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Ian Michael Clark1, George Lund1, David Hughes1 and Tim H. Mauchline1*
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Land management practices can vastly influence below ground plant traits due to
chemical, physical, and biological alteration of soil properties. Beneficial Pseudomonas
spp. are agriculturally relevant bacteria with a plethora of plant growth promoting (PGP)
qualities, including the potential to alter plant physiology by modulating plant produced
ethylene via the action of the bacterial enzyme 1-aminocyclopropane-1-carboxylate
(ACC) deaminase (acdS). This study evaluated the impact of land management legacy
on the selection and function of wheat root associated culturable pseudomonads
isolates. Three distinct previous land uses prior to wheat culture (grassland, arable,
and bare fallow) were tested and culturable pseudomonad abundance, phylogeny
(gyrB and acdS genes), function (ACC deaminase activity), and the co-selection of
acdS with other PGP genes examined. The pseudomonad community could to some
extent be discriminated based on previous land use. The isolates from rhizosphere and
root compartments of wheat had a higher acdS gene frequency than the bulk soil,
particularly in plants grown in soil from the bare fallow treatment which is known to
have degraded soil properties such as low nutrient availability. Additionally, other genes
of interest to agriculture encoding anti-fungal metabolites, siderophores, and genes
involved in nitrogen metabolism were highly positively associated with the presence of
the acdS gene in the long-term arable treatment in the genomes of these isolates. In
contrast, genes involved in antibiotic resistance and type VI secretion systems along
with nitrogen cycling genes were highly positively correlated with the acdS gene in the
bare fallow’s cultured pseudomonad. This highlights that the three land managements
prior to wheat culture present different selection pressures that can shape culturable
pseudomonad community structure and function either directly or indirectly via the
influence of wheat roots.
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INTRODUCTION

Globally, intensive
Q15

croplands have been expanding since the
1960s, helping to achieve food security by increasing productivity
(Agren et al., 2013). However, intensive land use has been linked
to soil erosion and compaction, altered nutrient cycling, depleted
organic matter levels, salinization, acidification, and pollution
(Pretty and Shah, 1997; Doran and Zeiss, 2000; European
Commission, 2002; Kibblewhite et al., 2008; Muhammed et al.,
2018). These impacts can disrupt soil ecosystem services, thereby
threatening the sustainability of the food system for future
generations (Edwards, 2002). Conversely, low intensity land-
uses such as grasslands, scrublands, and forests are associated
with promoting these ecosystem services (Cardinale et al., 2012).
A diversity of plant species in such systems offer long-term
topsoil cover, along with a reliable source of photosynthetically
fixed carbon and organic matter inputs compared to high
intensity managements (Piccolo et al., 2008). This can increase
soil organic carbon (SOC) levels, aggregate stability, soil
pore structure, and biodiversity of micro and macrofauna
(Ding et al., 2013; Muhammed et al., 2018).

Different land management practices can alter the soil
chemical, physical, and biological environment directly, e.g.,
via fertilizer application and tillage, as well as indirectly by
influencing plant root traits (Wedin and Tilman, 1996; Berg
and Smalla, 2009; Gregory et al., 2016; Boeddinghaus et al.,
2019). These can each have dramatic impacts on the soil
microbiome (Edwards, 2002; Foley et al., 2005; Cardinale et al.,
2012; Allan et al., 2014, 2015; Kavamura et al., 2019). Increases
in microbial biomass have been associated with low intensity
managements that receive higher C inputs throughout the year
compared to high intensity practices that conventionally utilize
monocultures, pesticides, tillage and are not under permanent
crop cover (Vries et al., 2013; Estendorfer et al., 2017; Hirsch
et al., 2017; Li et al., 2018). Increases in microbial community
diversity have also been observed for low-moderate intensity
land uses compared to high intensity practices (Tardy et al.,
2015; Kavamura et al., 2018). Alterations in microbial community
structure provide useful indicators of the impacts of agricultural
practices, but how such differences in microbial community
structure translate into functional shifts is currently not well
known. Studies have centered around nutrient cycling with
impacts on carbon, nitrogen, and phosphorus cycling across
different land-use intensities (Paula et al., 2014; Hirsch et al.,
2017; Neal et al., 2017; Wang et al., 2018; Perez-Brandan et al.,
2019). How the soil and plant environment affects the ecology of
other microbial traits of interest to agriculture such as microbial
phytohormones, has been less studied.

