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The Design and Analysis of
Factorial Experiments

1. INTRODUCTION.

Factorial experiments are experiments which include all combinations
of several different sets of treatments or  factors.” Information is thus
simultaneously obtained on the responses to the different factors, and also on
the effects of changes in the level of each factor on the responses to the others.

This Technical Communication has not been written with the object of
" convincing experimenters of the need for emgloying factorial designs, but
rather for those who, while fully conscious of the advantages of such c!em ns,
find difficulty in laying them out and in analysing the results. It is, in fact,
an attempt to give a comprehensive survey of the simpler types of design at
present available, and a description of the appropriate methods of an_aly31§.
The reader who has not done so is advised first to read Prof. R. A. Fisher's
Design of Experiments, where he will find a full account of the logical basis of the
whole technique of modern experimental design.

Ia. Principles underlying factorial design. y

The points at issue may be made clear by the consideration of an example.-
Suppose it is desired to introduce a new crop into a country, and that nothing
is known of the most suitable varieties, type and quantity of manuring, the
best cultivations, etc. The classical procedure would be to set up separate
experiments to determine the best varieties, others to investigate the manm_-lal
requirements, others (if indeed any were undertaken on this point) to determine
the most suitable methods of cultivation, rates of sowing, etc. Unfortunately,
however, we cannot conduct manurial experiments without choosing some
variety on which to conduct them, nor can we conduct varietal trials without
deciding on some level of manuring, a rate of sowing, width between rows,
cultivations, etc. Now it may happen that the effects of fertilizers on the
different varieties are materially different, or that varieties that are good yielders
at wide spacings, owing to a rank habit of growth, are much inferior in yield
(or other qualities) when sown at close spacings. Thus conclusions that have
been laboriously reached on the correct level of manuring for one van.etyl Flﬁy
be inapplicable to the variety finally chosen, and that variety may ;ﬁse A 3
incorrectly chosenbthx::cilugh not re:zalllzmg1 the C;;pssnbllltles of increasing the yie

er varieties anges in cultural practices. : _
% Ot(lsf course nom}ar of th%se misfortunes may occur. The varietal differences
may be substantially the same for all levels of manuring and all culturall practices,
ancir responses to fertilizers may be unchanged by change in cut}tu_lia practices.
Indeed such experimental programmes would be completely 3]:1 e \l;vere this
not usually the case. But even where it does happen that no dxstptlil %nces of
this kind exist, such methods are cxccedmgl inefficient com :;e \i\u actorial
experiments, for the reason that in factoria experiments all the plots are used
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many times over in making estimates of the effects of the different factors.
Thus, for example, with four factors, each at two levels, there are 16 treatment
combinations. With 8o plots five replications of each combination are there-
fore possible. The estimate of the effect of any one factor, if this effect is
unchanged for variations of the other factors, is obtained from the comparison
of the mean of the 40 plots receiving the higher level of this factor with the
mean of the other 4o. If four separate experiments are undertaken, one on
each factor; then each experiment will contain 20 plots only, and the estimate
of the effect of each factor will be obtained from the comparison of two means
of 10 plots each. The precision will therefore be one quarter that of the
factorial experiment, provided the standard error per plot is the same in both
cases. Even if these four experiments are combined and one set of plots is
used for the * controls,” ie. the plots receiving the standard level of each
factor, there will only (with 16 “ controls ””) be 16 plots for each factor, so that
the precision will be £ that of the factorial design.

If the effects of some or all of the factors vary with changes in the other
factors, the factors are said to interact, and the estimates obtained as above
from a factorial experiment will be the average of the effects of each factor in
conjunction with the different levels of the other factors. At the same-time
estimates of the actual amount of the variation may be obtained by taking the
differences of the effects of one factor at the different levels of the other factors.
In such circumstances the results of a set of experiments containing single

factors only will be misleading to an extent depending on the degree of variation
in the effects.

1b.  Criticisms of factorial design.

It is-sometimes objected that what is really required is not the average
effect of a factor, but rather the effect of this factor in conjunction with ‘some
particular combination of the remaining factors, and that factorial experiments
provide an estimate of this having only low precision. Actually it rarely happens
that agricultural practices are in fact standardized in the way contemplated by
the critics, but even where this is the case the objection, as we have seen, carries
no weight unless the variation in the effects is substantial, and even then the
loss in precision is small if the levels of the remaining factors finally adopted
are intermediate between the extremes included in the experiment. In any
case unless we know beforehand the particular combination of the other factors
that will be used (in which case it wilFbe a waste of time experimenting on them
at all) we are forced to survey the whole field, and the experimenter who confines
himself to experiments on single factors, making a guess at the final levels of
the other factors, is merely emulating the tactics of an ostrich.

An objection of a similar type is that such and such a combination of factors
““ would never be used in practice.” Thus in fertilizer trials it may be maintained
that the application of phosphate without potash or nitrogen to a certain crop is
ridiculous. Such preconceived notions are usually based on entirely inadequate
evidence, and are well worth experimental test, but as evidence accumulates the
field of enquiry can sometimes profitably be narrowed. Thus if it is known
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that the application of some nitrogenous manure is certainly required, but the
optimal level is still in question, the lowest level of nitrogen need not be zero,
but a minimal dressing. There is also no objection in randomized block
experiments to including an additional set of plots (outside the main factorial
scheme) receiving no nitrogen, both for demonstration purposes and as an
assurance that conditions have not radically changed.

There is one further point which must be considered in assessing the
advantages of designs of varying complexity. As the number of treatment
combinations is increased the adequate elimination of fertility differences becomes
more difficult. Consequently the standard error per plot tends to be higher in
factorial designs than in simple experiments involving a few treatments only,
with a resultant lowering of the relative efficiency of factorial designs. The
whole matter has been discussed in (9)* where it was shown that the loss of
efficiency with properly designed experiments may be expected on the average
to be much less than the gain due to the use of factorial design, quite apart
from the information on the interactions between the different factors, which
can only be obtained from factorial designs. The loss of efficiency was found
to be due mainly to the necessity of abandoning Latin-square arrangements,
the discussion being written before it was realized that Latin-square designs
could be utilized in some types of factorial experiments. This procedure, when
it is possible, is likely to reduce the loss materially.

It is, perhaps, typical of the superficial character of most criticisms of
factorial design, that in many of them the efficiency of a design (i.e. relative
amount of information per unit of work expended, or per plot when the work
expended is proportional to the number of plots), is confused with the accuracy
of the final comparisons, which accuracy can always be increased by increasing
the size of the experiment, and therefore the number of replications, or by
decreasing the number of treatments included in the experiment.

The difficulties of the practical tyf:e that stand in the way of factorial design
arise from the greater complexity both of the layout and the statistical analysis,
and the larger number of plots that are required. How far these are of import-
ance must be decided by the man in charge of the field operations. In this
connection it should be remembered that any new technique is liable to present
difficulties which fade away on closer acquaintance.

1c. Scope of the Communication.

In the present paper factorial designs with factors at two levels only are
first discussed, since these are capable of specially simple treatment, and enable
the structure of confounded arrangements to be more easily understood than
do designs containing factors at three or more levels. There follows an account
of designs with factors at three levels, with factors both at two and three levels,
and with factors at two, four and eight levels. Ifmally,. various special types
of design, such as designs with split-plots, and their modifications, and designs
for varietal trials involving a large number of varieties, are described.

—————

*The numbers refer to the references at the end of the paper,
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No attempt has been made to give recommendations as to the best procedure
in the field, or to discuss such points as size and shape of plot, number of
replications, etc., since these depend so much on type of crop and local conditions
that no discussion in general terms would be profitable. It may be well Yo
emphasize here, however, that the additional complexity of factorial designs (and
to a lesser extent all random arrangements) carries with it the necessity for careful
organization if mistakes are to be avoided. The preparation of clear and simple
plans, and a convenient system of numbering the fertilizer mixtures, etc., that
are to be applied, will lighten the work of the man in the field, who is usually
operating under adverse conditions, 1s frequently in a hurry, and is sometimes
not very certain of the points at issue. Whenever the remark is heard, for
instance, that random arrangements lead to mistakes in the field from which
systematic arrangements are immune, it can be confidently predicted that the
preliminary organization is inadequate.

1d. New material.

For the benefit of the reader who is already familiar with the subject- it may
be well to indicate here what is new in this communication. Most important
is the adaptation of confounding to Latin-square designs, so as to enable, for
instance, a 25 experiment to be arranged in the form of an 8§ x 8 Latin square
(pp- 31-35, etc.). The analogous adaptation of split-plot designs is also of
considerable importance (pp. 78-81). The parallel use of quasi-Latin squares
(Iattitée 88 uares) in varietal trials (described in full elsewhere) is also outlined
(pp- 87-8). '

No complete account of the designs involving some factors at two and some
at three-levels (pp. 57-64) has previously been published, though some of these
designs have been in use at Rothamsted and elsewhere for some years. The
account of designs containing factors at two levels only (pp. 23-26) 1s also more
complete than any previously published. Lastly, the 3* design in blocks of g plots
(pp- 47-8), a fairly obvious extension of the popular 3* design, should be noted.

On the computational side a new method of computing the treatment effects
in experiments with factors at two levels only is given (p. 15), and attention
has ‘been paid generally to the best methods of carrying out the computations
of the various designs.

re. Notation, elc.

It is assumed that the reader is familiar with the methods of design and
analysis appropriate to simple experiments in randomized blocks and Latin
squares, and in particular that he is thoroughly conversant with the analysis
o? variance procedure applicable to experiments of this type. A selection of
references on the subject is given at the end of the paper.

The notation followed is substantially that of Fisher’s Design of Experiments,
i.e. small Jetters are used to denote the treatments corresponding to the different
factors, and capital letters the main effects and interactions. The symbol [ab]
has been introduced to indicate the sum of all the yields corresponding to the
treatment combination ab, the symbol @b, when it indicates a number, being
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used to represent the mean of these yields, or this mean expressed in standard
units (cwt. per acre, etc.). (In The Design of Experiments (ab) is used to denote
either the sum or the mean according to the experimental material.) By analogy
[4] and [A.B] are taken to represent the algebraic sums of all the plot yields
which go to make up the estimates of the main effect of @ and the interaction
of a and b, without any division, whereas 4 and A.B indicate these estimates
expressed in termrs of the yield of a single plot (or in standard units, such as
cwt. per acre), with the conventional factor £, 1, etc. introduced, as defined on
page 10. In the case of factors at more than two levels the symbol [4] is taken
to represent the whole set of totals, and 4 the whole set of means, corresponding
to the various levels a,, a,, a,, . . . of the factor a.

One other new symbol is introduced. This is the word dev, which is
used to denote the deviations of a set of numbers from their mean. dev? is
likewise used to denote the sum of the squares of these deviations. Thus

dev (@,,a,,....) = deva = a,-a,a,-a,a;-a,......

dev? (a,,a,,....) = dev?a = S(a-a)? = a,%+a,*+ -na?
= a,%+a,%+ ...~ (ay+a,+ ....)?
= a,%+a,%+....~a(a,+az+....)

In a similar manner dev a. dev b might be used in covariance work to indicate
the sum of the products of the deviations of two variables a and . 'The occurrence
of these quantities in statistical computation appears to be sufficiently frequent
to justify the use of a special symbol, especially since they are only very clumsily
representable by the current symbols when the a’s are themselves complicated
algebraic expressions.

Algebraic formula have been avoided as far as possible, and where it has
been necessary to introduce them particular attention has been paid to writing
them in the form required by the computer and also in a form exhibiting their
structure, so that they are easily remembered. Thus the quantity O on page 58
has been so defined as to be analogous with the quantity [B.C], but the Formula
for 30 is given because 30 will be computed in numerical work. The formula
for B.C on the same page is given in terms of both Q and 30, the latter being
the form required for computation, while the former exhibits the structure.

Free use has, however, been made of the algebraic notation of signs, brackets,
etc., in setting out arithmetical calculations. Those who can understand this
notation (as for example the expression for the sum of squares on page 37)
should have no difficulty with the algebraic formulz.

2. A SIMPLE FACTORIAL EXPERIMENT ON POTATOES,

The main features of factorial designs involving only two levels (often
presence and absence) of each factor can best be illustrated by a simple example,
We have chosen an experiment on the manuring of potatoes carried out at
Wimblington in 1934.
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Three factors, nitrogen, potash and dung, were included ; the 8 treatment
combinations consisted of all combinations of :

Sulphate of Ammonia (n) Sulphate of Potash (&) Dung (d)

None None _ I None
0.45 cwt. N per acre X\ 1.12 cwt. K,0 per acre [ % | 8 tons per acre

There were four replications in randomized blocks of 1/60 acre plots. The plan
of the experiment. and the yields of the individual plots are shown in Table 1.

TABLE 1. PLAN AND YIELDS IN LB.

Block I Block II Block Totals

nk | kd | d | nd | Rd | 4 | k | nk L5 = w2266
291 | 398 | 312 | 373 | 407 | 324 | 272 | 306 I oo
@ | k| n |nkd| n | wkd| nd | () '

101 | 265 | 106 | 450 89 449 | 338 | 106 ML = i 2369
d | ) | nd | kd | nd [ st | n | 4 BV e e E2ggs
323 | 87 | 324 | 423 || 361 | 272 | 103 | 324 Total T
nk k n nkd k (1) nkd | kd

334 | 279 | 128 | 471 || 302 | 131 | 437 | 445

Block III Block IV

2a. Yields of the different combinations of treatments.

The first step in the analysis of the results of a factorial experiment is to
calculate the tota{) yields of all the plots with each combination of treatments.
The main features of the results are usually apparent from an inspection of these
totals. An analysis of variance will, however, be necessary in order to make
the formal tests of significance and assign standard errors to the various
comparisons.

The yields of the individual treatment combinations in this experiment
(converted to tons per acre) are given in Table 2.

TABLE 2. YIELDS OF THE DIFFERENT COMBINATIONS OF TREATMENTS
(TONS PER ACRE).

(1) n k nk d nd  kd nkd IMean

2.84 2.85 7.49 8.06 . 8.59 9.35 11.20 12.10| 7.81

Treatments are indicated by small letters, and the symbol (1) is used to indicate
absence of all fertilizer.
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2b. Main effects.

Consider first the effect of dung. There are four relevant comparisons
in Table 2.

nand k absent = —Lr) = 55

n absent, k present=kd -k — 371

Response to dung n present, k absent=nd —n = 6, 50
nand k present = nkd—nk — 4.04

Mean response= D = 35.00

These large apparent responses are sufficiently consistent to indicate that they
are unlikely to be due to experimental error.

The mean response, 5.00, will be called the main effect of dung, and will
be denoted by the capital letter D.

In a similar manner we have

n and d absent = 4.65

n absent, d present = 2.61

Response to potash n present, d absent = 5.1
n and d present = 245

Mean response = K = 3.86

k and d absent = o0.01I

. k absent, d present = 0.76

Response to nitrogen % present, d absent = o5y
k and d present = 0.0

Mean response =N = o0.56

There is, therefore, also evidence of a substantial response to potash, and possibly
a small response to_nitrogen.

2c. Interactions.

Examining the individual responses further, we see that the two responses
to dung with potash absent are both substantiall larger than the responses with
potash present. Equally the responses to potasi; are substantially larger in the
absence than in the presence of dung. The presence or absence of nitrogen,
however, makes little difference in either case.

