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Factorial experiments are experiments which include all combinations
of several different sets of treatments or " factors." Information is thus
simultaneously obtained on the responses to the different factors, ancl also on
the effects of 

-changes 
in the level of each factor on the responses to the others.

This Technic"al Communication has not been written with the object of
convincing experimenters of the need for employing factorial desigls, but
rather foithose who, while fully conscious of the advantages of such designs,
find difficulty in laying them out and in analysing the results. It is,_ in fact,
an attempt io give'a domprehensive survey oi the simpler types of_design at
present available, and a iiescription of the appropriate methbds of analysis.
hhe reader who has not done so is advised fost tb read Prof. R. A. Fisher's
Desi.gn of Experiments, where he will find a full account of the logical basis of the
whole technique of modern experimental design.

ra. Principles underlying factorial design. '
The points at issue may be made clear by the consideration of an example.

Suppose il is desired to inti'oduce a new crof into a countrlr and that noth-ing
is i<^nown of the most suitable varieties, type and quantity of manuring, the
best cultivations, etc. The classical procedure would be to set up seParate
experiments to determine the best vaiieties, others to investigate the manurial
reiuirements, others (if indeed any were undertaken on this point) to determine
the'most suiiable *eihods of culfivation, rates of sowing, etc. Unfortunately,
however, we cannot conduct manurial experiments without choosing -some
variety on which to conduct them, nor can we conduct varietal trials without
deciding on some level of manuring, a r^te of sowing, wldqh b_etween rows'
cultivatlons, etc. Now it may hap-pen that the efieCts of fertilizers on the
different varieties are materiatlti ainiient, or that varieties that are good yielders
at wide spacings, owing to a rank habit of growth, qre much inferior in yield
(or other'quaffies) whJn sown at close spac-ings. Thus conclusions that have
Leen laboriously reached on the correct llvel df rnanuring for one variety-1nay
be inapplicable to the variety finally chosen, and that v-a{ety may itself be

incorrectly chosen through not realiiing_ the possibilities of incieasing the yield
of other varieties by changes in cultural practices.

Of course non6 of thEse misfortunei may occur. The varietal differences

-"y t" ."U.t.*ti"tly the same for all levels of manuring and all cultural practices,

"rrd 
,..porrses to fdrtilizers may be unchanged by change in cultural practices.

Indeed'such experimental programmes would be comp.lepty tt1lile were this
not usually the case. But Lvei where.it does h.lpP"l that no dtsturbances of
this kind Jxist, such methods are exceedingly inetficient compa.red with factorial
;$";i;;i;f"; th; ;;;; ihat in factoriai experiments all the plots are used

lq-any limes over in making estimates of the effects of the different factors.'l'hurs, for examplg, *i!h four factors, each at two levels, there are 16 treatment
combinat;ons. With 8o plots five replications of each 

lcombination are there-
fore possible. The estimate of the iffect of any one factrr, if this effect is
unchanged for -variations of the other factors, is 6btained frrm the comparison
of the mean of the 40 plqq receiving the higher level of this factor-*iin tn.
mean of the other 49. 

- If four sepirate expEriments are undertakCn, or" on
each factor; then eaih experiment ilrill contaitr zo plots only. and the estimate
of the effect of each factcri' will be obtained from tfie .o#p#.ott of two-means
of .ro. plots each. The precision will therefore be one'quarter thar of the
tactorial experiment, provided the standard error per plot ii the same in both
cases. Even if these four experiments are combined'and one set of plots is
used for the " con!ro!s,'l i.e.- the plots receiving the standard level 6f each
factor, tlre1e will only (*!th 16- ".coirtrols ") be 16" plots for each factor, so that
the precision will be f. that of the factoriat desigri.

If the effects of some or all of the factors vary with .changes in the other
factors, -the factors are said to interact, ancl the dstimates obiained as above
from a factorial experiment will be the aaerage of the effects of each i""tor i1
conjunction with the different levels of the 6ther factors. At the same .time
estimates of the actual amount of the variation may be obtained by taking thi
difierences of the effects of one factor at th; ain"i"tit i*"t.-"fiG o'trr"rlu.tor..In such circumstances the results of a se,t of e_xperiments contai"i"g ri"gl"
factors only will be misleading to an extent dependirig on the degree of ,r'rtiatfrn
rn tne enects.

rb. Critic*ms of facto,rial design.
It is"sometimes.objected.that_what^is- really required is not the average

effec.t of a factgr, but rither the effect of this faltor in conjunction ;ith.some
particglar combination of the remaining factors, and that fdctorial exDeriments
provide an.estimate of this havigg only l6w -pre-gision- Actually it rarelji tt"fp.rt
that agricultural practices are in-fact standlrdized, in the *"y .o"i";pt"t;A by
the critics, but even where this is the case the objection, as *6 h"n. sedn, carrie"s
no w.eight unless.the variation in the effects is "substantial, and .ven iiten the
loss in precision lo .*"ll if the levels of the remaining factors finally adopted
are intermediate between the extremes included in t[e experimentl In 

"nycase unless we know beforehand the particular combination 6f the other ]""tott
that,will be used (in which case it will be a waste bf time experimenti"fo"1ft"*
at all),we are forced to survey the whole field, and the experimenter wh[ confines
hrmselt to-experiments on single factors, making a zu6ss at the final levels of
the other fhctors, is merely bmulating the tactici of in ostrich.
.. 4l objection of a similar type is that such and such a combination of factors" would never be used-in-practice." Thus in fertilizer trials it may be maintained
that the application of phbsphate without potash or nitrogen to i 

"ertai" "t"p 
i.

rldrculous. Puch pre-concerved notions are usually based on entirely inadequate
e^q{ence, and are well worth experimental test, brit as evidence accimulatei the
field of enquiry can sometimei profitably be'narrowed. Thus if it is known

The Design and
Factorial E*p

Analysis of
eriments
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that the application of some nitrogenous manure is certainly required, _but the
optimal levEl is still in question, the lowest level of nitrogen need not be zero,
but a minimal dressing. There is also no objection in randomized block
experiments to includin-g an additional set of plots (outside the main factorial
scheme) receiving no nltrogen, both for demonstration purposes and as an
assurance that conditions have not radicallv changed.

There is one further point which must bJ considered in assessing the
advantages of designs of varying complexity. As _the number of treatment
combinitions is incrlased the adequate elimination of fertility differences_becomes
more difficult. Consequently th6 standard error per plot iends to be higher in
factorial designs than in siniple experiments involving a few treatments only,
with a resultint lowering of-the rllative efficiency of factorial _designs.- The
whole matter has been d-iscussed itt (q)* where if was shown that the loss of
efficiency with properly designed experiments may be expected on the. average
to be much lesi tian ifre gi'in due 

-to the use of factoril design, quite a-part

from the information on tf,e interactions between the different factors, which
can only be obtained from factorial designs. The loss of efficiency was found
to be clue mainly to the necessity of a5andoning Latin-square arrangements,
the discussion b6ine written before it was realizld that Latin-square designs
could be utilized iniome types of factorial experiments. This procedure, when
it is possible, is likely to ieduce the loss materially.

it is, perhaps, iypical of the superficial chaiacter of most criticisms of
factorial deiign,'thatiir many of them_the efficiency of a design (i.e..relative
amount of inToimation per uirit of work expended, or p_er plot wherr the work
expended is proportional to the number of plots), is confused with the accuracy
of^the final iomparisons, which accuracy can_always be inc^reasqq fy increasing
the size of the'exireriment, and therefore the number of.replications, or by
decreasing the number of treatments included in the experiment.

The "difficulties of the practical type that stand in thaway of factorrial design
arise from the greater comillexity boih of the layout_and the statistical analysis,
and the larger iumber of piots that are required._ How far these are of import-
ance must 

"be decided brt the man in charge of the field operations. In this
connection it should be r-emembered that any new technique is liable to present
difficulties which fade away on closer acquaintance.

rc. Scope of the Communication.

In the present paper factorial designs wittr factors at two levels only are

fir.t discrs.fr, since^thlse are capable oT specially simple treatment' and enable

lh" rii""t"t" bf confo,tttded arringements to b6 mor-e -easily understood than
do clesigns containing factors at thrle or more levels. There follows an account

of a".is"nr with facio'r. "iittt." levels, with.factors bottr- at two and three levels,

""J *T,-tt*f";;;;--;i-i;o, fo,rr and eight levels. . Finally,.varieus special Tp..
of design, such as designs wit! split-plo$, and their.modthcattons' and designs

fn, ',r"r%tul trials il;;t?T;g ;l"Gt 
"tmber 

of varieties' are. described.

7

No attempt has been made to give recommendations as to the best procedure
in the field, or to discuss such points as size and shape of plot, nurnber of
replications, etc., since these depend so much on type of crop and local conditions
thlt rio discussion in general terms would be piofitable. It may be well to
emphasize here, however, that the additional complexity of factorial designs (and
to a lesser extent all random arrangements) carries with it the necessity for careful
organization if mistakes are to be avoided. Tlre preparation of clear and simple
plans, and a convenient system of numbering the f.ertilizer mixtures, etc., that
are to be applied, will lighten the work of the man in the field, who is usually
operating under adverse colditions, is frequently in a hurry, and is sometimes
not very certain of the points at issue. Whenever the remark is heard, for
instance, that random arrangements lead to mistakes in the field from which
systematic arrangements are immune, it can be confidently predicted that the
preliminary organization is inadequate.

rd. Neus material.
For the benefit of the reader who is already familiar with the subject.it may

be well to indicate here what is new in this communication. Most important
is the'adaptation of confounding to Latin-square designs, so as to enable, for
instance, a zs experiment to be arranged in the form of an 8 x 8 Latin square
(pp.f r-35, etc.). The analogous adaptation of split-plot designs is also of
cbnsiderable importance (pp. 78-8r). The parallel use of quasi-Latin squares
(lattice squares) in varietal trials (described in full elsewhere) is also outlined
(pp. 8z-8).

No complete account of the designs involving some factors at two and some
at three.levels (pp. SZ-6+) has previously been published, though some of these
designs have been in use at Rothamsted and elsewhere for some years. The
account of designs containing factors at two levels only (pp. 4-26) is also more
complete than any previously published. Lastly, the 3+ design in blocks of 9 plots
bp.+Z-8), a fairly obvious extension of the popular 33 design, should be noted.

On the computational side a new method of computing the treatment effects
in experiments with factors at two levels only is given (p. t5), and attention
has'been paid generally to the best methods of carrying out the computations
of the various designs.

re. Notation, etc.

It is assumed that the reader is familiar with the methods of design and
analysis appropriate to simple experiments in randomized blocks and- Latin
squares, and in particular that he is thoroughly conversant with the analysis-
of oariance procedure applicable to experiments of this type. A selection of
references on the subjeCt is given at the end of the paper.

The notation followed is substantially that of Fisher's Design of Experiments,
i.e. small letters.are used to denote the treatments corresponding to the different
factors, and capital letters the main effects and interactions. The symbol lab)
has been introduced to indicate the sum of all the yields corresponding to the
treatment combination ab, the symbol ab, when it indicates a number, being

*The numbers refer to the references at the end of the paper'
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used to represent the mean of these yields, or this mean expressed in standard
units (cwt. per icre, etc.). (ln The Design of Experimen* @lu\ is used to denote
either the sum or the mean according to the-expdrimental riraierial.) By analogy
[4]. ?"d lA.Bl are taken to represeit-the algebraic sums of all tlie piot yiel?"s
which go to make up the estimates of the niain effect of. a and the interaction
of a and D, without any division, whereas ,4 and A.B ndicate these estimates
expressed in terrns- of the yield of a single plot (or in standard units, such as
cwt" per agre),- with the conventional factor $, 1, dtc. introduced, as defined on
page ro. Inthe case of factors at more than ttwo levels the symbol p] is taken
to represent the. whole set of totals, and A the whole set of *e"an., coiresponding
to the various levels eo, at, dz, . . . of the factor a.

one other new,symbol is introduced. This is the word dev, which is
used to denote the deviations of a set of numbers from their mean. dev2 is
likewise used to denote the sum of the squares of these deviations. Thus

dev (a' az, . .. . ) : dev a .= ar-d, dz-d, a"-d,
devr (ar, dzr....) = devza: S(a-a)r: a.rz+ar2+....-nd,

: arz*az2+ ....-L(ar+ar+ ....),

In a similar manner dev a.dev b might t" ":;::'iJ";;r;;::f"ii".,;;;J,"the sum of the products of the deviations of two variables aandb. The occurrence
of these quantities^in statislical computation -appears to be sufficiently frequent
to justify lk Yt" of a special symboliespecially since they are only very cluirsily
repr€sentable by.the current symbols ri'hen the a's are ihemselves complicateil
argeDralc expresslons.

Algebraic formirle have been avoided as far as possible, and where it has
been necessary to introduce th".* particular attention has been paid to writing
them in the form required by- the computer and also in a form exhibiting theiT
structure, so that they are.easily remembered. Thus the quantity Q on pige 58
has been so defined as to be analogous with the quantity [B.C], buTthe ior"mrila
t9, 19 is given because 3p will bi computed in ^.r,r-"ricil **k. The formula
f.or B.C on the same page is given in terms of both Q and qO, the latter being
the form required for cdmpuiition, while the formeiexhibiiiihe structure.

Free use has, however, been made of the algebraic notation of signs, brackets,
etc., in setting out arithmetical calculations. -Those who can understand this
notatjon (as for example the expression for the sum of squares on page 37)
should have no difficrilty rvith the algebraic formule.

2. A srmpr,r FAcroRrAL EXpERTMENT oN PorAToEs.

The main features of factorial designs involving only two levels (often
presence and absence) of each factor can best be illustrated.by a simple exainple.
We have chosen an'experiment on the m.anuring of potatoes cairied out at
Wimblington in 1934.

I

_Three factors, nitrogen, potash and dung, were included; the 8 treatment
combinations consisted of all combinations of :

Sulphate of Ammonia (a) 'sulphate of Potash (A) Dung (d)

INonelfNonelfNonel
t o.nS cwt. N per acre J 

t 
lt.t, cwt. KsO per acre J 

- 
it tons per acre|

There were four replications in randomized blocks of r/6o acre plots. The plan
of the expeiiment and'the yields of the individual plots are shbwn in Tabli r.

Block I

(')

Taslr r. Pr,eN eNo yIELDs rN LB.

Block II Block Totals
L.
II

III ..

IV

Total

nd kd nkd Mean

zz96

229r

469

2375

933 r

Block III Block IV

2a. YiBlds of the differmt combinations of treatments.

- Th" first step in the analysis of the results of a factorial experiment is to
calculate the total yields of all the plots with each combination bf treatments.
The main features of the results are usually apparent from an inspection of these
totals_. An analysis-of variance will, howevei, be necessary in-order to make
the formal tests of significance and assign standard errors to the various
comparisons.

. The yields of the individual treatment' combinations in this experiment
(converted to tons per acre) are given in Table z.

Tesl.n a. Yrrlns oF THE DTFFERENT coMBrNATroNs oF TREATMENTS

(roNs rnn ecnr).

h nkd

2.8+ z,8S 7.+g 8.o6 . 8.Sg 9.3S tt.zo rz.ro 7.8r

IOI
(') h

265
nkd
450

n
89

nk
29r

hd
+o7

nkd.

4+9

d
3t2

d
32+

k
272

kd
398

nd
373

nk
306

(')
ro6

nd
338

d
323

(r)
87

n
ro6

nd
324

kd
423

nd
36t

nh
272 r03

lt, d
32+

nk
33+

h
279 n8

n nkd
47r

k
302

(r)
13I

nhd
+37

hd
+45

Treatments are indicated by small letters, and the symbol (r) is used to indicate
absence of all fertilizer.
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zb. Main fficts.
Consider first the effect of dung.

in Table z.
There are four relevant comparisons

Response to dung

Difference in response to d
in presence and absence offt.

fnandfrabsent :il -(r)
J z absent, A present : hd -h'
I z present, A absent : nd - n

5'l5'3.7r

6.5o
4.o+

Meanresponse:D: 5.oo

HT i?:ff ?3 '#"i:.",l,o llilxtli!"i;,1?,"*1 t c o n s i ste n t to ind i c ate that th ev

The mean response,5.-oo, wi! be called the main effect of dung, and willbe denoted by the capiial" letier D. 
-

In a similar manirer we have

I n and d absent 4.65
Response to potash ] a absent' dpresent )'eir ------ 

| z present, d absent 5.2t
I z and d present i.ZS

Meanresponse:K: l;

Response to nitrogen

k and d absent
A absent, d present
ft present, d absent
h and d present

o.or
o.76
o.57
o.90

Mean response:N : 0.56
There is, therefore, also evidence of a substantial response to potash, and possiblya small response to nitrogen.

2c. Interactions.

.^ ,.,.9TT.iij"-s 1t" individual responses further, we see that the two responsesto dung with potTh absent are both *u.i""ti"rij' i;;g* til d; #il.:i.'withpotash pr-esent. Equally the responses to_pota;i, ;;"'.;b;;;;ilil;iir;;"in theabsence than in the presence of'dung. Ti; ;;;.;;;-;;';^b#J";lt;i;;g"",however, makes little-difference in 
"itfr., "".". 

'
The numerical differences in response to dung in the presence and absenceof potash are as follows : -r

{
z absent
n present

.Mean

- 2.o4_?I
- 2.25

For reasons that will be apparent in
this mean difference, n"-,ilv - r.r2.
the two factors* d and ft, and may

a moment it is convel:lt to take one ha[This is defined as the interaction b.iw..n
be written D x K, D.K or DK.

*Also called the first,order interaction. The m'ean interaction over all the other
tmplred unless the contrary is stated.

factors in the experiment is
*Also called the second order interaction.

ll

A similar computation for differ-ences in the responsesi to potash in thepresence and absenie of dung gives the identical resulis :
Difference in response to A 1 z absent _ 

".o+in presence and absence ofd. \ z present _ 2.46

Mean .. .. -r",A momenf's consideration will show that this must be so. Thus the interactio'between dung and pbtash is identical with the-i;6;ctio" il;;;p"ii.6 *adung.
An alternative method of setting out the main efiects and interactions

between two factors is by means of a"two.-wuy t"ui.. i"-,iii, 
"il*pi",?r.i"sthe mean of n and no n-in each case, we hav6 trr" 

""ru.. of t;;i;^i^"' "
Terlr.3. MreN oF z AND No z (roNs ean acnn).

NoA
k

Effect (r) n

Nod d Mean

Combination of treatments.
hnkdnd

5.90
9.72

zd' 
falc11l3tion,lf the main fficts .and interactions from the experimental yields.rr wlll readllv be seen trom the above remarks that the main effecis andinteractions mav ?ll,o., obtainJ ry -r.n1*;il^ii."-.rn of 4 of the yierdvalues of the iidividual treatment tombinatio"S rroL_iil';;# # ,d itn..

4,,or alternatively..by taking the-sum of ;;f th.olut"., less the sum of theother 4, and dividing the result by +. The actual signs ur" gi".r, i" T"bl. ;
Terlr 4. MerN nrrrcrs AND rNTERAcrIoNs rN A THREE-FA.'.R EX'ERTMENT.

hd nhd

Total
"Ar
K

N.K
D

N.D
K.D

N.K.D

l
l
l
+

o:-

+

l
+

l

l
+

l
+

+
+
+

l
l
l
+

;

+

l
+
+

l
+

;
l

+
+
+
+
+
+
+
+

2.8+' 8.Sl
7.78 r r.65



_ These signs _may be derived in various ways. The simplest is to write
down the signs for the three main effects, and then to form- the interactions
between each pair of mean effects by writing + for two +'s or two -'s, and - for
a - and a +. A further application of this process gives the interaction between
the three factors. If there are more than three factols the table may be extended
by still further applications of the same rule.

The following formal expressions for the interactions are also worth noting:
N: I (n- t) (ft + r) (d.+ r),

N.K: I("-r) (A-') (d+ r),
N.K.D: * (" - r) (A - r) (d - r).

If these. expressions are expanded by the.ordinary rules of algebra the appropriate
expressions for the main effects and interactions in terms of the 

-treaiment

combinations will be obtained. With four factors the fraction will be *, with
five t'5, etc., and rvith only two factors f.If the above method of calculation be applied to our example the main
effects and interactions will be found to haid the values given'in Table 5.
Some of these have been obtained already.

l2

Tewu 5. Merr.r rrrncrs AND rNTEMcrroNs.

l3

T^lsln 6. RrspoNsrs rN TERMs oF MAIN EFFEcrs AND INTERAcTIoNS.

Expression in tenns of

Response to: main effects and interactions

d (& absent) )
d (& present) | (mean of z
d and. h together J and no .z)
d (n and fr absent)
d and h (z absent)
d,kendn

*Ind-" +d- (r)l
t["krl-nh+M- h]
$fnhd.-n+kd-(rll

,l- (t)
hd - (r)
nhn-Q)

D_R,D
D +K.D
D+K

D - N,D _ K.D +N.K.D
D +K - N.D - JV.K
D +K+JV+ N.K.D

A more mechanical method of obtaining these values is given'in the next section.
These values clearly all have the same standard'error, since they are each

one quarter of the.sums and differences of the yields of the eight treatment
combinations. As we shall show presently, the estimate of this standard error
(zr degrees of freedom) is -F o.t77. Any value more than twice its standard
error may be judged significant. Thus all three main effects and the interaction
between potash and dung, the two factors producing the large effects, are
significant.

This type of result is one commonly found in agricultural trials. Factors
which produce large main effects may show evidence of interactions, but factors
which produce small main effects usually show no significant interactions.
A little consideration will show that this is what may be expected on general
grounds. The interactions are in general likely to be small in comparison
with the corresponding main effects.

ze. Interpretation of main effects and interactions.
It will be clear from what has already been written that the whole set of

main effects and interactions, together with the mean yield, is equivalent to
the yields of the individual treatment combinations.

The response to any factor or combination of factors in the presence or
absence of any other factor or factors (the mean being taken over all factors
not under consideration) can be written down very simply in terms of the main
effects and interactions.' The rules will be obvious fro'm'the study of Table 6.

The interactions may thus be regarded as correcting terms which adjust
the values of the main effects (which would be additive if the interactions were
all zero). In this example the response to d where & is absent (mean of. n and,
noz)is D- K.D: +s.oo +t.tz: +6.i2
and where fr is present is

D +K.D: +5.oo -r.r2: +3.88
rhe response to o"'# 

f ffdj $:":";f.* T113"') *
These responses are those given by the differences of the values of Table 3.. It should be particularly noted that the interaction beriween d and ft does
not enter into the latter respoRse. In the same way only the three-factor
interaction enters into the expression for the simultaneous response to all three
fertilizers :

D+ K+ iV+ N.K.D: + o.56+ 3.8o+ J.oo -o.ro: .+ 9.26
(This response can be obtained from Table z.) If the interactions between
ihe three'factors were ignored, therefore, the estimate would be

D+ K+ N: + 9.36"

The yield of 4ny treatment combination may also be obtained from the
main efieits and intei'actions, together with the m"ean yield, being equal to the
mean yield and the sum of plus or minus one half of all the main effects and
interaitions. The signs are given by Table 4. Thus, for example :

hil: nean+ *{- N+ K- N.K+ D - N.D + K.D'- N.I(.D }
It will be noted that in the order shown the table is symmetrical about the
diagonal through the top right-hand corner, so 

'that the expression for Ad
(equivalent to n absent) is obtained from that of N by replacing (r) by the
mean, n by $N, etc., and changing signs if the sign of (r) is negative.

zf. Gmeral remmhs.

The statement of the results in terms of main effects and interactions thus
forms a convenient way of summarizing a factorial experiment, and concentrating
attention on its main features. It should not be forgotten, however, that the
expressions for the main effects and the interactions are really a matter of
dehnition, the interactions being measures of the departure of the observed
differences from the law implied in the definition of the main effects. Here
the main effects.are so defined as to imply an additive law between the effects

N : +o.56
rK : + 3.8oD : +5.oo

N.K : a o.rg
N.D : + o.27
K.D : - r.t2

N.K.D -: - o.Io

treatment combinations
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due to the three factors. This is statistically convenient, and in agriculture
appears to provide a good representation of the iype of effect frequently observed.
d.it it shorild be clea'rly understood that the ad"ditive law has b'een piovisionally
imposed by the statistician and is not implicit in the data.- The present example has itself afforded an illustration of .? simpll type
of departure from the 

-additive law. Others more complex will occasionally
arise,lnd the experimenter should then bear in mind that the formal presentation
of the results iri terms of main effects and interations may not necessarily be
the best course to pursue. Equally, however, he should aygia ginilg exaggeiated
emphasis to some statistically significant but isolated high order .interaction
which has no apparent physi-cal meaning. If we are using the r irL zo level
of significan"" ohL out oi "i"ry twenty oT the main effects ind interac;tions will
on ihe average be judged stitisticaliy significant even when the treatments
produce no Cffects ""t itt. Such anornalJus results, therefore, togelher with
iron-significant effects, should be placed on record and judgment reserved until
further information has accumulated.

Conversely, a verdict of non-significance does not imply that no effect exists.
It merely implies that the observed-apparent effect would arise more frequeltly
than r iir zo (or r in roo) times by chance if there were no real effect. The
application of exact tests of significance to all experimental results is a salutary
trabit which discourages the -discussion of small apparent differences whose
magnitude is very ill determined, but it should not be forgotten that the main
obiEct of most agricultural field trials is to estimate as accurately as possible
effLcts of which -the experimenter is normally qYite prepared to admit the
existence. . A secondary requirement is the deierri-rination i{ th9. m.agnltude of
the errors to which these 

-estimates are subject, thus fixing limits between
which the true value of the effect is likely to lie. Consequently tests of significance
are replaced by estimates of standard errors and fiducial probability...

Thrr., foi example, it is reasonable to suppose that- the- app.lication of
nitrogenous fertilizer io a crop on a give! area will always alter the yield of that
crop,"althoueh the alteration may in certain cases be very small. Non-significant
r".,lftr must"not be taken as implying that no effect exists in such expelir,llents,
though they can be taken as inipiyirig that the effect _lies within certain limits,
In cdnjuncfion with other resulfs,- al6 not in themselves- signi&ant, they.-may
show duite clearly the existence of a small, but appreciable, bffect. Similatly
the practice of finding the average response to a f.eiiilizer at stations where that
,".pbrrr" is significani is -""niiglessi for by making this selection of stations
we^automatically select a majority"of stations at which- the error in the estimated
response is positive.

3. Sretlsucel ANALYSIS oF A 2x2x 2 EXPERIMENT.

The discussion in the last section was designed to illustrate the various
aspects of the results of a simple factorial desigrr. - Tb" routine analysis of such
an experiment is, of course, much abbreviate-d, and.in the pres.ent^section we
propoie to give an outline of the various steps wbich should be followed in
'ordbr to arri-ve at these results expeditiously and without unnecessary repetition
of the various calculations.

l6

r. Yields of plots. Set out the yields aq in Table r, rounding off, if
necessary, to three significant .figur'es. (See note r, 'p. 9r).

z. Totak of indioidual treatmmt combinations and bloch'totals. These are
shown'in the yield column of Table 7 and in Table r respectively.