Phytohormones allow plants to alter their growth,
development, and physiology in response to environmental
factors, including many soil properties such as water and
nutrient status (Lymperopoulos et al., 2018). Microbes capable
of synthesizing or degrading phytohormones can thereby modify
plant physiology and are a desirable target for the microbial
inoculant industry (Dodd et al., 2010). 1-Aminocyclopropane-
1-carboxylate (ACC) deaminase is an enzyme of particular
agricultural interest, as microbes with this trait can modulate

in planta production of the stress-associated phytohormone
ethylene (Li et al., 2000). ACC deaminase cleaves ACC, the
immediate biosynthetic precursor of ethylene, to release
α-ketobutyrate and ammonia. Root-exuded ACC can be
utilized by rhizosphere microbes as a C and N source and
consequently decrease root (and shoot) ethylene production,
thereby ameliorating growth inhibition associated with high
levels of ethylene (Pierik et al., 2006; Nascimento et al., 2014).
The ACC deaminase structural gene (acdS) is enriched in
rhizosphere microbial populations when compared to bulk soil
and non-cultivated soils (Marasco et al., 2012; Bouffaud et al.,
2018) and has greater rhizosphere abundance when plants are
grown in water-limited environments (Siddikee et al., 2010;
Timmusk et al., 2011; Stromberger et al., 2017). Thus, ACC
deaminase could be a potential marker for plant-microbe
interactions under stress-associated soil conditions.

Bacterial isolates from the genus Pseudomonas are considered
important plant growth promoting rhizobacteria (PGPR) (David
et al., 2018). Their ability to alleviate environmental stress,
produce PGP substances or as antagonists to plant pathogens is
widely explored (Meliani et al., 2017). However, many aspects of
its ecology and how environment changes affect its diversity is
still unknown. Thus, this study focused on the impact of land
management on populations of the soil and rhizosphere dwelling
model bacterium Pseudomonas spp. in terms of abundance,
phylogeny (gyrB and acdS genes), function (ACC deaminase
activity) and the co-selection of acdS with other PGP genes. The
Highfield experiment at Rothamsted Research, United Kingdom,
is a long-term experiment which was initially set up to look
at the effects on soil properties when converting permanent
grassland into arable (1949) and bare fallow (1959) managements.
As these practices induced vast soil chemical, physical, and
biological differences (see Supplementary Table 1), it provides
an ideal opportunity to study the impacts of different land use
intensities, independent of soil type and climate on beneficial
soil bacteria. Marked declines in C, N, and P levels, aggregate
structure, pH, and microbial and mesofaunal abundance are well
documented in the bare fallow and arable plots compared to
the grassland plots (Coleman et al., 1997; Watts et al., 2001;
Hirsch et al., 2009). Better understanding of the distribution
of ACC deaminase producing pseudomonads across different
land managements may inform farming practices that encourage
beneficial soil-plant-microbe interactions. We hypothesized that
land management impacts pseudomonad community structure,
with the more degraded soil properties of the bare fallow and
arable soils indirectly selecting for a higher acdS gene abundance
in the rhizosphere and root of wheat.

MATERIALS AND METHODS

Soil Sampling and Crop Genotypes
The A horizon of Q16soil was sampled to a depth of 25 cm (discarding
the top 2 cm) for each of the continuous plots of grassland,
arable and bare fallow managements at the Highfield experiment
(51.80420◦N, 0.36140◦W) using a hand trowel 3 cm diameter
corer. Ten soil samples were taken in a “W” formation across
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each plot; samples for a given soil treatment were then pooled.
Next, the mixed soil for each treatment was sieved (2 mm gauge),
homogenized and subsequently used in pot experiments with
the hexaploid spring wheat Triticum aestivum cv. Cadenza. At
the time of sampling, arable plots had been under continuous
winter wheat (most recently T. aestivum cv. Hereward seed
coated with an insecticide/fungicide treatment of Redigo/Deter,
Bayer CropScience) production, receiving ammonium nitrate
fertilization to provide approximately 220 kg-N ha−1 y−1, with
an additional 250 kg-K ha−1 and 65 kg-P ha−1 every three
years since 1949. The bare fallow plots had been maintained
crop- and weed-free by regular tilling and the occasional use of
herbicide since 1959. Grassland plots had been maintained as
a sward of mixed grasses for over 200 years and mowed twice
during summer months.

Pot Cultivation of Wheat
Seeds were surface sterilized (75% ethanol wash for 30 s followed
by 3% sodium hypochlorite for 10 min and rinsed thoroughly
with sterile distilled water) and pre-germinated on filter paper
soaked in sterile distilled water in Petri dishes. After 36 h, single
pre-germinated seeds were sown in 9 cm diameter× 10 cm height
pots containing around 200 g of Highfield soil from the three
different managements, with five replicates per treatment. Pots
were incubated in the glasshouse at 20◦C with a 16-h per day light
regime, and were watered daily with tap water.

Sampling of the Rhizosphere and Root
(Rhizoplane and Endosphere)
Rhizosphere soil was sampled at the wheat early flowering
stage (61 Zadoks) by breaking away the bulk soil to reveal soil
closely adhering to the root system, which was removed from
the roots by gently dislodging into a sterile tube. To assess
pseudomonad communities more closely associated with wheat,
the rhizoplane and endosphere were treated as one sample and
referred to hereafter as the root compartment. After collecting
the rhizosphere soil, unwashed roots were cut with 70% ethanol
sterilized scissors and ground using a mortar and pestle at a ratio
of 1 g root to 9 mL sterile water.