The numerical differences in response to dung in the presence and absence
of potash are as follows :

Difference in response to d mabsent .. .. .. ~204
in presence and absence of k. mpresent .. .. .. —246
Mean .. .. .. -2.25

For reasons that will be apparent in a moment it is convenient to take one half
this mean difference, namely — 1.12. This is defined as the interaction between
the two factors* d and %, and may be written D x K, D.K or DK

*Also called the first order interaction. The mean interaction over all the other factors in the eXperiment jg
implied unless the contrary is stated.
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A similar computation for differences in the responses to potash in the
presence and absence of dung gives the identical results :

Difference in response to k nabsent .. .. .. _—2.04
in presence and absence of 4. npresent .. .., .. —246
Mean .. —2.2§

A moment’s consideration will show that this must be so. Thus the interaction
between dung and potash is identical with the ‘interaction between potash and
dung.

An alternative method of setting out the main effects and interactions
between two factors is by means of a two-way table. In this example, taking
the mean of # and no 7 in each case, we have the values of Table 3

TABLE- 3. MEAN OF 7 AND NO n (TONS PER ACRE).

No d d Mean
No & 2.84 " 8.97 5.go
k 778 11.65 9.72
Mean 5.31 10.31 7.81

The main effects are given by the differences between the pairs of marginal
means, and the interaction is given by the difference of the means of the two
diagonals, i.e. by } (2.84+ 11.65 — 8.97 — .78).

In a similar manner, the difference between the values ~2.46 and -2.04
gives an estimate in the change in the interaction between potash and dung in
the presence and absence of nitrogen. One quarter of this difference, i.e. one
half the ‘difference of the interactions, is defined as the interaction between the
three factors* and may be written N x K x D, N.K.D or NKD.

2d. Calculation of the main effects and interactions Jrom the experimental yields.

It will readily be seen from the above remarks that the main effects and
interactions may all be obtained by subtracting the mean of 4 of the yield
values of the individual treatment combinations from the mean of the other
4, or alternatively by taking the sum of 4 of these values less the sum of the
other 4, and dividing the result by 4. The actual signs are given in Table 4.

TABLE 4. MAIN EFFECTS AND INTERACTIONS IN A THREE-FACTOR EXPERIMENT.

Combination of treatments.
Effect | (1) n k nk d nd  kd nkd
Total + + + + + + + +
N =~ + - + - 4+ - 4
K T
N.K + = = +.  + = = +
D = = = = a0 n
N.D + - + = = + = +
K.D + + - - - - o 4
NKD | - + + - + - e +

*Also called the second order interaction.
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These signs may be derived in various ways. The simplest is to write
down the signs for the three main effects, and then to form the interactions
between each pair of mean effects by writing + for two +’s or two —’s, and — for
a—and a+. A further application of this process gives the interaction between
the three factors. If there are more than three factors the table may be extended
by still further applications of the same rule. ‘

The following formal expressions for the interactions are also worth noting :

N=4t(m-1) (k+1) (d+1),
NK=1%}(n-1) (k—1) (d+ 1),
NKD=}t(n-1) (k—1) (d-1).
If these expressions are expanded by the ordinary rules of algebra the appropriate
expressions for the main effects and interactions in terms of the treatment
combinations will be obtained. With four factors the fraction will be %, with
five 1%, etc., and with only two factors 3.

If the above method of calculation be applied to our example the main
effects and interactions will be found to have the values given in Table 3.
Some of these have been obtained already.

TABLE 5. MAIN EFFECTS AND INTERACTIONS.

N = 40356 NK = +40.a8
K = +38 ND = +027 NKD = -o10
D = +500 KD = - 112

A more mechanical method of obtaining these values is given'in the next section.

These values clearly all have the same standard error, since they are each
one quarter of the sums and differences of the yields of the eight treatment
combinations. As we shall show presently, the estimate of this standard error
(21 degrees of freedom) is + o0.177. Any value more than twice its standard
error may be judged significant. Thus all three main effects and the interaction
between potash and dung, the two factors producing the large effects, are
significant.

This type of result is one commonly found in agricultural trials. Factors
which produce large main effects may show evidence of interactions, but factors
which produce small main effects usually show no significant interactions.
A little consideration will show that this is what may be expected on general
grounds. The interactions are in general likely to be small in comparison
with the corresponding main effects.

2e. Interpretation of main effects and interactions.

It will be clear from what has already been written that the whole set of
main effects and interactions, together with the mean yield, is equivalent to
the yields of the individual treatment combinations. /

The response to any factor or combination of factors in the presence or
absence of any other factor or factors (the mean being taken over all factors
not under consideration) can be written down very simply in terms of the main
effects and interactions. The rules will be obvious from the study of Table 6.
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TABLE 6. RESPONSES IN TERMS OF MAIN EFFECTS AND INTERACTIONS.

Expression in terms of

Response to : treatment combinations main effects and interactions
d (k absent) ' 3nd - n +d - (1)] D-K.D
d (k present) (mean of n 4{nkd — nk +kd — k] D+K.D
d and k together | and no ) $[nkd — n +kd - (1)) D+K
d (n and %k absent) d—(x D-ND-K.D+NK.D
d and & (n absent) kd ~ (1) D+K-N.D-NK
d, kand n nkd — (1) D+K+N+NK.D

The interactions may thus be regarded as correcting terms which adjust
the values of the main effects (which would be additive if the interactions were
all zero). In this example the response to d where k is absent (mean of # and

no n) is D - KD = 43500 4 1.12 = + 6.12

and where k 1s present is
D + KD = + 500 — 1.12 = + 3.88
The response to both d and % (mean of # and no #) is
' D +K = +3500 + 380 = +8.80
These responses are those given by the differences of the values of Table 3.

It should be particularly noted that the interaction between d and k& does
not enter into the latter response. In the same way ornly the three-factor
interaction enters into the expression for the simultaneous response to all three
fertilizers :

D+ K+ N+ NK.D=+ 0.56 + 3.80+ 5.00 — 0.10= + 9.26
(This response can be obtained from Table 2.) If the interactions between
the three factors were ignored, therefore, the estimate would be
D+ K+ N= + 9.36.

The yield of any treatment combination may also be obtained from the
main effects and interactions, together with the mean yield, being equal to the
mesn yield and the sum of plus or minus one kalf of all the main effects and
interactions. The signs are given by Table 4. Thus, for example :

kd= mean+ }{-N+ K-NK+D-ND+ KD-NKD }

It will be noted that in the order shown the table is symmetrical about the
diagonal through the top right-hand corner, so that tze expression for kd
(equivalent to n absent) is obtained from that’ of N by replacing (1) by the
mean, n by 4N, etc,, and changing signs if the sign of (1) i1s negative.

2f. General remarks.

The statement of the results in terms of main effects and interactions thus
forms a convenient way of summarizing a factorial experiment, and concentrating
attention on its main features. It should not be forgotten, however, that the
expressions for the main effects and the interactions are really a matter of
definition, the interactions being measures of the departure of the observed
differences from the law implied in the definition of the main effects. Here
the main effects are so defined as to imply an additive law between the effects
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due to the three factors. This is statistically convenient, and in agriculture
appears to provide a good representation of the type of effect frequently observed.
But it should be clearly understood that the additive law has been provisionally
imposed by the statistician and is not implicit in the data.

The present example has itself afforded an illustration of a simple type
of departure from the additive law. Others more complex will occasionally
arise, and the experimenter should then bear in mind that the formal presentation
of the results in terms of main effects and interations may not necessarily be
the best course to pursue. Equally, however, he should avoid giving exaggerated
emphasis to some statistically significant but isolated high order interaction
which has no apparent physical meaning. If we are using the 1 i 20 level
of significance one out of every twenty of the main effects and interactions will
on the average be judged statistically significant even when the treatments
produce no effects at all. Such anomalous results, therefore, together with
non-significant effects, should be placed on record and judgment reserved until
further information has accumulated. :

Conversely, a verdict of non-significance does not imply that no effect exists.
It merely implies that the observed apparent effect would arise more frequently
than 1 in 20 (or 1 in 100) times by chance if there were no real effect. The
application of exact tests of significance to all experimental results is a salutary
habit which discourages the discussion of small apparent differences whose
magnitude is very ill determined, but it should not be forgotten that the main
object of most agricultural field trials is to estimate as accurately as possible
effects of which the experimenter is normally quite prepared to admit the
existence. . A secondary requirement is the determination of the magnitude of
the errors to which these estimates are subject, thus fixing limits between
which the true value of the effect is likely to lie. Consequently tests of significance
are replaced by estimates of standard errors and fiducial probability.

Thus, for example, it is reasonable to suppose that the application of
nitrogenous fertilizer to a crop on a given area will always alter the yield of that
crop, although the alteration may in certain cases be very small. Non-significant
results must not be taken as implying that no effect exists in such experiments,
though they can be taken as implying that the effect lies within certain limits,
In conjunction with other results, also not in themselves significant, they may
show quite clearly the existence of a small, but appreciable, effect. Similarly
the practice of finding the average response to a fertilizer at stations where that
response is significant is meaningless, for by making this selection of stations
we automatically select a majority of stations at which the error in the estimated
response is positive.

3. STATISTICAL ANALYSIS OF A 2 X 2 x 2 EXPERIMENT,

The discussion in the last section was designed to illustrate the various
aspects of the results of a simple factorial design. The routine analysis of such
an experiment is, of course, much abbreviated, and in the present section we
propose to give an outline of the various steps which should be followed in
order to arrive at these results expeditiously and without unnecessary repetition
of the various calculations.
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1. Yields of plots. Set out the yields as in Table 1, rounding off, if
necessary, to three significant figures. (See note 1, 'p. 91).

2. Totals of individual treatment combinations and block totals. These are
shown 'in the yield column of Table 7 and in Table 1 respectively.

3. Calculation of main effects and interactions in terms of the totals of
the individual treatment combinations. The main effects and interactions can be
calculated from the totals of the individual treatment combinations by means
of the table of signs in the last section. No division of the resultant totals need
be carried out. These totals are shown in column (3) of Table 7, each being
the sum of 16 plot yields less the sum of the other 16.

A more systematic and shorter method, which avoids the trouble of picking

out the relevant treatment combinations (a process which is laborious when there
are a large number of factors) is that shown in Table 7.
- The yields must first be arranged in a standard order of the type shown,
each factor being introduced in - turn, and being followed by all combinations
of itself and the factors previously introduced. Thus theé last four combinations
are formed by taking 4 in conjunction with the first four combinations.

Column (1) is then formed. The first four numbers are the sums of the
four pairs of numbers in the yield column, and the last four numbers are the
differences of these pairs, the upper number being subtracted from the lower in
each case. 'Thus 2321= 1118 + 1203 and + 85= — 1118 + 1203. = Column (2) is
formed in the same manner from column (1), and column (3) from column (2).
Since there are three factors these three applications of the process complete the
calculation. The total, and the main-effect and interaction totals, are obtained
in column (3), each effect and interaction appearing oppdsite the corresponding
small letters in the first column.

*

TABLE 7. CALCULATION OF TREATMENT EFFECTS.

Treatment Yield (1) (2) @3) Effect
(r) 425 851 3172 9331 Total 7 -
n 426 2321 6159 +333%* N X
k 1118 2679 +86 +2271%* K
nk 1203 3480 +247 +108 N.K
d 1283 +1 +1470 +2987%* D
nd 1396 +85 +8o1 +161 N.D
kd 1673 +113 +84 ~66g** K.D
nkd 1807 +134 +21 -63 N.K.D
S.E. +37.2 +105.4
Conversion 60 60
factor 2240 X 4 2240 x 16
=.00660643 =.00167411

Significance levels. (column 3): 5%: 219; 1%: 298

Asterisks denote significant results at 1% level.

There are no very simple checks on the intermediate stages of the
calculation. Complete accuracy should therefore be aimed at, particular
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attention being paid to signs.* The sum-of-squares check, described below,
controls the whole calculation except for the signs of the last column, which
should be independently checked. Interchanges in the yield column must
be avoided by systematic computation. A useful partial check is provided by
the sum, which is independently obtained from the block totals. This and
the independent calculation of the interaction between all factors check all
of the yield column and column (1), and one half of column (2).

A more elaborate example of the method, involving 5 factors, is shown
in Table 22, where a systematic. check for each column is introduced.

4. Calculation of sums of squares for blocks, treatments, and error. The
ordinary methods of the analysis of variance are followed. These give the
analysis of Table 8. It is advisable to record the correction for the mean as
this is often required in subsequent calculations.

TABLE 8. ANALYSIS OF VARIANCE.

D.F. Sum of squares. Mean square

Correction for mean .. 2720861.3

Blocks.. .. .. .. 3 7741 258.0

Treatments.. .. .. ~ 458718.0 65531.1

Error .. .. .. .. 21 7287.6 347.0
Total .. .. .. 31 466%79.7

5. Partition of the treatment degrees of freedom and sum of squares. The
7 degrees of freedom for treatments can be divided into 7 single degrees of
freedom ‘representing main effects, interactions between two factors, and the
interaction between all three factors. The seven 'sums of squares may be
.caI(’:Il‘ll'il)tled by squaring’the quantities of Table 7, column (3). They are shown
in Table g.

TABLE 9. PARTITION OF TREATMENT SUM OF SQUARES.

D.F. Sum of squares
N s 1 i 3465.3
K 5y 1 ; 161170.0
N.K 1 344-5
- D I 278817.8
%g I 810.0
o I 13986.3
N.K.D I 124.0
Total 7 o 458717.9

Each square must be divided by 32, since it is the square of the total of
+ 1 times the yields of each of 32 plots. (See note 2.) Thus

161170.0= 2271%/32

*The sum of two numbers of the same sign is the arithmetic sum and has itself this sign. 'The sum of two
numbers of opposite signs is the arithmetic difference and has the sign of the larger number. To obtain
the difference of two numbers change the sign of the number to be subtracted and take the sum as above,
Examples will be found in Table 2z.
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These 7 degrees of freedom are orthogonal and therefore the sum of the
7 sums of squares is equal to the ordinary treatment sum of squares. (See
note 3.) This provides the check of Table 7 mentioned above, and also checks
the treatment sum of squares and the correction for the mean in Table 8.

Since the tests of significance can be performed by the # test (as described
below) there is in practice no need to write down the separate sums of squares
for each main effect and interaction, and Table g will consequently be omitted.
All that is necessary is to sum the squares of column (3) of Table 7 (excluding
the sum) on the machine, and divide the result by 32.

6. Calculation of mean squares and tests of significance. 'The separate
components of the sum of squares for treatments can be tested for significance
by means of the z test. Since in this case each corresponds to a single degree
of freedom, however, it is simpler to use the # test, which is equivalent to the
2 test for n, = 1.

Since there are seven separate effects to be tested it is worth calculating
the 5% and 1% points. For 21 degrees of freedom = 2.080 for the 59 point
and 2.831 for the 1% point. The estimate of the standard error of a main-effect
or interaction total is /32 x 347.0 = 105.4. The 5% and 1% significance levels
for the main-effect and interaction totals are therefore 105.4 x 2.080 = 219.2 and
105.4 x 2.831= 298.4. Thus we see immediately that N, K, D, and K.D all
attain the 1% level of significance, the remaining interactions not being
significant.

7. Conwversion of yields and presentation of the vesults. The yields should
be converted to the customary agricultural units, and the results presented in
the form most suitable for making clear the main features, and for combination
with results of other experiments. Many alternative forms are possible, and
the exact form will depend largely on circumstances. In general it is a good
rule to present tables showing all main effects and interactions between two
factors (and also any interactions between three or more factors which appear
to be of interest) either directly or in the form of two-way tables with marginal
totals. Various examples of the different types of presentation will be found
in this communication.