3. Cahulation of main eflects and interactions in terms of the totals of
the indiaidual treatment combinations. The main effects and interactions can be
calculated from the totals of the individual treatment combinations by means
of the table of signs in the last section. No division of the resultant totals need
be carried out. -These totals are shown in column (:) of Table 7, each being
the sum of 16 plot yields less the sum of the other 16.

A more syslema:tic and shorter method, which avoids the trouble of picking
out the relevant treatment combinations (a process which is laborious when there
are a large number of factors) is that shown in Table 7.

The yields must first be arranged in a standard order of. the type shown,
each factor being introduced in'turn, and being followed by all combinations
of itself and the factors previously introduced. Thus thd last four combinations
are formed by taking d in conjunction with the first four combinations.

Column (r) is tlen formei. The first four numbers are the sums of the
four pairs of numbers in the yield column, and the last four numbers are the
differ-ences of these pairs, the upper number being subtracted from the louter in
each case. Thus z3ir: rrr8+ i2o3 and + 85: - rrr8 + rzo3. Column (z) is
formed in the same manner from column (r), and column (3) from column (z).
Since there are three factors these three applications of the process complete the
calculation. The total, and the main-effec1 and interaction totals, are obtaihed
in column (3), each effect and interaction appearin! opprisite the corresponding
small lgtters in the first column.

Tenr.n 7. Cer-culerroN oF TREATMENT EFFEcrs.

Treatment Yield (')
85r(')

fl
h

nk
d

nd
hd

425
426

rrr8
t2o3

23"t
2679
348q

rz83
r396
ftz3

+r
+85

+II3
+r34

S.E.

Conversion
factor

r8o7

!.37.2
6o

22+o x +
:.oo6696+3

(z)

3r72
6t59
+86

+217
+r+70
+8or
+8+
+2t

(r)

933r
+333**

+227r**
+ro5

*2987**
*r6r
-669**
-63

t ro5.4
6o

zz+o * ,0
:..o0167+rr

Effect

Total
N
K
N.K
D
l1/.D
K,D
N.K.Dnhd

Significance levels.(column 3): 5o/o: ztg1' ro/o: zgB

Asterisks denote significant results at r% level.

There are no very simple checks on the interme4iate stages of the
calculation. Complete 

-accuricy 
should therefore be aimed dt, particular
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attention being paid to gig.n..* The sum-of-squares check, described below,
controls the whole calculation except for the silns of the last column, which
should. be. independently checked.- Interchang6s in the yield column must
b.e avoided Py .ty.t.*atii computation. . A- useful partial check is provided by
the sum, which is independentlv obtained from ihe block totals. This anl
the independent calculation of ihe interaction between all factors check all
of the yield column and column (r), and one half of column (z).

A more elaborate example oi'the methocl, involving 5 fiitors, is shown
in Table 22, where a systeriatic.check for each columri'ii introduced.

,.4- cakulation of sums of squares for blocks, treatments, and error. The
ordinary rytglhp-dt ^of the anaiysiS of viriance are followed.. These give the
analysis of Table 8. It is advisable to record the correction for the irean as
this is often required in subsequent calculations.

t7

These 7 degrees of freedom are orthogonal and therefore the sum of the
7 sums of squares is equal t9 lhe o_rdinary treatment sum of squares. (See
note 3.) This provides the check of Table I mentioned'above, anil also checks
the treatment sum of squares and the correction for the mean in Table 8.

Since the tests of significance can be performed by the / test (as described
below)_there is tr practice no need to write down the ieparate sums of squares
for each main effect and interaction, and Table 9 will consequently be omitted.
All that is necessary !s to sum the square's of coiumn (:) of Table 7 (excluding
the sum) on the machine, and divide the result by 3.-.

6. Calculation of mean squares and tests of significance. The separate
components of the sum of squares for treatments can-be tested for significance
by 

^means 
of_the z test. Since in this case each corresponds to a single degree

of freedom, however, it is simpler to use the t test, which is equivalent to the
,s test for nr:-- t.

Since there are seven separate effects to be tested it is rvorth calculating
the_ 5 

o/n an4 r % points. For zr degrees of freedom t: z.o8o for the 5 "/" poini
and 2.83r for the rolo point. The estimate of the standard error of a rnain-effect

Teslr 8.

Correction for mean

Blocks , .
Treatments. . . .

Error .. ..

ANer,vsrs oF vARrANcE.

D.F. Sum of squares.
272o86r.3

3 77+.r
4587r8.o

7287.6
7

2t

Mean square

258.o
6553 r.r

3+7.o

or interaction total rs 32 x 3+7.o =- ro5.4.
interaction totals arefor the main-effect and

Io5.4 x

and r "/o significance levelsThe 5 9/"

therefore
Thus we see immedia tely that

I 05.
N

4x z.o8o: z
K, D, and

tg.z and
K.D all2.83t:298.+.

the t% level of significance, the remaining interactions not beingfotal .. .. 31 466779.7

. 5. Partition -of the- treatmmt degrees of frqgdom and sum of squares. The
7 degrees of freedom for treatments: can 6e diviaea into z sinslt, desrees of
freedom'representing main effects, interactions between t#o faEtorr, ind th"
interaction between-all three factors. The seven sums of squares may be
calculated by squaiing'the quantities of Table 7, column (3). ttrey are shown
rn r aDre g.

Tenrn 9. PenrrrroN oF TREATMENT suM oF seuARFs.

Sum of squares
3+65.3

r6r r7o.o
344.5

2788ry.8
8ro.o

r3986.3
t2+.o

Total 4587ry.9

attaln
significant.

. ESch square.must be dividgd by 32, since it is the square of the total of* r times the yields of each of 3z-plbts. (See note z.) 'Thus
16117o.o: 22712/32

*The sum of two numbers of the same sign is the arithmetic surn and
qumle_rs of opposite signs is the arithiretic difference and has the-

iL*ftf*;"rt"TliiT:iTbihange the sign of tho number to be

has itself this sign. The sum of two
sign of the larger number, To obtain
subtracted and take tho sum as abovc.

, 7. Conaersion of yields and presentation of the results. The yieldd should
be converted to the customary agricultural units, arid the results presented in
the form most suitable for mai.in[ clear the main'features, and for combination
wifh results of other experiments. 1\4[any alternative forms are possible, and
the exact form will depend largely on circumstances. In general it is a good
rule to present tables showing all main effects and interactions between two
factors (and also any interactions between three or more factors which appear
to be of interest) either directly or in the form of two-way tables with maiginal
totals. Various examples of the different types of presentation will be found
in this communication.

The results of the present experiment have already been discussed in detail
in the previous section. Both Tables z and 5 can be derived directly from the
conversion of the appropriate columns of Table 7. Notice that the conversion
factor for the effect totals of Table 7 is that applicable to the totals of 16 plots,
although the effect totals each involve 32 plots, i.e. the difference of two sums
of 16 plots.

The appropriate standard errors should be written in Table 7 and converted
at the same time as the numbers to which they refer.

8. Calatlation of the yields of the treatment combinations from tlrc mqin
effects and interactions. A procedure similar to that adopted for the calculation
of the main effects and interactions from the yields of the individual treatment
combinations is available for the reverse computation. This procedure is
particularly useful in experiments involving a large number of factors when a

N
K

N.K
D

N.D
K.D

N,K.D

D.F
I
I
I
I
I
I
I

.l
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table giving the mean yields of the combinations of two or three factors averaged
over the iemaining factors is required. It can also be used to reconstruct the
yields of the individual treatment combinations, when these latter are not
available.

As an example we have derived Table 3 from Table 5 and the mean yield.
The computations are shown in Table ro. Since only the two factors k and d
are involved effects involving n will not enter into the calculation.

K, D, K.D and twice the mean yield are arranged in a column, the order
being the.same as that ad.opte$ in Table 7, but beginning from the bottom. The
computation process used in Table 7 is now applied. Only two applications are
neceisary as only two factors are involved. The last column is divided by z to
give the'requireil mean yields.

l9

4a. Example to illustrate confounding.
A simple and useful example of confounding is provided bv the arransement

of a three-factor experiment in-blocks of four plols. ^ If the factors be reprEsented
by o,6 and c and-we arrange the four treatment combiirations

(t), ab, ec, bc,

in one block of each replication (randomizing within the block) and the other
four combinations 

a, b, c, abc,

in the other block; the contrast between these two sets of blocks is equivalent
to the three-factor interaction A.B.C. Consequently all information- on this
interaction is lost, except the small amount arising from inter-block comparisons.
It is easily seen, how6ver, that block differencEs are eliminated from all the
other interactions and from all the main effects, since each of these comparisons
involves two plots with a plus and two plots with a minus sign from each block.

For r.easons given i" (g) it is best to arrange that neighbouring blocks
are of unlike. type, so that the blocks themselves form ran{omized pairs, each
pair comprising a complete replication.

In order to illustrate the modifications that are necessary in the statistical
analysis we will reconstruct the analysis of the potato experiment already given,
oq the, supposition that it was arranged in thii way and gave yields itinticaf
with _tLose actually obtained. This will make cleai the piralleiism as well as
the differences between the two analyses.* Actual examples of confounded
experiments are given later in the paper.

4b. Statistical analysis

. _Ttt. partition of the degrees of freedom in the analysis of variance is given
in Table rz.

The formal analogy of this partition with that of split plot arrangements,
discussed in Section r6a, should be noted. The blocki coirespond io whole
plots, arranged in blocks of z, and the plots to sub-plots.

The appropriate error for testing N.K.D is " within block pairs." Not
only is this likely to be large, because it involves comparisons between whole
blocks, but it is also very ill-determined, being based on only 3 degrees of freedom.
Normally, therefore, the partition of the sum of squares 'l between blocks " is
not performed, only the three components, blocks, treatments and error being
calculated.

The steps of the whole calculation are as follows.
r. Calculate the sum of squares for blocks from the 8 block totals (given

in Table rr).

Tenr-n ro. Cer,culerroN oF yIELDs oF TREATMENT coMBINATIoNs
FROM MAIN EFFECTS AND INTERACTIONS.

K.D
K
D
z (Mean)

Effect
_ I.I?
+3.8o
*J.oo
t5.62

(')
+2.68
zo.6z

+4.92
ro.6z

(z)
23'30
r5'54
17.9+

5.70

Yield
r r.65 hd
7.77 k
8.gz d
z.8S (t)

Mean over
nar,dnon

4. CoNrouNorxc.

Confounding is a device whereby the necessity of including every combination
of the treatments of a factorial design in each block (or row and column in a
Latin square) is avoided. This enables the block size to be kept small even when
the number'of treatment combinations is quite large.

In a confounded experiment the treatment combinations of each replication
are divided into two or more groups (each group being assigned to a separate
block) in such a way that the contrasts between the different groups represent
high-brder interactions, which as we have already seen are usually of less interest
thin the main effects and interactions between two factors only. Thus in any
one replication the contrasts representing certain interactions are identified, or
confouided, with the block differences, and in consequence in_ this r-eplication
moit* of the information on these interactions is sacrificed. In so far as the

As an exercise in the more extended application of this process the yields
of Table 2 may be derived, using all the effects of Table 5.

*It may perhaps be well to emphasize that there is only one form of analysis appropriate to a given experimental
arrangement. Thus it is zo! permissible, if it is found on analysis that the elimination of the sum of squares
for blocks actually increases the estimate of the experimental error, as in the potato experiment just described,
to omit to perform this elimination. The examplo which follows must therefore be taken as illustrating
the statistical processes only.*A small amount arising from block comparisons remains, but is not in practice utilizable (see next page)
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fenr,r rr. Btocr rorAls, N.K.D coNFouNDED.

Ia Ib IIa IIb IIIa IIIb IVa IVb
1163 rr33 ttST rr34 1168 rzor tzog 1166

Blocks (b) contain nhd. Note that the sum of the b's less the sum of the a's equals [N.K.D].

z. Calculate the sum of squares for the unconfounded treatment comparisons
by summing the squares of the relevant totals from Table 7. Check this (and
Table Z) bt calcuhting the sum of squares for all treatments (ignoring con-
foundirig) fiom the yields of the separate treatment combinations, and deducting
the N.K.D component.

Tenr,n rz. ANer.vsrs oF vARIANca, N.K.D coNFouNDED.

D.F. Sum of squares Mean square

3 .. 774.1 258.o
r .. r24.o t2+.o
3 .. 4zr.g 14o.6

2t

4d. Example of partial confounding.
Instead of confounding the three-factor interactio n A.B .C in every replication

of a three-factor experiment the tWo-factor interactions may also be-confounded
in their turn. Thus the potato experiment might have been arranged in 8 blocks
of 4 plots each, the inteiaction N.f.n being"confounded in the"first pair, the
interaction N.,I( in the second pair, the interaction N.D in the third-and the
interaction K.D in the fourth. The treatments would then have had to be
allotted to the pairs of blocks in the manner shown in Table 14.

Terln 14. AnneNcevrnwr oF TREATMENTS AND BLocK TorALs, rARTIAL coNFoIrNDrNG.
Interaction
confounded
Block

N.K.D N.K N.D
la Ib

r ro6
+8.8

IIa

n
h,

nd
kd

IIb

(')
nk

Treatments nd
kd

Total
Adjustment per plot

K.D

Between
blocks

Within
blocks

T\
6

r8

Between block pairs
N.K.D
Within block pairs

Total
Treatments*
Error

n
k,

d
nhd

IVb

(')
n

hd
nkd

IVaIIIbIIIa

h
d
nk
nd

(r)
h.

nd.
nkd

n
d
nk
hd

(')
d
nk

nhdr320.o

458593.9
6865.8

r88.6

?6$2.3
38r.4

r 163

-2.4
rr33
+2,+

r r85
- 8.8

+ ro5 + rro6 -. rr
* 16r + rzo8 - rr

rzo8
-r+-5

r i6r
+14.5

r259
+4.o

rr16
-4.ci

Total 3r .. +66779.7
*Main effects and interactions between two factors (see Table 9).

?. Calculate the error sum of squares by subtraction. The remainder of
the alnalysis of variance and the tbsts^ of significance proceed as before.

4c. Presentation of results.

The presentation of the results requires glbht modifigation, since .any
comparisoir involving N.K.D is affected by block differences. The beSt procedure
is to divide the indi'Iidual treatment combinations irrto two categories, according
as they fall into blocks (a) or (b), arranging the results as in Table 13.

q If this procedure had been adopted, full information on the interaction
N.K.D would have been obtained from the block pairs II, III and IV, but
no information would have been obtained from blocks-I. Similarly, full informa-
tion on N.I( would have been obtained from blocks I, III and iV, etc. Thus
three-quarters of the information available on the main effects would be available
on each of the interactions.

4e. Statistical analysis
Certain modifications are required in the calculations of both the estimates

of the interactions and the analysis of variance.
. The general principle to be followed in cases of partial confounding is to

estimate. each _partia-lly cogfounded degree of freedom (or set of degries of
freedom)only from those blocks in which it is not confouncied. Sums of-squares
are calculated from these estimates in the ordinary \ilav. account beinE iaken
of the fact that they are based on a reduced numb"r 'oi plots. The "sum of
squares for blocks.-is-computed from the block totals in the ordinary manner.
The calculation will here run as follows.

The block totals must first be calculated. These are given in Table 14.
The totals for the interactions must be recalculated, omitting the blocki

in which they are confounded. This can be done directly or by-noting that,
for instance, re_quired total for N.K- N.K total (Table 7) i total or btock"lla -
!9I+l gf block IIb, or in the notation we shall adopd lN.n,: IN.KJ + [IIa] - [IIb].
This is the most expeditious method of calculatiotr, b,rt car! muit bb tteriwitir
the signs. In our example

lN.r'l' :
TN.D]' :
lK.o1, :

IN,K,D]' :

Tenlr 13. Yrnr.ns oF TREATMENT coMBrNATroNs, N.K.D coMpLETELY coNFouNDED.

Unadjusted
Assuming N.K.D: o

Blocks
(t) nk

(a)
nd kd

2.8+ 8.o6 9.35 rr.zo
z.7g 8.or 9.3o rr.r5

2.85 7.+9 8.jS rz.ro
z.go 7.5+ 8.6+ tz.ts

Blocks (b)
hd nhd Mean

7.8r
z.8r

N.K.D will be omitted from the table of main effects and interactions.
If the table of individual treatment combinations is adjusted so that the

mean of the first four components is equal to the mean of the second four by
the addition of one half of- the apparent value of N.^K.D, here - o.o5 tons, to
each of the second four and the deciuction of the same amount from each of the
first four, this will eliminate block effects, at the cost of assuming that N..K.D
is negligible. This procedure is not to be re.commended as a general- practice
but i3 s"ometimes of ialue in the popular presentation of the results. All inter-
actions between two factors, being unconfounded, can be presented by means
of the ordinary two-way tables.

- 669+ n
- 63+ rr

59
63

- II

85
6r
t6

r33

126
*zo8
- 526
-33I
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. The analysis of variance will now contain a degree of freedom for each
interaction, since each can be estimated. The sum of squares for the interactions
will be obtained by summing the squares of the above four numbers and dividing
by 24, since each is the sum of plus or minus z4 yields. The sum of squares
for the main effects will be identical with that alri:adv obtained in the u-ncon-
founded design. The sum of squares for blocks com.s directly from the block
totals. Finally the error sum of squares is obtained by subtraction. We thus
obtain the analysis of variance shown in Table 15.

2:'

If we require the standard error of some function of the main effects and
interactions, as for example the response to potash in the presence of dung :

K+ K.D: + 3.8o - r.r7: + 2.63
the ordinary rule-of taking the square root of the sum of the squares of the
standard errors of the two parts is applicable, since these parts aie orthogonal
and therefore in effect indefendent. ' The required standaid 

"tror 
is ther?fore

4(o.ryo'+ o.r95')= + o.21t.

4f. Presentation of results.

In partially confounded experiments the ordinary table of the yields of the
_sgpala!9_treatment combinationl is misleading, since-the values are affected by
block differences, which may be very large. Since every interaction is determined,
however, a table of adjusted yieldi miy be computed. The experimenter wili
be well advised,. wherever poisible, to "avoid presenting a comprehensive table
sf this natute, since it is tioublesome to conipute, anii is alsd troublesome to
intetpret, since _the various comparisons are not all of the same accuracy.
If, however, such a table is required, it can be calculated from the main efiects
and interactions by the method already given. Tables embracing certain selected
factors only are likely to be of mord i'nterest and utility, and'can be similarly
computed. - -fhq. _ 

in the present experiment we miglit reasonably exhibit 'a

two-way table of the combinations of^dung and potasli similar to Table 3.
A useful check on the construction of tablei of adjusted yields is provided

by_calculatingjhe adjustments to the original yields neiessary to eliminite block
differences. Thus in our example thtditrerence between blocks Ib and Ia
should, if there were no block effecls, give the interaction N.K.D. Since lN.K,Dl'
contains z4 p_lgp_ and blocks Ia and- Ib together contain 8 plots the difference
should b" i [N.4.D]'_: - tt. Actually it-is rr33 - 1163:-- 30. The adjust-
ment per-pl^o1 is therefore + (3o -tt):'2.4, this 6"eing ad"ded t6 plots in Ib and
subtracted from plots in Ia. 

- The other-adjustmentls shown in Table r+ are
similarly computed. Thus the adjusted yieid of combination nkd is

r8o7+ 2.4-8.8+ r+.5-4.o: 18rr.r
The reader will do well to satisfy himself that the use of these adjustments gives
a table- of adiuste4 yields which is identical with that obtained by reconstruEtion
from the main effects and interactions.

Tenlr 15.

Blocks
Main effects
Interactions
Error

ANar.vsrs oF vARrANcE, rARTTAL coNFouNDrNG.
D.F. Sum of squares Mean square

7 .. 4+99.0 . . 6+2.7

3 .. +43+53.r .. r478t7.7
4 . . r3+o4.+ .. 335r.r17 5+23.2 3r9.o

Total 3 r +66779.7

In this analysis it is not possible conveniently to subdivide the degrees of
freedom for blocks, as was done when N.K.D was totally confounded.

The reader will notice that the estimates of error viry considerably in the
three analyses, Tables 8, 12 and r5. This, however, does not indicate that the
errors are different, since each is in fact an estimate of the same error. The
variation is due entirely to random sampling variation resulting from the omission
from the " error " of Table 8 of certain degrees of freedom, those " within
block pairs" in Table tz, and others less easily isolated in Table r5.

The estimates of the interactions flow directly from the modified totals
[N.K]', etc. Since each comprises z4 plots the conversion factor must be that

appropriate to the total of rz plots, i.e. - .q9-- giving, in tons per acre,

the values 
L ' 224o-xr2

N.K: + o.o6, N.D: + o.46, K.D: - t.rJt N.K.D: -o.o7
values which, as should be the case, are not substantially different from those
already found.

The estimate of the standard error of each of the totals [N./q', etc., is
clearly

and this converted into tons per
of the standard error of the main

9.o: + 87.5
acre gives t o.t9j._4q!4ore, the estimate
effects will be {32 * 3r9.o, giving t o.r7o

24x 3r

tons per acre.
Using the f test we find the 5 

o/o and r /o points for the interactions to be
o.4rr ando.565. Thus K.D is significant at the r o/o level, and N.D now attains
significance lt-the 5"/" level. This is an illustration of how, by considering
pirt of the data only, effects which are insignificant when the whole of the data
is taken into accouh"t, may by chance atti'in significance. Such tests are, of
course, not valid, since they transgress the necessary condition that for any
chosen effect in any given experiment there can be only one appropriate test
of significance.

5. Sysrrus oF coNFouNDING FoR 2x2xzx ... DESIGNS.

In the last section the confounding of a single degree of freedom correspond-
il_g,g the interaction between the three?ctot. oT u z i z * z design r,vas explained.
We shall now consider th_e systems of confounding applicable to factorial^designs
involving four or -more factors, each at two level-s, 

-i.e. 
designs of the form 2".

Clearly any single chosen degree of freedom for a main effect or interaction
can be confounded,- whatever. the number of factors, for any such degree of
freedom is derived from the contrast of one half of the treatment combinations
with the other half, and it is therefore only necessary to assign these two groups



24

to the different blocks. If there are alarge__qgr'nbel of factors, however, a higher
degree of confoun{ing may be advisable. - With 5 factors, for instance, there are
32 treatment_ combinations. If these are divided into groups of 8 in any way
then the 3 deg_re_es of freedom corresponding to the cJmpa'risons betwedn tht
four groups will be confounded. The problem is so to cioose the groups that'these 

3 degrees of freedom correspond to high-order interactions.
The possible solutions of this problem are provided by the following general

rule :

If three degrees of freedom are to be confounded in a z, design any two,
corresponding to main effects or interactions, may be chosen at-will. " Th;
'r generalized interaction " between these two degrees of freedom will then also
be confounded. (By t!. generalized interactioribetween A.B.C and A.D, for
example, is meant B.C.D, A being struck out as it occurs in both of the first two
expressions.)

5? Confountling with fioe factors.
In the case of the z5 design the main effects and interactions are those

shown in Table 16.
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By the device of partial confounding different sets may be confounded in
the different replications. With 5. replications a balanced group of sets such
as that given in Table t7 can be used, each of the interactions between three and
four factorS being confounded once and once only. In this case f of the
information (relative to that on the unconfounded degrees of freedom) will
be sacrificed on these interactions.

MerN nrnrcrs AND rNTERAcrroNS wITH FrvE FAcroRS.

Interactions betrveen

four factors

Terln 17. Bar,aNcbo cRoup oF sETs roR 25 DESIGN IN BLocKs or 8 pr"ors.

A.B.C: A.D.E; B.C.D.E
A.B.D; B.C.E; A.C.D.E

f:3:B i B:3 8; i B:8f
A.B.E; C.D.E; A.B.C.D

The rule given above is capable of extended application. Thus if blocks
of 4 plots are used in a z5 design and the interaction B.D is chosen, in addition
to the first set of Table r7, the full set of 7 confounded interactions is

B.D ; C.E; A.B.C; A.D.E; A.C.D ; A.B,E; B.C.D.E
The eight. combinations of signs arising from any three of these interactions
(the third not being the generalized interaction of the other two) will give the
partition into the eight blocks.

Balanced. groups of 5 sets of this type also exist, one of these groups being
that given in Table r8.

Tenm 18. BeleNcep cRoup oF sETS pon z5 DESIcN IN BLocKs oF 4 Pr,ors.

i3: S? ff3: i3f; 333,33f; i333

t3: 33: iffi: i:3, i3?: 333: ffi3f
BD, CE, ABC, ABE, ACD, ADE, BCDE

5b. Confounding usith six factors.
Thi confounding of experiments including six factors follows similar lines.

With blocks of 16 treatments the most useful sets are those of the type
A.B.C.D ; A.B.E.F; C.D.E.F

and with blocks of 8 treatments those of the type

A.C.E ; B.D.E ; B.C.F; A.D.F ; A.B.C.D ; A.B.E.F ; C.D.E.F
With blocks of 4 treatments arrangements confounding 3 two-factor, 8 three-

factor, 3 four-factoi and the six-factor interaction are -Pgs$le_, and^ rlay_ bs
obtaineil by " interacting " on the sets of Table l8 wit! E.F, B.F', C.F, D.F
and A.F reipectively. A balanced gloyp of sets will be thus attained. Balance
is also possible in i replications with blocks of 16 treatments, but- with blocks
of 8 tr'eatments, rither curiously, ro replications are required for complete
balance i with 5 replications and blocks of 8 plots one three-factor interaction
must be confou'nded twice while another is not confounded at all.

Main
effects

Tesln 16.

A.B
A.C
A.D
A.E
B.C

A
B
C
D
E

B.D
B.E
C.D
C.E
D.E

A.B.C
A.B.D
A.B.E
A.C.D
A.C.E

A.D.E
B.C.D
B.C.E
B.D.E
C.D.E

A.B.C.D
A.B.C.E
A.B.D.E
A.C.D.E
B.C.D.E

A.B.C.D.E

If A.B.C.D.E 1s*cgnfgunded, -and also one of the interactions involving
four factors, say B.C.D.E, then by the rule the main effect A is also confoundedl
The confounded set is thus

A; B.C.D.E ; A.B.C.D.E
The only other type of set containing A.B.C.D.E is

A.B; C.D.E; A.B.C.D.E
There is also the type of set

A.B.C ; A.D.E ;- B.C.D.E
This is the most useftil of all, for no main effect or interaction between two
factors is confounded. There are r5 such sets, for _the factor corresponding
to A can be chosen in. 5 ways, and- the remaining four factors can ihen bE
divided into two Dalrs ln ? wavs.

.The.actual paitition ofihe 3z tr,eatment combinations into four blocks of 8,
so that the chosen degrees of freedom are confounded, is effected by writing
down the sign_s _of any two of the three confounded degrees of freedom afte?
the manner of Table 4,.an! allbcating the four combiriations ++,*-,-*,
and - - so obtained to'the four blocksl

two factors three factors five factors
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Sc. Confounding usith four factors in blochs of 4 plots;
The best type of set for non-balanced arrangements is

A.B; A.C.D; B.C.D
but for complete balance this clearly demands 6 replications, and moreover $ the
relative information on the three-factor interactions is lost. The altern-ative
grgup of- sets glven in Table 19 gives balance in 4 replications, and sacrifices
o{y i ^of- 

th9 relative information on the three-factor inieractions and { (instead
of $) of the information on the two-factor interactions.