Soil Dilutions and Isolation of
Pseudomonas spp.
Homogenized rhizosphere soil and bulk soil samples (1 g) were
diluted separately in 9 mL of sterile distilled water followed
by vortex mixing for 10 min to ensure bacterial cells were
dislodged from soil particles or the root and in suspension.
Serial dilutions were carried out to a dilution factor of 10−5 for
bulk soil and rhizosphere samples and 10−7 for root samples.
Next, 100 µL of suspensions were spread onto Petri dishes with
Pseudomonas Selective agar (PSA, OxoidTM) supplemented with
Cetrimide, Fucidin, and Cephalosporin (CFC, OxoidTM), as per
the manufacturer’s instructions, to select against fungi and other
bacterial species. The plates were incubated at 28◦C for 24–48 h.
Random selection using the online random number generator1

1Q18 https://www.random.org

was used to select isolates from each treatment for subsequent
creation of a Pseudomonas culture collection. Six isolates from
each of five replicates per niche (bulk soil, rhizosphere, and root)
were randomly selected for further analysis, totaling 270 isolates.

Identifying Isolates That Utilize
1-Aminocyclopropane-1-Carboxylate as
a Sole N Source
Isolates were screened for their ability to use ACC as a sole
nitrogen source following the method described in Penrose
and Glick (2003). Bacterial isolates were grown overnight in
LB broth at 150 rpm at 28◦C. Cultures were adjusted to an
Optimal Density (OD) of 1.0 at an absorbance of 600 nm
using a spectrophotometer, before transferring 1 mL of culture
into 50 mL Dworkin and Foster (DF) minimal medium with
ammonium sulfate as a nitrogen (N) source and grown for 24 h,
shaking at 150 rpm at 28◦C. DF media was prepared as follows
(per liter): 4.0 g KH2PO4, 6.0 g Na2HPO4, 0.2 g MgSO4·7H2O,
2.0 g glucose, 2.0 g gluconic acid, and 2.0 g citric acid with
trace elements: 1 mg FeSO4·7H2O, 10 µg H3BO3, 11.19 µg
MnSO4·H2O, 124.6 µg ZnSO4·7H2O, 78.22 µg CuSO4·5H2O,
10 µg MoO3, in addition to 2.0 g (NH4)2SO4 as a sole N source.
The medium was adjusted to pH 7.2.

After 24 h, cultures were centrifuged at 5,000 rpm, the
supernatant was discarded, and cells washed twice in DF medium
without a N source. Cells suspended in N free DF medium
(1 mL) were transferred to 25 mL of DF + 3.0 mM ACC (Sigma-
Aldrich) as the sole N source. DF + ACC medium was prepared
from a 0.5 M stock solution of ACC, which was filter-sterilized
through a 0.2 µm membrane, the filtrate was collected and frozen
at −20◦C for storage. Prior to inoculation, the ACC solution
was thawed and a 150 µL aliquot was added to the sterile DF
minimal medium in place of (NH4)2SO4. Following inoculation,
the culture was grown at 150 rpm for 24 h at 28◦C. Isolates that
did not grow in the DF + ACC medium were regarded as not
having a functional ACC deaminase enzyme.

Calibration Curve for Quantifying
1-Aminocyclopropane-1-Carboxylate
Consumption
For isolates that tested positive for ACC deaminase activity, their
ACC consumption was assessed using a colorimetric ninhydrin
assay as described by Li et al. (2015). A total of 500 mg of
ninhydrin and 15 mg of ascorbic acid were dissolved in 60 mL
of ethylene glycol and mixed with 60 mL of 1M citrate buffer (pH
6.0) prior to use. Citrate buffer was prepared with 12.04 g sodium
citrate dihydrate and 11.34 g citric acid in 1 L of distilled water
and adjusted to pH 6.0.

A standard colorimetric calibration curve was performed with
varying ACC concentrations. DF medium was prepared with
respective ACC working concentrations of 3 mM, 2.5 mM, 2 mM,
1.5 mM, 1 mM, 0.5 mM, and 0 mM. Each ACC working solution
(1 mL) was mixed with 2 mL of ninhydrin reagent in glass test
tubes, which were capped, shaken and placed in a boiling water
bath (100◦C). After 15 min, the tubes were moved into a water
bath at room temperature (∼20◦C) for 2 min. The samples were
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then shaken for 30 s and left to stand at room temperature for
10 min to allow purple coloration to develop. The solution was
transferred into a cuvette and absorbance measured at 570 nm
with a Varioskan R© spectrophotometer (Thermo ScientificTM).

Screening Isolates for
1-Aminocyclopropane-1-Carboxylate
Consumption
To test the bacterial isolates, cultures grown in DF + ACC
medium were centrifuged at 5,000 rpm for 5 min and a 1 mL
supernatant of bacterial culture was added to 2 mL of ninhydrin
reagent in glass test tubes, which were capped, shaken and placed
in a boiling water bath (100◦C). After 15 min, the tubes were
moved into a water bath at room temperature (∼20◦C) for 2 min.
The samples were shaken for 30 s and left to stand at room
temperature for 10 min before transferring to a cuvette and
absorbance measured at 570 nm by a spectrophotometer.