The results of the present experiment have already been discussed in detail
in the previous section. Both Tables 2 and 5 can be derived directly from the
conversion of the appropriate columns of Table 7. Notice that the conversion
factor for the effect totals of Table 7 is that applicable to the totals of 16 plots,
although the effect totals each involve 32 plots, i.e. the difference of two sums
of 16 plots.

The appropriate standard errors should be written in Table 7 and converted
at the same time as the numbers to which they refer.

8. Calculation of the yields of the treatment combinations from the main
effects and interactions. A procedure similar to that adopted for the calculation
of the main effects and interactions from the yields of the individual treatment
combinations is available for the reverse computation. This procedure is
particularly useful in experiments involving a large number of factors when a
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table giving the mean yields of the combinations of two or three factors averaged

_over the remaining factors is required. It can also be used to reconstruct the
yields of the individual treatment combinations, when these latter are not
available.

As an example we have derived Table 3 from Table 5 and the mean yield.
The computations are shown in Table 10. Since only the two factors k and 4
are involved effects involving n# will not enter into the calculation.

K, D, K.D and twice the mean yield are arranged in a column, the order
being the same as that adopted in Table 7, but beginning from the bottom. The
computation process used in Table 7 is now applied. Only two applications are
necessary as only two factors are involved. The last column is divided by 2 to

give the required mean yields.

TABLE 10. CALCULATION OF YIELDS OF TREATMENT COMBINATIONS
FROM MAIN EFFECTS AND INTERACTIONS.

Effect (1) (2) Yield
K.D W e eo — L2 +2.68 23.30 11.65 Ad
K s i .. +3.80 2062  15.54 777 k Mean over
D - . .. +5.00 +4.92  17.94 8.97 d ( nand no n
2 (Mean) .. iz .. 1562 10.62 5.70 285 (1)

As an exercise in the more extended application of this process the yields
of Table 2 may be derived, using all the effects of Table 5.

4. CONFOUNDING.

Confounding is a device whereby the necessity of including every combination
of the treatments of a factorial design in each block (or row and column in a
Latin square) is avoided. This enables the block size to be kept small even when
the number of treatment combinations is quite large.

In a confounded experiment the treatment combinations of each replication
are divided into two or more groups (each group being assigned to a separate
block) in such a way that the contrasts between the different groups represent
high-order interactions, which as we have already seen are usually of less interest
than the main effects and interactions between two factors only. Thus in any
one replication the contrasts representing certain interactions are identified, or
confounded, with the block differences, and in consequence in this replication
most* of the information on these interactions is sacrificed. In so far as the
reduction of block size has been effective in reducing the error variance the
precision of all the remaining comparisons is increased. Moreover by con-
founding different interactions in different replications, i.e. by partial confounding,
some information may be retained on all interactions—indeed if the gain in
precision resulting from the confounding is sufficiently great even the partially
confounded interactions may be more accurately determined than would be the
case if the experiment were not confounded.

*A small amount arising from block comparisons remains, but is not in practice utilizable (see next page).
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4a. Example to illustrate confounding.

A simple and useful example of confounding is provided by the arrangement
of a three-factor experiment in blocks of four plots. If the factors be represented
by a, b and ¢ and we arrange the four treatment combinations

(1), ab, ac, be,
in one block of each replication (randomizing within the block) and the other
four combinations
a, b, ¢, abc,

in the other block; the contrast between these two sets of blocks is equivalent
to the three-factor interaction 4.B.C. Consequently all information on this
interaction is lost, except the small amount arising from inter-block comparisons.
It is easily seen, however, that block differences are eliminated from all the
other interactions and from all the main effects, since each of these comparisons
involves two plots with a plus and two plots with a minus sign from each block.

For reasons given in (g) it is best to arrange that neighbouring blocks
are of unlike type, so that the blocks themselves form randomized pairs, each
pair comprising a complete replication.

In order to illustrate the modifications that are necessary in the statistical
analysis we will reconstruct the analysis of the potato experiment already given,
on the supposition that it was arranged in this way and gave yields identical
with those actually obtained. This will make clear the parallelism as well as
the differences between the two analyses.* Actual examples of confounded
experiments are given later in the paper.

4b. Statistical analysis.

The partition of the degrees of freedom in the analysis of variance is given
in Table 12.

The formal analogy of this partition with that of split plot arrangements,
discussed in Section 164, should be noted. The blocks correspond to whole
plots, arranged in blocks of 2, and the plots to sub-plots. :

The appropriate error for testing N.K.D is “ within block pairs.” Not

‘only is this likely to be large, because it involves comparisons between whole

blocks, but it is also very ill-determined, being based on only 3 degrees of freedom.
Normally, therefore, the partition of the sum of squares ““ between blocks ” is
not performed, only the three components, blocks, treatments and error being
calculated.

The steps of the whole calculation are as follows.

1. Calculate the sum of squares for blocks from the 8 block totals (given
in Table 11).

*It may perhaps be well to emphasize that there is only one form of analysis appropriate to a given experimental
arrangement. ‘Thus it is not permissible, if it is found on analysis that the elimination of the sum of squares
for blocks actually increases the estimate of the experimental error, as in the potato experiment just described,
to omit to perform this elimination. The example which follows must therefore be taken as illustrating
the statistical processes only.
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TABLE 11. BLOCK TOTALS, N.K.D CONFOUNDED,

Ia Ib IIa IIb I11a IIIb IVa IVb
1163 1133 1157 1134 1168 1201 1209 1166

Blocks (b) contain nkd. Note that the sum of the b’s less the sum of the a’s equals [N.K.D].

2. Calculate the sum of squares for the unconfounded treatment comparisons
by summing the squares of the relevant totals from Table 7. Check this (and
Table 7) by calculating the sum of squares for all treatments (ignoring con-
founding) from the yields of the separate treatment combinations, and deducting
the N.K.D component.

TABLE 12. ANALYSIS OF VARIANCE, N.K.D CONFOUNDED.

D.F. Sum of squares Mean square

Between block pairs 3 7741 .. 258.0

N.K.D "y e 1 124.0 .. 124.0

Ele;g;en Within block pairs _3 421.9 .. 140.6

Total 5 1320.0 .. 188.6

Within S Treatments* 2 = iz 6 .. 458593.9 .. 706432.3

blocks  UError .. e g - - 18 .. 68658 . 381.4
Total .. . 50 .. 31 .. 466779.7

*Main effects and interactions between two factors (see Table g).

3. Calculate the error sum of squares by subtraction. 'The remainder of
the analysis of variance and the tests of significance proceed as before.

4c. Presentation of results.

The presentation of the results requires slight modification, since any
comparison involving N.K.D is affected by block differences. The best procedure
is to divide the individual treatment combinations into two categories, according
as they fall into blocks (a) or (b), arranging the results as in Table 13.

TABLE 13. YIELDS OF TREATMENT COMBINATIONS, N.K.D COMPLETELY CONFOUNDED.

Blocks (a) Blocks (b)
(1) nk nd kd n k d nkd | Mean
Unadjusted . . .. 284 8.6 9.35 11.20 285 749 8.59 12.10| 7.81
Assuming NKX.D=o ..| 279 801 9¢.30 IIIj 2.90 7.54 8.64 12.15| 7.81

N.K.D will be omitted from the table of main effects and interactions.

If the table of individual treatment combinations is adjusted so that the
mean of the first four components is equal to the mean of the second four by
the addition of one half of the apparent value of N.K.D, here —o0.05 tons, to
each of the second four and the deduction of the same amount from each of the
first four, this will eliminate block effects, at the cost of assuming that N.K.D
is negligible. This procedure is not to be recommended as a general practice
but is sometimes of value in the popular presentation of the results. All inter-
actions between two factors, being unconfounded, can be presented by means
of the ordinary two-way tables.
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4d. Example of partial confounding.

Instead of confounding the three-factor interaction 4.B.C in every replication
of a three-factor experiment the two-factor interactions may also be confounded
in their turn. Thus the potato experiment might have been arranged in 8 blocks
of 4 plots each, the interaction N.K.D being confounded in the first pair, the
interaction N.K in the second pair, the interaction N.D in the third and the
interaction K.D in the fourth. The treatments would then have had to be
allotted to the pairs of blocks in the manner shown in Table 14.

TABLE 14. ARRANGEMENT OF TREATMENTS AND BLOCK TOTALS, PARTIAL CONFOUNDING.

Interaction

confounded oy N.K.D N.K N.D K.D

Block .. eal wa la Ib I1a ITb I1Ia IIIb IVa IVb
(¥) n n (1) n (1) k (1)
nk k k d d k d n

Treatments o «i| nd d nd nk nk nd nk kd
kd nkd kd nkd kd nkd nd nkd

Total S 1163 1133 1106 1185 1208 1i61 1259 1116

Adjustment per plot..| -2.4 +2.4 +8.8 -8.8 -14.5 | +14.5 +4.0 -4.0

¢ If this procedure had been adopted, full information on the interaction
N.K.D would have been obtained from the block pairs II, III and IV, but
no information would have been obtained from blocks I. Similarly, full informa-
tion on IN.K would have been obtained from blocks I, III and IV, etc. Thus
three-quarters of the information available on the main effects would be available
on each of the interactions.

4e. Statistical analysis. _

Certain modifications are required in the calculations of both the estimates
of the interactions and the analysis of variance. '

The general principle to be followed in cases of partial confounding is to
estimate each partially confounded degree of freedom (or set of degrees of
freedom) only from those blocks in which it is not confounded. Sums of squares
are calculated from these estimates in the ordinary way, account being taken

‘of the fact that they are based on a reduced number of plots. The sum of

squares for blocks is computed from the block totals in the ordinary manner.
The calculation will here run as follows.

The block totals must first be calculated. These are given in Table 14.

The totals for the interactions must be recalculated, omitting the blocks
in which they are confounded. This can be done directly or by noting that,
for instance, required total for N.K = N.K total (Table 7) + total of block 1Ia —
total of block IIb, or in the notation we shall adopt [V.K]’=[N.K] + [IIa] - [IIb].
This is the most expeditious method of calculation, but care must be taken with
the signs. In our example

[NK]" = + 105+ 1106 — 1185 = +26
[ND)) = + 161+ 1208 — 1161 = 4208
[K.D}) = -669+ 1259 ~ 1116 = - 526
[NK.D]" = - 63+ 1163 - 1133 = - 33
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The analysis of variance will now contain a degree of freedom for each
interaction, since each can be estimated. The sum of squares for the interactions
will be obtained by summing the squares of the above four numbers and dividing
by 24, since each is the sum of plus or minus 24 yields. The sum of squares
for the main effects will be identical with that already obtained in the uncon-
founded design. The sum of squares for blocks comes directly from the block
totals. Finally the error sum of squares is obtained by subtraction. We thus
obtain the analysis of variance shown in Table 135.

TABLE 15. ANALYSIS OF VARIANCE, PARTIAL CONFOUNDING.

D.F. Sum of squares Mean square
Blocks o .. . 7 .. 4499.0 o 642.7
Main effects 3 .. 3 - 443453.1 - 147817.7
Interactions .. .. 4 . 13404.4 .. 33511
Error og o a0 17 o5 5423.2 .. 319.0
Total oa ac oo 31 .. 466779.7

In this analysis it is not possible conveniently to subdivide the degrees of
freedom for blocks, as was done when N.K.D was totally confounded.

The reader will notice that the estimates of error vary considerably in the
three analyses, Tables 8, 12 and 15. This, however, does not indicate that the
errors are different, since each is in fact an estimate of the same error. The
variation is due entirely to random sampling variation resulting from the omission
from the ““ error” of Table 8 of certain degrees of freedom, those * within
block pairs ”” in Table 12, and others less easily isolated in Table 15.

The estimates of the interactions flow directly from the modified totals
[N.K]’, etc. Since each comprises 24 plots the conversion factor must be that

appropriate to the total of 12 plots, i.e. giving, in tons per acre,

2240 x 12
the values
N.K=+ 0.06, ND=+ 0.46, KD=-1.17, NK.D= -0.07
values which, as should be the case, are not substantially different from those

already found.

The estimate of the standard error of each of the totals [N.K]’, etc., is
clearly

"'/24x 319.0= + 87.5
and this converted into tons per acre gives + 0.195. As before, the estimate
of the standard error of the main effects will be 4/32 x 319.0, giving + o.170
tons per acre.

Using the # test we find the 5% and 1% points for the interactions to be
o0.411 and 0.565. Thus K.D is significant at the 1% level, and N.D now attains
significance at the 5% level. This is an illustration of how, by considering
part of the data only, effects which are insignificant when the whole of the data
is taken into account, may by chance attain significance. Such tests are, of
course, not valid, since they transgress the necessary condition that for any

chosen effect in any given experiment there can be only one appropriate test
of significance.
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_ If we require the standard error of some function of the main effects and
interactions, as for example the response to potash in the presence of dung :

K+ K.D=+ 3.80-1.17= + 2.63

the ordinary rule of taking the square root of the sum of the squares of the
standard errors of the two parts is applicable, since these parts are orthogonal
and therefore in effect independent. The required standard error is therefore
v(0.170%+ 0.195%) = + 0.259.

4f. Presentation of results.

In partially confounded experiments the ordinary table of the yields of the
separate treatment combinations is misleading, since the values are affected b
block differences, which may be very large. Since every interaction is determined,
however, a table of adjusted yields may be computed. The experimenter will
be well advised, wherever possible, to avoid presenting a comprehensive table
of this nature, since it is troublesome to compute, and is also troublesome to
interpret, since the various comparisons are not all of the same accuracy.
If, however, such a table is required, it can be calculated from the main effects
and interactions by the method already given. Tables embracing certain selected
factors only are likely to be of more interest and utility, and can be similarly
computed. Thus in the present experiment we might reasonably exhibit a
two-way table of the combinations of dung and potash, similar to Table 3.

A useful check on the construction of tables of adjusted yields is provided
by calculating the adjustments to the original yields necessary to eliminate block
differences. Thus in our example the difference between blocks Ib and Ia
should, if there were no block effects, give the interaction N.K.D. Since [N.K.D]’
contains 24 plots and blocks Ia and Ib together contain 8 plots the difference
should be § [N.K.D]'= —11. Actually it is 1133 —1163= —30. The adjust-
ment per plot is therefore § (30— 11)= 2.4, this being added to plots in Ib and
subtracted from plots in Ia. The other adjustments shown in Table 14 are
similarly computed. Thus the adjusted yield of combination nkd is

1807+ 2.4 -~ 8.8+ 14.5 — 4.0= 1811.1

The reader will do well to satisfy himself that the use of these adjustments gives

a table of adjusted yields which is identical with that obtained by reconstruction
from the main effects and interactions.

5. SYSTEMS OF CONFOUNDING FOR 2x 2x2x ... DESIGNS.

In the last section the confounding of a single degree of freedom correspond-
ing to the interaction between the three factors of a 2 x 2 x 2 design was explained.
We shall now consider the systems of confounding applicable to factorial designs
involving four or more factors, each at two levels, i.e. designs of the form 2.