Taala 19. za DBSlcN.

A.B; C.D; A.B.C.D
A.C; B.D; A.B.C.D
A.D; A.B.C; B.C.D
B.C.; A.B.D; A.C.D

There is the further g{oup of 5 sets (Table zo) which confounds every
degree of freedom once and therefoie sacrifices I of the relative information
on every comparison. 4ll comparisons are therefore of equal accuracy. This
design depends structurally on the complete set of orthogonai 4 x 4 Latin squares.

Tasr,r zo. Ar,rrnNerrvr 2a onsrcx.
A; B; A.B
C; D; C.D
A.C; B.D; A.B.C.D
A.D; A.B.C; B.C.D

replication been available the three-factor interactions D.P.K and S.l/.P might
advantageously have been confounded in it. It is instructive to identify thise
sets with those given in general form in Table 17.
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6. EsnuerroN oF'ERRoR FRoM HrcH-oRDER INTERAcrroNs.

between three or more factors which may in many cases be confidently predicted
to be small in comparison with the errors affecting them. If this is the case
they will in effect themselves be estimates of experimental error. Thus, for
example, in a z6 design no less than zz of the 63 degiees of freedom for treatments
correspond to interactions between four or more factors. If the experiment
consists of a single replication and is arranged in blocks of 16 plots, three of these
will be confounded with block differences. The remaining 19 may then be used
as an estimate of experimental error.' It should be noted that even if some of these high-order interactions do
happen, with some particular set of factors, to be appreciable, the experimenter
is still in a much better position than he would have been had the interacting
factor been omitted entirely from the design. For any particular interaction
(except those which are confounded) which later results may indicate to be of
importince can be isolated and examined. Moreover the criticism that the
inclusion of an interaction of some magnitude in the estimate of experimental
error will inflate that estimate does not carry much weight, since the true
experimental error (as estimated between replicates of the same treatment
combination) would not be applicable to the results of an experiment with the
interacting factor held constant, if it were intended that these results should
be treated as valid f.or all levels of the interacting factor.

This device of using only a single replication is particularly useful in
agricultural field experiments. For it is well known that most of the effects
which are being measured vary from year to year and place to place. A whole
set of similar experiments, of moderate accuracy, conducted at different places
over a series of years, is thus of far more value for practical purposes than a
single large experiment of equivalent accuracy. The use of only a single
replication enables experiments comprising a reasonable number of factors to
be carried out on ordinary non-experimental .farms, and thus very considerably
adds to the resources of the experimenter.

7. AN rxproRAToRy ExrERTMENT oN BEANS.

As an example of the points discussed in the last two sections we will
consider a zs experiment on beans, conducted at Rothamsted in 1935.

The treatments consisted of all combinations of :

(S) Spacing of rows : 18 ins. apart (so) or z+ ins. apart (st).
(D) Dung : ro tons per acre (d), or none.
(N) Nitrochalk i o.+ cwt. N per acre (n), or none.
(P) Superphosphate: 0.6 cwt. PrOu per acre (p), or none.
(lK) Muriaie of potash : r.o cwt. KrO per acre (&), or none.
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The spacing was included to test the theory that the best effects of manures
might be obtained with closely spaced rows.

The plan is shown in Table zr. The yields are given in the first column
in Tz,ble zz.

Tesr,n zr. Pr-er.I oF ExpERIMENT oN BEANS, AND BLocK TorALs.

Block III (SSS.z) Block IV (+56.2)

s6nk so soP sonpk

slnp s{t

sod srA

stnP srdn

sodl sr4k

slh sodnpk

sr sip

srnk sodk

son? srdnph

s;dn so.?h

s odnk

son

srdph

soft

srdnk sodpk

stP sod.np

std slnpk

' Block I (4123) Block II (48r.o)

Only a single replication was used, giving 32 plots in all, each of t'6 acre,
these being arranged in four blocks of 8 plots each. Examination will show
that the following interactions are confounded :

".r.Ftl'1itto" 
.. r - ,r"jl'ff ,u

S.N.K I+II-IIT_IV
D.N.P.K I - II+ III - IV

7a. Analysis.
The calculation of the main effects and interactions is given in Table zz,

and the analysis of variance in Table 23.
The estimate of error is based on interactions between three or more factors.

The computations follow exactly the same lines as those of the z x 2 x z
experiment. The sum of squares for treatments is obtained by dividing the sum
of the squares of the totals of Table 22 corresponding to the main effects and
two-factor interactions by 3z (there being no need to write down the individual
squares), and the other two sums of squares are similarly obtained. A check
is given in Table 2z f.or each of the columns (r) to (5), and a check of the whole
sel of calculations is provided by the total sum of squares, which is also calculated
direct from the yields of the separate treatment combinations.

A further useful check is -obtained if the block totals are noted when
calculating the total sum of squares (as can conveniently be done by the method
of Note { when, as often happens,'the yields are tabulated by tiloct<s;. The
confounded interactions can t-hep be calculated directly from these block totals
and compared with the values already obtained.

to

Car.cur.etroN oF MArN EFFEcrs AND INTERAcTIoNS, BEANS ExrERTMEN'rTtsug zz

sd.npk (') (") (+)
Effect

Effect (5) cwt. per acre

1885 .2 zr . o4 Meanooooo
roo
oro.
IIO
ooI
IOI
OII
III

'3
.3

a

.+

.I

.8
,6

ro2.9
rz4.6
r3r .7
166.2
t23.9
I I9.9
95.9

r38.3

9r
r37
,86
n6
8z

t25

(o)

5

8

o
3

3

5

Yield
66.
36.
7+.
5+'
68.
23.
67.

70.

(r)
46t.
+20.
525.
478.

- 9t.
- 40.

+5.
*r.

+7

-3
-5
+70
-9
+8

+66
*ro
-33 r23

+ro

-o

-+
+42

++7

-5
+46
+?g

32
r5

+9.6
74.3
6s.6
s6.3,
48.o
+7.9
77.o
6t .3

- 2.6
- 8o.o
+58.o
- $.6
- 16.z
+n.6
- +3.2
+33'2

2
6

+r9.7
+3.5

+r2.8
++6-+
+37.7
- 5.5

- 16.8
*16'4

toz.7
t29.5

232.2

827.6
93".6

ro8 .8
223.o

88r .

roo3.
- r32.

+7.
+r56.
+9+.

S
D

r.8o S.D
r.16 N
r. r8 S.N
r.84 D.N

229
2t3
207
227
297
243
234

- 50.4
- 4r.5
- 53.7
+t3.2
- 2.3
*8. r

+r7.+
- 15.8

+26
+46
+39
++3
*zr
+34

8

5
9
+
7
5
o
+

z
9
I
6

3
5
o
6

I
I
+
5

9
8

J
5

4
o
9
5
8
6

I
7
+
6

9
9
+
2

8

+
+
4
6
6

+
2

8
8
8
8
a

2
2

4

8

+
+
2
o
8
8

+

- rz5.o* - 2 79
6rJ

8
6

5
o
4

7
8

7
3
I
7

+28

5+z5t.z** +
+8o.6 +
+52.o +
+53.o +
*82.4 +
+3r.8f

+52

- 88.2
+47'2
- 7.8

- fi7.2f
- 82.6'+4.+l
+r7.4t
- ro.of

+rzr,6*
+ r39.g*
- 6z.o
- 2+.2t
+ 69.6
- e8.6I
+36.of
- 32.6t

-40
-+7
+5r
-+
+ro
-t7
-63

oooto
roo
oro
IIO
oor'
IOI
orr
III

ooool
roo
oro
IIO
oor
IOI
OII
III

OOOI I
roo
oro
IIO
oor
lor
ort
III

- 2+'3
+22.o
- ro.
+18.
+24.

-o.
- 15.

6 - 3o.3
3 - zo.t
3 - 4+.7
3 +3'2
z - 26.8
s - 26.9
7 +9.+
5 +3.8

56
29
76
49
36
4S
6o
64

63

39
5r
73
7r
6o

73
92

7
9
7
8

3
7
8
6

+73
+83
+56
+38
+58
-5
+75

-8
*6o
al5
-22
+23
+59
+3"
-o

- 6.6
- 5s.6t
- 27.8t
- se.6t
- 77.+l- ror.6f
+49.8I
+t6'+t
* <t.z

- r.97 P
+r.o5 S.P

- o.r7 D.P

- r.84 N.P

+2.
+3.

- r.
-o.
+r

- o.r5 P.K

t r,14

7rK
rz S.K
38 D.K
54 S.D.K
55 N.K

Totals (for checks) :

rst yOdds (a) So7.r 8r7.o
half \Evens (b) ZZ+.2 ro68.z

znd ;Odds (c) 498.o - ,o".8
half \Evens (d) SoS.+ - 22.2

r164.o ro8o.8
gz8.o tz3o.+

r4o.o - +7
79-2 - 2+9

o9

951

*Significant (5 per cent. level), i.e. greater than rrr or e,48 cwt.
**Significant (r per cent, level), i.e. greater than r55 or 3,46 cwt.
fUsed for estimate of error. JConfounded with blockr.

6
2

ro3.2
- r56.o

checks for column (') i:: i 3: : 1 :: i i:: ::i i:
and similarly for the other columns.
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reciprocal of this is 148.4 per cent. and the gain in information due to con-
founding is thus 48.4 per cent.

It should be riLottid that if there is more than one replication, the whole of the
swn of squares for blocks will iot enter into the neut estimate for error,' only those
components which represent differences of blocks forming the same replication
must be included.

8. CoNrouNorNG rN, LerrN seuARE DEsrcNs wrrn FAcroRs AT Two LEvELs.

Tenln 23. ANer.ysrs oF VARIANcE, BEANs H(rERTMENT

D.F. Sum of squares
Blocks 3 .. r+76.$
Main effects and interactions between

two factors 15 4g"t.2oRemainder 13 ro66.64

Mean square
+92.r+

328.o8
82.o5

Total 31 746+.27

- .Spacing, dung, and potash have produced significant efiects, and in addition
the tnteraction between spacing and potash is significant. It is to be noted that
the dung and spacing irto*'" ri"iit"t (itto"g-rt .-.ii"t ""a "o"-rig"ifi"""t1interaction. The table (Table z+) including tf,ese three factors is thelefore oi
interest. It is not affectLd by thi: confound"ing, and may be constructed either
from the main effects and ihteractions or bf taking the mean yields of the
relevant sets of 4 plots.

Tenln 24. MneN yrELDs, cwr. pER ACRE.

2o.3 zo.J 25.o 23.7
rz.t r9.8 zt.+ 25.3

GerN rr.T pRncrsroN DUE To coNFouNDINc.
D.F. Sum of squares Mean square

3 .. ry76.$ 492.14z8 z2gj.4o 82.o5

In a somewhat limited number of cases it is.possible to adapt confounding
to Latin square designs. Thus, for example, a 24 system involving 16 treatment
combinations may be arranged in an 8 x 8 Latin square, there being four complete
replications. Any one degiee of freedom for a main effect or interaction may_be
cohfounded with rows (the rows being taken to represent blocks of 8 plots each),
and at the same time another degree bf freedom for a main effect or interaction
may be confounded with columns. Alternatively partial confounding mly.be
adopted, each of the 4 degrees of freedom for thiee-factor interactions being
confounded in one of the four row-pairs, and the four-factor interaction being
completely confounded in the four column-pairs. Three-quarters of the relative
infoimation will then be available on all three-factor interactions.

At the outset there is one point which should be emphasized. In order to
obtain an unbiased estimate of error from a Latin square it is necessary to
rearrange all rows in random order, and also all columns. 

- 
Thus we are precluded

from so arranging the experiment that the rows (or columns) forming each
complete repli-atibn necessarily fall together in the field. This restriction is
of importance in the types of design disiussed in Section fif and 169, in which
main effects such as varieties are confounded.

In spite of these limitations, such confounded Latin square designs as_exist
are of considerable interest, in view of the markedly gretlter precision of Latin
squares as compared with randomized blocks in many types of agricultural field
trials. We witl therefore give examples which will illustrate the possibilities
and limitations of this metliod of design. In this section we shall consider the
various types which are applicable to sets of factors at two levels only. These
must cleaily utilize 4x 4 and 8x 8 squares. Further examples utilizing 6x 6

and 9 x 9 squares will be given later.

8a. zx zx z design in two 4x 4 Latin squctres.

Since we may arrange a zB design in blocks of 4 plots in such a way as to
confound any single degree of freedom, we may, in a single 4 x + square,
totally ''confound any two interaction degrees of ireedorn, o,ne with rows and
one with columns, or alternatively we may partially confound two degrees with
rows, and another two with columns. As-in any case, however, at least two
squares will be necessary to provide an adequate estimate of error, it is-simpler,
in cases in which partiai conTounding is required, to effect this by confounding
the different degrees of freedom in different squares.

In experirnents involving the three standard fertilizers there are various
alternativei of possible utility. With two squares, for instance, P.K and N.P.K

(') h ddk

. . Th. experiment is not,of high precision, being of only 32 plots, and having
a high-standard error per plot (beani have at Rothimsted irrbvrjd a very variablE
crop), but in combination with other similar experiments it should provide useful
information, and in itself affords an illustratibn of the importance of putting
theories to exp-erimental test, since the interaction between siracing and rnanures
turned out to be the opposite of what had been expected.

7b. Gain in precision due io confounding.
It is clear that- the arrangement in blocks has increased the precision, since

the. mean -square for blocks-is considerablv greater than that Tor error. An
estimate of the amount of this gain can be made by replacing the treatment
mean-squar-e b_y lhe error mean square, and then calculiting what the error would
have been had there been no confounding. (This procedure assumes that the
confounded interactions are negligible, and is, of- course, subject to certain
errors of estimation.)

The calculations are set out in full in Table 25. The estimate of the

18 in. spacing . .

2+ ln. spacmg . .

Tarn z5

Blocks
Within blocks

Total 37n.83 r2r.7+

for a block of 3z plots is rzr .74, and the efficiency of an
3r

error mean
arrangement is Jhereforc 82.o5/rz r.74, or 67.4 per cent. The
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may be confounded in both squares, or N.P.K may be confounded with the
columns of both, P.1( with the rows of one, and N.p and N.I( partiallv with
the rows of the other. With three squares'N.P.I( may be 

"o"io""J"d 
*ith

the columns of all three squares, and d.p, l/.K and p..d with the rows of one
square each, thus obtaining $ the relative information on all two-factor inter-
actions. Alternatively, if ihe two-factor interactions and the main effects are
g{ :qgul interest, ^these may each be confounded in one half of one square,
{P.5 being confounded in all squares, giving * the relative informatidn on
all effects except N.P.K.
. The nece'ssary.designs are easily_ constructed by writing down the sets of
treatment combinations that must fall together in th-e rows ind the similar sets
that must fall together in the columns. ."Thus to confound P.K with the rows
and N.P.K with the columns the rows must consist of the two sets(r) n pk npk

and the columns of the ,*o ,&. 
k nP nk

B;nkh
pk nph

This^gives the following alternative squares (Table z6) with the first row and.
the first column in an assigned order :

Terle 26.

(')
nk
pk
np

n
p

nph
h

h
npk
n
p

Ttw-n.27
php
npn
(') h
nh npk

npk
h

nk
(')

p np
pkn

np
pk
nk
(')

The.analysis. will be conducted just as it would be if the squares were not
interlaced, eliminating the rows as well as the columns of each .qnut" separately.

33

8b. Numerical examph.
The above designs were superimposed on a uniformity trial on sugar beet

conducted by Immei (r7).
Table z8 shows ihb' actual arrangement derived.by randomization from

Table z6 (the segoq_d sqgq_e_bglng selected in each case),-and the yields of each
plo! (.b acre). -P.K and, N:P.K were confounded in boih squares. The degree
of freedom.confounded with rows (als-o ?ssigned at random from the above iwo)
was N.P.rK in the fit'st square anci P.K in-the second.

Tertn 28. Pr,eN eNn yrELDs rN LB.

h
s6g

npk
6zg

65t

p
6r8

576

pk
6+s

1)

5+9

n
6zz

npk
6zg

n?k
576

(')
59+

pk
627

p
s8l

np
6l+

nk
6z+

h
6og

h
5+2

nk
6zg

np
s6z

p
6o+

n
587

pk
6t!

(')
596

il?k
618

np
s62

pk
623

(')
628

nk

(')
6+s

nhnknp
6Z+ 6t5 586 6o5

. .fn: following estimates of the treatment effects (totals over 32 plots) were
obtained:

.A/: + rog, P: - rt, K: + 55, N.P : - r47, N.1(: - S.
The analysis of variance is given in Ta6le e9.

Squares (: N.P.K)
Rows
Columns
Treatments.
Error

Total

Sum of squares

4+2.5'
r854o.4
z8rz.g
z69+.9
3859.4

2835o. r

n

Mean square

+42.5
3o9o. r
468.8
449.2
32r.6

Trw.n zg. ANer.vsrs oF vARrANcE, sErARATE seuAREs.

D.F. Sum of squares Mean square
Squares ..
Rows'
Columns. .

Treatments
Error

TanLr 3o. ANer.vsrs oF vARrANcE, INTERLACED seuAREs.

I
6
6

5
r3

+57
3+r4

466
229
266

+57.5
2o488.4
2797.9
tr+5.7
346o.6

5

3
I

Total 31 2835o. r

The standard error of each of the above estimates is therefore X g2.4.
No one of the effects is significant.

The analysis of variance appropiiate to the arrangement in interlaced
squares given in Table z7 is shown in Table 3o.

D.F.
I
6
6
6

I2

3r
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It will be noted that in this exampfe rows have been very effective in
eliminating_soil heterogeneity. Table 3r shows the mean squares bbtained with
squares and blocks of various types :

Tenr,n 3r. ErrrcrcNcy oF vARrous ARRANGEMENTS.
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8c, Arrangemmts for fioe and six factors in an 8 x 8 square.

t: (r), z: d, 3: e, 4: de.
Thus 7z: bcd.

Tenr,n 32.
II
73
54
3"
8r
6z
4+
23

8 x 8 euesr-LarrN seuARE FoR FrvE FAcroRn.

74 r+
4+ 64

4x4Latinsguares

Blocks of 4 plots

Blocks'of 8 plots

Blocks of 16 plots

separate
interlaced

half-row's
columns
2 x 2 Squares

pairs of half-rows
pairs of columns

pairs of rows
squares

D.F. Mean square
18 2SS.g*
r8 36+.f

3o
3o

308.5
ro45 .6
9+o.7

+o7.6
862.2
9+g.r

8zg.s
929.8

Relative
efficiency

{

I
\

{
t

t

2+
2+
2+

z8
z8
z8

roo
7o

8z
2+
z7

6z
29
27

3o
27

o
J

9
5
2

8t,
5
o

8

5

*Treatments + error of Tablec z9 and 3o.

The major part of the soil heterogeneity lies in differences between rows,
and consequ_ently blocks along the rows are reasonably efficient. They are,
however, a form of block which would not in practice be used unless- prior
information on the fertility differences of the field. was available. The ilter-
native forms of block, whether of 4 or 8 plots, have all efficiencies of less than
30 per cent. The arrangenient in interlaced squares is somewhat less efficient
than the.arrangement in separate squares, but has served to eliminate the greater
part of the variation due to rows.

It is not claimed that this example is typical of the average gain in efficiency
that may be expected from the use of Latin squares instead of randomized blocks.
It is, however, an excellent illustration of the power of Latin squares to deal
with the types of soil heterogeneity met with in agriculture. In this connection
it should be noted that if we have any type of experimental material which can
be classified in two ways, with both of 

-which 
variation is associated, then the

elimination of both sources of variation simultaneously.more than doubles the
decrease in error variance over the average of that produced. by the elimination
of either source separately. Measured in terms of lnformation per plot (which
is equal to the reciprocal of the error variance per plot) the additional gain by
the simultaneous elimination of both sources is even greater.

' It is also to be remarked that if the variation associated with one type of
classification is large, while that associated with a second type is negligible, the
use of the second classification for blocks will always give a higher error than
if the experiment were arralged wholly at random. In the present example
the elimination of columns after eliminating rows has increased the information
per plot from 82.9 to roo, whereas the elimi-nation of columns before eliminating
rows has decreased it from z7.S to 24.5.

37rfu42+
6
8z
24

53
74
t2
3r

II

J
8

73
85

96
64

5r

6z
t2
23

53
3+
4t
7r
84

13 +r 72
3+ 22 83

5z
64

3384
72
5r
JJ
t+

22
r3
63

52

+3
24
5
6
4

32
8z

I
t2r

The analysis follows the ordinary lines, the partially confounded interactions
being computed from the rows or columns in which they are unconfounded.
There are thus 18 degrees of freedom for error. As before rows and columns
must be completely randomized amongst themselves.

In the case of six factors the system of confounding will be of the type:
Rows : A.C.E; A.D.F ; B.D.E ; B.C.F ; A.B.C.D ; A.B.E.F ; C.D.E.F
Columns : A.B.F ; A.D.E ; B.C.D ; C.E.F ; A.B.C.E; A.C.D.F; B.D.E.F
The square shown Table 33 confounds these interactions. The second number
now indicates one of the eight combinationq of d, e and f.

2r
+2 73

Terlr 33. 8 x 8 euesl-Lnrrw seuARE FoR srx FAcroRs.

83

36 47
4+ 3r
13 22

58
6z

r8
7r
87

77 86 rs
8r j+ 23

s2Q3+68 55 46

8z

78
67

5r
43
35
z6

2r r+

II
27
38
+2
5+
66

75
83

65

53
84
76
z8
T2

+r
37

25

2+
r6
45
JJ
6t
57
88

72

f.

32
48
r7

If rz8 plots are available, a second square confounding a completely different
set of three-factor inter,actions may be obtained from the above square by
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changing a to c, c to f, f to e, and, e to a. Two four-factor interactions will be
confounded in both squares.

. With only a single.replication-error will have to be estimated from high-
order interactions. If all iz unconfounded three-factor interactions are retaified
there will remain 16 degrees of freedom for error.

The actual factor which each letter is taken to represent in these designs
must, of course, depen-d on_the interest which attaches to the various interactio"ns,
the aim being to-c_onfound (as far as is possible) only those interactions which
are likely to be of little importance.

The rows and columns of each square must be rearranged in random order
for every experiment.

g. Fecrons AT MoRE THAN Two LEVELS.

- In the preceding sections we have described factorial designs in which every
factor is at two levels only. Many cases arise in practice, fiowever, in whiclr
more than two levels of some or all of the factors are required. In all cases
in which it is necessary to determine the optimal level of a-factor, for instance,
at least three levels are esseltial, and in faclorial experiments in which varietiei
are included as one of the factors the use of three-varieties rather than two is
usually advisable.

When some or all of the factors are at more than two levels, part of the
simplicity that attaches tb factorial designs with factors at two levels only is lost.
To the main effects of a factor at four levels, for instance, there will cofrespond
3 -degrees_of. freedom, aqd-similarly for all interactions involving this factor.
The calculations required for the analysis of variance are conse{uently more
complicated. Morebver the possibiliiies of confounding 

"te 
'mrr"li more

restricted, and the designs whiCh exist are less elegant and. more troublesome
statistically, particularly with factors at different numbers of levels.

In this section we will consider the modifications that are necessary in the
statistical analysis.when there is no confounding. In later sections the-simpler
types of confounding will be described.

ga. Tuso factors.
In a varietal and manuring experiment on oats (Rothamsted, r93r) four

levels of nitroge! (o, o.z, o.4 and o.6 cwt. per acre) were applied t61ich of
three varieties, Victory, Golden Rain II ahd Maivellous. 

- There were six
replicates oD 6.to acre plots. The total yields of each of the twelve treatment
combinations are given in Table 34.

Teu,n 34. Venrcrer. AND MANURTAL EKrERTMENT oN oATs.

Treatment totals (| lb.)
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Since there are twelve treatment combinations there must be r r degrees
of freedom for treatments. These can, as before, be divided into main effects
and interactions.

There will be 3 degrees of freedom for the main effects of. i, and z degrees
of freedom for thivarletal differences. This leaves 6.degrees of freedotfi fot
interactions. (Note that 6:3" z\.

If (as is natural here) the main effects are defined as the average response
to one factdr at all levels'of the other they will be derivable from tTre twb sets
of marginal totals of Table 34. The sums of squares corresponding to each
set can be calculated in the ordinary manner from the sum of the squaies of the
deviations of these margin-al !otqt., dividing by the number of pfots in each.
Thus the sum of squarei for N is given b/

- i5. [t+?g'+ r78o2 + 2o562 + zzzr2 - r8 x 778y6.o6]
(Note the method, the most suitable for a calculating mi6hlne, of applying the
correction for the mean. This correction, 7486'/72, should be cal,idlatedfirst
and written down, as it is wanted repeateciljr.l

The sum of squar.r" for interactions iannot be coirveniently calculated
directly, -and must therefore be obtained by subtraction from the iotal sum of
squares for treatments. The full analysis is as follows (Table 35) :

Terr,n 35. Pmrnrou oF THE TREATMENT suM oF seuAREs rN THE vARTETAL AND

Correction for mean

MANI'RIAL TRIAL,

D.F. Sum of squares

778956.o6

3 2oo2o.5o
z 178646
b 32t.75

Mean square

Nitrogen
Varieties

6679.5o
893. 18

53 .63fnteractions

All treatments II

There is no automatic check on this table, and all the computations must
therefore be carefullv checked.

It will be noted ihat the above computations are exactly analogous to those
of the ordinary analysis of variance of a rindomized block exierime.t:t. Nitrogen
and varieties correspond to blocks and treatments, interactibns to error, and-all
treatments to the total. The sums of squares and mean squares are divided
by ?n additional factor 6 to allow for the flct that each'value bf talle 34 is the
total of six plots.

We will discuss the layout and conclusions of this experiment in Section r6b.

9b. Three or more factors.
The extension of the above analysis to three or more factors follows on ihe

same lines. In the case of three factors, a at 3levels, b at Alevels and c at4 levels,
for examp_le-, there will be 48 treatment coribinations, ahd the partition of the
degrees of freedom will be

zzrz8.6r

A.B.C 18

Victory
Golden Rain II
Marvellous

Total

no fl,

.r+29 r78o zo56

n2 f,3 Total

23+3
z5o8
2f35

222r 7486

A
B
C

2

3
3

A.B 6
A.C 6
B.c 9

+29
48o
5"o

I 538
59r
65t

66s
688

703

7rr
749
76t
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In order to calculate the sums of squares three two-way tables will be
required, one between each of the three piirs'of factors, the sums being taken
over all the remaining factors. Each set of marginal totals occurs twice, thus
providing useful checks on the construction of the table. These three tables
witt givJthe sums of squares for the main efiects and interactions between two
factois. The sum of s(uares for the interaction between all three factors can
then be obtained by subtraction.

9c. Simplification when one of the factors is at two leoels only.