DNA Release/Extraction
MicroLYSIS R©-PLUS (Microzone Ltd., Haywards Heath, West
Sussex, United Kingdom) was used to release DNA from
single colonies of each of the ACC positive and 18 ACC
negative isolates following the manufacturer’s protocol and
utilized as the template DNA in polymerase chain reaction
(PCR) reactions for amplifying the and acdS gene fragments.
These pseudomonad isolates were selected for full genome
sequencing, in which high quality genomic DNA was extracted
from 10 mL LB cultures of each isolate using the GenElute
genomic DNA extraction kit (Sigma-Aldrich), as per the
manufacturer’s protocol. DNA quantity was determined using the
Qubit Fluorometric Quantification (Life Technologies) using the
manufacturer’s instructions. DNA quality was determined using
the NanoDrop Microvolume UV spectrophotometer (Thermo
Fisher Scientific Inc.) by OD at 260 nm, the 260/280 ratio was
used to determine DNA quality in addition to running the
samples on a 1.5% (w/v) agarose gel in 1 × Tris-borate-EDTA
(TBE) stained with EtBr (0.2 µg mL−1) with TBE as the running
buffer. Bands of DNA were viewed under UV light to visually
detect smears arising from any degraded DNA.

Polymerase Chain Reaction
Each PCR mixture was 25 µL in total and consisted of
10 × Bioline reaction buffer, Bioline dNTP mix 25 mM each,
Bioline MgCl2 50 mM, forward and reverse primers (both at
0.1 µM), BioLine DNA polymerase (0.25 µL), microLYSIS R©

Plus DNA extract as a template (1 µL) and 18 µL of
nuclease-free water. PCR products (5 µL) were examined
on a 1.5% (w/v) agarose gel and gene products purified
using the MinElute R© PCR purification kit (Qiagen) according
to the manufacturer’s instructions. Degenerate primers and
PCR programs for amplification of acdS were as follows –
Forward (acdSf3): ATCGGCGGCATCCAGWSNAAYCANAC
(26 bp) (Li et al., 2015); Reverse (acdSr3) GTGCATCGA
CTTGCCCTCRTANACNGGRT (23 bp) (Li et al., 2015); 94◦C
for 2 min followed by 35 cycles at 94◦C for 45 s, 60◦C for 30 s,
and 72◦C for 1 min and a final elongation of 72◦C for 5 min.

DNA Purification and Quantification of
Polymerase Chain Reaction Products
Polymerase chain reaction products were examined on 1.5%
(w/v) 1 × TBE gels stained with EtBr (0.2 µg mL−1) and with
1× TBE as the running buffer. Bands of DNA were viewed under
UV light to identify fragments of the correct size which were
then purified using the MinElute PCR purification kit (Qiagen)
according to the manufacturer’s guidelines. Purified DNA was
then quantified using the NanoDropTM spectrophotometer
ND-1500 (Labtech) following the manufacturer’s protocol.

Genome Sequencing
Genome sequencing for each of the acdS positive isolates and
18 randomly selected acdS negative isolates (6 from each soil
treatment) was performed by Microbes NG with × 30 sequence
coverage.2 A total of 30 µL of DNA at a concentration of
50 ng µL−1 L was sent to Microbes NG, where sequencing
libraries for the samples were prepared. Libraries were sequenced
on an Illumina HiSeq using a 250 bp paired end protocol. Reads
were adapter trimmed using Trimmomatic 0.30 with a sliding
window quality cut-off of Q15. De novo assembly was performed
on samples using SPAdes version 3.7 (Nurk et al., 2013 Q19) and
contigs were annotated using Prokka 1.11 (Seemann et al., 2014).
Genome analysis was initially performed by searching for PGP
genes of interest within the Prokka annotations received from
microbesNG – see Supplementary Table 2 for a summary of
genes searched for. The genomes were uploaded to the Rapid
Annotation using Subsystem Technology (RAST) pipeline for
additional annotations (Aziz et al., 2008). If genes of interest were
not found in the annotated genomes, sequences were download
from NCBI and searched for using Basic Local Alignment Search
Tool (BLAST) within the RAST pipeline (Aziz et al., 2008). The
DNA gyrase subunit B gene (gyrB) sequences were detected
and retrieved from the sequenced genomes using the BLAST
approach. The obtained genomes had an average 6,536,076 bp
(ranging from 5.93 and 7.05 Mb) and 185 contigs with N50 of
118,823 (see Supplementary Table 3).

DNA Sequence Analysis of the gyrB and
acdS Genes
The acdS and gyrB gene sequences were retrieved from the
annotated genomes and imported into Geneious. Sequences for
both gyrB and acdS genes were multi-aligned using the software
MUSCLE and subsequently trimmed to result in a sequence
length of 879 bp for each of the gyrB sequences and 1,150 bp
for the acdS sequences. Before phylogenetic construction, the
J model test (2.1.10) was used to determine the best model
fit for the alignment. Separate maximum likelihood trees for
both the gyrB and acdS gene were then constructed utilizing a
transitional model (TIM 012032) with 1,000 bootstraps using
the software PhyML (Guindon et al., 2010). The NCBI BLAST
tool3 was used to compare sequences from individual isolates to
the NCBI database.