Clearly any single chosen degree of freedom for a main effect or interaction
can be confounded, whatever the number of factors, for any such degree of
freedom is derived from the contrast of one half of the treatment combinations
with the other half, and it is therefore only necessary to assign these two groups
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to the different blocks.  If there are a large number of factors, however, a higher
degree of confounding may be advisable. With 5 factors, for instance, there are
32 treatment combinations. If these are divided into groups of 8 in any way
then the 3 degrees of freedom corresponding to the comparisons between the
four groups will be confounded. The problem is so to choose the groups that
"these 3 degrees of freedom correspond to high-order interactions.

"The possible solutions of this problem are provided by the following general
rule :

If three degrees of freedom are to be confounded in a 2" design any two,
corresponding to main effects or interactions, may be chosen at will." The
““ generalized interaction ”’ between these two degrees of freedom will then also
be confounded. (By the generalized interaction between A.B.C and A.D, for
example, is meant B.C.D, A being struck out as it occurs in both of the first two
expressions.)

sa. Confounding with five factors.

" In the case of the 2° design the main effects and interactions are those
shown in Table 16.

TABLE 16. MAIN EFFECTS AND INTERACTIONS WITH FIVE FACTORS.

Interactions between
Main
effects two factors three factors four factors five factors
A AB B.D A.B.C AD.E A.B.C.D
B AC B.E AB.D B.C.D A.B.CE
C AD C.D A.B.E B.C.E AB.D.E AB.C.D.E
D AE C.E ACD B.D.E A.CD.E
E B.C D.E A.CE C.D.E B.C.D.E

If A.B.C.D.E is confounded, and also one of the interactions involving
four factors, say B.C.D.E, then by the rule the main effect A is also confounded.
The confounded set is thus

A; B.C.D.E; AB.C.D.E

The only other type of set containing A.B.C.D.E is
. AB; CDE; ABCD.E
There is also the type of set
AB.C; ADE; B.C.D.E

This is the most useful of all, for no main effect or interaction between two
factors is confounded. There are 15 such sets, for the factor corresponding
to A can be chosen in 5 ways, and the remaining four factors can then be
divided into two pairs in 3 ways.

The actual partition of the 32 treatment combinations into four blocks of 8,
so that the chosen degrees of freedom are confounded, is effected by writing
down the signs of any two of the three confounded degrees of freedom after
the manner of Table 4, and allocating the four combinations + + ,+ —, —4
and —— so obtained to the four blocks.
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By the device of partial confounding different sets may be confounded in
the different replications. With 5. replications a balanced group of sets such
as that given in Table 17 can be used, each of the interactions between three and
four factors being confounded once and once only. In this case 3 of the
information (relative to that on the unconfounded degrees of freedom) will
be sacrificed on these interactions.

TABLE 17. BALANCED GROUP OF SETS FOR 25 DESIGN IN BLOCKS OF 8 PLOTS.

AB.C; AD.E; B.C.DE
ABD; BCE; ACDE
ACE; B.CD; AB.D.E
ACD; BD.E; AB.CE
ABE; CD.E; AB.CD
The rule given above is capable of extended application. Thus if blocks
of 4 plots are used in a 2% design and the interaction B.D is chosen, in addition
to the first set of Table 17, the full set of 7 confounded interactions is
BD; CE; AB.C; ADE; ACD; ABE; B.C.D.E

The eight combinations of signs arising from any three of these interactions

(the third not being the generalized interaction of the other two) will give the

partition into the eight blocks. . . _
Balanced groups of 5 sets of this type also exist, one of these groups being

that given in Table 18.

TABLE 18. BALANCED GROUP OF SETS FOR 2% DESIGN IN BLOCKS OF 4 PLOTS.

AB, CD, ACE, ADE, BCE, BDE, ABCD
AC, DE, ABD, ABE, BCD, BCE, ACDE
AD, BE, ABC, ACE, BCD, CDE, ABDE
AE, BC, ABD, ACD, BDE, CDE, ABCE
BD, CE, ABC, ABE, ACD, ADE, BCDE

5b.  Confounding with six factors.
The confounding of experiments including six factors follows similar lines.
With blocks of 16 treatments the most useful sets are those of the type

A.B.C.D; ABEF; CD.EF

and with blocks of 8 treatments those of the type
ACE; BDE; B.CF; ADJF; ABCD; ABEF; CD.EF

With blocks of 4 treatments arrangements confounding 3 two-factor, 8 three-
factor, 3 four-factor and the six-factor interaction are possible, and may be
obtained by ‘‘ interacting ”’ on the sets of Table 18 with E.F, B.F, C.F, D.F
and A.F respectively. A balanced group of sets will be thus attained. Balance
is also possible in g replications with blocks of 16 treatments, but with blocks
of 8 treatments, rather curiously, 10 replications are required for complete
balance : with 5 replications and blocks of 8 plots one three-factor interaction
must be confounded twice while another is not confounded at all.
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5¢.  Confounding with four factors in blocks of 4 plots.
The best type of set for non-balanced arrangements is
AB; ACD; B.CD

but for complete balance this clearly demands 6 replications, and moreover % the
relative information on the three-factor interactions is lost. The alternative
group of sets given in Table 19 gives balance in 4 replications, and sacrifices
only 1 of the relative information on the three-factor interactions and } (instead
of 1) of the information on the two-factor interactions.

TABLE 19. 2% DESIGN.
AB; C.D; AB.CD
A.C; BD; AB.CD
AD; AB.C; B.CD
B.C; ABD; ACD

There is the further group of 5 sets (Table 20) which confounds every
degree of freedom once and therefore sacrifices 1 of the relative information
on every comparison.. All comparisons are therefore of equal accuracy. This
design depends structurally on the complete set of orthogonal 4 x 4 Latin squares.

TABLE 20. ALTERNATIVE 2! DESIGN.
A; B; AB
C; D; CD
A.C; BD; AB.CD
AD; AB.C; B.C.D
B.C; ABD; A.C.D
s5d. General remarks.

In agricultural field experiments in randomized blocks a very high degree
of confounding is not usually advisable ; as a general rule the two-factor inter-
actions should be left unconfounded. We have, however, thought it worth while
to put on record the possible designs in blocks of 4 plots, both for the sake of
completeness and because they may be found to be of use in other branches of
biological experimentation where the block size is more definitely limited.

Balanced arrangements are particularly useful when the experimental material
is such that a high degree of confounding is advisable, so that possibly important
interactions are likely to be involved. In agricultural experiments the number
of replications available is rarely great enough to attain balance in single
experiments including large numbers of factors (though balance may be
introduced in sets of experiments of similar design at different places). This
does not preclude partial confounding, which should always be adopted when
there is more than one replication and when a choice can be made between
interactions of the same order, unless one set can be pronounced with certainty
to be of no importance. 'Thus in the experiment on beans described in Section 7,
in which the factors were spacing, dung, nitrogen, phosphate and potash, the
three-factor interactions confounded with S.D.P and S.N.K. Had a second
replication been available the three-factor interactions D.P.K and S.N.P might
advantageously have been confounded in it. It is instructive to identify these
sets with those given in general form in Table 17.
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6. ESTIMATION OF ERROR FROM HIGH-ORDER INTERACTIONS.

A further difficulty which limits the number of factors that can be included
in an experiment is the number of plots required. Thus with six factors 128
plots wil? be required for even two-fold replication. :

If only a single replication is employed the experiment will not be capable
of furnishing an estimate of error by the ordinary procedure of comparing
replicates. 'There will, however, in large experiments be a number of interactions
between three or more factors which may in many cases be confidently predicted
to be small in comparison with the errors affecting them. If this is the case
they will in effect themselves be estimates of experimental error. Thus, for
example, in a 2° design no less than 22 of the 63 degrees of freedom for treatments
correspond to interactions between four or more factors. If the experiment
consists of a single replication and is arranged in blocks of 16 plots, three of these
will be confounded with block differences. The remaining 19 may then be used
as an estimate of experimental error.

It should be noted that even if some of these high-order interactions do
happen, with some particular set of factors, to be appreciable, the experimenter
is still in a much better position than he would have been had the interacting
factor been omitted entirely from the design. For any particular interaction
(except those which are confounded) which later results may indicate to be of
importance can be isolated and examined. Moreover the criticism that the
inclusion of an interaction of some magnitude in the estimate of experimental
error will inflate that estimate does not carry much weight, since the true
experimental error (as estimated between replicates of the same treatment
combination) would not be applicable to the results of an experiment with the
interacting factor held constant, if it were intended that these results should
be treated as valid for all levels of the interacting factor.

This device of using only a single replication is particularly useful in
agricultural field experiments. For it is well known that most of the éffects
which are being measured vary from year to year and place to place. A whole
set of similar experiments, of moderate accuracy, conducted at different places
over a series of years, is thus of far more value for practical purposes than a
single large experiment of equivalent accuracy. The use of only a single
replication enables experiments comprising a reasonable number of factors to
be carried out on ordinary non-experimental farms, and thus very considerably
adds to the resources of the experimenter.

7. AN EXPLORATORY EXPERIMENT ON BEANS.

As an example of the points discussed in the last two sections we will
consider a 2° experiment on beans, conducted at Rothamsted in 1935.
The treatments consisted of all combinations of :
(S) Spacing of rows: 18 ins. apart (s,) or 24 ins. apart (s;).
(D) Dung: 10 tons per acre (d), or none.
(N) Nitrochalk : 0.4 cwt. N per acre (n), or none.
(P) Superphosphate: 0.6 cwt. P,O; per acre (p), or none.
(K) Muriate of potash: 1.0 cwt. K,O per acre (k), or none.
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The spacing was included to test the theory that the best effects of manures
might be obtained with closely spaced rows.

The plan is shown in Table 21. The yields are given in the first column
in Table 22.

TABLE 21. PLAN OF EXPERIMENT ON BEANS, AND BLOCK TOTALS.
Block III (555.2) Block IV (436.7)

sonk S Sop sonipk
synp s.dn sydnp Sin
§ odP § lpk § od [} 1k

s.dk sodnpk sodnk s,dpk

$1 sdp Solt ok

sink sqdk s dnk sodpk

Sonp s dnpk $1p sodnp

sqdn sopk s.d synpk

Block I (412.3) Block II (481.0)

Only a single replication was used, giving 32 plofs in all, each of g acre,
these being arranged in four blocks of 8 plots each. Examination will show
that the following interactions are confounded :

Interaction Contrast
S.DP .. Y I -1 -III+ IV
S.NK .. - I+1I1I~1III - IV
D N.P.K I -1+ III - IV

7a. Analysis.

The calculation of the main effects and interactions is given in Table 22,
and the analysis of variance in Table 23.

The estimate of error is based on interactions between three or more factors.
The computations follow exactly the same lines as those of the 2x2x 2
experiment. The sum of squares for treatments is obtained by dividing the sum
of the squares of the totals of Table 22 corresponding to the main effects and
two-factor interactions by 32 (there being no need to write down the individual
squares), and the other two sums of squares are similarly obtained. A check
is given in Table 22 for each of the columns (1) to (5), and a check of the whole
set of calculations is provided by the total sum of squares, which is also calculated
direct from the yields of the separate treatment combinations.

A further useful check is obtained if the block totals are noted when
calculating the total sum of squares (as can conveniently be done by the method
of Note 4 when, as often happens, the yields are tabulated by blocks). The
confounded interactions can then be calculated directly from these block totals
and compared with the values already obtained.
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TaBLE 22. CALCULATION OF MAIN EFFECTS AND INTERACTIONS, BEANS EXPERIMENT.

. Effect
sdnpk Yield (0) (1) (2) (3) (4) Effect (5) cwt. per acre
00000 .. .. 066.5 102.7 232.2 461.3 881.8 1885.2 21.04 Mean
100 T e (3082 129.5 229.1 420.5 1003.4 —~125.0% -2.79 S
o1o0 ve e 74.8 91.3 213.1 525.4 — 132.4 +251.2%*% +5.61 D
110 ve .. 54.7 137.8 207.4 478.0 +7.4 +80.6 +1.80 S.D
001 .. . 68.0 .86.6 227.3% -91.9 +156.6 +52.0 +1.16 N
101 va: ww 23.3 126.5 297.9 ~ 40.5 +94.6 +53.0 +41.18 S.N
oIl oSN 673 82.0 243.8 +5.8 +52.4 +82.4 +1.84 D.N
111 st et 70.5 125.4 234.2 +1.6 “+28.2 +31.8F
00010 .. .. 56.7 102.9 - 50.4 +73.3 - 8.8 -8.2 -1.97P
100 ce .0 20.9 124.6 - 41.5 +83.3 +60.8 +47.2  +1.05 S.P
o10 P (2.7, 131.7 - 53.7 +56.2 +75.8 -7.8 -o0.17DP
110 .. «. 49.8 166.2 +13.2 +38.4 -22.8 - 187.21
001 ww e 3623 123.9 - 2.3 +58.1 +23.2 - 8.6 -1.84 NP
101 ce .. 45.7 119.9 +8.1 - 5.7 +59.2 "+14.4%
or1 .. .. 60.8 95.9 +17.4 +75.8 +32.2 +17.4%

111 .o .. 64.6 138.3 - 15.8 - 47.6 - 0.4 - 10.0%
ccoor .. .. 63.6 - 30.3 +26.8 - 3.1 - 40.8 +121.6%* +2.71 K
100 .« .+ 39.3 - 20.1 +46.5 —- 5.7 — 474 +139.8*  +3.12 S.K
o1o .v .. RI.3 - 44.7 +39.9 +70.4 +51.4 ~62.0 -1.38 DK
110 an w7343 +3.2 +43.4 - 9.6 - 4.2 - 24.2} - o0.54 S.D.
ool e .. 712 - 206.8 +21.7 +8.9 +10.0 + 69.6 +1.55 N.K
101 .. .. 60.5 —26.9 +34.5 +66.9 -17.8 - 98.61
orr N £ Ul +9.4 - 4.0 +10.4 - 63.8 +36.0t
111 ce .. 92.5 +3.8 +42.4 -33.2 - 123.4 - 32.6%
000II .. .. 49.6 -~ 24.3 +10.2 +19.7 - 2.6 -6.6 -o0.15 PX
100 e .. 74.3  +22.0 +47.9 +3.5 ~ 80.0 - 55.6¢
o10 .. .. 63.6 - 107 - o.I +12. +58.0 - 27.8¢%
110 ve .. 56.3,  +18.8 - 5.6 +46.4 - 43.6 - 59.61
oor .o .. 48.0 4247 +46.3 +37.7 - 16.2 - 77.4%
101 5w 47-9 -7.3 +29.5 -~ 5.5 +33.6 - 101.67
oII vv .. 77.0 —oO.I -32.0 -16.8 - 43.2 +49.81
1981 e .. 613 - 15.7 - 15.6 +16.4 . +33.2 +76.41

+s51.2 +r1.14
Totals (for checks) :
1st [Odds (a) 507.1 817.0 827.6 1164.0 1080.8 2109.6
half \ Evens (b) 374.7 1068.2 932.6 928.0  1230.4 - 95.2
2nd ;Odds (c¢) 498.0 - 102.8 108.8 140.0 — 47.2 103.2
half \ Evens (d) 505.4 - 22.2 223.0 79.2 - 249.6 - 156.0

Checks for column (1) {Zii E:Z t ::I t‘;:t EZI g:

and similarly for the other columns.

*Significant (5 per cent. level), i.e. greater than 111 or 2.48 cwt.
*#Gignificant (1 per cent. level), i.e. greater than 155 or 3.46 cwt.
1Used for estimate of error. 1Confounded with blocks.
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TABLE 23. ANALYSIS OF VARIANCE, BEANS EXPERIMENT.