If one of the factors is at two levels only the interactions of this factor with
the others can be calculated directly by using the differences of the yields at
the two levels of this factor for all combiriationJof th" other factors, and analysing
these in exactly the same manner as the totals of the yields at the two levels.
In the case of iwo factors only the calculations can be arranged as in-Table-36,
which gives the total yields in pounds of the five replicates (;ro acre plots) of an
experirient on differerit proporfions of oats and vetches in a forage mixture, both
with and without nitrogen (Rothamsted, ry32).

Taulr 36. Exprnruenr oN SEED MrxruREs AND NITRocEN.

Seeding rates (lb. per acre).

Without nitrogen
With nitrogen

Sum
Difference

[z - (r)]
3r93
383

36+o 3788
+ zrz

2oo oats
No vetches

r5o oats

5o vetches

+ 3r8

roo oats
roo vetches

50 oats
r5o vetches

No oats
zoo vetches

z8ro
1n6

r49oo.5
288.5

Total

788o
90.27

'6go7+t147 ,

3+76
ro8+

6

9
5

The sum of squares f9r N is given by n472 /5o, and the sugn of squares for the
interactions is given by

r'u[383t + 3182 + . . - 22g.4x rr47)
Table 37 shows the full analysis of varianie.

Seedings
Nitrogen
Interactions.

+

6o313.9
z63tz.z

5717 '5

r8o33o. o

Terlu 37. ANer.vsrs oF VARIANcE oF EXPERIMENT oN sEED RATES.

D.F. Sum of squares Mean square

Correction for mean 57l69Y'o

r5o78.5
z63rz.z

Treatments r+"9.+

Total 92343
596or
28384

4
I
4

9
4

t'
+9

Blocks
Error

Total

r342
468

r66r
r979

r788
2000

r684
1792

r405
r788

39

Provided that the correction for the mean is computed twicen and that in
calculating the interaction sum- of _sq-uares the correction for the mean difference
(equal to ihe sum of squares for N) is recomputed as shown, all the treatment
iuits of squares and fhe sums and differenbes of Table. 3Q are checked. by
computing th" totul sum of squares from the ro values in the body of the table.

9d. Procedure when ta:o or rnore factors ate at two leoek only.- 
The main effects and interaitions involving the factors at two levels o-nly

may bb computed by the method of Section 3 for each_combination of the other
i""iot.. Thle analviis of these and their toials over the different levels of the
other factors will [ive all the sums of squares requirgd.

An e"ampte iritt make the pr^ocedrire clear.^ The first three columns of
Table 38 shoivs the total yields of the treatment combinations oj a 3 x 2 x 2
experirient on potatoes (R'othamsted, 1933). All combinations of

I
1

L

were
ment

flo : rto artificial nitrogen

zr : sulphate of ammonia

22 : ammonia bicarbonate

I . {,t, 
:no poultry manure 

} ,. {(') 
:no super}

J Lz:poultrymanure J LP:suPer )

applied. There were three replicates on plots of 6'5 1c1e. - Tt-t" arrange-

Si. 
"ottfounded 

in blocks of 6 plots, and is discussed in Section r3c.

Teur,r 38 . COUeUT.*UON OF MAIN EFFECTS AND INTERACTIONS OF A 3 x 2 x 2 EXPERIMENT.

Yields (lb.)
14r n2 Total no

Effects
'nt na Total

p
(')

mp

4II
+4+
$t
6sz

+79
578
6sg
6+s

+st I34I

r903

no nt n2 Total no

r539
ry66

85 5
8vt r304

+33
+96

roST 968 zo73' z36t ztrs 6s+g Sumz88o

nt
5r7
546
6or

+99
rt+7
+66

z66g
+r98

+r2g +85 +tzr +335
+789

P

+363 +z+7 +r79 M
-6r P.Mt+ +55 +r37 +6: -rr3 -rr

The sums and differences of palrs of values in the first four columns are

shown in the next four columns, and the sums and differences of these latter

in the last four columns, which give the totals of the main effects and interaction

of p and
a check on the operation

m for flo, flt and n, and
at each stage.

the total of. all n. The total column forms

correction for the mean is gi
souares can now

,r.ir by 6549''/36, the sum of sq
immediately.

uares for'N by
TheThe treatment sums of be calculated

Jz lzo73' + z36tz + 2tr5'- 6549" zr83],

the sum or squares 
:;:[,:y:tir',/1u;,]!:-T;:t,iH;aror 

P'N bv

and so on.
whole calculation isThese sums of squares are set out ln

checked by calculating the treatment sum
combinations.

In this
v/ere
ln 39 are not those

individual treatment

freedom for M and P.M.N

of
Table 39. The
squares from the

for these
analysis

degrees of freedom
described later.



Teolr 39.

Correction for mean

40

PenutroN oF TREATMENT suM oF seuAREs.

rr9472.2

N
P
P.N
M
M.N
P.M
P.M,N

2
I
2
I
?
I
a

+o3+.
3tr7 .

9r.
t7292.
r4+2.
r03.

r3or.

2or7.o
+
8
2

4
+
8

o
+
5
t

7
+
5

3t17
+5

t7292
7zt
r03
65o

Total rr aanen -

If i' tt " .**"r, of the-resu;;. ;-*"r;i:: ;.ing the yierdslof pairpof factors .are required, that for the pairs of factors 7 ;;a ;- ;;; ;; a"ii""a
tmmediately by.conversion of the first total column bf Table 38, while that
Ior n and tn can be derived by the conversion of the first two lines"oi the second
set of four columns and the. first line of the last set. Only that for the paii
of factors n andp will require any fresh summations.

9e. Two factors at three lersels : formal subdioision of interactions in a 3 x 3 table.

,If the yield totals of the g.treatment combinations are denoted by the
numbers r-9 according to the scheme of Table 4o:

Tenr,e 4o. Yrrr,o rorAls.
-bo br bz

Ao
Ar
a2

)
6 9

7
8

what may be called the two sets of diagonal totak qf this table may be defined as

F,l:t+5+9 H,l:r+6+8
flzl:z+6+7 lj"l:z+++g
LItl:s+++8 [js]:s+S+7

,,_,Jl".four degrees of freedom for the interactions of a3x 3 table may be
divided into two orthogonal pairs of degrees of freedom, f6r #hich the su{ns
of squares are given by the appropriate lraction of the sums of the squares of
the. deviations of p] and of ffi-respectively, just as the sums of square's for the
rnain effects are derived from [l] and [B]. Equally a table of th,J *.* vi"tA,of the treatment combinations can be- constructed' from a knowled g, oi [Al,
tB]:. t/l and []], or the corresponding means. Thus, for example,'with fbu'i
replications,

atbz: dev A, + dev B, + dev "I, + dev]l + mean
r* (lA,l+ [8,] + [/"] + ["L]) _ 3 x mean.

This formal subdivision provides a useful method of computation for the
interactions of a single 3 x 3 iable. The method is distinctly s'hoit.t than ttre

I

J

+

4l

ordinary method of subtraction, since the whole computation then becomes
self-checking. The analogous subdivision of the three-factor interactions in a

3 x 3 x 3 design will be described when dealing with the confounding of this
design.-The conventional numbering of the 9 treatment combinations of a pair
of three-level factors given in Table 4o wiil be extensively used in subsequent
pages. It should therefore be memorized. Note that the first factor is alivays
written downwards.

9f. Example.
In an experiment on the manuring of meadow hay (Bakewell, rg35) the

treatments (nothing, compost, and equivalent artificials) followed a two-year
cycle, making 9 treatment combinations in all. The 1935 yields are given in
Table 4r. The marginal and diagonal totals are also shown in this table.

Tenlr 4r.
1933 and 1935

treatments

Yruos oF HAy rN 1935 rN LB. (rorels oF 4 p.Lors oF zlri ecnr).
rg3z and 1934 treatments

Nil Artificials Compost
Diagonal totals

Total
I

274
27+

Nir 22r.4
3r7'+
287 .5

1
z6z
283
z8o

+

7

2

4
7

Total . . ..

Artificials

z4.g 256.8 3oS .6 826.3

The partitioh of the treatment sum of squares is shown in Table 42.

Ttw.n 42. PenrrtroN oF TREATMENT suM oF. seuAREs.

r93z and 1934 treatments
1933 and 1935 treatments
Interactions ..

All treatments . .

D.F.
2
2

!
8

Sum of squares
rr5.85
+o2.2o
22.83

540.89

Mean square

57.92
20r. ro

5.7r

Since the subdivision of the interaction degrees of freedom is formal, and does
not'correspond to any expected treatment efiects, there is no point in calculating
the two components-of the sum of squares separately.. The squares of all six
diagonal tota-ls are summed and 24 e' z x tz) times the correction for the mean
is d.educted, before dividing by n. The fact that the total of the three sums
of souares equals the total sum of squares for treatments checks the whole
compltation.' If the interaction sum of .qrr"t.s \ryere not computed directly,
every item would have to be checked.-The 

error mean square (z+ il.f.) was 6.3oo. Thus there is no evidence
of any interaction, and- the effects- of the feitilizers in the two years_1ggy_be

regarded as additive. Thq standard error o_f a marqinal total is ltz * 6.390
or-* 8.7o. Consequently the response to artificials applied in 1935 is significantly
greater ihan to compost, but artificials applied in 1934 show no residual effect,
whereas that of compost is significant and large.-

2
o

5

65
r04
94

IOI
84

o
o
8

7r 8s'z
rtz.2
ro8. z



Both 3 x 3 x 3 and 3 x 3 x 3 x 3 experiments can !e arranged in blocks of
g plots or-in gx-g Latin squares, confounding only three-factor interactions.
Tfiese designs are of considerable practical importance in agriculture, and we
will therefore describe them in detail.

roa. 3 x 3 x 3 designs in blocks of g plots.

There are 8 degrees of freedom for the three-factor interactions. These
can be divided into four orthogonal pairs, each pair being given by the contrasts
of the sums of three sets of nine plots each. The four groups of three sets are
given in Table 43, being represented by the four letters W, X, Y, Z.*

Teolr43. 3 x3 x3 DESIGNS coNFouNDrNG THREE-FAcroR TNTERAcTIoNS.

42

ro. CoNrouNlorNG wrrg THREE AND FouR FAcroRS EAcH AT THREE LEvELS.

Combination
of first and

second factors

W' We Wa X, X. Xa Yr Ya Yt Z' Zz Zs

Level of third factor
I

J
+
5
6

8

9

oo
IO
20
OI

o
I
2
a

o
I
I
2
o

II

a

o
I
I
2
o
o
I
2

a

I
o
o

I
I
o

I
o
2
2
I
o
o
z
I

o

I
I
o

2
I
o

I
a

o
o
I
z
2
o
I

o
I
2
I
a

o
2
o
.I

2
o
I
o
I
2
I
2
o

I
2
o
2
o
I
o
I
2

2
I
o
I
o

o
a

I

I
o
2
o
a

I
a

I
o

o
2
I
t
I
o
I
o
a

Examination of the table will show that every combination of each pair of
factors occurs in each set of 9 plots, and consequently if these sets are arranged
in blocks the'main effects anil two-factor interactions will be unconfounded.

If more than one replication is available it is best to use differeq! groups
for the different replicatlons, thus partially confounding some or all of the
three-factor interactions. If four rbptcatibns are used complete balance is
attained, and f of the relative information will be available on all the three-factor
interactions. Partial confounding introduces some additional complication into
the computations, unless the partillly confounded degrees of freedom are allowed
to remailn ir\ the estimate of error, but the difficulties are not great if the method
described belo-w is systematically followed.

rob. Exampleof a3x3x3 design.

Table 44 gives the plan and yield.s of sugar in an experiment on-sugar beet
(Woburn, rqiS-) in which all combinations of three sowing dates, April r8th (dn),
May qth (d',\,'May zsth (dr)|, three spacings of rows, roin. (so), r5 in. (sr),
zo in.-(sr), arid three levels of sulphate of ammonia, nothing (no), o.3 cwt. N per
acre (ir),and o.6 cwt. N per acre (zr), were included.' The experiment was

2I
o2
t2
22

groups have previously been numbered I, II, III and IV in various orders, but no consistent notation
been established.

fAn earlier sowing, March r4th, failed and d2 replaced this'

*These
has

43

arranged in 6 blocks of 9 plots each. Since after rejection of edge rows the
plots of the three spacings were of different area the yields have been converted
to cwt. per acre before analysis.*

Tear,r 44. PleN eNo yrELDs oF sucAR (cwr. rnn acnr).

y2

425.8 5

Y1

439.9
zj

3r4.3

z2
305.

y3

359'o
z1

siz.8

The combination ofthe 6rgt two factors, d and s, on each plot is given by the first figure, and
tlro level of the third factot, n, by the second figuro.

*Tbis accounts for slight difforences between the results given here and those in tho Rothamsted Report.

The various steps in the analysis of an experiment of this type are as follows.
The order given sh-ould be adhCred to, so that errors may be detected before
the erroneous values are used in extensive further calculations.

r. Identify the blocks with the groups and sets given in Table 43, or
chech the numbering if this is giaen.

2. Set out the totals of the separate treatment combinations in the order
shown in Table 45 (first factor down, second and third acros_s, with third
uppermost). This 

-shbuld be done even if there is ,rnly a single replication.

6z
5r
20
9o
8z
40
3r
7t
t2

52
52
+7
35
+5
++
46
5r
5o

2

7
8
2

4
6
o
4
5

9o
20
II
6r
32
8r
4o
52
72

3r
36
39
35
29

3+
JJ
33
3r

3
4
4
3
9
+
3
6

9

+t
IO

32
2I
52
9r
6o
8o

72

+9
+7
4+
52
+9
46
47
+7
56

7
8
I
5

J
2
I
2
o

t2
8z
7o
5o
+r
6z
9r
3o
2r

33
3I
25

33
36
4t
37
33
4r

6
+
7
o
6

+
6
2
8

+2
6r
22
8r
3o
II
5o
92
7o

50.
38.
+3.
36.
38.
45.
37.
3+.
35.

9
2
o
5
o

7
I
2

4

8o

92
IO
22
7r
5r
42
6o
3r

32.
37.
39.
+3.
3+.
3+'
36.
33.
26.

+
7
+
I
I
2
o
5
6
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Tenr,r 45. Yrnlps oF sEnARATE TREATMENT coMBrNATroNs

s2

nr
Sr S2 So sa

n2
Sr

46

6. Calculate the sums of squares corresponding to the nine values in each
of the first three tables of Table 46a. These are shown in Table 47. The first
table, for instance, gives the sum of D, S, and D.S. One set of marginal totals
of each of these three tables may be obtained in the course of this calculation.a

2
a

So

87
84

7r

no
St

77
7o
8o

So

8sdo
d.t
da

9
I
6

I
6

5

6r
79
66

86.g
86.9
73.5

8z.g
76.89+

72

9
9
6

86
8z
93

84.t
86. r
74'o

J
9
8

86

7o
83

I

J
6

+

9
8

3. Calculate the total sum of squares of all the yields of Table 44, the
correttion for the mean (which shouid be checked), ihe sum of rq,rui.ir fot
blocks, and-the total sum of squares for treatments from Table 45. The block
totals are oblained in the couise of this calculation, together wiih a check on
the total and on the formation of Table 45 (see Note 4).

t. Calculate the five 3 x 3 tables given_in Table 46a. The first three
require no comment. The last two give the diagonal totals [/] and ffi for the
3 x 3 tables for each level of nof.TaBle 4,5. Ma?ginal totalshied no?b. taken
out at this stage.

7r.9

Total
zt6z,3

1224.7

/2oo\
86584. ro

2430.76

3+r .52
275,r3
329.77
94.+7

ro7.8o
r50. 14

9+.22
2t6.84

go5.o6

Tenlr 47. Auxu.teny rABLE oF TREATMENT suMS oF seuAREs (rcnonwe coNrouxolNc).

Correction for mean
Correction for working mean

D, S', D.,S..
D, N, D,N
s, N, s.lr
D
s
N .. ..

^ .' ^rf 
lJnconfounded W, X ..

't'D'rYtPartially confounded Y, Z

All treatments

c

do
dt
dz

So

256
26+

25r.t
239
247

4
6
8

TenI"u 46. CelculetroN oF MArN EFFEcrs AND rhrrERAcrroNs.

(a) Two-way tables.
St Sa

(b) Three-factor interactions. 7. Calculate the sums of squares for the main effects from these:narginal
totald (checking that the total of each set is correct), and enter these in Table 47,

8. Calculate the sums of squares for the four pairs of degrees of freedom
for the three-factor interactions, lieeping separate the qnconfounded and partially
confounded degrees of freedom, and entef these in Table 47.

q. Subtract the sums of squares for main effects from the sum of all the
other treatment items of. Table 47. This should give the total tr-eatment sum
of squares and assures the correctiress of all of the preceding calculations which
involve'treatments

ro. Check the sum of squares for blocks and the total sum of squares.

If there were no confounding, or if one pair of degrees of freedom rvere
completely confounded, the finai'analysis of variance-table could now be
imnieaiat6ly prepared.' With partial 'confounding, however, the following
additional steps are necessary.

. r r. Enter the block totals corresponding to the confounded pairs of-degrees
of freedom in the proper order in Table +6b, subtract these from the full totals,

[Y] and [Z], thus-obiaining the totals [Y]'and lZ)', whigh inclu^de only.those
btdct s iri witictt Y and Z"respectively are not boirfounded. (If. there-is-.1ny
doubt about this process, checik one 6r more of the values by direct^ totalling
over the blocks in'which the degrees of freedom concerned are not confounded.)
Calculate the sum of squares Trom these new totals and enter in Table 47.
(Note that each set has i different total and therefore a different correction for
ih" *."rr, and that a new divisor, here 9, is required, since only -9 plots are

included in each total.) The whole of this'calculafion must be cheched, particular
attention being paid to ieeing that the 6lock totals are entered in their correct places.

:r2. Cortstruct the final analysis of variance table shown in Table 48.

235.3
227,3
222.?

lwl

txl

tvl
Blocks

lzl
Blocks

I
7$.6

72!.2

756.6
+39.9

8
8
n

742
73r
682

23
6S+.6 7Sz.r

72t,7

676.8
359.o

9
74

719

728
425

d.o

d.t
dz

So

Sr

$2

lY'5t6.7 3o3.r 3r2.8 %7.6
3r2.53

738.8
738.7
684.8

238.r 7oz
3r2.8 3o5

9
5

72r.3
3r+.3 %7,6

It
Iz
Iz

618.+ 739.7 744.2 zt6z,3

Standard errors. Totals of 6 z *8.97 ; totals of r8 : * 15.54

and

14,42.'.3 3s7.+ +o7.o 
i13,1;tr

tables in the proper
I table). These give
for the four pairs of

J,
J2
J)

1

ltr'

nt14o n2

257.7
252,t
'229.9

258.9
2+5.8
239.5

zz6.z
233.9
2r8.3

6
6
2

252
246
24t

o

o

2

4
6

2+2
zz8
207

24+
263
46

8

9

8
I
8

223
225
zz8

255
254
229

9
6

7

48
267
237

5

4
8

247
zz8
202

+
6

+

229
264
2+5

25+
z+4
2++

5

9
8



Correction for mean

D.s.N {
Error . .

Total ;.

13. Construct the various summaries of results. Tables for main effects
and two-factor interactions and their standard .errors can be obtained directly
by conversion of the first three tables of Table 46, The conversion factor is
herel' 

this experiment the reduction in error variance by the arrangement in
blocks is very large. Although much of this reduction results from the difference
between the two replications, the further reduction due to the use of blocks
of 9 instead of. 27, made possible by confounding, is also substantial, the gain
in information, estimated by the method of Sectign 7b, being 53.r per cent.

roc. Adjusted yields of three-factor combinations.

Under ordinary circumstances it will not be necessary to construct any
table including all three factors, but should this be required it may best be
done in two stages:

(a) assuming the three.-factor interactions to be negligible ;
(b) introducing correcting terms for these interactions.

The general rule for obtaining any value of stage (a) is to take the sum of
the appropriate values of the conaerted two-way tables representing two-factor
interactions, deducting the corresponding marginal means the number less one
of times they are involved (i.e. once with three factors, twice with four factors,
etc.) and adding the requisiie multiple of the general mean. Thus in the above
example : dosono: 42.73 + 37.7o + 4o.+3 - 4r.27 - 4r.o4- 37.69 + 4o.o4-- 4o.9o,
42.73 being I of. 256.4 and 4t.27 being r's of J42.8, etc.

The correcting-lermg- for the .three-factor interactions are immediately
obtainable from Table 46b by multiplying lWl and [X] by the conversion
factor for r8 plots (here t'") and [Y]' and lZl' by the conversion factor for
9 plots (here $). Since dosono occurs in W, X' Y, and Z, the corrected
value is

dos,,nn:4o.9o + 39.76+ 4o.o7+ lj.rg + 46.7o-4x 4o.o+: +2.46,
the mean of the means of Y' and Z'.being equal to the general mean.

16

Tenlr 48. ANer.ysrs oF vARrANcE.

D'F' t"firtTH**

r95o.38
94.47

ro7.8o
r50. r4
r39.25

zg78'ry

Mean square

30.52
7r .83

9+.22\
4+.29J

295.29

5
a

)
2

+
4
+
4
4

22

53

Blocks
D
s
N
D,,S
D.N
s.N

39o. o8

+7.2+
53 .go
75.o7
34.8r
Z.6t

17.96

17'3r
13.42

o. 146

o. r27

o
o
o
o

6zg*
695*
86r*
477

Unconfounded
Partially confounded

47

Alternatively corrections_ may be .app^lied. to th-e in4ividual plot. yields so

as to eliminate ihe block effects, as in Section 4rf. These are derived from
rable 46b, that ._ii*:i 

1;; i:'_T;;TT'_$:i): _3 06

Similarly that for block Z, is + o.76, and consequently the adjusted yield of
dosnno is (from Table 45)

ro orevent the accu","dl,:? :;,';""1.;7"i)":"#Il;iritate checking it is best
to ritain an additional figure in this calculation, as shown. When the whole
table is required the com[utation_ can be shortened in various ways, the details
of which riray be left to the reader.

The standard errors of the various differences can be obtained by considering
which of the interaction effects W, X, Y and Z ate involved, remembering that
each difference is made up of the sum of 9 csmponents' representing main

e*ects, and two- and three-factor interactions. Thus df,rn, and dosono occur
i" ttr"'r"-e Z set, but in different W, X, and Y sets. The relative information
;; t is ;, and consequently the variance as ordinarily calculated must be

increased in the ratio
(8 .++ r . 3) : r- ro :9.

Similarly d..,snnn and dnsono occur in different W, X, Y. and Z sets, so that
;h;;;;d";e of th.ir ditrerinie must be increased in the ratio r r : 9. Had there
6.L"1o"i t.plications, with fr information on W, X, Y and Z, the ratios would
have been rb :9 and 3r :27 respectively.

The calculation of separate components of the three-factor interactions is

discussed in the next section.

qod. 3 x 3 x 3 x 3 designs in blocks of g plots.

Designs with four factors (but not more) at three levels can be arranged

i" Ufo"tr ?f g ptotr in a similat *an.r"r to desighs with three factors, co.nfounding

;;il-;h;".1-httot: interactions. Consequendy, if 8r plots-are available,.the
p"r'.iUiti,v of i".t"ai"g an additional factor ihould always be borne in mind,
5in"g; ;hiJ ;"i1. no l&s of accuracy owing to increase iir block size and little
aaaiiio"at complication in the comfutatiois.

There arc 32 degrees of freedom for three-factor interactions. These can

Ue aiviaea in viriouJways into 4 groups of 8 degrees of freedom each, in such

u *utt.t that each gto"i, of 8 defirees of freedo:ilr is-given by the contrasts of
o sets of q treatment Somdinations. " One such group ofiets is shown in Table 49-

i" iitir iiUilh; ;;uinations of the third andTour^th factors are also represented

fi ;ii; n.r-U.r. ilq. thrs the fourth combination of the second set- of the

niJ;;;i;;-ft"r tt(. tt,t*b.t 47, which represents the combination anbrcndr'
The iablti is"used in an exactly' .similar manner to Table 43'

The analysis of variance follows the same lines as that.of the 3 x 3 x 
.3

desien. ln experirne"ir *tttt a single replication, however, it is.scarcely worth

whili computing every item of the analysis of variance seParately' 'l'he sums
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of squares for the main effects and two-factor interactions rnav be calculated
from two-way tables in the ordinary manner. The three-factor interactions
between any set of three factors which are iudged to be of interest mav also
be eliminated from the estimate of error if desired] A pair of degrees of freedom
out of any such set of 8 is confounded with blocks.

4S

quasi-Latin sqlralgs, only three-factor interactions being confounded.
Arrangementp of this type are shown in Tables 5o and 5r. Roils and columns
must be randomized as usual. Partial confoundlng cou-ld be adopted in the 3s
{e^sign but is scarcely worth while in a single iqnare, since i the relatiie
information must be sacrificed on two of the pairs of degrees of freedom.

Tenr,n 49.
Combination of
first and seqond

factors

oo
IO
20
OI
II
2T
02
T2
aa

oo
IO
20
OI
ri
2r
o2
r2
at

Confounded degrees
of freedom

Snr or 3l orsrcxs coNFouNDING THREE-FAoroR INTERAcTIoNs.

Combination of third and fourth factors

II

A.B.C (X), A.B.D (Z)
A.C.D (W), B.C.D (Y)

IV

t
t

I
2

J
+
5
6

8

9

I
?

J
4
5
6

7
8

9

t95627843
95 r27643 8

5r9762384843 r g56z7
43 895 r 276
38 4Sr9762627843r95
z 7 6 4 3 8 9 5 r
7 6 z 3 8 4 5 r g

Tenlr 50. 3 x 3 x 3 DEsrcN rN A 9 x 9 euAsr-LerrN seuARE.