2https://microbesng.uk/
3https://blast.ncbi.nlm.nih.gov/Blast.cgi
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In silico Analysis of the acdS Gene
Nucleotide sequences for the structural (acdS) and regulatory
(acdR) ACC deaminase gene were extracted from the annotated
genomes. The amino acids Lys51, Ser78, Tyr294, Glu295, and
Leu322 have all been implicated as essential for the functioning
of the acdS gene in the reference isolate Pseudomonas sp. UW4.
Nucleotides were translated into amino acid sequences followed
by a multiple alignment with the amino acid sequence from the
reference Pseudomonas sp. UW4 and the presence of the above
amino acids was deemed necessary to score for a putative acdS
gene. The Pseudomonas sp. UW4 ACC deaminase amino acid
sequence utilized was obtained from the NCBI database.

Statistical Analyses
Five replicate pots were used for each of the soil management
treatments (n = 5). One-way ANOVA compared mean CFU
across the different treatments. When data did not follow a
normal distribution, the results were LOG10 transformed before
statistical analysis. Any significant results were followed by
the post hoc Tukey analysis, to identify significantly different
treatment effects in the software R studio. For gene presence
and absence analysis, each strain was given a value of 1
(gene present) or 0 (gene absent). Where no variation was
observed in gene presence between all of the isolates, genes were
removed prior to conducting the correlation analysis. Correlation
analyses were computed using the Spearman’s rank method in
Microsoft R© Excel R©.

RESULTS

Pseudomonas spp. Core Community
Structure
Across all three land managements (Figure 1), abundance of
Pseudomonas spp. was similar in bulk soil and rhizosphere

communities (ranging from 105 to 106 mean CFU g−1) whilst
pseudomonads associated with wheat roots were significantly
more abundant (107–108 mean CFU g−1 root). All 270 bacterial
isolates were identified as belonging to the Pseudomonas genus
by Sanger sequencing analysis of the gyrB gene (data not
shown). Phylogenetic analysis of the gyrB gene from the genome
sequenced isolates (Figure 2) revealed that pseudomonad
communities could be partially resolved according to previous
land use. Isolates derived from the previously grassland managed
soil were primarily represented in one clade most similarly related
to Pseudomonas mandelii LMG 21607. Those from the arable
managed soil being present in a wide range of clades across
the tree, with one clade being associated with the Pseudomonas
viciae reference sequence. Two clades of closely related isolates
were identified for pseudomonads cultured from the bare fallow
treatment, one being dominated by bulk soil isolates and the
other root associated isolates. Neither of these clades were closely
related to any of the reference Pseudomonas species included
in the tree. In addition, a diverse clade was observed which
possessed isolates from all previous land uses as well as the
reference accessions representative of Pseudomonas prosekii and
Pseudomonas azotoformans. These observations highlight that
both land management and niche play a role in structuring
pseudomonad communities.

1-Aminocyclopropane-1-Carboxylate
Deaminase Gene Distribution and
Phylogeny
To better understand possible functional differences relating
to pseudomonad gyrB phylogeny associated with the three
land managements, isolates were screened for the presence of
the ACC deaminase structural gene acdS, with an expected
size of ∼680 bp. While the ACC deaminase PCR screen
identified 36 isolates with the acdS gene, subsequent WGS

FIGURE 1 | The abundance ofQ6

Q7

Pseudomonas spp. isolated from bulk soil, the rhizosphere, and roots of wheat grown in soils from three different land managements.
Log transformed data for the mean CFU g−1

± SD of Pseudomonas spp. isolated from bulk soil, the rhizosphere, and the roots of wheat grown in soils from arable,
grassland, and bare fallow managed soils. Symbols sharing the same letter are not significantly (P < 0.05) different according to Tukey’s HSD post hoc test.
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FIGURE 2 | Maximum likelihood (ML) tree based on gyrB nucleotide sequences from genome sequenced Pseudomonas strains associated with wheat grown in
soils from three different land managements. The 54 isolates from bulk soil, rhizosphere soil, and roots of wheat grown in three distinct land management regimes
(bare fallow, arable, and grassland) were phylogenetically analyzed utilizing a ML tree with a transitional model. Percentage bootstrap are indicated at branching
nodes. Branch labels are colored to indicate the soil management where the bacteria was isolated and boxes beside labels indicate the soil compartment. Circles
indicate the presence or absence of acdS gene in the genome of the isolate

analysis identified only 27 isolates (9.6% of the culture library)
possessing the gene (Figure 2, see also Supplementary Table 3
for isolate information). Lack of specificity of PCR primers
likely overestimated the presence of the acdS gene in isolates.
The previously bare fallow soil had the highest (17 isolates)
abundance of acdS isolates, followed by the continuous arable
(six isolates) and the previously grassland soil (four isolates).
The isolates which possessed the acdS gene came from a
range of niche compartments, though most were isolated from
wheat roots (Figure 3). Also, the majority of those with
close phylogenetic relationship were cultured from different
compartments or from plants cultured in different pots (Figure 2
and Supplementary Table 4). As such it is unlikely that the
isolates are clonal, but rather the trends observed are due to
biotic and abiotic selection factors. A potential “rhizosphere
effect” was observed in the previously bare fallow soil, with
abundance of the acdS gene increasing in number from the bulk
soil to the rhizosphere and increasing further again in the root
compartment. The regulatory acdR gene, which is essential for the
functioning of ACC deaminase, was found in the genomes of each

of these isolates. The acdS phylogeny (Figure 4) reveals distinct
clades associated with land management, with the isolates derived
from the arable soil management being most closely related to the
reference strain P. viciae 11K1.