D.F. Sum of squares  Mean square
Blocks N .. " .. 3 .. 1476.43 .. 492.14
Main effects and interactions between
two factors .. o0 .. I5 .. 4921.20 .. 328.08
Remainder .. . .. .. 13 . 1066.64 .. 82.05
Total . .. .. 31 .. 7464.27

‘Spacing, dung, and potash have produced significant effects, and in addition
the interaction between spacing and potash is significant. It is to be noted that
the dung and spacing show a similar (though smaller and non-significant)
interaction. The table (Table 24) including these three factors is therefore of
interest. It is not affected by the confounding, and may be constructed either
from the main effects and interactions or by taking the mean yields of the
relevant sets of 4 plots.

TABLE 24. MEAN YIELDS, CWT. PER ACRE.
‘ (1) k d dk

18 in. spacing 00 l 20.3 20.7 25.0 23.7
24 in. spacing . 12.1 19.8 2I.4  25.3

_ The experiment is not of high precision, being of only 32 plots, and having
a high standard error per plot (beans have at Rothamsted proved a very variable
crop), but in combination with other similar experiments it should provide useful
information, and in itself affords an illustration of the importance of putting
theories to experimental test, since the interaction between spacing and manures
turned out to be the opposite of what had been expected.

7b. Gain in precision due to confounding.

It is clear that the arrangement in blocks has increased the precision, since
the mean square for blocks is considerably greater than that for error. An
estimate of the amount of this gain can be made by replacing the treatment
mean square by the error mean square, and then calculating what the error would
have been had there been no confounding. (This procedure assumes that the
confounded interactions are negligible, and is, of course, subject to certain
errors of estimation.)

The calculations are set out in full in Table 25. The estimate of the

TABLE 25. GAIN IN PRECISION DUE TO CONFOUNDING.

D.F. Sum of squares Mean square
Blocks .. 00 a6 3 T 1476.43 - 492.14
Within blocks .. .. 28 gl 2297.40 o 82.03
Total = ; 31 3773.83 121.74

error mean square for a block of 32 plots is 121.74, and the efficiency of an
unconfounded arrangement is therefore 82.05/121.74, or 67.4 per cent. The

31

reciprocal of this is 148.4 per cent. and the gain in information due to con-
founding is thus 48.4 per cent.

It should be noted that if there is more than one replication, the whole of the
sum of squares for blocks will not enter into the new estimate for error ; only those
components which represent differences of blocks forming the same replication
must be included.

8. CONFOUNDING IN. LATIN SQUARE DESIGNS WITH FACTORS AT TWO LEVELS.

In a somewhat limited number of cases it is_possible to adapt confounding
to Latin square designs. Thus, for example, a 2* system involving 16 treatment
combinations may be arranged in an 8 x 8 Latin square, there being four complete
replications. Any one degree of freedom for a main effect or interaction may be
confounded with rows (the rows being taken to represent blocks of 8 plots each),
and at the same time another degree of freedom for a main effect or interaction
may be confounded with columns. Alternatively partial confounding may be
adopted, each of the 4 degrees of freedom for three-factor interactions being
confounded in one of the four row-pairs, and the four-factor interaction being
completely confounded in the four column-pairs. Three-quarters of the relative
information will then be available on all three-factor interactions.

At the outset there is one point which should be emphasized. In order to
obtain an unbiased estimate of error from a Latin square it is necessary to
rearrange all rows in random order, and also all columns. Thus we are precluded
from so arranging the experiment that the rows (or columns) forming each
complete replication necessarily fall together in the field. This restriction is
of importance in the types of design discussed in Section 16f and 16g, in which
main effects such as varieties are confounded.

In spite of these limitations, such confounded Latin square designs as exist
are of considerable interest, in view of the markedly greater precision of Latin
squares as compared with randomized blocks in many types of agricultural field
trials. We will therefore give examples which will illustrate the possibilities
and limitations of this method of design. In this section we shall consider the
various types which are applicable to sets of factors at two levels only. These
must clearly utilize 4 x 4 and 8 x 8 squares. Further examples utilizing 6 x 6
and g x g squares will be given later.

8a. 2 x 2 x 2 design in two 4 x 4 Latin squares.

Since we may arrange a 2° design in blocks of 4 plots in such a way as to
confound any single degree of freedom, we may, in a single 4 x 4 square,
totally ‘confound any two interaction degrees of freedom, one with rows and
one with columns, or alternatively we may partially confound two degrees with
rows, and another two with columns. As in any case, however, at least two
squares will be necessary to provide an adequate estimate of error, it is simpler,
in cases in which partial confounding is required, to effect this by confounding
the different degrees of freedom in different squares.

In experiments involving the three standard fertilizers there are various
alternatives of possible utility. With two squares, for instance, P.K and N.P.K
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may be confounded in both squares, or N.P.K may be confounded with the
columns of both, P.K with the rows of one, and N.P and N.K partially with
the rows of the other. With three squares N.P.K may be confounded with
the columns of all three squares, and N.P, N.K and P.K with the rows of one
square each, thus obtaining % the relative information on all two-factor inter-
actions. Alternatively, if the two-factor interactions and the main effects are
of equal interest, these may each be confounded in one half of one square,
N.P.K being confounded in all squares, giving & the relative information on
all effects except N.P.K.

The necessary designs are easily constructed by writing down the sets of
treatment combinations that must fall together in the rows and the similar sets
that must fall together in the columns. Thus to confound P.K with the rows
and N.P.K with the columns the rows must consist of the two sets

(x) = pk npk

k np nk
and the columns of the two sets
(1) n
o p
nk k
PR npk

This gives the following alternative squares (Table 26) with the first row and
the first column in an assigned order :

TaBLE 26.
(1) n  pk  mwpk (x) = pk mpk
np p nk kR np k ank P
nk ko mp p nk  p  wp k
Pk mpk (1) =n pk wpk (1) =n

For each square of the experiment one of the two squares may be selected at
random, both the rows and columns being arranged in random order.

An _alternative arrangement, which avoids confounding any two-factor
interaction, is also worth noting. If the four treatment combinations (1), np,
nk, pk, be arranged in a single 4 x 4 Latin square, and the other four combinations
n, p, k, npk, in a second square, then the three-factor interaction N.P.K will
be identical with the comparison between the two squares. This arrangement
has the defect that any differences in response to one of the factors, # say, in
the two squares will give rise to an apparent interaction between the remaining
factors p and k. This defect may be overcome, however, though with some
probable loss of efliciency, by interlacing the two squares, one of each pair of
columns (if there are eight columns) being assigned at random to the first square.
Thus after randomization we might arrive at the arrangement given in Table 27.

TABLE 27.
(1) kK pk p npk  np nk n
nk  mpk np n kR pk (1) P
Pk n (1) k P nk np npk
np P nk npk  n (1) pk k
The analysis will be conducted just as it would be if the squares were not
interlaced, eliminating the rows as well as the columns of each square separately.

-
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8b. Numerical example.

The above designs were superimposed on a uniformity trial on sugar beet
conducted by Immer (17).

Table 28 shows the actual arrangement derived by randomization from
Table 26 (the second square being selected in each case), and the yields of each
plot (J5 acre). P.K and N.P.K were confounded in both squares. The degree
of freedom .confounded with rows (also assigned at random from the above two)
was N.P.K in the first square and P.K in the second.

TABLE 28. PLAN AND YIELDS IN LB.

k n P npk ? np nk k
542 587 583 576 549 562 576 569
nk Pk np (1) n Pk (1) npk
629 615 634 504 637 623 643 629
np (1) nk Pk npk (1) Pk n
562 596 624 627 639 628 645 651
? npk k n k nk np P
604 - 638 609 634 615 586 6os 618

The following estimates of the treatment effects (totals over 32 plots) were

obtained :

N=+ 109, P=—11, K=+ 55, NP=—-147, NK=—3.
The analysis of variance is given in Table 29.

‘TABLE 29. ANALYSIS OF VARIANCE, SEPARATE SQUARES.

D.F. Sum of squares Mean square
Squares .. 1 457.5 457.5
Rows - 6 20488.4 3414.7
Columns . . 6 2797.9 466.3
Treatments 5 1145.7 229.1
Error 13 3460.6 266.2
Total 31 28350.1

The standard error of each

of the above estimates is therefore + 92.4.

No one of the effects is significant.
The analysis of variance appropriate to the
squares given in Table 27 is shown in Table 30.

arrangement in interlaced

TABLE 30. ANALYSIS OF VARIANCE, INTERLACED SQUARES.
D.F. Sum of squares Mean square

Squares (= N.P.K I 442.5 - 442.5
Rows .. aE 6 18540.4 3090.1I
Columns .. oc 6 2812.9 468.8
Treatments. . T 6 2694.9 449.2
Error o T 12 3859.4 321.6
Total v i 31 28350.1
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It will be noted that in this example rows have been very effective in
eliminating soil heterogeneity. Table 31 shows the mean squares obtained with
squares and blocks of various types :

TABLE 31. EFFICIENCY OF VARIOUS ARRANGEMENTS.

Relative
D.F. Mean square efficiency
. separate .. . 0 18 .. 255.9% .. 100.0
G % 4 [EAiein SPENES {inteﬂaced = 15 18 .. 364.1% L, 70.3
half-rows ¥ o 3F 24 .. 308.5 ~ 82.9
Blocks of 4 plots ..{columns .. v s 24 .. 1045.6 - 24.5
2 X 2 squares s = 24 .. 940.7 ¢ 27.2
J’rows T ac s o 28" .. 407.6 w3 62.8
Blocks ‘of 8 plots ..<{ pairs of half-rows .. o 28 .. 867.7 % 29.5
{ pairs of columns .. s 28 .o 949.1 = 27.0
pairs of rows i 13 30 .. 829.3 oy 30.8
Blocks of 16 plots .. siyares v .. .. 30 .. 929.8 .. 27.5

*Treatments + error of Tables 29 and j3o.

The major part of the soil heterogeneity lies in differences between rows,
and consequently blocks along the rows are reasonably efficient. They are,
however, a form of block which would not in practice be used unless prior
information on the fertility differences of the field was available. The alter-
native forms of block, whether of 4 or 8 plots, have all efficiencies of less than
30 per cent. The arrangement in interlaced squares is somewhat less efficient
than the arrangement in separate squares, but has served to eliminate the greater
part of the variation due to rows.

It is not claimed that this example is typical of the average gain in efficiency
that may be expected from the use of Latin squares instead of randomized blocks.
It is, however, an excellent illustration of the power of Latin squares to deal
with the types of soil heterogeneity met with in agriculture. In this connection
it should be noted that if we have any type of experimental material which can
be classified in two ways, with both of which variation is associated, then the
elimination of both sources of variation simultaneously .more than doubles the
decrease in error variance over the average of that produced by the elimination
of either source separately. Measured in terms of information per plot (which
is equal to the reciprocal of the error variance per plot) the additional gain by
the simultaneous elimination of both sources is even greater.

It is also to be remarked that if the variation associated with one type of

classification is large, while that associated with a second type is negligible, the-

use of the second classification for blocks will always give a higher error than
if the experiment were arranged wholly at random. In the present example
the elimination of columns after eliminating rows has increased the information
per plot from 82.9 to 100, whereas the elimination of columns before eliminating
rows has decreased it from 27.5 to 24.5.
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8c. Arrangements for five and six factors in an 8 x 8 square.

The arrangement of five and six factors in 4 x 4 squares is also possible
if the confounding of some of the two-factor interactions is permitted, but the
use of an 8 x 8 square appears more suitable, since all two-factor interactions
can then be kept free from confounding.

In the case of five factors, groups of sets may be chosen from those shown
in Table 17. If only a single square is available, partial confounding within
the square may suitably be resorteg to, four out of the five sets being confounded,
two with rows and two with columns. In the square shown in Table 32 the
first group of Table 17 is confounded in rows 1—4, the second in rows 5—38,
the third in columns 1—4 and the fourth in columns 5—8, the fifth group
being unconfounded. In this table the first of the pair of numbers gives the
combination of the a, b, and ¢ treatments, according to the scheme :

1=(1), 2=a, 3= b, 4= ab, §=¢, 6= ac, 7= be, 8= abe,
and the second of the pair of numbers gives the 4 and e treatments, according
to the scheme :
1= (1), 2=d, 3=¢, 4= de.
Thus 72 = bcd. { 3 ¥
TABLE 32. 8 x 8 QUASI-LATIN SQUARE FOR FIVE FACTORS.

I 43 71 63 42 62 74 14

73 61 13 41 72 12 44 64

54 82 34 22 83 23 31 31

32 24 52 8 33 53 81 a1

8t 53 64 72 11 34 22 43

62 74 83 51 24 41 13 32

44 12 21 33 54 71 63 82

23 31 42 14 61 84 52 73

The analysis follows the ordinary lines, the partially confounded interactions
being computed from the rows or columns in which they are unconfounded.
There are thus 18 degrees of freedom for error. As before rows and columns
must be completely randomized amongst themselves.

In the case of six factors the system of confounding will be of the type :
Rows : A.CE; ADF; BDE; B.CF; ABCD; ABEF; CDEF
Columns: A.B.F; ADE; BCD; CE.F; AB.CE; ACD.F; BDE.F
The square shown Table 33 confounds these interactions. The second number
now indicates one of the eight combinations of d, e and f.

TABLE 33. 8 x 8 QUASI-LATIN SQUARE FOR SIX FACTORS.

II 24 36 47 58 65 73 82

27 16 44 31 62 53 8 78

38 45 13 22 71 84 56 67

42 33 25 18 8 76 64 31

54 61 77 86 15 28 . 32 43

66 57 8 74 23 12 48 35

75 88 52 63 34 "41 . 17 26
83 72 68 55 46 37 21 14

If 128 plots are available, a second square confounding a completely different
set of three-factor interactions may be obtained from the above square by
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changing @ to ¢, ¢ to f, f to ¢, and e to . Two four-factor interactions will be
confounded in both squares.

With only a single replication error will have to be estimated from high-
order interactions. If all 12 unconfounded three-factor interactions are retained
there will remain 16 degrees of freedom for error. :

The actual factor which each letter is taken to represent in these designs
must, of course, depend on the interest which attaches to the various interactions,
the aim being to confound (as far as is possible) only those interactions which
are likely to be of little importance.

The rows and columns of each square must be rearranged in random order
for every experiment.

9. FACTORS AT MORE THAN TWO LEVELS.

In the preceding sections we have described factorial designs in which eve
factor is at two levels only. Many cases arise in practice, however, in whi:g
more than two levels of some or all of the factors are required. In all cases
in which it is necessary to determine the optimal level of a factor, for instance,
at least three levels are essential, and in factorial experiments in which varieties
are included as one of the factors the use of three varieties rather than two is
usually advisable.

When some or all of the factors are at more than two levels, part of the
simplicity that attaches to factorial designs with factors at two levels only is lost.
To the main effects of a factor at four levels, for instance, there will correspond
3 degrees of freedom, and similarly for all interactions involving this factor.
‘The calculations required for the analysis of variance are consequently more
complicated. Moreover the possibilities of confounding are much more
restricted, and the designs which exist are less elegant and more troublesome
statistically, particularly with factors at different numbers of levels.