Confounded degrees of freedom : rows, Y; columns, W (Table g),

Terr,n 5r. 3a nnsrcN rN A 9 x 9 euAsr-LArrN seuARE.

ro zr 32 4t 52 6o 72 8o 9rzr 32 ro 52 6o +t 91 72 8o
32rozr6o+rSz8oq:72
42 61 50 92 81 7o 30 rr 22
50 42 6t 70 gz 8r rr 22 306t 50 42 81 70 gz 22 30 rr
7r go 8z rz 3r zo 40 6z 5r8z 7r go zo rz 31 6z Sr 40
90 8z 71 31 20 12 5r +o 6z

rr293548S+$768297
z8 34 13 56 6z +7 8r gg js
36 t2 27 61 49 55 98 7+ 83
455r69n88g+17z632
53 68 44 87 96 72 25 3r rg
674652957189n182+
79 85 9r r+ 23 38 42 57 66
84%782237165965+r
92778639152164$58

roe. 3" md 3a designs in quasi-Latin squmes.
It follows from. the arrangements already given for confounding in

randomized blocks, that both 3t and 3a designs-can be arranged in 9 " 9

. Confounded degrees of freedom : rows, II ; columns, IV (Table 49).

rcf. Extmsion to 3" ,in blochs of 3"-t or j"-r.
If in TabL 43 we replace each level the third factor by a set of three

combinations of a third and a fourth factors, such that, in the previous notation,
| 9_: r + 5+ 9, r: 2+ 6+ 7,2:3+ 4+ 8 (the ,I sets), then the contrast of W,
I W, and W", etc., will represent a pair of degrees of freedom from the four-
t factor interactions A.B.C.D. If the -| sets are used, then another pair of degrees

I of freedom will be obtained. Thus i[ tfr. 16 degrees of freedom witt l" obti'ined
in pairs. We are consequently provided with a set of designs for confounding
a 3a design in blocks o{ z7 piots.- " Td?ro".r. ;t b" "ftiti"""a indefinitely, and a similar process may be
appligd to the 3a designs in blocks of 9 plots to give 3o designs in blocks.of
z7 plots, etc.

rr. THa sugolvrsloN oF sETS oF DEGREEs oF FREEDoM.

rra. Subdioision of main effects. '

' If the respoirs" to a feiiilizer is proportional to the amount of the fertilizer
present, i.e. ifihe response curve is a striight line, and if the fertilizer is applied
at three levels, equally spaced, the response per unit dressing will be estimated

r86537942
86r375+zg
6t875329+
537942186
37 S 4zg 8 6 r
75329+618
9 42 t 8 6 5 3 7
+2986r375zg4618753

Confounded degrees
of freedom

A.B.C (Z), A.B.D (W)
A.C.D (X), B.C.D (W)

A.B.C (y), A.B.D (X)
A.C.D (y), B.C.D (Z)

If the totals of the blocks o{ any grouping (taken in the order shown) are
arra-nge.d in a two-way_taplg in the siandard or?er (Table 4o), then the column
totals give the confounded degrees of freedom from il.C.D, the row totals A.C.D,
the ,I totals A.B.D, and the j totals A.B.c. The actual pairs confounded are
B1ve.n in Table 49; t!r_"y ggl a_199_ be gaqily identified bj, determining which
of the sets of totals, Vn, lxf, [Y] or lZl,-for the factori concerned iontains
whole blocks in each total instead of three.plots from each block. If no three-
factor interactions are eliminated there will-be 4o degrees of freedom for error ;if all are eliminated there will be 16 degrees of'freedlom for error.

I

r5983+672
5 9 r 3 4 8 7 z6gtS483z67
672t 5983 +
7 z 6 5 9 r 3 + 8
267915483
83 467zrSg
3+87z6Sgr
4832679r5
A.B.C (W), A.B.D (Y)
A.C.D (Z), B.C.D (X)

III
r68924573
68 rz+973 58 r 6 4gz 3 5 7
92+573168z+973568r
+92357 8r 6
57 3 r 68 gz+
73568r2+g
3578r6492



from the difference of the two extreme values. Moreover in such a case the
yield of the central dressing will be equal to the mean of the yieldq of the two
6xtreme dressings, except f& experim"htul 

"ttot, 
and consequeirtly the observed

difference of these two quantiti-es may therefore be taken as a measure of the
curvature of the response curve.-- 

W";;y l["; d-ivide the two degrees of freedom for a fertilizer, n say, at I
three levels'into two single degrees of freedom, ole representing the average u

or l:inear component of the response and the other the curvature. These 
Tquantities may be denoted by N'and N", defined as

N': flz-no
N":llz-znr+no

M is therefore the response to the double dressing, and N" the difference between
the responses to the second and to the first dressing.* _.

The sums of squares corresponding to N' and N" ate given by

* [N']' and fi [N']'
respectively (6: 12 + 22 + r'), where z is the number of plots contributing to

lnol, etc. The standard errors are nQiand lffi. times the standard error of
i iingle plot. The two degrees of freedom are orthogonal,_ and consequently
the tivo iums of squares tolal to the sum of squares for the two degrees of
freedom.

If the response is substantially linear over t_he rynge investigated.ttre sum
of squares for N' will be much greiter than that for N", and it may well be that
M ittains, significance although the sum of squares for !1e two d-egrees of
freedom fails"to do so, owing t6 the diluting effedt of N". The test of ff' alone
is always legitimate, and should be made when the two degrees lggether fail to
attain significance and inspection of the results indicates_that M may do so.
The expirimenter who confines his attention to the two. degrees together is in
fact peiralizing himself by the. very act of including. in the. experiment the
intermediate level. In practice it is not necessary to calculate the separate sums
of squares, since both N' and N" can be immediately tested by the / test, using
the final summary of results.

Thus in the example just given the mean square for sowings,41.24Q 4.ft), t
is only just significant af the-5 % point, byt f!r9 majgr portion, 84.33, of the t
corresponding ium of squares, 94.47, is attributable to the linear component D', I
which- is thui clearly significant. The actual difference D' is - 3.06 cwt. per I
acre, and its standard er-ror is + r.22, giving t:2.5t, On the other hand the
curvature D", which has a value - I.S4 cwt. per acre, and a standard grror of
+ 2.rr, does not approach significance. The corresponding sum of squares is
ro.r5, giving the correct total.

TIi-e reider will find it instructive to examine the response curves for spacing
and nitrogen in a similar manner. Although allthe curvatures are in the direction
that miglit be expected no one of them is- significant. This illustrates the high
precision that is hecessary to determine the curvature of the response curve at
all accurately.

6l

Similar divisions can be made when other types of treatment are involved.
Thus in the experiment given in Table 4r the two degrees of freedom for 1933
and 1935 treatments might be divided into two single degrees of freedom, one
representing the response to fertilizers, i.e. the rnean of artificials and compost,
and the other the difference between artificials and compost.- Note, however,
that if the single degrees of freedom were chosen to represent the response to
artificials and the response to compost, these would not be orthogonal, and
consequently the correspond{lg sums of sq}rares, although each would in itself
give rise tn a z test of significance identical with the I test, would not add up
to the total sum of squares for this set of treatments. There is no reason why
the separate comparisons considered should always correspond to orthogonal
degrees of freedom, but this will most frequently be the case in well designed
experiments.

Sets of three or more degrees of freedom can be divided in a similar manner.
There are many possible alternatives, which we haye not the space to discuss
here. The point to remember about all such subdivisions is that to be useful
they must correspond to some reasonable simplification of the treatment effects,
e.g. that forms o-f'nitrogen are equivalent, that the response curve to a fertilizer
can be reasonably represented by a straight line, or a second degree curve, etc.
Whether such simplifications are in fact contradicted by the data can then be
rigorously tested.

tfi. Subdioision of interactions.

Coiresponding to any given subdivision of the deg_r,ees. of fr-eedom for the
main effects of a fattor, there exists a corresponding subdivision of the associated
interaction degrees of freedom. Thus in the previous example the four degrees
of freedom for the interactions between sowing dates and spacings may be
subdivided into the interaction of the linear responses D'.S', the interactions
of each linear response with the other curvature, Du.S' and D'.S_', and the inter-
action of the two curvatures, D'.5'. D' .S', for example, indicates the linear
component in the change, as s varies, of the linear response to d, or alternatively
tosasdvaries.

The quantitative expressions for these interactions present no _difficulty.
Thus the linear responselo d al the level sn of s is drsn - dnsn and that at the
level s, is drs, - dos". The difference of these

d"sr-dos"- drsn+ dnso

gives the change in the linear response to d. Following our previous practice,
we shall introduce the factor $, so that symbolically

D'.5' : +(d., - d.,) (s, - sn)

60

Equally
DU. S'
D'. S'
D": S''

= *(d, -: +(d., -: +(d., -
zd, + do) (s, - so)
dn) (s, - zs, + so)
zd, i d) (s, - zs, + so)

*These quantities are represented by Nr,and Na Fishef's Design of Experiments. In view of the s'ide use of
suffiies to indicate ievels of a iactor, however, we have thought it better to use dashes.

The multipliers of the yield totals and the divisors required.to give the
sums of squards in the analysis of variance are given in tabular-form in Table 52,



Tenlr 52.
A"B'

bo bt
A"B'

bo bt
A',8'

bo br
A',BO

bo b,bz bz

E2

Expnnssrons FoR rNTERAcrroNs oF A 3 x 3 TABLE.

63

The computer must learn to read negative numbers directly from the machine.
A second application of the same process to the rows of (r) gives the required

quantities (z) in the order shown.

rrd. General retnarks.
The method used in the above example is perfectly general, and can be

used to subdivide the interactions in any manner corresponding to that adopted
for the main effects. If the main effects are orthogonally divided then the
interactiqns will also be orthogonally divided. Moreover there is no need to
subdivide into single degrees of freedom. Thus if the factor a represents three
varieties and b thiee lev"els of a f.eftilizer, we may subdivide intd two pairs oi
degrees of freedom A.B' and A.B" : the former will be given by the differences
beiween the linear responses of the three varieties, the latter by the differences
between the curvatures.

Subdivision of interaction degrees of freedom is useful, in the same manner
as was the subdivision of main effects, for throwing into prominence effects
which might otherwise escape notice. In the interaction of two fertilizers, fo_r

example, we should expect- the component A'.8' to -be large compared with
the remaining componeits, but if the-four degrees of freedom_ are jointly tested
its significance.might be obscured. Subdivisiol js also useful when estimating
the eiior from interactions, since we may reasonably expect interactions inVolving
a component of curvature to be small even in cases where the component,A'.8'
cannot legitimately be included in error. An example of this is provided by a

single replication of a 3 x 3 x 3 design.

:r2, THr 3 x 3 x 3 DESIGN : SINGLE REPLICATIoN.

This particular design is of considerable practifal,importance in agricultural
fertilizer t?ials, for it enibles the optimal levlls of all three standard fertilizers
to be dimultaneously investigated, 

-and is not too large to be undertaken on
ordinary commerciaifarms. We will therefore analyse the first replication of the
sugar b6et experiment already given, treating it as ifitwere the whole experiment.

rza. Systematic method. of analysis
Sinte experiments of this iype are usually undertaken simultaneously at

a number of 
'centres, it is advisible to adhere- to some systematic method of

analysis and presentation of the results. In practice it hai been found best in
f.ertilizer triais to present the response to tfie double dressing of each factor
(the linear respons6), the differenc6 of_the additional response to the second and
ih" t".ponr. 'to th6' first dressing (the curvaturg), a!d. the linear component
of interaction of each pair of factors, together with their standard errors.

The calculations oroceed as follows:
r. Calculate the^total sum of squares and the correction for the niean,

obtaining the block totals at the same time
z. "Set out the yields as in Table 45, and calculate_th_e_ fiy_e__tw-o_--1vay tables

similar to those of Table 46a, .and th'ence the totals lwl, lxl, lYl and [Z].
The block totals check one bf ihese sets, here [Y]. Tlie table for d and s and
the interaction totals are shown in Table 55.

ba

Ao
Ar
a2

*r
-a
*r

-z

bz

*r
-a

*r
+4
-2

Divisor

z being the
the divisors
one-half the
to give the

rrc. Example.

$nptyilg the above multioliers to the d and s table of the previous example,
we obfain th-e results of Tabli 53.

Tnnlr 53. Nuunnrcer. vALuEs oF rNTERAcrroNs.
Total
.5 *.r7.9.9 i3r.r.9 t3r. r
-r *SS.8

Terlr 54. OF MAIN EFFBCTS AND INTERACTIONS OF A3x3TABLE. ./
Key(z)

Interaction
D'.5'
DO,S'
D'.5'
D"S'

cwt. per acre Sum of squares
27.og
+6.s6
z8.oo
37.58

+25
+57
-44
-90

+2.t2
*r.6r
- r.25
- o.83

tr.
to.
*o.
to.

48
86
86

5o

., A systematic method of-arriving at thB above totals, 
"rra "r.j?ii',orur. ,o,the corresponding main effects, is shown in Table 54. In the first three

738.8 n8.7
- 38.6 - 3.4
- 55.o +19.o

ConnputerroN
(')

684.8
- 13.I
+2.9

z16z.3 -54.o -53
- 55.r +25.5 - 44
- 33.r +57.9 - go

Total S' 
^S"D' D'.5' D'.SO

D' DO.S' DO.S'

8

9
I

columns (r).the first,line.represents the totals of the three columns so, sl, sz,of the d and s table.(T1ble 4.0;, the second line the differences ,t, J-a""iir'each
columns, and the thiid line thii quantity d, - zd., + i"- to, each 6olunin-- Each
number need only be written on the maciitre oi"", t'h" ."q""".. u.i"g,

+zt7.8
- 256'+ 

- 38.6

- 55.o

4x 2
6x z

+256.
- z6+.

o
o
o

+I
o

-I

-I
o

fr

o
o
o

_I
+2
-I

*r
-2
+I

-I
o

*r
-I

o
*r

+2
o

-a

+264.6 x 3

738.8



Tenr,e 55. cer,cur,erroN oF MArN EFFEcrs AND rNTERAcrroNs.
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- 5. Calculate the totals for the linear clmponents of the interactions from
the cross differences of the corner values of th-e two-way tables, entering these
in Table 57. Thus r4+.o+ 115.6 - rz3.r - t42.8: -it.r. bivid" tfie sum
of squares by n and enter in Table 58. Thi.s calculatio'n must be carefully
checked.

6.. Calculate the error sum of squares by subtraction, and complete Table 58.
Enter the standard errors of the totals in Table 57, e.g. ftS-;rr{g -- r4.4.
Then convert the values of Table 57 to the proper irnits." Here the ."o"n"rcioh
factor fol the linear responses and-the curvatures is $, and for the interactions
is $, since the yields of the single plots are 

-alr.eady in cwt. per acre.
This completes the analysis. Tests of significance cair be made in the

ordinary manner by the I test. The linear responses to change of sowing date and
nitrogen are significant but that to spacing is barely so. The error mein square
rr.5g agrees well with that already found from the analysis of the rihole
experiment.

Izb. Alternatioe method.

An alternative method of analysis is to obtain all the main effects and two-
factor interactions as single degrees of freedom by the procedure illustrated in
Table S+. It will be noticed that each component of the main effects appears
in two-tlbles. The computation can therefore be slightly abbreviated 6y the
omission of one set of main effects from each table. The total of each 3 x 3
table should, however, be checked.

If this procedure is adopted there is no need to compute the sums of squares
for the 1r'3 tables shown^in Table 56. The final dnalysis of varianci will
appear irithe"form shown in Table 59, tfie whole computatiori being self.-checking.
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t,)
$o .tr S2

do r44.o r45.2 r42.8 432.o
d.r r29.r +rdz

r43.3
rz8. r

i3g. r
r37.5 r15.6 I.2

W X Y Z

4o2 6 4o3.5 43g+r5.3 +25
'9
.8

+20.3
397.4

r.5 396

. . 3. -calculate the total sum of squares for each of the first threetables., obtaining one set of marginal tdtah f";;;"h;i iii"r" tabres in the

ll*:'i?:1il,:Til'.Lo#f : 
jTJ#g;","$?"i;'1"'T jffi ;rxfi :i:r?i:

Terr,n 57
Totals

Curvature

38

tr.6 *2.8

cwt. per acre
Linear

resPonse UurvaturG
Interactions

cwt. per acre
Factors

St. error
Divisor

Sum of squares

4r5.03
30\'l?

5
6425 405.9 359.o 407.o

two-way
process,

These

Tanr,n 56. Auxrr,rlny rABLE oF suMs oF seuAREs.

D, ^9 and- 4.,S z6z.o5 S, ny' and S..l/ z5o.gzD, N and D.N n3.ig ti,, x-iiaZ 90.36

. 4' -Calculate 
the totals for the linear responses and curvatures from themain-effect totals, and at the same iir"";fi"k1'il;Iil lf .u"h set of main_effecttotals. The method of section r rc may p;;;; *"r 3gr.z,- 432.0: - 5o.g.3,8r.2.-r 432.0-2x^+rr.s: -9,8, and'trr" i"i"i (;hih need not be writtendown) : rz2!.7.. .Eriterihe u6l.,L, "*"i""a-i" T;bb;. --Th.;;f."tr," 

..r*ot squares of the linear rglqql'e totals, dividing lv is,'""a the sum of squaresof the curvature totals, dividing by-s+, and ef;tei il'TdT.:;.o'"' ur sq,

MerN rmecrs AND INTERAcTIoNs.

Factor Linear
respohse Total

D
s
N

Terr,n 59. ANel-vsrs oF VARIANcE, ALTERNATIyE METHoD.

D.F. Sum of squares Mean squarg- II
-t9
+13

- I.9
- 3.2
+2.3

iz.o

.t

+
8

Blocks
Linear responses ,. ,:
Curvatures . .

Interactions: Linear x linear
Linear x curv.
Curv. x curv.
W' X, and Z

z
J
J
J
6

3
6

z6

4r5 .03
3ot,12
5r'42
57.87
68. 19
t5.22
90.36

2o7 . 52

r73.77 rr.59

St. error
Divisor

*t+.4
r8

*25. o
5+

* rr.8
t2

)Tenu 58. Amrysrs oF vARrANcE.

If the sum of squares for blocks and those of rable 56, less the sums ofsquares for the linear responses and curvatures, add up to the total sum ofsquares, the whole compuiation up to tt i. f"i"i ;;t # ,"guidla u* 
-"i""t.a.

rzc. The linear component of the three-factor interaction.

The linear component of the three:factor interacton in 3 x 3 x 3 experiments
has a certain interest, both because it is more likely to be of appreciable magnitude
than any other component, and also because it represents tle correcttr.tg term
to the estirnate of ihe combined responses to thA highest levels of all three
factors given by the sum of the three linear components of the main effects
(Section ze).*

Total 999.23

*There are ilso other correcting terms in the 3 x 3 x 3 system, but these are likely to be emall'

Blocks
Linear r$ponses
uurvatures . .

Linear interactions
Other interactions (error)

Total

D.F
2

J
J
3

r5

z6

r73.79

999.23

Mean square
207 .52

II.59

5r
5/

+2
87

8

9
4

-50
-27
+45

-+o
8

7
o

-9
32

- 5.6
-3.r
+5.o

- I.I
- +.5
- 3.6

D',5'
D'.N'
,S'.N'
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At.first sight its estimation in confounded experiments appears complicated.There is, however, no great difficulty, for we hlave trc la"iiiiv
l-A'.8'.C'f: + { lW,l-lW,l+ [x,]_[X,]+ [y"]_[y,]+ lZ"l_V,l],

as is easilv verified-_fro-m Table 43, or numerically from Tables a5 ini aob,ignoring the confounding. 'r'
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confounding the €rror variance would !" ,to (8) o' 
= 

Eo' . - Consequently * of the
relative information is retained but, of course, only on the assumption" that the
other components are negligible.

The sum of squares attributable to the corresponding single degree of
freedom is given by- g t+ (+ 5.g)l':u'n (+ s.g)':o.64
This can be deducted from the sum.of. squares for error .in Table 58, leaving
14 degrees of freedom for error. Clearly in a series of experiments this"deductron
should be either made or not made consistently.: .it is.not permissible to perform
the deduction only when the error is reduced thereby.

The following alternative series of expressions (for a single replication,
Y confounded) may be noted. If

or A': lA' .B' .C'l + *[Y'] - + [Yr]

then s8: I W .B' .c'l+ [Y'] - [Y"]

A, .B' .C,: tQ:* bg)
The error variance of this estimate is

3n'
and the sum of squares is

*8': i" GQ)'

.The above expressio.ns are. worth careful study. The total lA' .B' :C'f , which
would form the basis of the estimate in an unconfounded experiment, is corrected
by the requisite fractions of the block totals [Yr] and [Yr] to eliminate block
eflects, giving p. The fractional multipliers can then all be written down, if
the relative information, here fi, is known, by multiplying the fractions thai
would be used in an unconfounded experiment by the recipiocal of this relative
information. Thus *:*, +, &:* * t^and S:+ I *. Noie how Sg is used in
place of p in the actual computation.

This method of adjustment by means of block totals forms the basis of the
analytical methods applicable to confounded designs involving factors at both
two and three levels, which are described in the following sections.

13. 'CoNrouNDrNG wITH soME FAcroRS AT Two AND soME AT THREE LEvBLs.

Experiments containing factors at both two and three levels cannot be so
simply confounded as those containing factors at two or at three levels only,
because it is impossible to divide the treatment'combinations into sets which
correspond to ttie highest order interactions. The best designs are those which
confine the confounding as much as possible to the highest order interactions.
These designs necessarily involve the partial confounding of the more important
interactionJaho, the confounded degrie or degrees offreedom in anyrepiication
being divided between different sets of treatment degrees of freedom. The
fraction of the information sacrificed on the more important interaction is,
however, quite small.

In

Table
of over
Zarc partially

and mustplots
confounding
our example

If one
confounded
the linear

lw, - lY,
with a

all
we

[D'.S'.N'] : *{6g+.6.- 715.6 + 72t.7

and the error variance is 
+ z(4o7'o - 397'4)j

a*ir8+ 18+ 18+ r8 + z"(g+ 9+ g+ g)jn, : 24a2.
consequently, in units of a single plot yield, here cwt. per acre,

D'.5'.N': * (+ o.3):+ o.o4 X z.z4
since there are two replications, so that [D'.s'.M] would be the difference of twosumg oj.8 plots each-if there were no confounding. tt. ."L";;[;;y b;reached (more laboriously) by using the table or a?i,rsieavilt.j! is."ti#"i"a.If there were no confounding the error variance of ya'.B,.-c,l would be
+,{8 . 18) '2 : t6,' s.o that 

^g 
of ihe relative inr"-""ti"" i;';#t.""?wirhall componeqts equally confounded f of thg relative inforrnaii"" *r"ia U"retained.)

- 7zr.z + z(3r7.8 - y6.7)
:+O.3

A' .B' .C' : + {lw,l - lW,l + [X,] _ [X, ] + lZ ul _ lZ,l],
the additional factor .a, being introduced to compensate for the omission of oneof the four estimates, togetlier with a further fudtoi-t io i"; a;.C.Ci""Lr*,
of a single plot yield. ffence

D, .5, .N,: |JSO6.S, _ 4c,2.9: 4o1,g_ 4o3.5 + 4o7.o _ 3g7.4j: l(+ 5.9):+ o.66
The error variance of. A'.B,.C, is now given by

"lt 
(6 * g) o' : ?n'

so that the standard error of the estimate is here t 2.7g. If there were no



r3a. Statistical analysis of 3" zx z design.
Denote the three factors by A(o, t, z), B(o, r), C(o, r). Since 4 is not

a factor of 6 it is clear that th-e interaction B.C cannot'be completely uncon-
founded if the experiment is arranged in blocks of 6 plots. The design of
Table 6o confounds B.C as little as"possible.

68

Designs of thi,s type are not quite so simple to analyse as designs of the
2n or 3" types. The designs musC be balanced, and theiefore the number of
replications used must be some multiple of the number required for a balanced
arrangement. The computation is similar for all the diflerent patterns. An
examp_le is given for the 3 x z x z design, which will illustrate the use of the
formula.

ab c

Tenlr 6o. 3xzx 2 DEsrcN rN BLocKs or 6 pr,ors.

la Ib
abc

IIa IIb IIIa
ab cabc ab c

IIIb
abc

ooI
oro
roo
III
200
2tr

oor
oro
IOI
IIO
zoo
2'I

ooo
OII
roo
III
zor
2IO

oor
oro
roo
III
20r
2ro

ooo
OII
IOI
IIO
200
2TI

ooo
OII
IOI
IIq
20r
2- r o \'

The interactions B.C and A.B.C are partially confounded with block
differences in each replication, since the actuil degrLe of freedom confounded
lacks_orthogonality with both these sets. In each"replication the confounding
is different, the three replications giving a balanced design which enables thE
treatment degrees of freedom B.C {nd A.B.C to be estirnaied without difficulty.

r3b. 
-statistical analysis of 3, zx z design. r

Since the interaction B.C is partially confounded it is necessary to correct
the ordinary interaction total tB.C] by means of the block totals lli),llbf,, etc.
If

[Ib) - Va): e,, lIIb] - lllal: sz, IIII\) - lIIIal: 8o,
and if we calculate

lQ: SIB.C + g, I g.zt gu
it can easily be verified that Q is unaffected by block differepces or treatment
effects other than B.C.

The estimate of B.C in units of the yield of a single plot is given by
B.c: # A: a% (lg)

when there are 36 plots. The error variance of B.C is $a2. Note that in an
unconfounded experiment the estimate and error variance would b" * lB.Cl
and 3oz. The corresponding sum of squares is

.iu?': u*t (sQ)'
as compared with #.[B.C]' in an unconfounded experiment. The relative
information is given by the ratio 

, /.1 _ eTlE_ S

59

Thus $ of the information is lost by the confounding when there is no reduction
t" t\fi'::dffie"Tr%d3t, 

obtained in a similar inanner. carculate the
three quantities 

3Ro: 3 rB.c.aur - gt* gz+ gs

3R, : 3lB.C.arl* 8' - gz+ gs

3R, : 3lB.C.a,l+ gr+ g, - gs

with the check that 3Ro + 3R' + 3R, : 38.
The interaction-A.B.C; in units of a-single plot yield, is given by

A.B.C: 136 dev (Ro, R' Rr): rb dev (3Ro, 3Rr, 3Rr)
as compared with I lB.C.ao], etc., in an unconfounded experiment.. The error
varianc'eapplicable"to each"of these quantities is {c2, as compared with $ o'z.

The sum bT squares is given by
u%-^ d"rr' (&, R, Rr): 616 dev2 (3Ro, 3Rr, 3Rr)

The relative information is given bgr;T 
Uratio

and the relative loss of information- on each of the two degrees of freedom is
therefore $.. Note that r x g_ + z x $: t
corresponding to the single degree'of freedom confounded in each replication.
This is a property of balanced arrangements.

The rtad'et *itt find it instructivJto construct the above formulre by means

of the rule given at the end of the last section, using only the fractions representing
the relative information.

r3c. Example.- " ' The pian and vields of the experiment on potatoes already referred to in
Section git 1t105 aire plots) are given in Table 6r.

Tenlr 6r. Pr-eN eNn YIELDs (Ln.) or 3*,*-?ExPERIMENT'
la Ib IIa

n2
172

n"P
r6r

nr?
23r

no noffiP
zo8fi6

n2mp
r44

nolf,
r92

nt
r45

nzP
20.+

nomp ntlm n2
to+253 r90

ntm nzt l no nr?
13I23t 2r+ I13

ntm nom nt nffip
17r48 r98 r58

noP
r8o

n2 nz!
r35r75

n2mp nrp
zt6230

nffip
227

nrtnp
232

nt
ry6

n2I'n
r86

no
r32

ntn p
2+2

nomp

ry6
nz?
r78

IIIa IIIb IIb
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Using the results already obtained in Table 3g we have

3Q:
3Ro:
3R, :
3R,:

-6t
+63
_I I3
- rr

3(
3(
3(
3(

)+ r7o - 6+ n7: +ro8
)- r7o - 6+ n7: +r4o
)+ r7o+ 6+ n7:16
)+t7o-6-n7:+4

!.U_=_+z.z|: +o.o7 tons per acre.
P.M.N: +ro.{, - 7.2, - 3.C: +o.3o, - o,zo, - o.ro tons per acre..

The sums of squar6s ar'e :-
D.F. Sum of squares Mean squareP.M t 4o.5 4o.5P.M.N z "W.1 r+r.g

, Repla.cing the values already given in t'able 39 by thele,'we can complete
the analysis as shown in Table 

-6zl

Teslr 62. ANer.ysrs oF vARTANcE oF 3 x. 2 x 2 EXrERTMENT.

