or an open data source but this is not the case in half of publications. Less 338 

than half of all publications reviewed report testing the generalisability of the ML model (Box 3) used 339 

within their study with an independent data set (41%, all publications).  340 
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 341 

Fig.2. The percentage of publications which reported a rationale for using a machine learning 342 

technique, used data freely available data, reported model generalisability, model tuning and 343 

model settings used, categorised according to type of Machine Learning used: Organisational (n = 344 

34); Remotely sensed (n = 162); Predictive direct (n = 56); Predictive indirect (n = 80).  345 

Table 1. Median, maximum, and minimum number of datapoints (N), and variables (θ), used in 346 

each category of ML publications: Organisational; Remotely sensed; Predictive direct; Predictive 347 

indirect; All publications reviewed. NB. Number of samples (n) is lower than total number of 348 

publications reviewed for each category because not all publications reported number of 349 

datapoints, or variables used.  350 

 Descriptive Predictive All publications 

reviewed  

 Organisational Remotely sensed Direct  Indirect   

 N θ N θ N θ N θ N θ 

Median 965 12 1509 12 1714 16 669 12 1138 13 

Max 111884 363 2190763 2150 805684 2317 9500430 363 9500430 2317 

0%

20%

40%

60%

80%
ML rationale given

Data freely available

GeneralisabilityModel tuning

Model settings reported

Organisational Remote sensed Direct ES prediction Indirect ES prediction
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Min 17 3 25 3 17 3 21 3 16 3 

n 29 26 107 95 47 42 64 71 225 215 

N = number of datapoints.  Θ = number of variables 351 

 352 

Box 2. Examples of ecosystem service (ES) studies using machine learning (ML) that demonstrate 353 

the benefits of ML approaches. 354 

Many of the papers we reviewed highlight the benefits ES science can derive by adopting ML 355 

methods: 356 

• Big data – ML allows for the rapid processing of data and one of its key strengths is that it 357 

can support analysis of larger datasets than many conventional methods (Reichstein et al., 2019).   358 

Richards and Tunçer (2018) analyse over 20,000 images uploaded to photo sharing platform Flickr. 359 

They used Google Cloud Vision (an ML algorithm for image analysis) (Google Cloud Vision, 2021) to 360 

classify the thematic content of the images to map recreational beneficiaries. The time required to 361 

manually classify so many images would make this task impractical without the use of ML. 362 

• Clustering – ML enables the grouping of data without the use of domain-specific theory. In 363 

ES science this can have useful application to identify bundles of ES provision or groups of ES 364 

beneficiaries. Schirpke et al. (2019) use K-means cluster analysis to identify areas where ES 365 

repeatedly occur together in the European Alps. Gosal et al. (2019) use the Ward-D clustering 366 

algorithm to identify six groups of recreational beneficiaries in the Camargue based on annotation of 367 

photos uploaded to Flickr.  368 

• Uncertainty measures – Transparent estimates of model uncertainty are produced as an 369 

integral part of many ML predictive modelling algorithms. These measures can be useful to decision 370 

makers who can determine acceptable levels of uncertainty and use their own expertise for 371 

potentially contentious decisions. Willcock et al. (2018) model fuel use in South Africa and 372 
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biodiversity in Sicily using ML Bayesian Belief Networks. They report associated estimates of 373 

uncertainty which were produced as part of the modelling process and highlight that the level of 374 

certainty might influence management decisions as well as the predicted level of ES.  375 

• Hypothesis generation and variable importance assessment – In addition to the prediction 376 

of target variables, ML allows for the assessment of variable importance and the selection of 377 

relevant predictor variables. Mayer et al (2019) use the Random Forest algorithm (an example of a 378 

classification and regression tree) to identify the most important variables controlling organic carbon 379 

stocks in agricultural soils in Bavaria. They input 13 predictor variables and the algorithm identified 380 

the variables that explained the majority of variance in carbon stocks. This identification of 381 

important variables aids in the generation of hypotheses, e.g., theory about why these variables 382 

determine carbon stocks. 383 

 384 

4. Discussion 385 

Machine learning (ML) is used in ecosystem service (ES) research as both a descriptive tool, where 386 

aspects of automation enable speedy processing of high volumes of complex data, and in predictive 387 

modelling, in which accurate predictions can be made about ES.  The variety of ways by which ML is 388 

incorporated in ES research methodologies highlights its value as an adaptable extension to 389 

traditional data analyses across all ES domains. Supervised ML approaches such as Classification and 390 

Regression Trees (CART) and Artificial Neural Networks (ANN) algorithms tend to be used for 391 

predictive model tasks, whilst descriptive tasks are often carried out using unsupervised ML, such as 392 

clustering algorithms to group data (Fig .1).  While there are examples of studies that apply ML with 393 

a repeatable and rigorous methodology (Box 3), many studies fall short of methodological best 394 

practice; failing to report which software was used, model settings or tuning, or test of 395 

generalisability (Fig. 3). In some instances, these methodological shortcomings affect the 396 

repeatability of the study, such as not being able to identify the exact algorithm used, but in other 397 
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instances they might mean that the findings of the study may be flawed. We suggest that future 398 

studies may use the findings of poorly reported models, but should do so with caution. Such models 399 

may well be valid, but the lack of repeatability means that that validity cannot be independently 400 

tested. For example, algorithm parameter optimisation has been shown to affect ML model accuracy 401 