In this section we will consider the modifications that are necessary in the
statistical analysis when there is no confounding. In later sections the simpler
types of confounding will be described.

ga. Two factors. ’

In a varietal and manuring experiment on oats (Rothamsted, 1931) four
levels of nitrogen (o, 0.2, 0.4 and 0.6 cwt. per acre) were applied to each of
three varieties, Victory, Golden Rain II and Marvellous. There were six
replicates on 5 acre plots. The total yields of each of the twelve treatment
combinations are given in Table 34.

TABLE 34. VARIETAL AND MANURIAL EXPERIMENT ON OATS.
Treatment totals (} Ib.)

n, L ’ n, ‘ ”3 Total
Victory .. .. .. .. .. 429 538 665 711 2343
Golden Rain II .. .. ..| 480* 591 688 749 2508
Marvellous .. .. .. .. 520 651 703 761 2635
Total .. .. .. .. .. .1429 1780 | 2056 | 2zax 7486
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Since there are twelve treatment combinations there must be 11 degrees
of freedom for treatments. These can, as before, be divided into main effects
and interactions.

There will be 3 degrees of freedom for the main effects of 7, and 2 degrees
of freedom for the varietal differences. This leaves 6 degrees of freedom for
interactions. (Note that 6= 3 x 2).

If gas is natural here) the main effects are defined as the average response
to one factor at all levels of the other they will be derivable from the two sets
of marginal totals of Table 34. The sums of squares corresponding to each
set can be calculated in the ordinary manner from the sum of the squares of the
deviations of these marginal totals, dividing by the number of plots in each.
Thus the sum of squares for N is given by

5 [1429® + 17807 + 20562 + 22212 — 18 x 778336.06]
(Note the method, the most suitable for a calculating machine, of applying the
correction for the mean. This correction, 74862 /72, should be calculated first
and written down, as it is wanted repeatedly.) _

The sum of squares for interactions cannot be conveniently calculated
directly, and must therefore be obtained by subtraction from the total sum of
squares for treatments. The full analysis 1s as follows (Table 33):

TABLE 35. PARTITION OF THE TREATMENT SUM OF SQUARES IN THE VARIETAL AND
MANURIAL TRIAL.

D.F. Sum of squares Mean square
Correction for mean 778336.06
Nitrogen 3 20020.50 6673 .50
Varieties 2 1786.36 893.18
Interactions 6 321.75 53.63
All treatments b4 22128.61

There is no automatic check on this table, and all the computations must
therefore be carefully checked.

It will be noted that the above computations are exactly analogous to those
of the ordinary analysis of variance of a randomized block experiment. Nitrogen
and varieties correspond to blocks and treatments, interactions to error, and all
treatments to the total. The sums of squares and mean squares are divided
by an additional factor 6 to allow for the fact that each value of Table 34 is the
total of six plots.

We will discuss the layout and conclusions of this experiment in Section 16b.

9b. Three or more factors.

The extension of the above analysis to three or more factors follows on the
same lines. In the case of three factors, a at 3 levels, b at 4 levels and ¢ at 4 levels,
for example, there will be 48 treatment combinations, and the partition of the
degrees of freedom will be
' A




et L W e T s

38

In order to calculate the sums of squares three two-way tables will be
required, one between each of the three pairs ‘of factors, the sums being taken
over all the remaining factors. Each set of marginal totals occurs twice, thus
providing useful checks on the construction of the table. These three tables
will give the sums of squares for the main effects and interactions between two
factors. The sum of squares for the interaction between all three factors can
then be obtained by subtraction.

9c. Simplification when one of the factors is at two levels only.

If one of the factors is at two levels only the interactions of this factor with
the others can be calculated directly by using the differences of the yields at
the two levels of this factor for all combinations of the other factors, and analysing
these in exactly the same manner as the totals of the yields at the two levels.
In the case of two factors only the calculations can be arranged as in Table 36,
which gives the total yields in pounds of the five replicates (; acre plots) of an
experiment on different proportions of oats and vetches in a forage mixture, both
with and without nitrogen (Rothamsted, 1932).

TaBLE 36. EXPERIMENT ON SEED MIXTURES AND NITROGEN.

Seeding rates (Ib. per acre).
200 oats 150 oats 100 oats 50 oats No ocats

No vetches | 50 vetches | 100 vetches | 150 vetches | 200 vetches| Total
Without nitrogen 1405 1661 1788 1684 1342 7880
With nitrogen 1788 1979 2000 1792 1468 9027
Sum - 3193 . 3640 3788 3476 2810 16907
Dlﬂc[erenc(:e)] + 383 + 318 + 212 + 108 + 126 +1147

n—(x

The sum of squares for N is given by 11472/50, and the sum of squares for the
interactions is given by al.

%[3832 + 3182 + . . . . —220.4 x 1147]
Table 37 shows the full analysis of variance.

TABLE 37. ANALYSIS OF VARIANCE OF EXPERIMENT ON SEED RATES.

D.F. Sum of squares Mean square

Correction for mean . 5716933.0

Seedings 4 60313.9 15078.5

Nitrogen 1 26312.2 26312.2
Treatments | Interactions. . 4 5717.5 1429.4

Total .. 9 92343.6
Blocks i e 4 59601.9 14900.5
Error .. 36 28384.5 788.5
Total .. 49 180330.0
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Provided that the correction for the mean is computed twice, and that in
calculating the interaction sum of squares the correction for the mean difference
(equal to the sum of squares for N) is recomputed as shown, all the treatment
sums of squares and the sums and differences of Table 36 are checked by
computing the total sum of squares from the 1o values in the body of the table.

9d. Procedure when two or more factors are at two levels only.

The main effects and interactions involving the factors at two levels only
may be computed by the method of Section 3 for each combination of the other
factors. The analysis of these and their totals over the different levels of the
other factors will give all the sums of squares required.

An example will make the procedure clear. The first three columns of
Table 38 shows the total yields of the treatment combinations of a 3 x 2 x 2
experiment on potatoes (Rothamsted, 1933). All combinations of

n, = o artificial nitrogen (1) =no poultry manure ) (1) =no super
(Ln, = sulphate of ammonia X { S X { }

n, = ammonia bicarbonate m = poultry manure  J fy =HyEs

were applied. 'There were three replicates on plots of g5 acre. The arrange-
ment was confounded in blocks of 6 plots, and is discussed in Section 13c.

TabLE 38. COMPUTATION OF MAIN EFFECTS AND INTERACTIONS OF A 3 X 2 X 2 EXPERIMENT.
Yields (Ib.) Effects

o n: nz No ni N2

Total Total Total

No nr (3

(1) | 4x1 479 451 | 1341 855 1057 968 | 2880 || 2073 *© 2361 2115 | 6549 | Sum
p | 444 578 517 | 1539 || 1218 1304 1147 | 3669 || +129  +85 4121 | +335
m | 561 659 546 | 1766 || +33  +99 +66 | +198 || +363 +247 +179 [+789 | M
mp | 657 645 6o1 | 1903 I +96 - 14  +55 [ +137 +63 — 113 —11|—611PM

The sums and differences of pairs of values in the first four columns are
shown in the next four columns, and the sums and differences of these latter
in the last four columns, which give the totals of the main effects and interaction
of p and m for n,, n, and 7,, and the total of all n. The total column forms
a check on the operation at each stage.

The treatment sums of squares can now be calculated immediately. The
correction for the mean is given by 6549%/36, the sum of squares for N by

L [2073% + 23612 + 21152 — 6549 x 2183],
the sum of squares for P by 3352/36, the sum of squares for P.N by
A [129% + 852 + 1212 - 335 x 111.66607]

and so on. e

These sums of squares are set out in Table 39. The whole calculation 1s
checked by calculating the treatment sum of squares from the individual treatment
combinations.

In this particular experiment the degrees of freedom for M and P.M.N
were partially confounded, so the sums of squares for these degrees of freedom
in Table 39 are not those that appear in the final analysis described later.
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TABLE 39. PARTITION OF TREATMENT SUM OF SQUARES.

" D.F. Sum of squares  Mean square

Correction for mean a1 na 1191372.2

N 2 4034.0 2017.0
P 1 3117.4 3117.4
PN 2 9I.§ 45.8
M .. I 17292.2 17292.2
M.N 2 1442.7 721.4
P.M 1 103 .4 103.4
PMN 2 1301.5 650.8
Total 11 27382.7

If in the summary of the results two-way tables giving the yields of pairs
of factors are required, that for the pairs of factors p and m can be derived
immediately by conversion of the first total column of Table 38, while that
for » and m can be derived by the conversion of the first two lines of the second
set of four columns and the first line of the last set. Only that for the pair
of factors # and p will require any fresh summations.

9e.  Two factors at three levels : formal subdivision of interactions in a 3 x 3 table.

If the yield totals of the g treatment combinations are denoted by the
numbers 1-9 according to the scheme of Table 4o :

TABLE 40. YIELD TOTALS.

- bo b b2
do I 4 7
ax 2 5 8
az 3 6 9
what may be called the two sets of diagonal totals of this table may be defined as
f]=1+5+9 [J]=1+6+38
[fz]=2+6+7 [Fal=2+4+9
[fs]=3+4+38 [fel=3+5+7

The four degrees of freedom for the interactions of a 3 x 3 table may be
divided into two orthogonal pairs of degrees of freedom, for which the sums
of squares are given by the appropriate fraction of the sums of the squares of
the deviations of [7] and of [¥] respectively, just as the sums of squares for the
main effects are derived from [4] and [B]. Equally a table of the mean yields
of the treatment combinations can be constructed from a knowledge of [A4],
[B], [] and [¥], or the corresponding means. Thus, for example, with four
replications, A

a,b,=dev A, + dev B, + dev I, + dev ¥, + mean
= 7z (4.]+ [B.]+ [I;]+ [J1]) -3 x mean. i

This formal subdivision provides a useful method of computation for the

interactions of a single 3 x 3 table. The method is distinctly shorter than the
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ordinary method of subtraction, since the whole computation then _becomes
self-checking. The analogous subdivision of the three-factor interactions in a
3 x 3 x 3 design will be described when dealing with the confounding of this
design.

gThE conventional numbering of the g treatment combinations of a pair
of three-level factors given in Table 40 will be extensively used in subsequent
pages. It should therefore be memorized. Note that the first factor is always
written doewnwards. |

of. Example.

In an experiment on the manuring of meadow hay (Bakewell, 1935) the
treatments (nothing, compost, and equivalent artificials) followed a two-year
cycle, making g treatment combinations in all. The 1935 yields are given in
Table 41. The marginal and diagonal totals are also shown in this table.

TaBLE 41. YIELDS OF HAY IN 1935 IN LB. (TOTALS OF 4 PLOTS OF 3}; ACRE).

I and 1 1932 and 1934 treatments Diagonal totals

921‘3eatment235 Nil Artificials ~ Compost Total I .
Nil R 65.2 41.0 85.2 "221.4 274.4 262.2
Artificials .. .. .. 104.2 I0I.0 112.2 317.4 274.2 283.4
Compost .. .. .. 94.5 84.8 108.2 287.5 277.7 280.7
Total .. .. .. .. 263.9  256.8 305.6 826.3

The partitioh of the treatment sum of squares is shown in Table 42.

TABLE 42. PARTITION OF TREATMENT SUM OF, SQUARES.

D.F. Sum of squares Mean square
1932 and 1934 treatments 2 115.85 57.92
1933 and 1935 treatments 2 402.20 201.10
Interactions oo o 4 22.83 5.71
All treatments .. 8 540.89

Since the subdivision of the interaction degrees of freedom is formal, and does
not correspond to any expected treatment effects, there is no point in calculating
the two components of the sum of squares separately. The squares of all six
diagonal totals are summed and 24 (= 2 x 12) times the correction for the mean
is deducted, before dividing by 12. The fact that the total of the three sums
of squares equals the total sum of squares for treatments checks the whole
computation. If the interaction sum of squares were not computed directly,
every item would have to be checked. . '

The error mean square (24 d.f.) was 6.300. Thus there is no evidence
of any interaction, and the effects of the fertilizers in the two years may be
regarded as additive. The standard error of a marginal total is v'12 x 6.300
or + 8.70. Consequently the response to artificials applied in 1935 is significantly
greater than to compost, but artificials applied in 1934 show no residual effect,
whereas that of compost is significant and large. -
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10. CONFOUNDING WITH THREE AND FOUR FACTORS EACH AT THREE LEVELS.

Both 3 x 3 x 3 and 3 x 3 x 3 x 3 experiments can be arranged in blocks of
g plots or in g x g Latin squares, confounding only three-factor interactions.
These designs are of considerable practical importance in agriculture, and we
will therefore describe them in detail.

Toa. 3 x 3 x 3 designs in blocks of g plots.

There are 8 degrees of freedom for the three-factor interactions. These
can be divided into four orthogonal pairs, each pair being given by the contrasts
of the sums of three sets of nine plots each. The four groups of three sets are
given in Table 43, being represented by the four letters W, X, Y, Z.*

TABLE 43. 3 X 3 X 3 DESIGNS CONFOUNDING THREE-FACTOR INTERACTIONS.

Combination W: W2 W; ‘ X: Xa Xs l Y: Y: Ys Zx Zz Zs
of first and | .
second factors Level of third factor

I 00 o 2 1 o 1 2 o 2 I o 1 2
2 10 1 o 2 2 o 1 1 o 2 2 o 1
3 20 2 1 o 1 2 o 2 1 o 1 2 o
4 o1 2 I o 1 2 o) 1 o 2 2 o I
5 11 o 2 1 o I 2 2 1 o 1 2 o
6 21 I o) 2 2 o) 1 o] 2 1 o) 1 2
] oz 1 o 2 2 o 1 2 1 o 1 2 o
8 12 2 1 o 1 2 o o 2 I o 1 2
9 22 o 2 1 o I 2 1 o 2 2 o 1

Examination of the table will show that every combination of each pair of
factors occurs in each set of g plots, and consequently if these sets are arranged
in blocks the main effects and two-factor interactions will be unconfounded.

If more than one replication is available it is best to use different groups
for the different replications, thus partially confounding some or all of the
three-factor interactions. If four replications are used complete balance is
attained, and 2 of the relative information will be available on all the three-factor
interactions. Partial confounding introduces some additional complication into
the computations, unless the partially confounded degrees of freedom are allowed
to remain in the estimate of error, but the difficulties are not great if the method
described below is systematically followed.

10b. Example of a 3 x 3 x 3 design.

Table 44 gives the plan and yields of sugar in an experiment on sugar beet
(Woburn, 1935) in which all combinations of three sowing dates, April 18th (d,),
May gth (d,), May 25th (d,)t, three spacings of rows, roin. (s,), 15in. (s;),
20 in. (s,), and three levels of sulphate of ammonia, nothing (n,), 0.3 cwt. N per
acre (n,), and 0.6 cwt. N per acre (n,), were included.” The experiment was

*These groups have previously been numbered I, II, III and IV in various orders, but no consistent notation
has been established.
tAn earlier sowing, March 14th, failed and d2 replaced this.
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arranged in 6 blocks of g plots each. Since after rejection of edge rows the
plots of the three spacings were of different area the yields have been converted
to cwt. per acre before analysis.*

TABLE 44. PLAN AND YIELDS OF SUGAR (CWT. PER ACRE).

62 52.2 90 31.3
5X 52.7 20 36.4
20 47.8 11 39.4
9o 35.2 [ 61  35.3
Y, 82  45.4 | 32 29.9 Z;

425.8 | 40 44.6 | 81 34.4 | 305.5
31 46. 40 33.
71 51.4 52 33.
12 50.§ 72 3I.