D.F
Blocks
Treatments
Error :.

5
II

68
n2

55

64

92
4
5

4
5

5.II
6.3 t

r+
89

4
5

Sum of squares
2+%8.9
z63oz.r
QQ.8

(') p

Mean square
2ot7.o

"39r.r33+.9r9

nt
(')
,n

5.or 5.7r 5.12

(r) +.7o 5.50 4.82p 5.32 S.9r S.4r

Total

. Two two-way tables will be required to show the interactions between p and, n
and' tn and n. Slnce these interactions are not affected by the confoundlng the
tables can be obtain^ed directly from Table 38 in the manher already a"sci?U"6.
If 1,,*:-yag tlple for p.and'm is also t:dil._d it 

"qq 
r..i U" U"ttt ;tbtG

method of Section 3, using the value of. P.M calculated above. Th6se ihree
tables are given in Table 53.

Tenla 63. Two-recroR TABLES, ToNs pER AcRE.

no

+.$ 4.88
5 .61 6.zz

5'or 5.55 ,a\

5 'or
5.55

Since no one of the interactions between two factors is significant it will
s-c.arcely be necessary to give a three-way table to exhibit the interiction. bJ*""r,all three tactors, brtt if one is required the calculation may be carried out intwo stages 3: _ig _the 3 x 3 x 3 e{ample (section roc). Thus, negleciing :thl
interaction N.M.P

;:,.:"##0,;lp*'i.Tfif ;"inuifJ;,#Jl,ffj; jd#i,,.aro*his
interaction must be added to the lines"(r) and, mp ana s,lbttacteJ fro- tft"
lines p and zr, thus ' r

The full setsrof values ^r"":#*:nk'*;e;. 
u'"

6l

Tenlr 64. THnnn-mcroR TABLE, ToNs pER AcRE.

(a) Neglecting N.M.P (b) Including N.M,P
no nt n2no nt- na

dc
b

cd
dc

b d
(') b

b (')
d

(')
p
m

mI)

87

42
5+
23

9+
z8
o6

54

+
5
6
6

3
4
5
6

+.o2 +.8+ +.37
4.27 5.38 4.99
5.39 6.16 S.26
6.18 6.44 S.8z

(')
p
n
nt!

+2
9+
2T
87

+
+
5

5

nd. 3x zx 2x 2 design in blocks of 6 plo*.
With three factors at two levels (but not with more) there is an arrangement

in blocks of 6 plots similar to that with two factors at two levels, only $ of the
relative informltion on the interactions between pairs of factors at iwo levels
being sacrificed. 7z plots are required to provide a balanced design. The
rz blocks of this design are given in Table 65.

Tenr,e 65. 3xzx 2x z DEsrcN.

Level of a Ia Ib Ic Id IIa IIb IIc IId IIIa IIIb IIIq IIId

Ao

At
ll2

(')
b

b r)
d
c

(')
b

c
(')
d

c c
d

replaced in turn by

(')

3Q
3Ql
3Q"

6(')dc c (') b

In this table only one of the pair of combinations of. b, c and d for each level
of a is shown. When (r) occurs bcd must occur also; similarly cd must
occur with b, bd with c and bc with d. Thus the block Ib contains the trtiat-
ments ao, aobcd, ard, atbc, arc, arbd.

The required formula arc_simple extensions of .th_ose applicable to the
3 x 2 x 'z design. Denote the differences between the block totals in replication I
by g' gr,', and gr", where

e, : llal+ llbl - V'l - Vdl
s,' : llo) - llbl+ [d - lld]
k,": llol - llbl - lI4+ lldl

with similar expressions for replications II and III.
To estimate the interactions C.D, B.D. and B.C, the quantity B must be

The three-factor interactions are obtained in the same way, the formula being
identical with those already given except for the introduction of dashes.

The remainder of the computation proceeds as before, except that all
divisors must be doubled to allow for the increase in the number of plots.

rye. Extension to 3 x z" in blocles of 3, 2"-1 and J x 2n'z'

With blocks of 3 x 2"-r the methods and equations set out for the 3 x 2 x 2
design in blocks of 6 plots are immediately applicable. Take Xt to rePresent

IC.D]
tB.D]
IB.C]

3
3
3

*9, +82*8s
* gr'* gr'* g"'
1 g',." * gr" * gr"
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the treatment cornbinations which ari taken as positive in the interaction between
the n factors at two levels, and Xo th_e combinitions which are taken as negative,
so that with three-factor,s b, c,_and,d at two levels, X, represents thE foui
combinations bcd, b, c, d, and Xo the four combinalions rc, bd, cd, (r\. As
bcfore .ttt*.complete replicationi are necessary, the six bfocks Ueing'those
shown in Table 66.

Tesl,n 66. 3 x 2" DESTGN rN BLOCKS OF 3 x 2r-r PLOTS.

Ia

aoXo
arXz
aaXt

Ib

aoXt
arXo
aaXo

IIa

aoXr
atXo
azXt

aoXo
atXr
azXo

aoXt
atXr
azXo

IIIb

aoXo
atXo
azXt

IIb IIIa

The interaction between all the factors at two levels and the interaction
between these and the factor at three levels, will be partially confounded.
The only. modifi-cation.required in the formula already given is a proportionate
increase in the numerical- divisors to allow for the incriased nntrib.i of plots.

The extension of the 3 x z x z x z design follows exactly the same lines
as the extension of the 3x zx z design, giving blocks of'3x 2n-2. If, for
ellmPle, a fourth factor i at two levels is introd-uced the int6ractions B.C.E,
B.D.E and C.D, and their interactions with A, might be chosen for partiai
confounding. The design is given by writing b andi for b, and (r) and'be f.or
no b, in the 3* zx zx z design. Thus block Ia will contain the plots

aob, aoe, aocd, aobcde, arc, aibce, arbd, arde, a"d, arbde, a2bc, Arce.
It m1y be noted that there is no 3 x 2 x 2 design in a 6 x 6 quasi-Latin

sqyare ylr*tt leaves the main effects completely unconfounded. 
- A design

eiists which partially confounds the interaction- between the two factors at
two levels and the interactions between all_three factors, and in addition slightly
confounds the main effect of one of the factors at two levels. In view oI tht
additional complication in the computations we have omitted this design.

qf.3x3xzdesign.
Denote the three factors by -L@, t, z); B (o, r_, 2),, C (o, r). Since 9 is

not a factor of 6 the interaction A.B cannot be completely unconfounded when
the experiment is arranged in blocks of 6 plots. Uiing i and 7 to indicate the
different diagonal sets of the combinations-of g,and b, is indicited in Table 4o,
we have the following_ design of 36 plots (Table 6fl which partially confoundi
A.B (I) and A.B.C (I).

Tmtn 67. 3 x 3 x 2 DESTGN rN BLOCKS Or 6 pr.OrS.

_l ra lrblt"ll r"lrrblrrc
Co

Ct
I3 It

ll t:l t:Iz
Iz
I1I1

I2
I3

63

The first block, for example, will contain the treatments
arboco, arbrco, e.ubrco, arboci, aobrci, arbrcr.

A similar design, which confounds A.B (1) and A.B.C (}), it obtained by writing
7 instead of 1. If 7e plots are available both designs should be used, so that
ill four degrees of freedom f.or A.B, and also all four for A.B.C, are equally
confounded.

The method of analysis is similar to that applicable to the 3 x z x z design.
To estimate the -I component of A.B when there are 36 plots and the "I components
are confounded the quantity

;Q ,: 2lI'l - Fbl - t/cl - F/bl - lIIc)
and two similar quantities zQ, and zQu may be calculated. The sum of these
is zero.

The relative information is fr, so that, since $ x rlg: $, the estimate of
the interactions is eiven by

e.n (4:-*(9' , Q* Q): t'.(zQ ', zQ,, zQu)
the error variance of each of these quantities being $ o2. The sum of squares
for the two degrees of freedom is

+ s(p'): 
"k 

S(zO)'
The estimates of the confounded components of A.B.C are obtained by

calculating the three quantities
2R'L: zll yCl - t/bl + [/c] + [/b] - lllcl

etc.,where (/t.C] denotes the sumof the.I, components in thetable of cr-c,1.
The sum of the three quantities is z[C]. The relative information is 41, so that,
since f * .+: A, the estimate is given by

Note the introductio*rl3Jil; i,:ilf;3$T3f".,o,. is at two revers bnry.
The error variance of each of these quantities is f x -}t' : * o'.
Tfre sum of squares for the two degrees of freedom is
'+ ^ 

+ devzR: |2nev' zR
The formule for the iesign of 36 ptot. which confounds the ] components

of interaction are obtained from the above formule by writing J for I.
If 7z plots are available and both the 1 and ] components are confounded,

then to'esiimate A.B (I) the quantities p are 
-calculited as above, but each

total [] is taken over ihe whole experiment and therefore inciudes 2-4 plots.
The relative information is now fr', sb that the divisor 9 in the above formule
must be replaced by zr. Estimates f.or A.B (7) lt" similarly obtained. Estimates
f.or A.B.C]4 ut" obtained by calculating quintities R as above, bu! th9 relative
information is now g, so that ill the divisors given above must be multiplied by 5.

r3g. 3 x 3 x 3x z design in blochs of 6 plots.

There are four designs, each of ro8 plots (two replications), in which the
interactions of all pairs oT factors at three levels are partially confounded in the
same manner as iir the 3 x 3 x z design in 36 plots. In each of the designs
two degrees of freedom"of ihe interaition 6etieen all three factors at thiee
levels a?e completely confounded. The actual sets of confounded degrees of
freedom are given in Table 68.
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Teg'.n 68. coxrouNo'D DEcREEs oF FREED'M rN 3 x3 x3 xz DBsrcNs.
Design:

1A.B ar.d A.B.D
1A.C and A.C.D
LB.C and B.C.D

.. wr, .. xD " Y"
I

" z"
I
I
I

Partially
confounded

Completely
confounded A.B.C WXYZ

I
JI

JI
J

I
J

Kg
220
oor
tt2

From this table it \Mill be seen that if-all four designs are used (432 plots)
lhe 1. "ld -7 components of all the partially confound8J-i"i.r""tiotr\-'"i"'"or-

"iffiffif 
fl T#tiX,'i?3":io?S"'.'*l j"iin*'lH"o'.h.L',.?i$b'l;.'E?t:;

p F. In additign all components of e.n.C are equaltry confoundJ, the J"ti.r.
information being f.

-, 
If. the z7 combinations of the three-level factors are divided into thetollowing 9 sets of three:

.I(r
ooo
III
222

Kz
roo
2II
o22

Kt
200
OII
r22

K+
oro
12t
2o2

Ks
IIO
aaf

ooz

Ka
2ro
o2t
t02

'Kz
o20
IOI
afa

Ke
r20
20r
ot2

then the first 9 blocks of the (' z " design are those given in Table 69, the
other 9 blocks- being obtained by interch'angrng ;;-;r? ;;.* ' >

Tenr,n 69

Block
Frnst nnpr.rcATroN oF THE 3 x 3 x 3'x2,, Z" DEsIcN

Ia Ib Ic Id Ie If Ig Ih Ii
d"
dt

Kr
Ka

Ka
Ks

Ka
Kt

Kz
Kq

Kq Kg Kz
Ks Kz {{:

.K:
Kz

Kt
Kz

. . The-" W-," "'X" andJ'Y" designs are obtained from the,,Z" design
pY interchanginga, arydav;!_r_3-nd b*aid c, and c, respectivelyinthe expression
for the K's. Thus for " w " we lake .K, to represent the combinatiin ooo,zrr and rz2, etc.

The estimates of the partially confounded effects are obtained in exactlv
the same manner as in.th"-l " 3i z design. Thus to estimate A..B @1"iii'.'t Z " design the quantity

29,: zll,,lA.B- Htl. -[9f- -lk]_ -LrJl_ -gsf- -J]l
- [IIa] - [IIc] - [re] - Frfl - trrdl - pirril

and two similar quantities are calculated.

qh, Extension to 3" x z designs in blochs of 3"-t * z and. 3n-t * z plots,
The designs already given can be extended in the same manner as the

3 x 3-x 3 and 3.x 3-T 3 x 3 designs (Section rol).
. ..Itmaybenotedherethatthereis'noreasonablysimple3 x 3 x 2x z design
in blocks of 6 plots. A design in blocks of rz plotj(and'moie eJnerallv a desiEn
f.or 3 x3x z" in blocks of 1. 3x z"-r plotsi may'be obtain"ed by L*tenafif
S"-r x 3x z design in the-safre manrier as the extension of ttie c i.* 

"design to 3 x z" in blocks of 3 x 2n'r' This design confounds A.B and"A.n.c.D
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only, but there are other designs which sacrifice less information on A.B, at
the expense of confounding A.B.C and A.B.E, and generally increasing the
complications of the computations. We shall not cohsider them here.

r3i. 3 x 3 x z design in a 6x 6 quasi-Latin square.'

It is possible to form a square of which the rows are the blocks of Table 67,
and thus ionfound the .I components of the interactions between the two factors
at three levels,' and the columns are the similar blocks which confound the
] components of these interactions. Only one such square elists (except for
permutations of rows and columns). This square is shown in Table 7o, where
the first figure of each number indicates the combination of the two three-level
factors, and the second figure the level of the factor at two levels.

Tnnr.n 7o. 3x 3x z DEsIcN nI e 6x 6 guesr-LATIN sQUARE.

zo 70 6o +r 31 8r
40 30 8o gr 5r rr
90 50 ro zr 71 6r
71 61 2t 30 8o +o
31 8r +t 50 ro 90
5r rr 91 70 6o 20

The estimates of the confounded interactions are computed in exactly the
same manner as in the 3 x 3 x z design in blocks of 6 plots, using row and
column totals instead of-bloik totals. The relative information on the inter-
actions between the two three-level factors is -fl-, and that on the interactions
of allJhree 

ff.ij,i lili-r; "r" only 8 degrees of freedom for error, lut in view
of the'small am"ount of informalion available on the three-factor interactions
thesc may justifiably be included in the estimate of error, giying-rz-degre-es
of freedoin-in all, except in cases in which these interactions are likely to be
large. This saves an appreciable amount of computation.

r4.. CoNrouNoING wITH oNE oR MoRE FAcroRS AT FouR LEvELs oR ErcHT LEvELs.

r4a. General method.

Since 4 and 8 are powers of z the possible systems of confounding when
one or more factors are at four or eight levels and the remainder are at two
levels can be derived quite simply by the general rule already given for factors
at two levels onlv.'
' With any faiior a at four levels there are associated three degrees of freedom,

which may be partitioned into single degrees of freedom as foflows:
A':ds*a2-d1-ds
A":Q:t-Qz-aL+ao
A"' : dg - az+ aL -'ao

The dashes aie here used in a slightly different sense from those in Section rr.
l" represents the quadratic component of regression, zA' + A"' represents the
lineaf component, and zA"' - A' represents the cubic component. If. A"' is
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confounded and the cubic component is assumed to be negligible then -]l'
gives an estimate of the linear.iomponent of the regression. " "

Using this.partition, A'and A" may be taken as representing the main
effects of two different two-level factors, ih which case A"'- will be iheir inter-
action. A single factor at four levels may thus be formally replaced by two
factors at two levels. In a similar rnanner, a factor at ei[ht ievels miy be
replaced by three factors at two levels.
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In.particular he .1:]1J*,:*S.llr: pg.:bihge_s of arranging combined varietal
and manuring (or cultivation) trials in 8 x 8 L"ti.r-.qliur"..

Thqs, for exampb if- four varieties and three i"]iiliz"r. n. b. k are to be
tested, the.design of Table 3! may be used, identiiving til.=;#binultions of
D and c with the varieties, and a, d and_e. with z, p "ia?;;;;;ilF-. !f. v',
etc. are defined as A' etc. above, and ll i" ideniified *itn Ei ""iV'; with c,
sothat the combinations (t)l &, c, bc of 6 and c are repla;;d by 

"r,'o2,. 
oo, ns

respectivelv'the'"{;il*::Tf 
:i:i|"'rh./,"ir,:,#:i;a'di

With 8 varieties and the three standard fertilizers, variants of the design
of Table 33 may be used. If the combinations of a, b and c are identified wiih
the varieties, and d, e and/ with n, p and A respectively, we shall then have the
following degrees of freedom confounded:
Rows : - tt.N.K, V2.N.P, VB .P.K, V4.N.P.K, Vu .P, vu .K, I/, .N.
Columns : VL.N.P, V2.N.P.K, Vu.K, V4.P.K, V5.N.K, Vu.N, V7.P.
Vr, V,, . V7 being a set of 7 orthogonal varietal degrees of freedom of the
form vr:ar-oz*os-7)+*os-uc+o7-ne
etc., such that VL.V' : V3, etc, A second square can be forrned by making
the cyclical change of varieties :

I h 3r-t 4h 5*+ 2r*$r-t7r-t I,
8 beine left unchanged. The square so forrned will confound an entirely
differerit set of interaitions. A further application of the same cyclical change
will confound a further set different from the first two, but complete balance
will only be obtained by using all the. seven .squares give* 

^by 
repetition of

the above cyclical change, when each interaction degree.,of freedom between
manures dnd varieties will be confounded twice, $ of the relative information
being thirs retained.

The reader who is interested in the structure of these designs will do well
to determine their connection with an orthogonal set of seven 8 x 8_ squares'

..t"h ur that given in The Design of Erypelmetlls (znd editign), or in Statistical
Tobi,lrt for Bi1togical, Medicat dnd Agt-iiultural Risearch. _He may note further
itt"t tfrt pair of-squares proposed iri Section 8c for the-design.in 1z^8 plots is
noi a"tiu'"ble fro#fo,rr uqn*.. of an orthogonal set, and should satisfy himself
as to the reasons for this.-- --Th"t" 

is a set of similar designs for 9 varieties and 9 treatment combinations
in g x q squares. One such squ"are is t6at given in Tibls 5I' the first number
of 6actipair being now taken tb represent_t-he variety. By performing in turn
on the o:riginal square the following interchanges :

(r) z and 3, 4 and 7, 5 and 9, 6 and 8,

(z) 2",6*1*'8*2, +* 5a+7*+g*+4,
(3) z*8*3*,6*2, 4*+9>+7*tl*\t

we generate three new squares. . Balance is attainecl, for the four squares will
betrfreen them equally confound'all components of interaction between treat-
ments and varieti.s, I of the relative information being retained.

r4b. Example : + x 4 designs.

$s an example w^e may consider the design of. a 4 x 4 experiment (factors
a and D) in bloclis of 8 and in blocks of 4 plois.

4 t>< 4 design- is t\e eq_uivalent of. i zn design. With blocks of 8 plots
any single degree of freedom 

-for 
interactions betweEn the four two-level factors

may be confounded. We might, for instance, confound A'.A".8'.8", which is
equivalent to A"'.8"'. This would be the best single degree of freedom to
choose if we wished to.keep the linear and quadratic dompoients of interaction
as free as possible, without resorting to pirtial confouriding. The partition
of the treatment combinations into t6e twb types of sub-bloEk would'then be
given by the + and - signs in the product : - -

A"'.8"' : (t" - ez * a, - ao) (b" - b" + b, - bo).
A better course, however, would be to confound different interactions in
different blocks. ff Jour replicationg ry9fe available, for example, we might
confound A".8", A".8"', A'7'.8' and A"'.8,', once each.

With blocks of four plots three degrees of freedom rvill be confounded in
each replication. With three _replications the nine degrees of freedom repre-
senting interactions between A ind B mav be confounled in three sets. btre
such group of sets is:

A, ,B' A, .8" A, .8"'
A'' .8" A" .BIII A" .8,
At,/.8/// Arrr,B, Arrr.Bil

The partition of the treatment combinations corresponding to the first set, for
instance, is given.by thefour combinations of + and'- signs, + +, + - , -*, - -,in .the two produ cts A' ,B' and A" .8" . The three "sets coirespond io 

".torthogonal se.t of +.x 4^ Latin squares, with the rows and columns iepresenting
the four lcvels of the factors a and b respectively.

A balanced arrangement of this type is particularly useful when one of the
factors represents four different varietie., or other freatments for which all
possjble comparisons are of equal interest, for in such a case the interactions
of A', A" and A"' with B are-all of equal importance.

r4c. Combined aarietal and manuring trials in Latin squares.

,There. is not sp.age h.ere to give a complete enumeration of designs including
all the various combinations of-factors at 2,4 and 8 levels, but wi"th the abovE
example in mind the reader should have no difficulty in constructing the design
he requires from the designs for factors at two levels given in Secti6ns 5 andi.
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- rt rrequentry h"oo.",'1; ilTH :il::ffil: that one or more or the
tactors ts of such a nature that certain treatment combinations are identical.
Thus if one of the factors consists of three different qualities of. a f.ertiliiir and
another consists of three different amounts of the sarire fertilizer (inciuJing no
fertilizer), there will in fact be no difference between tft. aig.i."i q"uiitiJ. ut
zero level of the fertilizer. If the formal factorial design is folloried,-three
id.gntical plots having no fertilizer will be included in eacfr replication. 'There
will consequently be additional degrees of freedom for erior arisinp from
comparisons between identical combinations, and correspondingly fewei treat-
ment de'grees of freedom. The p.artition of'the treatmdnt degiei,s-of lreedom
into their s"eparate components $ill also be different. cr"r""iaittg,-*o*orr"r,
introduces further complication.

There is not sp"ce here to discuss all the modifications that are reouired
in the analysis of variance, if this analysis !e conducted on strictfy rillr;rlil;.,
bu! we will give certain arrangements of this type which will ilhistrate the main
pomts.

. . Possible types of confounding are derivable from the ordinary factorial
desrgns already gitgg, by using dummy treatments where necessafu. other
type.s not so derivable may also occasionally be of interest. For ari 

"*"t"pi"of these latter see (8).

z5a. Application of fertikzer at two different times.
As a first example.let us consider the design of an experiment to determine

the responf- of sugir-lept to. 
^nitroge_n appfiefi at two differentl*"i-i" .o"-junction with early and late lifting "of tni crop.

A z x 2 x 2 dgsign,.with fact6rs z,-time of application, and time of lifting,
might be adopted. This wciuld give ihe treatm6rit combinations

e, e', l, lt, en, en', In, ln'
where the dash indicates the later appl'fation gt_ ", ?\! e and, / indicate early
and late. lifting.-.'The combinations e'ind e', and, I and, 1,, are in realitv ldentical.It is not difficult to see that the appropriate partition of the'degrees offj"94o*, and the estimates of the cott"tpoirding iffects, "t" tr,*" fi*" in
Table 7r.

Terr,r 7r
Effect

Penrrrrox oF DEcREEs oF FREEDoM.

Nitrogen
Time of
T'ime of
N.L
A.L

(N)
application
lifting (Z)

(A)

Estimate

-*(en+ 
en'.+ ly+ ln' - e - e' - I - f)

$(en - en'+ ln - In')
[(en+ cn' - ln - ln'+ e* e' - I - l')
f,(en+ en' - ln - ln' - e - e'+ l+ l')
$(en - en' - ln+ ln')

^._ fl._* "degrees 
of freedom are all or!l-rog91a!, and the sums of squares, plus

lh.. ,r9-:, of square from e - e' and I - l', wtrictr are components of 
"rroq 

hin
total to the sum of squares for the seven degrees of freedom obtained from the
treatment totals by keeping e and e' and / -and /, separate.

If the experiment is arranged in blocks of 4 plot-s the confounding of the
formal three-factor interaction will give the two .block lypes
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e

I'
ent
ln

e'

en
ln'

I

The expression f.or A.L above is-now not _orthogonal with blocks. It may
be replaced by the formal expression for the A.L intertction (with the numerical
factoi changed), namely

tkn - en' - ln + ln'+ e - e' - l+ l')
which is orthogonal with blocks. The function of the plots without_ z is to
act as compensators for any inequalities between blocks. It is clear that with
the same eiror varian"e p.i plot the variance of the estimate of this interaction
will be doubled by the confounding.

There is now one error degree of freedom
e-e'+l-l'

the other being absorbed by the confounding. The reader will do well to set
out the formal" expressions 

-derived 
from the- ordlnary 2 x z x z design for all

the degrees of freedom. He will find that the above error deg-rje- of fr.eedom
is twic"e the difference of the formal expressions for A and N.l, while the
estimate of. A in Table 7r is the sum of these expressions.

r7b. Alternatioe deigns.
It is instructive also to consider alternative designs for the above experiment.

If the nibin interest of the experiment is a comparison of the _effecjs of early and
late application of nitrogen fhe above design hay.be considered unsuitable in
that ohiy one half of th6 plots contribute information on this point. An alter-
native slt of treatments would be

' e, l, en, en', k, k'
one bf each of the duplicates being omitted..

The estimates of the treatment effects ',irill th"r, be those given in Table 72.

Trw.n 72.

Effect
N
A
L
N.L
A,L

PenrrttoN oF DEGREES oF FREEDoM

Estimate
l(en+ en'+ ln+ ln' - ze - zI)
$(en - en'+ ln - ln')-l@n+en'-ln-ln'+e-l)
f,(en+ ei - ln - In' - ze+ zl)
!(en - en' - lu+ ln')

These estimates are orthogonal. Note, however, that if { q"d I interact,
Z as here defined will be differ6nt from the I in the previous design.
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- - Another design including the same treatments is that given bv the z x z x z
design containing f-actorjq n early,. n late, and time of fifting. The treatment
combinations wil-l then be

e, l, en, ln, en', lnt, enxl', lnn'

,.H.T" "g."io 
only half the- plots enter into the comparisons on time of

appltcatton, but orre quarter of the plots receive a double iressing of nitrogen,
thus. giving-an estimate of the curvature of the response curve. Tfie appropr"iate
partition of the degrees of freedom is given in Tible 73.

7l

effect, i.e. the interaction 8.N, will be given by the differences of
2nt8o - fl28o, 2nr8t - flz[t, 2nrQz - flzQz

which are orthogonal to the above differences: (The reader will find it
instruqtive to take some numerical example and check that the sums of squares
for Q and p.l[, calculated from the above expressions, total to the sum of
squares for the 3 x z table less the sum of squares for the flz - ni component
of N.)

Similarly the interactions p.P and Q.N.P will be given by the interactions
of the two 3 x 3 tables containing the values of the above expressions for
all levels of 2.

If the experiment is arranged in blocks of nine plots, the ordinary type of
3 x 3 x 3 confounding being employed, it will be found that both Q.P and Q.N.P,
if calculated as above, will be affected by block differences. The simplest
procedure is to construct the standard .3 " 3 table for q and p, including the
ir**y treatments. eThe quantities in tfiis tible will be ?ree fr6m block efrects,
and consequently the 4 degrees of freedom for interactibns will be compounded
of Q.P, Q.N.P and certain error components. They will therefore serve to
test for interaction between q and p.

We can, however, improve on this procedure by constructing a 3 x 3 table
of the quantities 

furpoQl+ furpogof+ $ so(zo)
etc., or better (if the quality effect is of the type considered above) of the quantities

W, pu qof + 2fu, ?o IJ + $ So(ao) - t S,(ro),
So(zo) being the sum of the zo plots in blocks containing neither nLpoqo nor
nrin(io, and Sr(zo) being the similar sum in blocks containing nzPogo. Both
these sets of quantities are orthogonal to blocks and to the main effects and the
other two-facfor interactions, and there is little loss of information.