(Daelemans et al., 2003), so using default model settings might lead to reduced model performance. 402 

Thus, if a paper does not report model tuning then it is likely that the authors used the default 403 

parameters in the model settings in the relevant software. This may mean that, given the data the 404 

authors had at their disposal, the model presented may not be the best fit model to that data, and 405 

likely has higher uncertainty than could be achieved if tuning was performed. Similarly, without 406 

testing generalisability on an independent dataset, a ML model might be ‘overfitted’ to the data, this 407 

results in poor model accuracy when applied to new data from a parameter space that was not used 408 

to train the model, and so this should be done with caution (Hawkins, 2004; Kuhn and Johnson, 409 

2013).  410 

The potential impact of these methodological shortcomings varies with the type of ML approach 411 

used and the task for which the ML is being used. For example, the effect of altering algorithm 412 

hyperparameters away from defaults (Box 3) varies between ML techniques; e.g. increasing the of 413 

number of tree splits in a Random Forest above the default setting may have a marginal effect on 414 

model accuracy (Kulkarni and Sinha, 2012) compared to large effect on model performance that can 415 

result from altering the number of hidden layers in an ANN (Srivastava et al., 2014). However, this 416 

largely depends on the problem at hand, therefore an investigation of hyperparameters is always 417 

recommended. Likewise, there is arguably less need to test for generalisability when, for example, 418 

using a CART to estimate variable importance, as compared to the need to a predictive classification 419 

model, because an estimation of variable importance does not explicitly generalise beyond the 420 

learnt parameter space (Kuhn and Johnson, 2013). Furthermore, for some descriptive tasks, testing 421 

generalisability may not be necessary; such as for some basic data sorting tasks or in applications to 422 

aid hypothesis generation (Lucas, 2020). 423 
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We found some examples of studies that use large and complex datasets (Box 2), but the capacity of 424 

ML to analyse available ‘big data’ has not yet been fully realised in ES research (Table 1). In remote 425 

sensing studies, large amounts of data are generated from satellites and manned and unmanned 426 

aerial vehicles. Automation in ML allows for rapid and accurate processing of these datasets (Lary et 427 

al., 2016). Due to its capacity to process data of high dimensionality and to map classes with 428 

complex characteristics, ML is an effective and efficient geoscientific classification method, and now 429 

the standard approach for remote sensing image classification (Maxwell, Warner and Fang, 2018). In 430 

ES research, classification of remotely sensed images can provide estimates of the spatial 431 

distribution of ES supply via mapping of ES proxies, such as land use and land use change (Martnez-432 

Harms and Balvanera, 2012) or factors that drive ES supply namely, ecosystem service providers, 433 

ecosystem processes and functional traits (Andrew et al., 2015). That remote sensing ML methods 434 

tend to have a higher degree of repeatability and generalisability and utilise larger datasets 435 

compared to other methods (Fig. 5, Table 1) is likely testament to the maturity of the use of ML in 436 

the field of remote sensing. However, it suggests the under-utilisation of ML in other areas of ES 437 

research not associated with remote sensing, or that other areas of research have not amassed such 438 

high amounts of data. 439 

In conducting our review, we noticed that the use of ML in ES research perhaps focuses on 440 

predictive modelling of the potential biophysical supply of ES, and often indirectly via ES proxies such 441 

as landcover or via hypothesised service providers. In these areas of ES research, ML can offer 442 

advantages over process-based models and standard statistical modelling in terms of improved 443 

predictive accuracy and ability to make use of disparate kinds of data. However, this is a relatively 444 

narrow subset of ES research and there is scope for further utilisation of ML in other areas, including 445 

ES demand and flows. For example, ES can be defined in terms of interactions between the service 446 

provider and service beneficiaries. In this sense they are co-produced, and to inform land 447 

management and policy decisions, ES research needs to quantify supply of ES relative to demand 448 

(Burkhard et al., 2012). 449 
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Thus, ES modelling could better incorporate social science data (Daw et al., 2016). This has been 450 

explored in part with the analysis of large datasets from social media platforms using deep 451 

convolutional neural networks (DCNNs; e.g. the automated content analysis tool, Google's Cloud 452 

Vision (Google Cloud Vision, 2021); Gosal et al., 2019), which highlights the potential for ML to utilise 453 

very large social media datasets (Runge et al., 2020b). However, to date, ES studies utilising social 454 

media have been largely limited to data from single social media platforms and there is further 455 

potential to use ML with a variety of social media platforms to analyse cultural ES (e.g. Ruiz-Frau et 456 

al., 2020). More generally, social science datasets potentially relevant to ES research seem yet to be 457 

utilised. For example, it has been established there is a need to better understand the flows of ES 458 

beneficiaries (Bagstad et al., 2013) and to better incorporate ES demand into predictive models 459 