10 47.8 82 3I.
32 44.1 70 25,
21 52.5 5o 33
Y, 52 493 | 41 36.6 Z;

439.9 | 91 46.2 | 62  41.4 | 314.3
6o 47.1 91 37.6
8o 47.2 30 33.2
72 56.0 21 41.8

3
6

9

41 49.7 | 12 33.6
4

7

(o]

42 50.9 8o 32.4
61 38.2 92 37.7
22 43.0 10 39.4
Y; 81 36.5 22 43.1 Z;

359.0 | 30 38.0 | 71 34.9 | 317.8
11 45.7 51 34.2
50 37.1 42 36.0
92 34.2 | 60  33.5
70 35.4 31 26.6

The combination of the first two factors, d and s, on each plot is given by the first figure, and
the level of the third factor, n, by the second figure.

- 'The various steps in the analysis of an experiment of this type are as follows.
The order given should be adhered to, so that errors may be detected before
the erroneous values are used in extensive further calculations.

1. Identify the blocks with the groups and sets given in Table 43, or
check the numbering if this is given.

2. Set out the totals of the separate treatment combinations in the order
shown in Table 45 (first factor down, second and third across, with third
uppermost). This should be done even if there is only a single replication.

*This accounts for slight differences between the results given here and those in the Rothamsted Report.
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TABLE 45. YIELDS OF SEPARATE TREATMENT COMBINATIONS.

ni n2

o
§2 So S §a

So S1 §a So S1
do 87.2 77.9 61.1 85.1 86.13 86.3 84.1 86.9 87.9
dr ] 84.2 70.1 79.6 94.3 86.9 70.9 86.1 82.9 76.8
da 71.2 80.6 66.5 72.6 73.5 83.8 74.0 93.6 71.9

3. Calculate the total sum of squares of all the yields of Table 44, the
correction for the mean (which should be checked), the sum of squares for
blocks, and the total sum of squares for treatments from Table 45. The block
totals are obtained in the course of this calculation, together with a check on
the total and on the formation of Table 45 (see Note 4).

4. Calculate the five 3 x 3 tables given in Table 46a. The first three
require no comment. The last two give the diagonal totals [I] and [¥] for the

3 x 3 tables for each level of # of Table 45. Marginal totals need not be taken
out at this stage. '

TaABLE 46. CALCULATION OF MAIN EFFECTS AND INTERACTIONS.

(a) Two-way tables. (b) Three-factor interactions.

so st $a I 2 3 Total
do | 256.4  251.1 235.3 742.8 [W] 715.6  694.6  752.1 2162.3
di | 264.6 239.9 227.3 731.8
da | 217.8 247.7 222.2 687.7 [X] 721.2 719.4 721.7

o n1 nz . [Y] #%56.6  728.9 676.8

Blocks 439.9 425.8 359.0 1224.7

do | 226.2 257.7 258.9
di | 233.9 252.1 245.8 - [Y]' 316.7 303.1 317.8  937.6
da | 218.3  229.9 239.5 312.53

so | 242.6 252.0 244.2 738.8 [Z] 738.1 702.9  721.3
s1 | 228.6 246.7 263.4 738.7 Blocks 317.8 305.5 314.3 937.6
s2 | 207.2 241.0 236.6 684.8

[Z] 420.3  397.4 407.0 12247
In | 223.8 255.8 238.9 408.23
I2 | 225.9 254.1 267.6
I3 | 228.7 .229'8 237.7

Jr | 247.4  229.5  254.5
F2 | 228.6  264.4  244.9
J3 | 202.4 245.8 244.8

678.4  739.7 744.2 | 2162.3
Standard errors. Totals of 6: +8.97; totals of 18: +15.54

5. Calculate the diagonal totals of the [I] and [ ¥] tables in the proper
order ([/] and [j"f] of the [I] table, F] and [ ¥ ] of the [ 7] table). These give
(ignoring the confounding) the totals [W], [X], [Y], [Z] for the four pairs of
three-factor interactions, and are shown in Table 46b.

<o
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6. Calculate the sums of squares corresponding to the nine values in each
of the first three tables of Table 46a. These are shown in Table 47. The first
table, for instance, gives the sum of D, S, and D.S. One set of marginal totals
of each of these three tables may be obtained in the course of this calculation.

TABLE 47. AUXILIARY TABLE OF TREATMENT SUMS OF SQUARES (IGNORING CONFOUNDING).

Correction for mean h 86584.10
Correction for working mean (222) .. i 2430.76
D, S DS.. > o . s T 341.52
D, N, D.N o i e e 275.13
S, N, SN .. ola s s e 329.77
D .. . ae . = i 04.47
S 107.80
N .. .. . .E i i e 150.14

Unconfounded W, X .. o o 94.22
DSN{p il eonfounded ¥, Z . .. 216.84
All treatments .. oc o e e 905.06

7. - Calculate the sums of squares for the main effects from these marginal

totals (checking that the total of each set is correct), and enter these in Table 47.

8. Calculate the sums of squares for the four pairs of degrees of freedom
for the three-factor interactions, keeping separate the unconfounded and partially
confounded degrees of freedom, and enter these in Table 47.

9. Subtract the sums of squares for main effects from the sum of all the
other treatment items of Table 47. This should give the total treatment sum
of squares and assures the correctness of all of the preceding calculations which
involve ‘treatments. :

10. Check the sum of squares for blocks and the total sum of squares.

If there were no confounding, or if one pair of degrees of freedom were
completely confounded, the final analysis of variance table could now be
immediately prepared. With partial confounding, however, the following
additional steps are necessary.

11.  Enter the block totals corresponding to the confounded pairs of degrees
of freedom in the proper order in Table 46b, subtract these from the full totals,
[¥] and [Z], thus obtaining the totals [Y]’ and [Z]’, which include only those
blocks in which Y and Z respectively are not confounded. (If there is any
doubt about this process, check one or more of the values by direct totalling
over the blocks in which the degrees of freedom concerned are not confounded.)
Calculate the sum of squares from these new totals and enter in Table 47.
(Note that each set has a different total and therefore a different correction for
the mean, and that a new divisor, here g, is required, since only g plots are
included in each total.) The whole of this calculation must be checked, particular
attention being paid to seeing that the block totals are entered in their correct places.

12. Construct the final analysis of variance table shown in Table 43.
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TABLE 48. ANALYSIS OF VARIANCE.

D.F. Sum of squares Mean square 3

Correction for mean o'e T 86584.10
Blocks 5 1950.38 390.08
D o 2 94.47 47.24 0.629*
S 2 107.80 53.90 0.695%
N 2 150.14 75.07 0.861*
D.S 4 139.25 34.81 0.477
D.N 4 30.52 7.63
S.N .. o os 4 71.83 17.96 0.146

Uncenfounded . 4 94.22
DY {Partially confounded 4 44.29} 17-31 °-127
Error .. - o o 22 295.29 13.42
Total .. 53 2978.19

13. Construct the various summaries of results. Tables for main effects
and two-factor interactions and their standard errors can be obtained directly

by conversion of the first three tables of Table 46. The conversion factor is
here 1.

In this experiment the reduction in error variance by the arrangement in
blocks is very large. Although much of this reduction results from the difference
between the two replications, the further reduction due to the use of blocks
of ¢ instead of 27, made possible by confounding, is also substantial, the gain
in information, estimated by the method of Section 75, being 53.1 per cent.

10c. Adjusted yields of three-factor combinations.

Under ordinary circumstances it will not be necessary to construct any

table including all three factors, but should this be required it may best be
done in two stages :

(a) assuming the three-factor interactions to be negligible ;
(b) introducing correcting terms for these interactions.

The general rule for obtaining any value of stage (a) is to take the sum of
the appropriate values of the converted two-way tables representing two-factor
interactions, deducting the corresponding marginal means the number less one
of times they are involved (i.e. once with three factors, twice with four factors,
etc.) and adding the requisite multiple of the general mean. Thus in the above
example : d,S,1,= 42.73 + 37.70 + 40.43 — 41.27 — 41.04 — 37.69 + 40.04= 40.90,
42.73 being § of 256.4 and 41.27 being 5 of 742.8, etc. '

The correcting terms for the three-factor interactions are immediately
obtainable from Table 46b by multiplying [W] and [X] by the conversion
factor for 18 plots (here %) and [Y]” and [Z]” by the conversion factor for

g plots (here ). Since d,s,n, occurs in W,, X,, ¥, and Z,, the corrected
value is ‘

doSoNo = 40.90 + 39.76 + 40.07 + 35.19 + 46.70 — 4 x 40.04= 42.40,
the mean of the means of Y’ and Z' being equal to the general mean.

g
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Alternatively corrections may be applied to the individual plot yields so
as to eliminate the block effects, as in Section 4f. These are derived from
Table 46b, that for block Y,, for instance, being

3 (316.7 - 312.53 — 439.9 + 408.23) = — 3.06. _ .
Similarly that for block Z, is + 0.76, and consequently the adjusted yield of
dyson, 18 (from Table 45)

' 1 (87.2 - 3.06 + 0.76) = 42.45. .

To prevent the accumulation of small errors and facilitate checking it is best
to retain an additional figure in this calculation, as shown. When the whole
table is required the computation can be shortened in various ways, the details
of which may be left to the reader.

The standard errors of the various differences can be obtained by considering
which of the interaction effects W, X, Y and Z are involved, remembering that
each difference is made up of the sum of g components, representing main
effects, and two- and three-factor interactions. 'Thus d,s,7, and d,s,m, occur
in the same Z set, but in different W, X, and Y sets. 'The relative information
on Y is 3, and consequently the variance as ordinarily calculated must be
increased in the ratio ,

8.3+1.3):1=10:0.
Similarly d,s,n, and d,s,n, occur in different W, X, Y and Z sets, so that
the variance of their difference must be increased in the ratio 11:9. Had there
been four replications, with £ information on W, X, Y and Z, the ratios would
have been 10:9 and 31 :27 respectively.

The calculation of separate components of the three-factor interactions is
discussed in the next section.

qod. 3 x 3 x 3x 3 designs in blocks of 9 plots.

Designs with four factors (but not more) at three levels can be arranged
in blocks of ¢ plots in a similar manner to designs with three factors, confounding
only three-factor interactions. Consequently, if 81 plots are available, the
possibility of including an additional factor should always be borne in mind,
since this entails no loss of accuracy owing to increase in block size and little
additional complication in the computations.

There are 32 degrees of freedom for three-factor interactions. These can
be divided in various ways into 4 groups of 8 degrees of freedom each, in such
a manner that each group of 8 degrees of freedom is given by the contrasts of
g sets of g treatment combinations.  One such group of sets is shown in Table 49.
Tn this table the combinations of the third and fourth factors are also represented
by the numbers 1-9. Thus the fourth combination of the second set of the
first grouping has the number 47, which represents the combination a,b,¢.d,.
The table is used in an exactly similar manner to Table 43.

The analysis of variance follows the same lines as that of the 3x3x3
design. In experiments with a single replication, however, it 18 scarcely worth
while computing every item of the analysis of variance separately. The sums




48

of squares for the main effects and two-factor interactions may be calculated
from two-way tables in the ordinary manner. The three-factor interactions
between any set of three factors which are judged to be of interest may also
be eliminated from the estimate of error if desired. A pair of degrees of freedom
out of any such set of 8 is confounded with blocks.

TABLE 49. SET OF 3% DESIGNS CONFOUNDING THREE-FACTOR INTERACTIONS.

Combination of Combination of third and fourth factors

first and second
factors 1 II
I 00 1 59 8 3 4 6 7 2 1 9 5 6 2 7 8 4 3
2 10 5913487 261|935 12764338
3 20 9 154832617 | 519762384
4 o1 6 721598348 431975¢27
5 I 7265913 48/[43895 71276
6 21 2 6 7 915 4 8 3 38 4519 7 6 2
7 02 83467 2159627843195
8 12 3 487 2 6 5 91 2 7 6 4 3 8 9 5 1
9 22 4 83267915 (762384357109

Confounded degrees| A4.B.C (W), A.B.D (Y) AB.C (X), ABD (Z)

of freedom A4.C.D (Z), B.CD (X) A.C.D (W), B.C.D (Y)

I11 v

I 00 1 6 8 9 2 4 5 7 3 1 8 6 5 3 7 9 4 2
2 10 6 8 1 2 4.9 7 3 3 8 6 1T 375 4 2 9
3 20 8 16 4923576187753 294
4 o1 9 2 457316385 3%7942128°%6
5 I 2 49735681 |37 542293861
6 21 4 9 2 35 7 8 1 6 7 5 3 2 9 4 6 1 8
7 02 57316892 4|9 4213867537
8 12 7 35 6 8 1 2 4 9 4 2 9 8 6 1 3 7 5
9 22 3578 1649229461873 3

Confounded degrees| A.B.C (Z), A.B.D (W) A.B.C (Y), ABD (X)

of freedom 4.C.D (X), B.C.D (W) A.CD (Y), BCD ()

If the totals of the blocks of any grouping (taken in the order shown) are
arranged in a two-way table in the standard order (Table 40), then the column
totals give the confounded degrees of freedom from B.C.D, the row totals A.C.D,
the I totals 4.B.D, and the ¥ totals 4.B.C. The actual pairs confounded are
given in Table 49; they can also be easily identified by determining which
of the sets of totals, [W], [X], [¥] or [Z], for the factors concerned contains
whole blocks in each total instead of three plots from each block. If no three-
factor interactions are eliminated there will be 40 degrees of freedom for error ;
if all are eliminated there will be 16 degrees of freedom for error.

10e. 33 and 3* designs in quasi—l;atin squares.
It follows from the arrangements already given for confounding in
randomized blocks, that both 3° and 3* designs can be arranged in g x g

=)
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quasi-Latin squares, only three-factor interactions being confounded.
Arrangements of this type are shown in Tables 50 and g1. Rows and columns
must be randomized as usual. Partial confounding could be adopted in the 3°
design but is scarcely worth while in a single square, since % the relative
information must be sacrificed on two of the pairs of degrees of freedom.

TABLE 50, 3 x 3 X 3 DESIGN IN A g X Q QUASI-LATIN SQUARE.
I0 2I 32 41 52 60 72 80 g1
21 32 10 52 60 41 91 %z 8o
32 10 21 60 41 52 80 91 72
42 61 50 92 81 70 30 11 22
50 42 61 70 92 81 11 22 30
6r 50 42 81 70 92 22 30 11
71 go 82 12 31 20 40 62 351
-82 71 9o 20 12 31 62 51 40
9 8 71 31 20 12 51 40 62
Confounded degrees of freedom: rows, Y; columns, W (Table 43).

TABLE 51. 3% DESIGN IN A 9 X  QUASI-LATIN SQUARE.
1Ir 29 35 48 g4 63 76 82 97
2

28 34 13 56 47 81 99 75
36 12 27 61 49 55 98 74 83
45 51 69 73 83 94 17 26 32

53 68 44 87 96 72 25 31 19
67 46 52 95 71 89 33 18 24
79 85 91 14 23 38 42 57 66
84 93 78 22 37 16 59 65 41
92 77 86 39 15 21t 64 43 358
Confounded degrees of freedom: rows, II; columns, IV (Table 49).

10f. Extension to 3" in blocks of 3" or 3.