It might be thought that the three-factor interaction could be dealt with
in the same way, but unfortunately the analogous expressions are not orthogonal
to the above expressions for p.P, owing to the rro terms. They will, however,
form estimates of the three-factor interaction, thoufh the tests of significance
Q.P and N.Q.P will not be independent, and the eiror sum of squares cannot
5e deduced by subtraction.

The simplest way of obtaining an estimate for error is to include the three-
factor interactions in the error sum of squares. If this is not considered
advisable the analytical procedure appropriate to the ordinary 3 x 3 x 3 design
may be followed,- utilizing dumma irea:tments and omitting ihe 6 additional
degrees of freedom from error.

The above methods of procedure, though not exact, will suffice for most
practical purposes. The reader who is interested in the general problem should
ionsult (,) and (8), where exact methods are evolved for some examples of
this type.

Tarr,n 73.

Effect

PenrrrroN oF DEGREES oF FREEDoM.

Estimate
Response to double dressing (.lf')
Curvature (N")
Time of application (l)
Time of lifting (Z) ..
L.N'
L.N"
L.A

If the formal three-factor interaction is confounded this is equivalent to
confounding L.I!". If the formal two-factor interactions between tirire of tiiiing
and n garfY, and time of lifting and n late, are also confounded in their turn,
each of the three equally frequently, two-thirds the relative information on
!'.I!' , L.N" 74d L,A will- be obtained. The above two-factor interaciions are,
in fact, +(L.N'+ L.A) and $(Z.N' - L.A).

r7c. 3 x 3 x I de$gr including quality differences.
If we wish to. experiment orrr three forms of nitrogen, each form being at

,.hr9" levels, in co{rjunition with three levels of phosphatE, tle ordinary 3 x 3 x 3design will give tliree sets of three identical tr^eatnient combinationsl "

... Th" partr,tion of the treatment degrees of freedom (including dummies)
will therefore be as follows :

N 2 A 2 Q.N.P+P 2 Q.N z Erro, 6
N.P + 9.P 4

N, P-and N.P are estimated in the o?dinary manner from the a x t table for
n and p. 9 ""4 9.N-\ilrill be estimated from the 3 x z table f.or"qo,"q, and qn;
and n1 and n, (zo being omitted).

It may be reasonable to suppose that the differences due to qualitv at the
higher level of n are double thbie at the lower level. If this is ihe 6ase the
efficient estimates of the quality differences in units of the differences at the
lower level of n will be given by f the differences of

meanedoverau,;ti:."f I.o";!;{;r:":;::;"#r:."1{;!:"dtypeof quarity

$(enn'-flnn'-e-l\
$(.enn'+ lnn' - en_-'ln - cn' - ln'+ e+ l)
$(en+ ln - en' - In')
t(*n'.- lnn'+ en - ln* m' - ln'+ e - t)
*(*n' - Inn' - e+ I)
l(enn' - Inn' - en+ ln - en'+ ln'+ e - I)
l(en - In - en'+ In')
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16. AnneNcruENTs wITH spl,rr pr.ors.

t6a. Structure and analysis of split-pht designs.

An experiment of any design may have its plots divided into two or more
parts for subsidiary.treatments. This procedure is of practical utility when
treatments are included which are of such a nature that they necessitaie large
plots, as for example may occur in combined varie'tal and manurial trials, i"n
ivhich it is often inconvenient to use such small plots for the varieties as are
practicable for the. fertilizers.

The use of split-plots in randomized block experiments, however, results
in a loss of informatibn on the whole-plot treatmtnts (with a compensating
gain on the sub-plot_ trea"tments a-nd their interactions with the whole-plot
treatments), compared with the information which would be obtained in an
ordinary factor^ial design using the _same_ sub-plots, even without confounding,
and the use of split-plot designs should therefore nbt be resorted to vi'ithout
good practical reasons unless the effects of the treatments to be associated with
the whole plots are not of primary importance. On the other hand if the use
of an ordinary factorial design would necessitate an arrangement in randomized
blocks, whereas the use of split-plots enables a Latin-square design to be
adoqted for tlre whole-plot treatments, the latter design dbes not necessarily
result in agy loss of efficiency even on the whole-plot comparisons, owing tb
the generally higher efficiency of the Latin square.

The formal analogy between split-plot designs and ordinary confounded
experiments will be immediately apparent. In split-plot designs main effects
are confounded, ilrstead of high-order interactions, . the whole plots being
analogous to the_blocks of an ordinary confounded experiment. Analytically
the iirportant difference is that whereis in confounded experiments th; .*ail
amount of information on the confounded interactions accruing from inter-
block comparisons is ordinarily ignored, in split-plot experiments the information
from whole-plot comparisons is retained, so that in all split-plot designs there
are two different errors, one relating to the whole-plot comparisons- and the
other to the sub-plot comparisons.

The analysis .of sp.lit-plot experiments is formally simple. The analysis
of variance is divided into two parts. The first pirt is calculated from 

-the

yields of the whole plots, and furnishes errors and tests significance for the
whole-plot treatments, exactly the same procedure being followed as in an
ordinary randomifed block or Latin square arrangement. The second part is
calculated from the yields of the sub-plots, deducting those parts of the sums
of squares which have already been accounted for in the analysis of the whole
plots. This is equivalent to analysing the deviations of the sub-plots from
their respective whole-plot means.

In order to make the mean squares of the two parts of the analysis comparable
it i6 customary to work both pans in units of a single sub-plot. The sums of
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squares of the first part (as calculated,from the whole-plot totals) will therefore
be divided by an additional factor equal to the number of sub-plots in a whole
plot. In calculating the standard errors applicable to.the total yields of whole
plots the rrvhole-plot error mean square must consequently be multiplied by this
factor. .

In the special case in which the whole plots are split into two parts only
the differences between the pairs of sub-plots may be analysed directly in exactly
the same.manner as the totals of the pairs. The sums of squares from thes-e
differences will then ah6 be divided by'an extra.2. One extra degree of freedom
representing the mean differenqe, i.e.ihe main effect of the treatirent for which
the split is made, and corresponding to the correction for the mean in the
analysis of the totals, will be included in the analysis of the differences. The
calculation of the total sum of squares of the experiment gives a check on the
calculation of the totals and diffeiences of the pairs and their sums of squares.

Many useful extensions of the split-plot type of design are available. In
general, plots may be split into any number of units, and the resultant sub-plots
may if desired be subjected to a further split, and so on indefinitely. Correspond-
ing to each split a different estimate of error will appear in the analysis of variance.

The whole plots may be arranged in either randomized blocks or Latin
squares. The treatments of the sub-plots will ordinarily be arranged at random
within each whole piot. If confounding is resorted to it is not necessary to
include all the sub-plot treatments in every whole plot. Designs of this type
are exactly parallel to the more ccmplex types of confounding already discussed,
with main effects substituted for one or more of the confounded interactions.

Furthermore in certain cases it is possible to impose Latin-square restrictions
on .sets.of sub-plots. Such designs are parallel io the designs already given
under the name of quasi-Latin squares. By replacing interactions by main
effects such squares aie seen to yield a number of designs in which whoie rows
or both rows and columns are subjected to different treatments, most of the
interactions of the Latin-square treatments with these being determined with
full precision. Quasi-Latin squares which have both rows andcolumns subjected
to different treatments may conveniently be called plaid squares, while if 

-either

rows or columns, but not both, are so treated they may be called half-plaid
squares. The use of split-plot Latin squar€B in varietal trials is a further
important application.

Examples of these extensions will be given at the end of the section. First,
however, we will give an example of a simple split-plot design in randomized
blocks.

r6b. Example : a ztarietal afl.d manurial trial on oats.
The results of this experiment have already been given in Section 9a.

The plan and yields of the individual plots are given in Table 7+, the analysis
of variance in Table 75.
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TenLr 74; Venrnrer, AND MANURTAL TRrAL: nLAN AND yrELDs w I r,o.

76

The sums of squares for varieties, nitrogen, and their interactions are calculated
from the two-way table (Table f+) in the manner explained in Section 9a.
The sum of squaies for blbcks is dai'culated from the bloik totals in the ordinlry
manner, dividing by n after squaring, and the total sqm of squares between
whole plots is cicufated from thi whol-e-plot totals, dividing \y 4--at19t squaring.
The t&al sum of squares for the whole-experiment is calculated directly from
the yields of the 7z sub-plots. The wh6le-plo1 error is then obtained by
subtiaction of the sums of sqrrares for blocks ind varieties from the total sum
of squares between whole plot's, and the sub-plot. error is obtained by subtraction
of this total and the suml of-squares for nitrogen t4d the interactions from
the total sum of squares for the rirhole experiment. The formal analogy of this
analysis with that bf Table rz should be noted.-It 

is immediately clear that the effect of nitrogen is definitely significant,
but that the varietal-differences do not approach significance. The deceptive
appearance of the table of the yields of tlie treatment combinations (Table 76)
in.this respect should be notel. Here, although the differences between the
varieties ar:e not significant, the varieties fall in the same'order, o.r, oz,.9st 

-at
each level of z. This is characteristic of split-plot experiments in which the
whole-plot error is substantially greater,thair th-e *-qb-pt-ot error,- being due to
the faci that the same whole-plol eirors affect all levels of the sub-plot treatments.

In the present example the interactions mean squ-ar.e is very decidedly
below expeciation, but n6t quite significantly so. Had 

- 
it been- significantly

below exiectation, this could'of couise only have been due to chance, unless
there *"i" ,orrr" Lrro, o, defect in the staiistical analysis : for this reason if
significantly sub-normal results occur repeatedly in any type of work the statistical
piocedure ihould be reviewed, both in its numerical and theoretical aspects.
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correction for mean 
D'F t"Hl;?:ils Mean square ,/lf,l;a,rf':s6.+

the body of the table are iotals of 6 sub-plots,
involves-the average effects of nitrogen and its
does not involve a mean varietal difference, the

Vt

Whole
plots

Ot )

x +x .33 : z4 x 6or.33: r20.r
i The nitrogen totals

i (ftom the sub-plot
are totals of
error mean

18 sub-plgts
square)

, and their standard error is therefore

and in any
interactionsfBlocks

J Varieties
[.E tot

Total

:,* {N'X",9i1",';;r LDfror . .

667.5o
53 .63

q7.o8

5

IO

r7

J
6

+5

7t

3ry5.o6
893. 18
6or .33

The values in
comparison which
with varieties, but appropnate
standard error of a single valueis therefore

{6 " ry7.o8: 32.6
Such comparisons include those between twb values in the same line of the
table or bltween the mean of two sets of values all in the same line, or any
comparison made up of components of this type, and any interactions between
varieties and nitrogen.Total
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The conversion factor for the body of the table is 8o/r rz x 4 x 6 and those
for- the margins are $ and f of this.- The final table bf resulis is shown in
Table 76.
. Normally it will not be necessary to make comparisons between values in

the body of the table which include any component of the mean varietal
differencesl ald therefore in presenting th6 resulis it will usually be sufficient
to give only the above three 

-standard-errors.

Tau,n 76. MreN yrELDs oF VARTETAL TRrAL rN cwr. pER AcRE.

S.E. of body of table (interactions and a effects only): t o.97o.

.A co^mparison of this-type .m_ay !e required, however, when combining the
results of experiments. W-e- mighi, for initance, have a series of smaller Trials
on the same three varieties condulted at only two levels of nitrogenous manuring,
o and o.2 cwt. N per acre, ind in the inierests of uniformitjr we might the;
desire to abstract th-e mean of -no and nrfrom the results of the 6xperimeit under
consideration. The standard error of these means can be derived as follows.
Calculate the variance (the square of the standard error) of the mean of each
pair of 11lges. from ths standbrd error given in Table iO tor the body of the
table. This is r ,_ ___\

Also calculate the variance t1trut"?t;i'fl.o"". from this standard error, and
subtract this from the actual variance of the varietal means given in the iable.

",n:, 
s:t"t. 

. ..(9.sq4)' - t (o.gzo)' : o.7gg - o.23s : o.s6;
which is the addiiionil'comfroneil of erroi'iariancl"due t'o i"hol" plots. Add
these two variances togethei

o.47o+ 0.564: r.o34
and take the square root, r.or7, which is the "riquired standard error. The
point of this.calculation is that the additional component of error due to whole
plots is not increased by taking a mean over somi instead of all the sub-plots
in a whole plot.

r!!:_ Eficiency.
It is immediately apparent that the whole plot comparisons are less precise

than the sub-plot compirisons involving the sagre number of sub-plots, th'e ratio
of the error variances being.6or.33 | r-77.g8: 34o: r. If instead of assigning
varieties to whole plots we had Compli:iely raridomized al| n combinatio"ns oT
varieties_ and amount of nitrogen- there would only be a single error. The
expected value of this error canbe found by tttq method of Secti6n 7b, rcplacing
each treatment mean square by the correspbnding error mean .quate (Taitle 77i.
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This gives an erfor mean square of. z54.zz, so that the precision of the varietal
compirisons would have been increased by complete randomization in the ratio
6or.33 i z;4.2z: 2.37, white the precision of the nitrogen effects and its inter-
actions wiih varieties would have been decreased in the ratio t77.o8 : z54.zz: o.7o,

Tmtn 77. Cer-cur.erroN oF ERRoR wITH coMPLETE RANDonirzerrox.

D.F
5

Sum of
r5875

squares
.28

Mean square

fWhoki plots rz 7zt5.g6 6or .33

Remainder .] sub-plots : . 5+ 956z.3z r77.o8
I

[Total within blocks . . 66 t6778.28 
"54.22If the differences between varieties and the effects of nitrogen are of equal

importance, then a completely random arrangement will clearly be the better,
if not precluded by piacticil difficulties of sowing, etc. In certain cases,

howevei, it may be ihit one set of main effects is of le-ss importance- than the
other sei and the interactions of the two sets. Thus, for example, the choice
of variety might be dictated by other considerations than those of -yield, in
which caie thJ primary function-of the above experiment would be to determine
the response to nitrogen and its possible variation from varietyJo variety- In
this case the split-piot type of design is most app_ropriate. -Similarly in an
experiment including artifitial fertilizers and dung there may be no particular
point in determininf with high precision the. response to the {tttg. (which is
iik"lv in any case tdbe of uniertiin composition, 

-and will certainly bq applied
in practice 

-if 
available) though the variatign- il response to artificials in the

preience and absence of dung may be of vital interest.

t6e. Confomding of interactions in spht-plat designs.

In addition ?o "confounding the inairi effects-of the whole'plot-treatments,
we mav confound one or more interactions between the sub-plot factors with
whole-ilot differences, thus reducing the number of sub-plots in each whole-
plot. The possibilities are very numgrous, designs being ryo_st simply 4erived
by applying different treatments to the blocks (now called whglg plots) of

"iaitt"'ti.ae"siEns. 
Thus in a combined varietal and manurial trial the varietal

plots m"av be"split into four for all combinations of the manurial factors n, P, h,
ih" t*o ietr of combinations (r), np, nk, pk apd nt 2, kz ltpk pelng Sssigned to
difierent whole-plots, so that N.n,X is confounded with whole-plots.. With
6 varieties and i complete replications, each replication (rz whole-plots) being
arranged in a block, the degrees of freedom ih the analysis of variance will
partition as in Table 78.

TaaLr 78. Dncnnrs'oF FREEDoM IN sPLIT-PLor DEsTGN'

Blocks

Whole-plots
Blocks
Varieties . .

N.P.K
V.N.P.K
Error

Total

Sub-Plots
N,P,K..
N.P, N.K, P.K
Z x manures
Erroi

Total 72

I
5
I
5

II

-J

J;J
3o
36
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" _Wgfqy, hgy"yer, advantageously confound one of the'degrees of freedom
for V.N.P.K with blocks, thuJreduiing each block to 6 who"le-plots, one for
gr:h variety-, an_d three for each of. the two groups of manuriil treatments.
There will then be 3_deg-rees of freedom for btoiks and ro for whole-plot error.
I.n similar- designs with Tewer varieties and whole-plots, in which th6 available
degrees. of.freedom-fo1 yfrole--plot error are smal[ N.P.K and v.N.p.K rnay
conveniently be included in th-e estimate of this error.

A further and most a:lvantageous alternative is to arrange the whole-plots
!n a 6 x 6 Latin square. To do ihis, three complete replicatei will be requ?red.
If one of the degr-ees of freedom for V.N.P.K is confdunded with rows it *itl
be found that N.P.K must be confounded with columns. Table ?o shows a
square.of thi.s type after randomization, with numbers representing t66 varieties,
and a dash the grgup of treatments (r), np, nk, pk.

Tear,r 79. 6 x 6 LerrN seuAxr wrru spr,rr-pt,ors (6 x zs).

fif. Half-plaid Latin squares.

The treatment of whole rows or columns of a Latin square with a set of
subsidiary.treatments is a device which is very frequently usefirl. It is, however,
only possible with certain special types of square analogous to the quasi-Latin
squares already discussed.

At the outset it should be stressed that rows and columns must be comoletelv
randomized among themselves, as in quasi-Latin squares with confdundef
interactions. The arrangement of the replicates of tlie subsidiary treatments
in blocks is thereforg not permissible, but the additional degrees of freedom
for error are a certain compensation for this disadvantage.

In order to ascertain if a'square of the required type ex"ists it is first necessary
to see if there is a system of Lonfounding which wiil give two suitable sets o'f
degrees of freedom for confounding witf, rows and c6lumns. .If there is no
confounding of interactions with the iows (these being.subjected to the subsidiary
treatments), i.9. if the number of treatment combinations of the remalnrng
fa91o_rs is e_qual to the side of the square, all that is required is an arrangement
which confounds the whole factorial system (including subsidiary treatinents)
in randomized blocks of a size equal to the side of thq square, i.e. an arrangement
pf tf-t" type that has already been enumerated for ionfounding in rand6mized
blocks.

_ Th-us, for example, in an 8 i 8 square with the rows sown with one or
other of two varieties any one degree of freedom for the interaction of varieties
with the other factors may be confounded with the columns. If the other
factors form a 2 x 2 x 2 system then the interaction chosen will naturally be
V.A.B.C.

7S

If four varieties are included the natural system of confounding with the
columns will be of the type

vr.A.,B, V2.A.C, Vs.B.C.
Partial'confounding may be resorted to if desired, two sets of this type being
confounded in a single square.

The actual construction of any required square can be easily effected.
All that.is necessary is to write down the sets of varietal and treatment
combinations which- confound the chosen interaction degrees of freedom,
rearranging these sets so that the cross grouping in rows forms sets which each
contain-all- combinations of the other treatments but only one variety.

Table 8o shows an 8 x 8 square for four varieties and a z x 2x 2 treatment
system. The above set of interactions is confounded with the columns. (1"
order to exhibit the structure the rows and columns have not been randomized.)
Such a square will not provide a very precise_ varietal test, but will furnish
accurate iirformation on possible interactions between the varieties and the
other treatments

Tasln 8o. 8 x 8 neLr-PLAID sQUARE FoR Foun VARIETIEs.

16'+'s'23
+3'r'2'5624'5'6'.3r
3s'6'+'t262'3'r'45
5r'z'3'64

Ot r 8 364522
QI 8r635+72
Oz 368r72+s
Aa 63182754

O7 +S7z 8 r 63
Ot 5 +2 7 r 8 36
O4 2745368r
o4 lr z s 46 3 r 8

Similar squares of other sizes are- possible. Thus a 6 x 6 square may
include two oi, three varieties in addition to the six treatment combinations
forming a ? x z system (factors a and b\. If there are two varieties the arrange-
ments 3f Siction ira wiil be required, fartially confounding V.B ($ information)
and V.A.B (g infoimation). If ihere aie thre6 varieties one of thd arrangements
of Section rif will be required, or if two squares are available both arrangements
may be used, giving fr information on V.A.

" If there is-conf6unding of interactions as well as subsidiary treatments with
the rows, the construction of the squares requires a little more care. Thus,
for instance, with a 3 x 3 x 3 system of treatments and 3 subsidiary_treatments
arrplied to the rows"oniof -the sets of confounded degrees of freedom shown
in Table 43 would have to be adopted for the columns, and a set of the type

v, A.B.C, V.A.B.C,
for the rows.
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Tabld 8r shows a- square (randomized) of this type. This iesign has
recently. been proposed. for a rotalion experiment on- sugar-cane, including
3 varieties (p, q a.td 1), 3 quantities and 3 forms of nitrogenous fertilizel
(combinations -r-9) 1nd -3 levels of irrigation- (a, b and c). Itls intended that
two squares- should be laid down at each place, in different phases of the
rotatioll, and that the _experiment should be. conducted at two of more places.
The following- sets of_keys for the combinations r-9 (Table 8z), togeth& with
re_-randomization, will serve to generate four squares cbnfounding diiTerent sets
of three-factor interactions.

or2 or2 or2 o 2
IV
I

r23
789
456

r32
465
7 9 8

t7+
396285

rype of {t
fertilizer L3

| 47z 5 8

369
With equal repiesentation and no dummy treatments, half information would
be obtained on the three-factor interaction of varieties, type and amount of
fertilizers and three-quarters information on the other three-Tactor interactions.
The existence of dummy treatments will modify these fractions somewhat.

- Th. experiment originally suggested was one-involving nitrogenous fertilizers
only,but enquiry elicited (r) that the chief interest of the station was in varieties,
(z)-that iyjgation was likely m4erially to affect the optimal level of manuring,
and possibly qhe response to different forms of manuring, and (3) that varietidi
had already.shown differences in their behaviour on good and-poor soils and
the1ef91e might- be expected t_o_- respond differentl)' to manuring. It is quite
probable, too, that varieties will behave differently under different conditions
of irrig-atioT. A-factorial experiment is therefore essential if information of any
real value is to be obtained. A half-plaid square is eminently suitable, sinc-e
it would be exceedingly difficult to iriigate single plots differehtly.' 

As a further exiniple the reader may construct an 8 r 8 square with a
2 x 2 x 2 x 2 system of treatments and two subsidiary treatmenfs. He may
also construct i set of 4 x 4 squares for four varieties, with four treatments
(z x z) within the squares, sicrihcing one-third the infoimation on interactions
between varieties and other. ireatments ; and also a similar set of + x 4 squares
for two varieties, retaining'full informaiiott otr all two-factor interacti<jns.'

8l

16g. Plaid sEuares.
Instead of confining the confounding of main effects to rows only, different

sets of main effects may be corifounded- with rows and with columns. Thus
columns. might be assignid to different varieties and rows to different cultivations.
Upon randomization a typical Scotch plaid pattern will result.

Table 83.showq-an eiample (before rand_omization) of this type of arrange--
ment, comprising three varieties, three cultivations 

.and 
a 3 i 3 system 

-of
treatments'within the square. The following degrees of freedom are confounded :

Rows: U, A.B.V (Y), A.B.U.V (+ dl.\
Columns : V, A.B.U (X), A.B.U.V (+ dl.),

the four-factor interactions being those derived from the interaction of the
other confounded sets. The partition of the degrees of freedom will be that
shown in Table 84. The r6mainder terms c6ntain three- and four-factor
interactions only' 
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Tenln 84. Dncnnrs oF FREEDoM rN THE 9 x 9 pLArD seuARE.

3

Rows
U .. 2
Remainder 6

Colamns
V .. 2
Remainder 6

Square
A
8... :
Two-factor interactions.
Remainder

Total

2
2

2+

T
8o

As further examples of the plaid square ihe reader may construct the 8 x 8
square confoundin**o*, 

: u, v.a.B, u.v.a.B,
Columns : V, U.A.B.C, U.V.A.B.C

and a set of 4 x 4 squares for two varieties, two cultivations, and four treatments
within the square. -He may.also convince himself that no simple tz x n plaid
square exists for two varieties, two cultivations, and a 3 x z x z system of
trbatments within the square

t6h. Use of La.tin squares with split plots in oarietal trials.
In an ordinary varietal trial which does not include any other factors all

comparisons are required with equal accuracy. When the vaiieties can be sown
(or irlanted) in apfroximately r{,r"t" plots'small numbers of varieties (up to
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8 or so) can be conveniently arranged in Latin square.s, while if the numbers
are larse (z< or over) the quasi-faJtorial designs described in the next section
are suiiabie] In the interrirediate range (ro1o z4), Latin squares with split
plots and Graeco-Latin squares (describdd b'blow) provide a useful set of designs.
' I1 a split-plot Latiri square for r4 varietie's, for example,. the varieties are

divided int^o 7 
^pairs, these fairs being arranged-ina-7 x 7-Latin squ.are' one of

each pair beins'assisned at iandom tJone half of each-whole-p1ot. The analysis
of vaiiance wiil, as 

"usual, be divided into two parts, the partition of the degrees

of freedom being that shown in Table 85.

Tenr,n 85. 7 x 7 spLrT-pr.or LerrN seuARE: PARTITIoN oF DEGREES oF FREEDoM.

Whole plots
Rows
Columns
Varieties
Error (a)

Total

Sub-plots
Varieties
Eror (D)

Total'

7I
+9

6
6
6

3o

48

There are two tvpes of varietal comparison, one between varieties forming
a pair. and the otherbetween varieties no-t forming a pair. These have different
;fi;, that of the former being calculated from t-he sub-plot. error varia""g (?),

""a 
ttt"t of the latter from th"e mean of the two error 

-variances (a) and (b).

Mot" generally, if each whole-plot is subdivided into ft sub,-plots., the error
;;;i"""2 of any'two varieties nod o"cnrri"g it the same set of ft-is given by-the
weighted *""r of the variances (a) and (6), theweights being in the ratio r z k-r-

z6i. The Graeco-Latin square.- Th; main objection io the above. type -of design is that if the errors (a)
and (b) are very "unequal'the comparis6ris between varieties in the same set

""a b6t*"en virieties'in different sets are by no means equa-l in accuracy.

An alternative design, which overcomes this disadvantage at the expense of
certain addition coirplication in the analysis, can be derived from a Graeco-
Latin square. \- A draeco-Latin square consists of a pair of superimpg,qgd Latin squares'

ott" lot*"d of Latin, ^and the other of Greek lettels, fulfilling the- condition
;h;t ;;il L"tittl.tt"r occurs once and once only with.every Gree-\' letter, and

;d;;.;J. Th" t*o squares are thus mutually orthogonal, and a Graeco-Latin
square is consequently derivable from any paii of squlres of an orthogonal set.

b=rr".o-Luii"-..i""t.s"are known to exist-ftir all numbers except.even,numbers
which are not i multiple of 4. Of these latter numbers only 6 has been

exhaustivelv investisate8. For'this number there is no such square.- -__ ii ;" t"k. thE Latin and Greek letters of a Graeco-Latin square to
represent varieties (or other treatments) a design similar to that of a Latin
."ir"i" *itt ,ptit-piots results. The dsual raidomization process must be

"8""1.a. 
i... iu"a6mization of rows and columns and randomization of the

Cr;[;"d i"ti" letter within each pair of plots. _The letters should also be

;;ig*J ; th" uati"ties at random. Tabli 86 shows a 7 x 7 design after
randomization.
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Test,n 86. 7 x 7 Gnerco-LetrN SQUARE.