1-Aminocyclopropane-1-Carboxylate
Deaminase Functionality
Each of the 27 isolates identified as having the acdS gene from
WGS had the key amino acid residues Lys51, Ser78, Tyr294,
Glu295, and Leu322, all of which have been implicated as
essential for functioning of the acdS gene in the reference isolate
Pseudomonas sp. UW4 (Figure 5). In silico sequence analysis
identified amino acid differences at 13 positions in the acdS gene.
In addition to in silico analysis of the acdS gene, each of the
acdS positive isolates grew in DF medium with ACC as the sole
nitrogen source, whilst a negative control isolate without the acdS
gene did not grow. Thus, all acdS positive pseudomonads had
the functional potential to lower plant ethylene emission. All
acdS positive isolates had substantially lower ACC in the growth
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FIGURE 3 | The distribution of the acdS gene abundance across three
different land managements. A total of 27 isolates possessed the acdS gene,
the bar graph showing its abundance across the different niche
compartments of bulk soil, rhizosphere soil, and wheat roots

medium after 48 h, whilst the negative control had levels of ACC
close to the starting levels of 3 mM (Figure 6).

To determine if the ACC deaminase gene was co-selected with
other traits of interest to agriculture across the three previous
land managements, a Spearman’s rank coefficient correlation
analysis was performed against the acdS negative and acdS
positive isolates to determine any correlations. Interestingly, the
ACC deaminase gene appeared to be co-selected with different
genes according to land management. Genes involved in anti-
fungal metabolite, siderophore, and biofilm production as well as
N cycling genes were highly positively correlated with the acdS
gene in the continuous arable treatment. Whilst genes involved in
antibiotic resistance and type VI secretion systems, along with N

cycling genes were highly positively correlated with the acdS gene
in the previously bare fallow treatment. However, these genes
were negatively correlated with the acdS gene in the grassland soil
whilst alkylphosphonate assimilation was the only gene studied
that appeared to be highly positively correlated with the acdS
gene in this soil management type (Figure 7). Type V secretion
system genes were positively correlated with the acdS gene across
all three land managements.

DISCUSSION

Land Management and Pseudomonad
Community Structure
The isolation of bacterial cultures is known for its selection biases
which prompted the growth of culture-independent approaches
in the past three decades. However, culturing has allowed here
an in-depth look into the genetic potential and diversity of
Pseudomonas spp. from different soil niches. Land management
is known to affect soil biodiversity and biomass, but how
it impacts community dynamics of plant associated members
such as Pseudomonas spp. is not well understood. Pseudomonas
fluorescens isolates are commonly reported as plant associated
bacteria found in the rhizosphere and roots, due to their ability
to metabolize various carbon sources released in root exudates
(Hol et al., 2013). As expected, our data showed that the root
compartment of wheat grown in soil regardless of land use history
supported 100–1,000-fold higher abundance of pseudomonads
than bulk and rhizosphere soil. Interestingly, pseudomonad
abundance levels on plate counts were similar across rhizosphere

FIGURE 4 | Phylogeny of the acdS gene in pseudomonads from three different land managements. acdS sequences from bulk soil, rhizosphere, and roots
associated with wheat grown in three distinct land management regimes (bare fallow, arable, and grassland) were phylogenetically analyzed utilizing a ML tree with a
transitional model and 1,000 bootstraps in the software PhyML. Percentage bootstrap are indicated at branching nodes. Branch labels are colored to indicate the
soil management where the bacteria was isolated and boxes beside labels indicate the soil compartment.
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FIGURE 5 | In silico analysis of the acdS translated amino acid sequences. The amino acids Lys51, Ser78, Tyr294, Glu295, and Leu322 have all been implicated as
essential for the functioning of the acdS gene in the reference isolate Pseudomonas sp. UW4. The alignments shown here with amino acid sequences translated
from the acdS gene were each found to have all 5 amino acids in the same position as the reference isolate Pseudomonas sp. UW4.

and bulk soil communities, which highlights that wheat roots
played a strong role in driving pseudomonad selection in this
study. Despite the different bias of the methods, comparable
findings using culture independent techniques based on the 16S
rRNA gene, have shown that the Pseudomonadaceae are enriched
in the root endosphere (Estendorfer et al., 2017; Kavamura
et al., 2019). The low intensity grassland soil, which we used
to cultivate wheat in for the first time in at least 200 years,
was associated with a greater abundance of pseudomonads
in the wheat root compartment compared to previously bare
fallow and continuous arable plots, despite a similar abundance
being found in the bulk and rhizosphere compartments. Higher
microbial biomass has been associated with low intensity land
uses such as forests and pastures when compared to high intensity
agricultural practices, although these previous studies did not
focus on pseudomonad specific communities (Zhang et al., 2016;
Van Leeuwen et al., 2017).