(Martínez-López et al., 2019). However, whilst big data from social science has recently been used 460 

effectively in some disciplines (e.g. in the development human mobility theory (Alessandretti, Aslak 461 

and Lehmann, 2020), such data has yet to be used by ES researchers. The availability of big data 462 

from social science together with the capacity of ML to both effectively utilise data from mixed 463 

sources and deal with a high number of variables, suggests that ML could be used in a more holistic 464 

system-scale modelling approach that captures the co-productive nature of ES.  465 

The use of ML in ES research, whilst increasing, is still in its infancy. As such, ES scientists can benefit 466 

greatly from the experience of other disciplines. For example, recent developments in deep learning 467 

algorithms have enabled detailed modelling of spatial-temporal dynamics in the Earth Sciences 468 

(Reichstein et al., 2019) and this is potentially applicable in a dynamic holistic ES modelling 469 

approach. In addition, hybrid ML models, which combine purely data-driven machine learning 470 

modelling with theory-bound, process-driven approaches, have been shown to have improved 471 

predictive power outside of the learnt parameter space in areas such as climate science (Huntingford 472 

et al., 2019) and could be useful in the development of more transferable ES models.  473 
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In conclusion, this review found that a wide range of ML approaches have been used effectively in a 474 

variety of ES studies and that ML offers exciting potential in future ES research. However, for the full 475 

potential of ML in ES to be realised and confidently used by stakeholders, ML models should be 476 

transparently reported and readily repeatable (Martínez-López et al., 2019). Our review identifies 477 

‘gold standard’ studies that exemplify methodological best practice and could be used as a 478 

benchmark for ML reporting in ES research. 479 

 480 

Box 3. ‘Gold-standard’ ecosystem service (ES) studies using machine learning (ML), demonstrating 481 

best practice. 482 

Our review of 200 ES papers using ML revealed a wide range in their ML protocols. Here, we 483 

highlight a sample of papers that we consider provide ‘gold-standard’ or best practice for key 484 

aspects of ML reporting. 485 

• Methodological transparency – Each application of ML needs to be fully repeatable. As 486 

such, the input data used should be available to other researchers. Ideally the data would be open 487 

access and links to data sources provided in the publication. Furthermore, any model settings, the 488 

software used and relevant computer code necessary to run the model should be reported. Funk et 489 

al. (2019) is a good example of transparent reporting of ML methods. The authors develop a data-490 

driven Bayesian Network to prioritise areas of floodplain for management interventions in the 491 

Danube River based on ES multifunctionality. They use open access data and provide links to all data 492 

sources. In addition, they detail data-discretisation (i.e., the method used to group data into discrete 493 

categorises as input to the model) and model parameterisation and the software used (i.e., they fully 494 

describe their approach to model development and validation).  495 

• Model tuning – Hyperparameters are aspects of model architecture that can be altered by 496 

the user to optimise model performance. Many ML techniques have hyperparameters that can (and 497 
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often should) be varied by the user. For example, the number of tree splits in a decision tree, and 498 

the number of layers in a neural network, are hyperparameters that may affect model performance.  499 

Such changes may alter the model outputs so, at the very least, authors should report the 500 

hyperparameter values used and, where appropriate, justify these hyperparameter settings. 501 

Rammer and Seidl (2019) provide a good example of how to investigate the sensitivity of the ML 502 

hyperparameters and hone them to form the most accurate model. They develop a Deep Neural 503 

Network to predict bark beetle outbreaks and systematically evaluate different network 504 

architectures to optimise predictive power. They alter model structure such as network size and 505 

parameters of the training process including the loss function and optimizer used. They report 506 

iteratively the evaluation of model variations by calculating performance measures including model 507 

accuracy, precision, recall, F1 Score, Conditional Kappa and True Skill Statistic for each model run.  508 

The source code they use to build the model can be found here: https://github.com/werner-509 

rammer/BBPredNet. 510 

• Generalisability – Model testing, where model performance is tested using a random subset 511 

of the data not used to train the algorithm, is an integral part of most supervised learning 512 

algorithms. However, without validation against an independent dataset outside the parameter 513 

space of the training-testing data, a ML model might be ‘overfitted’ and not generalisable to other 514 

spaces/times (Hawkins 2004). This can result in poor model accuracy when applied to new data 515 

which was not used to train the model (Alpaydin, 2020). This can be overcome by dividing the 516 

training dataset in two: with one set used for training and the other for testing generalisability, or by 517 

additionally testing the model on a dataset outside the learnt parameter space. For example, 518 

Hashimoto et al. (2019) use historical land use data to predict future land use change using an 519 

Artificial Neural Network. They model land use change using historic land use data for 1997 and 520 

2006 and randomly split 50% of the data for training and 50% for testing the model (n = 1275), but 521 

also reserve an independent data set (data for 2014) for testing model generalisability (n=1275).  522 

https://github.com/werner-rammer/BBPredNet
https://github.com/werner-rammer/BBPredNet
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