The analysis can be effected by forming tYLg tables, one of the
one of the differences of the pairi of plots. These should be set

Table 87.' Tenlr 87. ANer,vsrs or e Gnenco-LerrN sQUARE.

sums and
out as in

Sums of pairs

abcd.

of plots plots

TotalTotal

a
p
"v

. Total

Ttrnr,r 88. 7 x 7 Gnenco-Lerrn sQUARE: PARTITIoN oF DEcREES oF FREEDoM'

Table of sams
Rows of square
Columns of square
Latin letters . .
Greek letters . .

Error (a)

Total

Table of d'ifrerences
Total (Latin-Greek)
Latin lctters . .

Greek letters . .

Error (D). .

Total

I
6
6

L
49

6
6
6
6

!
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The analysis of variance follows the lines indicated in Table 88. Sums

of squares for' the differences of the varieties represented by the^ Latin letters
and ihose represented by the Greek letters 

-appea? _in both parts of .the-analysis,
and are derii'ed from the marginal totals of ihe tables of sums and differences.
The " interactionsii of both ta6les give the estimates of error (a) and (6) between
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liyttp!: plotl " 
"lq, 

" sub-plots " respectively, corre-sponding to the errors (a) and
(b) of rable 85. Thus estimates of the two iypes of error ar"e separately obia'ined.

. If. the_mean yields of the different vaiieties are taken aj estimites of the
varietal differences the error variance of the difierence of two varieties in the
same letter group (i.e..both Latin or_ both Greek)'is, as before, a.tiu"a-rto*
the mean of the two variances(a) and (D), while the error variance o?the difference
of two varieties in different l"l "l giiips is derived from a *"igttt"a *ean of
the two variances, the weights bein{in ihe ratio p- r : p+ r. Tfie mean ni"ld.
may pe immediately obtained from -the sum of'the twlo sets of colurnn iot"l*,
and the difference of the two sets of row totals, of Table g7.

It is worth noting that if the two error variances (a)'and (6) are widely
different more accurate estimates of the vaiietal differeiri". *"ir'be obtai;;t
by taking a weighted mean of the estimates derived from the ."-'u"a aifi"r"n""
tables of Table 87.

fij. The hypu-Graeco-Latin squ.are.

_ fimila,r designs with tbe whole plots split into three or more parts may be
constructed by the use of three or more.squares from an orthogonal set. Such
designs may pe.called hypr-Graeco-Latin-squares. e

The analysis of vaiilnce follows lines'similar to that of a Graeco-Latin
square, but the sums of squares cannot be derived from two-way tables. The

Tenlr 89. Aner.ysrs oF A rrypER-Gnenco_LeuN seuAnE.

J3rigty totals: l"l
Whole plot totals t [ri]

Latin letters
lhl kl[*d l*f,

hlal - la4) klbl - lw5l kfc) - lag
X*qF., Proced}re is to set out the varietal totals for each group of letters (Latin,
^cl"^"I:$:.)J: 

i" Tgbte 89, and also the corresporldin_g toials'of th. *rr"t!-pr"tJ
contarrung. the vanetres a, b, etc. (denoted by lw"f, fwul, etc.\. The differenie of
tne second llne trom ft trmes the first line is then taken. The second line (of the
Latin lg{"t table) provides estimates of the differences of the t 

"ii" 
iJt"6 alrivea

from differences of whole plgt_s, while the third line provides estimafi Jerived
frgm s3p-plot differences. ^ The sums of rq""i.r ol ift. a""i"tio"r, ai"iaea lv
?! -lld-Pl lf &;.r) respectively,-give the two sums of .qu"i.r .Jr*.p""ai"i
19 th. twosets ot ? - r degrees of freedom for the Latin lett-ers in the whble-plo?
pa ;ulplot parts of the.analysis.respectijely._ Thq sums of .q,r"ri. for'the
Greek, etc., letters are derived similarly. The rt - r degrees of fr6edom for the
contrasts of the ft.g1ot1ps of letters ar6 derived from tfie contrasts of the totalof the first line of-Tab-le 89 and the corresponding totals f;;it; cr""[, 

"t".letters.
The error variance of the difference of the mean yields of two varieties in

the same gr.oup is derived from a weighted mean of itrt variances of whoie and
sub-plots, the weigtrts_being in the raiio r:k- r, and that'of two varieties not
ll :$ :lT: Frolp is derived from a second weighted mean, the weights beingin the ratio p- r i p (ft- r)+ r. {

l
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t7. VAnrc'rru, TRTALs-euAsI-FAcToRIAL DEsIGNS.

*I have previously used the term " pseudo-factorialr" but " quasi-factorial " seems preferable both descriptively
and etymologically.

tThe name is new.

Plant breeders frequently wish to compare a lar:ge number of new strains-
numbers such as roo to rooo are.by no means uncommon. With such a lar.ge
number of varieties arrangements in randomized blocks including all the varieties
will usually be ineffective in eliminating fertility differences, while Latin squares
are clearly impossible. The classical way of arranging such trials is by the use
of " controls," i.e. plots growing a standard variety. These may be arranged
either systematically br at random. Recently, however, new methods of
arranging such trials have been devised, which make possible the use of blocks
containing only a few plots, or, what is even more useful in many cases, the
use of Latin squares. Most of these designs may be classified as " quasi-
factorial,"* since their structure can be derived from confounded factorial
designs. Such designs are always more efficient than designs involving controls,
and will also be more efficient than designs in ordinary randomized blocks when
there are any considerable inequalities of fertility.

It would take us too far afield to describe all these designs in detail.. We
shall therefore merely give an outline of the more useful types, without any
a(tempt to describe the methods of computation. The reader who wishes to
utilize the designs should refer to the original papers, (rr), (rz) and (r3), where
he will find a full description, together with numerical examples of the
computations.

r7a. Tlu Inttice.l
This is the simplest of the quasi-factorial designs in randomized blocks.

If we have, say, 90 varieties, numbered r--9o, the rows and columns qf the
two-way table (Table 9o):

Tealr go. Srrs ron LATTTcE DEsIcN.

divide the varieties into two groups of set$ containing ro and 9 varieties each
respectively. In a lattice design ihe varieties in each set arg arranged in the
fiel?l in raridomized blocks, each group of sets being replicated equally. Thus,
for example, with 6 replications, each group of sets will be replicated 3 times,
there beihg z7 blocks-of ro plots each, of which three will contain varieties
r-ro, and3o'blocks of 9 plots each, of which three will contain varieties r, rr,
zt., 3tr 4r, 5r, 6r, 7r, 8r.

r'23+56789ro
rrtz13141516q1819zo
zr zz 23 24 zS z6 27 z8 zg 30
31 32 33 3+ 35 36 37 38 39 +o
41 42 +3 4+ +S 46 +7 48 +9 So
Sr Sz 53 S+ 55 56 57 58 59 6o
616z$6465666768Q97c"
?r 72 73 Z+ 75 76 77 78 79 8o
8r 8z 83 84 85 86 87 88 89 90
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The design is parallel to a factorial design, each variety being represent-
able by a combination of two factors, one at 9 levels corresponding to rows,
and the other at ro levels corresponding to columns. In the replications of the
first grouping the main effects of the first factor are confounded with blocks,
in the replications of the second grouping the main effects of the second factor
are confounded. The main effects of one or both factors will enter into the
comparison of any pair of varieties, and therefore there is some loss of information
on all such comparisons, comparisons between varieties which have a set in
common being slightly more accurate than comparisons which have no set in
common. This loss of information must be taken into account when assessing
the efficiency of the design. The efrciency factorx f.or a p x q lattice is

Pq-t
pq+ p+ q-3

In the most useful case, when P: g, i.e. when the sets form the rows and
columns of a square, it is

p+ r
p+ 3

It may be noted that in any case g should not (iffer widely from p,

lf. p and q are small the efficiency factor becomes somewhat small. For
z5 varieties,. for example, i1 is $ ; $.. This means that if there were no reduction
in error variance per plot by reduction of block size from 25 to \ plots, a lattice
design would.only give f of-tlrg information that would be given 6y an ordinary
arrangemelt in randomized blocks of. z5 plots. Of course it rarely happens
that there is no reduction in error variance, though the reduction is 

-sometimes

small. N{oreover'there is no reason why the information accruing from the
block comparisons should not be taken into account, provided that the-eiperiment
has sufficient replications to. give an adeqrnte estimate of error for the inter-
block as well as the intra-block comparisons. This procedure will recover most
of the lost information and makes the design much more attractive for a moderate
number of varieties.f

In order to utilize the information from inter-block comparisons, and to
make these as accurate as possible, all the blocks forming a complete replication
should themselves be arranged in a compact block on- the grbund. Pairs of
tl1es9 replications should contain one replication in each grouping, assignment
of the -grouping being-at rando-m within.the pafo. The seis shbulii be assigned
at random to the blocks of each replication. f Moreover the numbers of Table
9o (or the position within the table) should be assigned at random to the varieties.

*Dcfincd as the ratio of the variance of a varietal comparisdn in a design in ordinary randomized bloclis to the
average variance in a lattice design occupying the same number ofplots and having the same error variance
per plot.

fThis procedure_is not discussedjn the papers referred to above, but it is hoped to publish something on the
inatter shortly. In the simplest cases the additional computation required appears to be very smill.

$This metlrod of arrangcment is somewhat different from that of the example of 1r r), in *'hich the use of inter-
block comparisons was not envisaged

I
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r7b. Triple mrd balanced lattices.
If the number of varieties. is d perfect square, 'and a square lattice is

constructed as above, it is always possible to superimpose a Latin square on
this square. The letters of this Latin square may be used to denote a third
group of sets, which may be arranggd in randomized blocks in the same manner
as the other two groups. We thus arrive at what may be called a triple lattice.
It will be noted that all three groups of sets bear exactly the same orthogonal
relationship to one another, ev"ery 

'set of each group containing one and-only
one variety from every set of the other two groups.

The advantage of introducing a third grouping is that the efficiency factor

is increased, beingP$irrr,ead of $
If the r.r*u"/p*i3ts""r, th"t 

"1;13."t 
of orthogonal Latin squares exists,

further groupings corresponding to. these squares may be made. When all the
lD - r squares are used (giving .p + r groupings) complete balance is attained,
comparisons between every pair of varieties being of equal precision. The

efficiency iacto, of a balanced lattice is 
#. This corresponds to the fact

that in each replic*ion p - r degrees of fieedom out of the total of pz - r are
confounded, solhatthe loss of information (blocks being completely ineffective) is

P _T I

P'-t P+r
This is a property of balanced arrangements, which has already been referred to.

Full sets of orthogonal squares are known to exists.for all prime number
and for p': +,8 and 9. No such set exists for p: 6. For prime numbers the
method bf construction is very simple, each line of the first square being derived
from the previous line by moving the letters one column to the right, each line
of the secbnd square by moving the letters two columns to the right, and so on.
Sets of 8 x 8 and g x g squares are given in The Deign of Experiments (znd
edition). The ro groups for 8r varieties may also be derived by the successive
transformation giveln in Section t4c of. the siluare of Table 5r.- The first and
second nu'mbers of the treatment combinati6ns and the rows and columns of

""3h 
.qn"re give the ro different groupings. The transformation given in

Section- r4c for the 8 x 8 square of Table 33 generates the groupings f.or 64
varieties iri a similar manner, except that in the fourth square only the grouping
given by the columns is required

In all these lattice designs only a single replication of each grouping is
necessary for the statistical r-eduction of the results, provided that information
from inler-block comparisons is not required, but the actual number of
replications will depend on the degree of precisibn desired, and will usually
exteed these minim^al requirements ?xcept ii the case of balanced lattices.

r7c. . Lattice squa.res,' 
instead of^ arransing the sets of a balanced lattice in randomized biocks,

the groups of sets miy le taken in pairs, and for each pair a square may be
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constructed having its rows formed of the sets of one group,and its columns
of the sets of the other group. If p is odd, $ (p+ ,) squarCs'will be required
for balance, but if p is even each group must be included twice to give-?+ t
squares. If the rows and columns of each of these squares be rearrange-i amongst
themselves in random order, and the resultant squares set out on the ground,
we shall have an arrangement which is in essence a set of Latin squares with the
quasi-factors confounded with rows and columns.^ There is, of course, no absolute necessity for designs of this type to be
balanced, but the attainment of balance, at any rate when p is odd, does not
demand an excessive number of replications, and simplifies the computations
and the interpretation of the results.: 

f"lt. qiltt";r 
" 

balanced s.i oi thre. lattice squares f.or z5 varieties (before
randomization of rows and columns).

Tenle 9r. Ber,excno sET oF LATTTcE seuAREs FoR 25 vARtETrEs.

Square IISquare I
rz3+5
6 7 8 9rorr t2 13 t+ 15

16ryr819zo

20
9

z3
12 z+

r3
2

r6
IO

25
t+
J

t7
6

7
2l
r5
+

r8

r9
8

22
II
5

925
r2
+

r6

II
3

20
7

I
r8
IO
22
r+

Square III
152+ 817
2

r9
6 r3

2'

23 521 22 23 2+ 25

The method of construction of similar sets for other prime numbers should
be apparent from a study of this table. Sets of squares-for 64 and 8r varieties
are provided by the transformation given in- Section r4c of. the squares of
Tables 33 and 5r, together with the square formed by arranging the varietal
numbers in systematic order, as in the first square of Table gr.

These lattice 'squares are particularly attractive, since ihey enable the
advantages of Latin square 

'design to be utilized, whereas the comparisons
within the sets of an ordinary lattice by means of Latin squares instead of
randomized blocks would require more ieplications than are usually available.
The efficiency factor is, however, somewhat low, beingp-r
as is easily verified from the propertpy+r"i"rr.a to above. With z5 varieties it
has the value of $. The average increase in precision with 5 x 5 Latin squares
in the Rothamsted experimgnlg hqs been found to be 2.\ : r, so that the average
net gain in precision- on similar land by the use of li'ttice squares instead 6f
ordinary randomized blocks for z5 varieties may be expected to be t.67 : r or 67
per cent. This average gain will be somewhat increased by utilizing inter-row
and column comparisons in those experiments in which the land is found to be
very uniform.

r7d. Three-dhnmsional lattices.
Instead of arranging the varietal numbers in a two-way table, as in Table zr,

they may be arranged in a three-way table, i.e. spatially in the form of a cube
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or cuboid. A three-dimensional lattice, defining three groups of sets, mav then
be constructed by taking lines parallel to the edges of this cube or cuboid.
T_hus if there are p * q i r varie'ties there will be |q ."t of r varieties, Itr sets
of g varieties, and qr sets of p varieties. With i: q: r there will be three
grgqps- of p,' sets of p varieties. Thus an arranfement f.or p x q x r varieties
in_blocls of p, qandr plots, or forps varieties inblocks of p plotq is provided"
The efficiency iactor in the.latter cise is

z(P'+ p+ t)
zpn + Sp+ n

- Using a three-dimensional arrangement of ps varieties in the form of a
cgb9, we may also obtain three groups of p sets of. p' varieties by taking layers
of this cube parallel to each of Che faces in turn. The p' varieties of each set
may be compared by means of a set of lattice squares,-the use of two of the
three groups being all that is really necessary. We thus arrive at an arrange-
ment for pB varieties in p x p lattice squares. The efrciEncy factors are

2-t ^dp#
respectively, accordin { :"t *:"ti rll"" groupings
total number of replications required (p bdtl)
respectively.

p2+p+r.F;7Tfi
in sets of p" are taken, the
being (p+ t) ancl 9(.p+ r)

r7e. Non-factorial derigns : ba;lanced incomplete blochs.*

Balanced incomplete blocks are described in (5) and (rz), and we shall not
discuss them further here.

*Previously called symmetrical incomplete randomized blocks,
l
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r7f. The introduction of additional treatments in quasi-factorial designs.

The designs described in this section require a large number of blocks,
-and the possibilities of using these blocks as plots for additional treatments
should not be lost sight of. If, for instance, there are six replicates cf a simple
lattice design, there will be sets of three blocks containing identical varieties,
and these migfut be used as plots to compare three additional treatments and
to ascertain whether the varieties interacted with these treatments. It will be
noted that interactions between the additional treatments and the sets of varieties
will inflate the inter-block error. This source of disturbance can be allo-rved
for if necessarf, but frequently it will not be sufficiently large to be of any
moment.

9l

NOTES

Norn r. NiJnasnn oF FIGuRES REeuIRED IN THE coMpurATIoNs AND RESULTs.

It is a common fault in'numerical work to retain too many figures both in the results and the
intermediate calculations. On the other hand certain calculations require considerably greater
accuracy than others, e.g. in the correction for the mean in the analysis of variance alarge number
of figures must be retained. There is not space here to give any detailed discussion of the matter,
but the following hints may be of assistance.

(i) Significant figures.
The number of significant figures is the number of figures counting from the first figure not

zero and excluding terminal zeros. Thus 237, o.ooz37, z37oo all contain three significant figures.

(ii) Obserueil yields, eic.
Only.three significant figures need be retained if the standard error of a single observation

is not less than 3-5 per cent. of the mean (as in the yields of field plots). It pays to round off
if the field results are given to greater accuracy. Fractions are.best decimalized, as working in
units of a quarter or a half of the ordinary units of measurement introduces dangerous possibilities
of error. When a computing machine is used working means are best avoided, especially if they
are such as to introduce negative numbers.

(iii) Analysis of oariance.
Sufficient figures should be retained in the sums of squares to give four significant figures'in

the error sum of squares. In cases of doubt the retention of an extra figur.g or two does not seriously
increase the work.

(io) Presentation of results.
Three significant figures are normally sufficient in agricultural fipld experiments. In general

the number of figures required depends on the accuracy of the final results;

(o) Standard enors.
A good ro inch slide rule (three significant figures)

very convenient, since square roots may be read directly
will give all necessary accuracy, and is

Norn z. Nuunnrcel DIvrsoRS IN THE ANALysIs oF vARIANCE, ETc.

The sum of squares corresponding to any single degree of freedom is obtained by squaring
some quantity p which is the sum of certain multiples (positive, negative and zero) of the plot
yields. 

- 
The 

-di:visor 
d by which pz must be divideil is equal to the sum of the squares of these

multipliers, In the special but common case in which the multipliers are all * rr - r or o the
divisor is equal to the number of plot yields going to make up p.

Technically p is said to be a linear function of the plot yieldstyr, y., . . . i.e.

Q: I' yri- lz !z*
where /r, 1", , . .. . . are numerical quantities (the above multipliers), so that

d.: h2* lz2+ ......
If more than one degree of freedom is involved there are se,teral Q, and devz Q must be dividecl

by a divisor d, whibh is-calculated as above, prwided no plot yield entets into more than one p.
If this occurs the difierence of any two p musl be taken and a divisor calculated for this difference
by the above rule. d is egual to one half of this divisor.



The estimates of the corresponding 
"n"or-"r1'ortained,by 

dividing the p by some divisor )rdwhich depe.nds on the conventio-ns l!gpt"-d. In the case of riain etrecis 
"rraTrrt.,i""tio". 

oi-f""to6at two levels )t-is-equal to a half. With factors at more than two levels )r i. 
"q""i 

to-""iiv untess
one or more of the interacting factors is at two levels only (see Section t3" fo" ". o"n*tE.

The error variance of p is equal to d times the error variance of a single plot, and conse![uently
the error variance of the estimat" ir ;fo times the error variance of a single plot.

Norr 3. OnrnocoNer, FUNcrroNs.

If the efrects cortesponding to two degrees of freedom are estimated from two quantitiesp and p' such that
o
Q'

: h !t* lz yz4 .,....
: I't !t* I'a ya* .....,

r229999999
r23

as in Note z, the two degrees of freedom are orthogonal if
h I'r* lz I'z* ......: o

i:: I l!" *- P{ the products of the corre-sponding-multipliers of the plot yields is zero. With
three degrees ot treedom there are three such sums of products, which must ill be zero, and so on.

^,, 
Shil-.ly two sets of.degrees of freedom-are orthogonal if the corresponding pairs of p's and

9"s are orthogonal, prwided that no plot yield enters irto more than oni such "pa^ir.

Norn 4. Hnms oN THE usE oF cALcuLATTNG MAcHINEs.

^_ _ tl) A;rangg the.computations- so as to avoid Byi"g to write down inteunediate steps : the
transter of numbers from the machine.to.paper, and back again to the machin", consumei a large
amount of time, and introduces possibilifiei of error.

(z) Always compute sufficiently carefully to avoid mistakes. Checking should be regarded
as an assurance that no errors exist, not as a method of correcting errors.

. (1.) 1" long computations, such as extensive sums of squares, record the value attained at
suitable intervals, so as to facilitate the location of possible efoors, but do not clear the machine.

.(+) In calculating sums of.squares or products accumulate the sum of the multipliers whenever
posstble, even if this sum is already known, either by means of, a r on the right oi the keyboard,or by means of the register provid-ed on some *"ch"ines for this purpose.

(S) Partial. sums of the multipliers (such as block totals) may be obtained by recording the
:li_"I,||_Tultipliers at the appropriate'intervals, clearing tliir sum (but notthe i"* of .q,i"r"ry
rt convenrent.

, (6) In a sum of squares in_ which the sum is also being accumulated an occasional negative
value (say - n3) may be treated by the process :

tSrz8ggg98Z7
the top line of figol"q being written on the keyboard. If there are a considerable number of
{egative nYmbers it is b'est to square all the posit''ive numbers, record and clear theit ** i-U"t 

"otthe.sum o{ s-quares), and then square all the negative numbers. Sums of ft"ar.t. ""tr f a""ft
with similarly.

93

.(Z) It covariance work with two variables the two sums of squar€s and twhe the sum of
products can be oUt i""a- 

"ir""-t't"";rty 
ty the process :

t23oooo456
t 2,3 o o o o 4 5 O

or5r 2gort2r76ozo7g36
(A ro x ro x zi machine is reouired for three-figure numbens). If the sums of squares (together
with the sums) are also calculaied seoaratelv the-sum of prodircts will also be checked (but beware
of negative numbers and errors of iopyin! from the machine).

(8) In covariance work with more than two variables one sum of squares and one sum of
products (oi rwo sums of products) can be obtained simultaneously by writing two variables at
opposite ends of the keyboard.

(9) In covariance work with more than two variables the most effective method of checking
in many types of analysis is to construct an identical table of the sums (s) of the corresponding
values of each variabli. The various sums of squares of the s table provide a complete check,
by reason of the identiry'rz: 

1b+ b+ c1z: az+ b2+ c'+ zab+ zar+ zbc,

More detailed checks are provided by the identities

etc. 
as: a2+ ab+ ac

- (rg) If seve-ral divisions by the satne divisor have to be performed it is best to multiply by
the reciprocal of the divisor"



fi4

REFERENGES

BOOKS

(r) R. A. Fisher.- I9S:. .Statistical Methods for Research Workers. Edinburgh: Oliver and
Boyd. 6th Edition. ry36.

(z) L. H. C. Tippett. r93r. The Methods of Statistics. London: Williams and Norgate.
(l) R. A. Fitet.. 1936. The Design o[ Experiments. Edinburgh : Oliver and Boyd.

znd Edition. ry37.
(+) D. Mainland. . 1937. The. lreltmgnt of Clinical and Laboratory Data. An Inrroduction

to Statistical Ideas and Methods for Medical and Dental Worters. Edinburgh : Oliver
and Boyd. (In the press.)

TABLES
(S) R. A.-Fisher 

-and 
S. .Yates.. r93J-: Statistical Table_s for Biological, Medical and Agricultural

Research. Edinbirrgh: Oliver and Boyd. (In the preis.)

PAPERS

I. ON sunlrcrs DrscussED rN THE TExr

(6) R. A.-Fisher. - ry26._ I!S_4_qgg"ment of Field Experiments. Journal of the Ministry
of Agriculture, Vol. XXXIII, pp. 5o3-Sr3.

An account, in.non-mathematical terms, of the principles governing experimental
design.

0 R. A. Fishet-{d.J. Wishart.- r13o. _The_Arrangement of Field Experiments and rhe
Statistical Reduction of the Results. Imperial Bureau of Soil Stience. Technical
Communication No. ro.

A. simple. explanation of the numerical procedure of the analysis of randomized
block and Latin square experiments.

(8) F. Yates. 1933. The Principles of Orthogonality and Confounding in Replicated Experiments.
Journal of Agricultl'ral Science, Vol. XXIII, Part I, pp. roS-r45.

An account of the principles underlying the struiture of ieplicated experiments.
(g) F. Yates. 1935.- _CJTPlex Experiments. Supplement to the Journal of the Royal Statistical

Society, Vol. II, No. z, pp. r8vz4J,
An outline of the methods of factorial design and an investigation of the gain in
efficiency resulting from confounding.

(ro) M. M. Barnard. 1936. AgEnumerationoftheConfoundedArrangementsinthez x 2x z ...
Factorial Designs. Supplement to the Jburnal of the Royal Statistical Society, Vol. III,
No. z, pp. tg1-zoz.

(tt) F.Y"l":, .1936. A New Method of Arranging Variety Trials Involving a Large Number
of Varieties. 

. Journal of Agricultural Siience, Vol: XXVI, part If Il pp. 4;+-+SS.
See Section t7a, b and, d.

('z)
95

F. Yates. 1936. Incomplete Randomized Blocks. Annals of Eugenics, Vol. VII, Part II,
pp. r2r-rr'.o.

See Section r7c.
F. .Yates. rg37. A Further Note on_ the_Arrange139nt of Variety Trials : Quasi-Latin

sq""t"..-"htttt"l.-; EE";[s, vol' vII, Part IV' pp' 319-33r'
See Section r7c.

II. Ox sour usEFUL SPEcIAL PRocEssFs'

F. Yates. rq??. The Analvsis of Replicated Experiments when the Field Results are
Incompl6iel B*pi."Jorltnal of Experimental Agriculture.,.Vol' I, Nq. ,'.pp.. rzg-r42'

The procedui" 
"f*"ty.ir 

whei one or more plot yields are missing is described.

F. Yates. 1933. The Formation of Latin Squares for use in Field Experiments. Empire
Journal b-f-Experimental Agriculture, Vol' I, No. 3, Pp. 235'2+4,

F. Yates. 1936. Incomplete Latin Squares. Journal of Agricultural Science, Vol. XXVLt* 
+l"tlnffJ#li:ir,"o*pt"," r-",in squares is described.. Ih" following cases are
considered: a missing row, column or treatment, a missing row and column, or
either and a treatment.

(rr)

( 
'+)

(rs)

( 16)

0z)

('8)

III' Souncrs oF EKPERIMENTAL MATERIAL'

F. R. Immer. rg32. Size and Shape of Plot in Relation to Field Experiments with Sugar
Beets. Jourh-al of Agricultural-Research, Vol. 44, No. 8, pp. 649-668.

Rothamsted Experimental Station, Annual Reports, 19z5-1936.
Many ictual examples of factorial design -are 

given in_these reports-, an-d the whole
development of fattorial design can be followed. -Useful methods of presenting
the results of complicated experiments are exemplified, and some interesting long-
period rotation experiments are described.