Analysis of the gyrB gene revealed differences in pseudomonad
isolates phylogeny associated with wheat grown in soils from
the different land use histories. However, no clear difference in
pseudomonad diversity was observed according to previous land
use. The occurrence of a mixed clade of isolates derived from all
previous land uses suggests that phylogenetic diversity is retained
in contrasting soil management types and agrees with previous
work performed on samples from this site (Hirsch et al., 2009).
The observation that isolates derived from bare fallow managed

soil formed a bulk soil as well as a root associated clade will be
useful for future in silico and in planta studies with these isolates
which could reveal mechanistic insights to niche establishment of
pseudomonads in wheat cropping.

Distribution, Phylogeny, and Function
Ability of Isolates With the
1-Aminocyclopropane-1-Carboxylate
Deaminase Structural Gene (acdS)
The acdS gene encoding for ACC deaminase was not a common
trait in the pseudomonad communities studied, although it
was more abundant in isolates from the bare fallow treatment
which accounted for 63% of the total acdS isolates identified.
Our data indicates that wheat plants appeared to select for the
presence of isolates containing the acdS gene, with acdS positive
isolates increasing from bulk to rhizosphere soil with the highest
abundance found in the root compartment of plants grown in
the previously bare fallow managed soil. A similar enrichment
of acdS microbes in the rhizosphere compared to bulk soil in
other studies further indicates that root exudation of ACC into
the rhizosphere potentially selects for microbes that are able to
utilize this compound (Bouffaud et al., 2018). Since the bare
fallow soil has lower C, N, and pH and higher bulk density than
the continuous arable and grassland treatments, it presents a
more stressful environment for plant growth (Islam et al., 1980 Q20;
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FIGURE 6 | 1-Aminocyclopropane-1-carboxylate consumption by isolates with the acdS gene grown in media with ACC as the sole nitrogen source. The mean ACC
consumption for isolates from arable, bare fallow, and grassland treatments, grown in Dworkin and Foster (DF) + ACC medium with ACC concentration quantified by
a ninhydrin colorimeter test at 24 and 48 h post inoculation.

FIGURE 7 | Gene presence/absence correlation coefficient analysis. Spearman’s rank correlation coefficients between the presence or absence of a selection of
PGPR traits correlated against the presence of the acdS gene in bacterial isolates from three distinct land managements. The scale range is from dark blue (highly
negatively correlated) to bright red (highly positively correlated), light colors represent low correlations.

Khan et al., 2015; Neal et al., 2017; Brito et al., 2018). Indeed,
previous studies at the Highfield experiment have shown
that wheat grown in the previously bare fallow plots had
significantly lower grain yields compared to wheat grown in the
previously grassland and arable treatments (Hirsch et al., 2016),

highlighting that the bare fallow soil presents a more stressful
environment for wheat cultivation. Higher selection for acdS
positive pseudomonad isolates observed here may therefore have
occurred in the bare fallow treatment due to greater ACC
exudation by wheat roots, providing an additional N and C source
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in the competitive rhizosphere and root compartment. Albeit,
further study is needed to identify specific stressors associated
with the soil properties in the bare fallow treatment that may
enhance root ACC exudation by wheat.

Interestingly, phylogenetic differences in the acdS gene from
Pseudomonad isolates were observed and sequences clustered
according to land management, suggesting that the ACC
deaminase gene was influenced via different selection pressures
related to the three distinct land use histories when cultivating
wheat. Amino acid differences were found at 13 different
positions in the acdS gene across the 27 isolates. In addition,
it was found that the isolates which were obtained from wheat
plants cultured in the previously grassland soil grew more slowly
on glucose and ACC compared to the other isolates. It is
not clear if these differences are related to altered efficiency
of ACC deaminase activity or due to bare fallow and arable
isolates being better adapted for carbon utilization. Since soil
type was the same across the different land managements, we
suggest that abiotic factors associated with land use intensity,
indirectly influenced the selection of acdS bacteria to the
rhizosphere and root compartment of wheat. More studies are
needed to confirm whether root-exuded ACC acts as a potential
rhizosphere attractant for acdS positive microbes present in
the soil environment. Relevantly, soil inoculation with acdS
positive microbes can decrease plant ACC concentrations in the
rhizosphere (Belimov et al., 2015), highlighting the importance
of studying acdS positive microbes to help elucidate soil-plant-
microbe interactions. As all pseudomonads with the acdS gene
were shown to utilize ACC as a sole nitrogen source, this
evidences that the isolates had the functional potential to alter
plant ethylene levels. Despite this we did not establish whether
the acdS gene was being expressed in situ and how this may
change over the growing period, as sampling only occurred
during the wheat flowering stage. As such, more studies into the
impacts of land management on soil-plant-microbe interactions
at different time points are needed to better understand the
temporal dynamics of acdS gene abundance and expression.

Co-selection of the acdS Gene With
Other Traits of Interest to Agriculture
Since acdS bacteria were found in a higher abundance in the
rhizosphere and roots of plants grown under stress-associated
conditions, the co-selection of other common traits of interest
for agriculture was investigated. Interestingly, the presence of
the acdS gene in pseudomonads isolated from wheat grown in
soil from the continuous arable and bare fallow treatments were
highly positively correlated with genes associated with biotic
stress. Here, genes for anti-fungal metabolite production were
found in all acdS positive pseudomonads but not in acdS negative
pseudomonads isolated from the continuous arable treatment.
Plant susceptibility to pathogens in intensive monoculture
practices is well documented (Piper, 1996; Bellaire et al., 2010;
Otani et al., 2019). It is therefore plausible that a higher number
of fungal pathogens in the continuous arable plots may have been
present compared to the bare fallow and grassland treatments.
As these plants did not show any obvious signs of disease,

the selection of pseudomonads possessing antifungal metabolite
genes may have contributed to prevent the build-up of plant
fungal pathogens, akin to a suppressive soil. Although the role of
ethylene has been studied in response to biotic stress (Díaz et al.,
2002), there are no studies to date that have measured root ACC
of plants under such conditions. Further analysis to investigate
the presence of well-known pathogens in wheat rhizosphere
samples in addition to root phytohormone analysis will help to
further unravel these findings.

The acdS containing isolates from previously bare fallow
soil were highly positively correlated with antibiotic resistance
genes, which could suggest that wheat grown in this soil may
have been experiencing stress from antagonistic bacteria or
fungi. Additionally, type VI secretion system genes were highly
correlated with the acdS gene in these isolates. Type VI secretion
systems have been shown to mediate interactions with a range
of Gram-negative bacteria, by translocating effector proteins
that can disrupt multiple essential and conserved features in
targeted bacteria in a contact-dependent manner (Russell et al.,
2014). Collectively, this could highlight the competitive nature of
pseudomonads establishing and persisting in the highly dynamic
rhizosphere and root compartment, where the ability to consume
ACC as a C and N source also provides a colonization advantage.

We showed that isolates from wheat grown in continuous
arable and previously bare fallow plots were highly positively
correlated with genes involved in N cycling and C starvation
genes. Since the arable plots received regular NPK additions
prior to the soil being utilized in this study for pot experiments,
increases in denitrification genes can be expected, as seen in
other studies (Ouyang et al., 2018; Wang et al., 2018). Whilst soil
from the bare fallow plots did not receive fertilizer application,
they have been shown to have a high bulk density which
can facilitate the development of anoxic conditions through
decreased pore size (Watts et al., 2001; Gregory et al., 2016).
Denitrification is enhanced under such conditions, allowing
bacteria to survive by utilizing N as a substitute terminal electron
acceptor in place of oxygen in order to respire (Clark et al.,
2012). Denitrification can lead to substantial N losses from
soil to the atmosphere, potentially reducing the N available for
plant uptake. Conversely these traits showed no, or moderately
negative correlations with the presence of the acdS gene in
pseudomonads isolated from wheat grown in the grassland
treatment soil. Furthermore, we identified P metabolizing genes
belonging to the pho gene operon in these isolates. In addition,
genes involved in alkylphosphonate assimilation were highly
positively correlated with the acdS gene in pseudomonads
isolated from wheat cultivated in the previously grassland
soil, whilst negatively correlated with the isolates from wheat
cultivated in continuous arable and bare fallow soil. The arable
and bare fallow treatments have previously been shown to have
lower organic C and N compared to the grassland treatment
(Supplementary Table 1). It is likely that these abiotic factors
directly shape pseudomonad communities in soil, in addition
to indirectly via their influence of plant phenotype. Whilst
plant ethylene has been shown as an important regulator of
responses to nutrient stress (Tian et al., 2009; Wang et al., 2014),
root ACC measurements under nutrient limitations are needed
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to better understand any possible selection of acdS bacteria.
Although these results provide an interesting insight into
soil–plant–microbe interactions, more studies investigating the
link between wheat phytohormone levels, soil properties and
microbial communities at different stages of crop development
are required to better understand these dynamics.

CONCLUSION

To summarizeQ21 , land management affected culturable
pseudomonad community structure in addition to ACC
deaminase phylogeny and function. Around 10% of the
pseudomonad isolates had the acdS gene, however its abundance
increased in the plant associated niche compartments of wheat
grown in the more degraded bare fallow treatment. Each of the
isolated pseudomonads with the acdS gene were able to utilize
ACC as a sole N source, highlighting the functional potential
for these isolates to lower plant ethylene levels. Interestingly,
other stress related PGP traits were highly correlated with the
presence of acdS in isolates from the bare fallow and continuous
arable treatment soils, whilst negatively correlated with the
acdS gene presence in isolates from the grassland soil. In
agreement with other studies, this highlights that anthropogenic
changes in land use structurally alter soil microbial communities
and influence the abundance of functional genes involved in
plant-microbe interactions.
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