If in Table 43 we replace each level the third factor by a set of three
combinations of a third and a fourth factors, such that, in the previous notation,
O=1I+ 540, I=2+ 0+ 7,2= 73+ 4+ 8 (the I sets), then the contrast of I7/,,
W, and W,, etc., will represent a pair of degrees of freedom from the four-
factor interactions 4.B.C.D. If the ¥ sets are used, then another pair of degrees
of freedom will be obtained. 'Thus all the 16 degrees of freedom will be obtained
in pairs. We are consequently provided with a set of designs for confounding
a 3* design in blocks ofc'l 27 plots.

The process may be continued indefinitely, and a similar process may be
applied to the 3* designs in blocks of g plots to give 3° designs in blocks of
27 plots, etc.

11. 'THE SUBDIVISION OF SETS OF DEGREES OF FREEDOM.

I1a. Subdivision of main effects.

If the response to a fertilizer is proportional to the amount of the fertilizer
present, i.e. if the response curve is a straight line, and if the fertilizer is applied
at three levels, equally spaced, the response per unit dressing will be estimated
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from the difference of the two extreme values. Moreover in such a case the
yield of the central dressing will be equal to the mean of the yields of the two
extreme dressings, except for experimental error, and consequently the observed
difference of these two quantities may therefore be taken as a measure of the
curvature of the response curve.

- We may thus divide the two degrees of freedom for a fertilizer, n say, at
three levels into two single degrees of freedom, one representing the average
or linear component of the response and the other the curvature. These
quantities may be denoted by N’ and N”, defined as

N =n, -n,
N'=mn,—2n, + n,
N’ is therefore the response to the double dressing, and N” the difference between
the responses to the second and to the first dressing.*
The sums of squares corresponding to N' and N” are given by
L [N']? and L [N'}?

respectively (6= 12 + 2% + 12), where 7 is the number of plots contributing to
[n,], etc. The standard errors are +/2/n and +/6/n times the standard error of
a single plot. The two degrees of freedom are orthogonal, and consequently
the two sums of squares total to the sum of squares for the two degrees of
freedom.

If the response is substantially linear over the range investigated the sum
of squares for N’ will be much greater than that for N, and it may well be that
N’ attains. significance although the sum of squares for the two degrees of
freedom fails to do so, owing to the diluting effect of N”. The test of V' alone
is always legitimate, and should be made when the two degrees together fail to
attain significance and inspection of the results indicates that N’ may do so.
The experimenter who confines his attention to the two degrees together is in
fact penalizing himself by the very act of including in t%ne experiment the
intermediate level. In practice it is not necessary to calculate the separate sums
of squares, since both N’ and N” can be immediately tested by the ¢ test, using
the final summary of results.

Thus in the example just given the mean square for sowings, 47.24 (2 d.f.),
is only just significant at the 5% point, but the major portion, 84.33, of the
corresponding sum of squares, 94.47, is attributable to the linear component D',
which is thus clearly significant. The actual difference D’ is —3.06 cwt. per
acre, and its standard error is + 1.22, giving #= 2.51. On the other hand the
curvature D", which has a value — 1.84 cwt. per acre, and a standard error of
+ 2.11, does not approach significance. The corresponding sum of squares is
10.15, giving the correct total.

The reader will find it instructive to examine the response curves for spacing
and nitrogen in a similar manner. Although all the curvatures are in the direction
that might be expected no one of them is significant. 'This illustrates the high
precision that is necessary to determine the curvature of the response curve at
all accurately.

*These quantities are represented by N1;and N2 Fisher’s Design of Experiments. In view of the wide use of
suffixes to indicate levels of a factor, however, we have thought it better to use dashes.
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Similar divisions can be made when other types of treatment are involved.
Thus in the experiment given in Table 41 the two degrees of freedom for 1933
and 1935 treatments might be divided into two single degrees of freedom, one
representing the response to fertilizers, i.e. the mean of artificials and compost,
and the other the difference between artificials and compost. - Note, however,
that if the single degrees of freedom were chosen to represent the response to
artificials and the response to compost, these would not be orthogonal, and
consequently the corresponding sums of squares, although each would in itself
give rise to a z test of significance identical with the # test, would not add up
to the total sum of squares for this set of treatments. There is no reason why
the separate comparisons considered should always correspond to orthogonal
degrees of freedom, but this will most frequently be the case in well designed
experiments.

Sets of three or more degrees of freedom can be divided in a similar manner.
There are many possible alternatives, which we have not the space to discuss
here. The point to remember about all such subdivisions is that to be useful
they must correspond to some reasonable simplification of the treatment effects,
e.g. that forms of nitrogen are equivalent, that the response curve to a fertilizer
can be reasonably represented by a straight line, or a second degree curve, etc.
Whether such simplifications are in fact contradicted by the data can then be
rigorously tested.

11b. Subdivision of interactions.

Corresponding to any given subdivision of the degrees of freedom for the
main effects of a factor, there éxists a corresponding subdivision of the associated
interaction degrees of freedom. Thus in the previous example the four degrees
of freedom for the interactions between sowing ‘dates and spacings may be
subdivided into the interaction of the linear responses D'.S’, the interactions
of each linear response with the other curvature, D".S" and D'.S”, and the inter-
action of the two curvatures, D".S”. D'.S’, for example, indicates the linear
component in the change, as s varies, of the linear response to d, or alternatively
to s as d varies.

The quantitative expressions for these interactions present no difficulty.
Thus the linear response to 4 at the level s, of s is d,s, —d,s, and that at the
level s, is d,s, —d,s,. The difference of these

: dys, —dys, —dys, + doS,
gives the change in the linear response to d. Following our previous practice,
we shall introduce the factor %, so that symbolically
D.S' = }d,—d,) (s2—50)

Equally ,

D". S =§d, —2d, +d,) (s,—5,)

D’.S"=1(d,—d,) (s, —28, + 5,)

D". 8" = }(d, —2d, + d,) (s, — 25, + )

The multipliers of the yield totals and the divisors required to give the
sums of squarés in the analysis of variance are given in tabular form in Table 52,
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TABLE 52. EXPRESSIONS FOR INTERACTIONS OF A 3 X 3 TABLE.

A'.B’ A".B' A'.B" : A".B"
bo b: b2 bo by b2 bo b1 ba bo b1 ba
do +1 o -1 -1 0 +I -1 42 -1 +1 2
- 1
ar o o o +2 o -2 o o o -2 44 —+2
az | -1 o +4I -1 o 41 +1 -2 41 +1 -2 41
Divisor 4n 12n 12n 367

n being the number of plots included in each total of the 3 x 3 table. As usual
the divisors required to give the interactions in units of a single plot yield are
one-half the above divisors, and the multipliers of the error mean square required
to give the error variances of the totals are equal to the above divisors.

1rc. Exampie.

~ Applying the above multipliers to the d and s table of th i
we obtain the results of Tablg 53- HOBOI D R et

TABLE 53. NUMERICAL VALUES OF INTERACTIONS,

Interaction Total cWt. per acre Sum of squares
D:’.S" +25.5 +17.9 +2.12 $1.48 27.09q
D,.S” +57.9 +31.1 +1.61 +0.86 46.56
D”.S” - 44.9 T31.1 -1.25 =0.86 28.00
D".S -9o.1 =+53.8 -0.83 +o.50 37.58

) . 139.23
A systematic method of arrtving at thg above totals, and also the totals for
the corresponding main effects, is shown in Table 54. In the first three

TABLE 54. COMPUTATION OF MAIN EFFECTS AND INTERACTIONS OF A 3 X 3 TABLE,
“

(1) | @) ] Key
738.8 7387 684.8 |2162.3 -54.0 =—353.8 Total S’ S”
~38.6 -3.4 —13.1 | —~55.1  4+25.5 —44.9 D D.§S D.S”
-55.0 +Ig9.0 +2.9 | -33.1  +57.9 -—go.1 D" D".S" D.§"

columns (1) the first line represents the totals of the three columns s, s
of the d and s table (Table 46), the second line the differences d, — d(.oi’forlc’easczl;
columns, and the third line the quantity d, — 2d, + d,, for each column. Each
number need only be written on the machine once, the sequence being :

+217.8
—256.4

-38.6
+256.4 x 2
-2064.6 x 2

- 55.0
+2064.6 x 3 .

738.8
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The computer must learn to read negative numbers directly from the machine.
A second application of the same process to the rows of (1) gives the required
quantities (2) in the order shown.

11d. General remarks.

The method used in the above example is perfectly general, and can be
used to subdivide the interactions in any manner corresponding to that adopted
for the main effects. If the main effects are orthogonally divided then the
interactions will also be orthogonally divided. Moreover there is no need to
subdivide into single degrees of freedom. Thus if the factor @ represents three
varieties and b three levels of a fertilizer, we may subdivide into two pairs of
degrees of freedom A.B' and A.B" : the former will be given by the differences
between the linear responses of the three varieties, the latter by the differences
between the curvatures.

Subdivision of interaction degrees of freedom is useful, in the same manner
as was the subdivision of main effects, for throwing into prominence effects
which might otherwise escape notice. In the interaction of two fertilizers, for
example, we should expect the component 4'.B’ to be large compared with
the remaining components, but if the four degrees of freedom are jointly tested
its significance might be obscured. Subdivision is also useful when estimating
the error from interactions, since we may reasonably exgect interactions involving
a component of curvature to be small even in cases where the component 4'.B'
cannot legitimately be included in error. An example of this is provided by a
single replication of a 3 x 3 x 3 design.

12. THE 3 x 3 x 3 DESIGN : SINGLE REPLICATION.

This particular design is of considerable practical importance in agricultural
fertilizer trials, for it enables the optimal levels of all three standard fertilizers
to be simultaneously investigated, and is not too large to be undertaken on
ordinary commercial farms. We will therefore analyse the first replication of the
sugar beet experiment already given, treating it as if it were the whole experiment.

12a. Systematic method of analysis.

Since experiments of this type are usually undertaken simultaneously at
a number of centres, it is advisable to adhere to some systematic method of
analysis and presentation of the results. In practice it has been found best in
fertilizer trials to present the response to the double dressing of each factor
(the linear response), the difference of the additional response to the second and
the response to the first dressing (the curvature), and the linear component
of interaction of each pair of factors, together with their standard errors.

The calculations proceed as follows : .

1. Calculate the total sum of squares and the correction for the mean,
obtaining the block totals at the same time.

2. Set out the yields as in Table 45, and calculate the five two-way tables
similar to those of Table 46a, .and thence the totals [W], [X], [Y] and [Z].
The block totals check one of these sets, here [Y]. The table for d and s and
the interaction totals are shown in Table j55.
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TABLE 55. CALCULATION OF MAIN EFFECTS AND INTERACTIONS.

| o S1 2 | W X Y Z
do 144.0 145.2 142.8 432.0 402.6 403.5 439.9 420.3
dx 143.3 139.1 129.1 411.5 396.5 415.3 425.8 397.-4
da 128.1 137.5 115.6 381.2 425.6 405.9 359.0 407.0

- Calculate the total sum of squares for each of the first three two-way
tables, obtaining one set of marginal totals for each of these tables in the process,

and also the sums of squares for [ Y] (blocks) and for [W], [X] and [Z]. These
sums of squares are shown in Table 56 (blocks in Table 58).

TABLE 56. AUXILIARY TABLE OF SUMS OF SQUARES.

D, § and D.S 262.05 S, N and SN 250.82
D, N and D.N 333.49 W, X and Z 90.36

4. Calculate the totals for the linear responses and curvatures from the
main-effect totals, and at the same time check tlllae-total of each set of main-effect
totals. 'The method of Section 11¢ may be used. Thus 381.2 - 432.0= — 50.8.
381.2 + 432.0 — 2 x 411.5= — 9.8, and the total (which need not be written
down) = 1224.7. Enter the values obtained in Table 57. Then take the sum
of squares of the linear response totals, dividing by 18, and the sum of

{ squares
of the curvature totals, dividing by 54, and enter in Table s8.
TABLE 57. MAIN EFFECTS AND INTERACTIONS.
Totals cwt. per acre .
Factor | Linear Coa— Linear Cutvit Factors e
respohse —rvature response T ature Total  cwt. per acre
D -50.8 -9.8 -5.6 -1.1 DS’ - 1I1.3 -1.9 2
S -27.9 — 40.% —3.1 - 4.5 D'.N’ ~19.4 -3.2
N +45.4 ~32.0 +5.0 -3.6 SN’ +13.8 +2.3
St. error | +14.4 +25.0 +1.6 +2.8 St. error +11.8 +2.0
Divisor 18 54 Divisor 12
TABLE 58. ANALYSIS OF VARIANCE.
D.F. Sum of squares Mean square
Blocks Y. . - w2 415.03 207.52
Linear responses .. e w3 301.12
Curvatures . . s - wi 3 51.42
Linear interactions - o g 57.8%
Other interactions (error) N 1 173.79 11.59
Total 3 a0 &0 o 26 999.23

If the sum of squares for blocks and those of Table 56, less the sums of
squares for the linear responses and curvatures, add up to the total sum of
squares, the whole computation up to this point may be regarded as checked.

o
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5. Calculate the totals for the linear components of the interactipns from
the cross differences of the corner values of the two-way tables, entering these
in Table 57. Thus 144.0+ 115.6 — 128.1 - 142.8 = — 11.3.  Divide the sum
of squares by 12 and enter in Table §8. This calculation must be carefully
Chcclg(.a.d. Calculate the error sum of squares by subtraction, and complete Table 58.
Enter the standard errors of the totals in Table 57, e.g. VI8 x 11.59= 14.4.
Then convert the values of Table 57 to the proper units. Here the conversion
factor for the linear responses and the curvatures is 3, and for the interactions
is §, since the yields of the single plots are already in cwt. per acre. Ay

This completes the analysis. Tests of significance can be made in the
ordinary manner by the ¢ test. The linear responses to change of sowing date and
nitrogen are significant but that to spacing is barely so. The error mean sqilatl'e
11.59 agrees well with that already found from the analysis of the whole
experiment.

12b. Alternative method.

native method of analysis is to obtain all the main effects and two-
facto‘?lilnztl:ztrzrctions as single degree}; of freedom by the procedure illustrated in
Table 54. It will be noticed that each component of the main effects a peaﬁ‘s
in two tables. The computation can therefore be slightly abbreviated by the
omission of one set of mainhef‘flczcas from each table. The total of each 3 x 3

er, be checked.

tableIfs_, }tll(:il'lslc;l),l'ol;(é:lvjt",e is adopted there is no need to compute the sums of squarg:lsi
for the 3 x 3 tables shown in Table 56. The final analysis of varlancek_w1
appear in the form shown in Table 59, the whole computation being self-checking.

TABLE §9. ANALYSIS OF VARIANCE, ALTERNATIVE METHOD.

D.F. Sum of squares Mean square

Blocks .. 2 415.03 207.52
Linear responses .. 3 301.12
Curvatures . . . . 3 51 g
Interactions : Linear x linear 3 57.87

Linear x curv. 6 68.19

Curv. x curv. 3 15.22 p173.77 11.59

W, X,and Z 6 90.36
Total 26 999.23

12¢. The linear component of the three-factor interaction.

The linear component of the three-factor interacton in 3 x 3 x glexperm;t?lrgz
has a certain interest, both because it is more likely to be of apprecia fax'rt:?lgn e
than any other component, and also because it rgprﬁgeﬁtsttl’lxevz;;n stf: ;r;;g somn
I i to the highest le al
to the estimate of the combined responses
factors given by the sum of the three linear components of the main effects
(Section 2¢).*

Tige oG — i to be small.
#There are also other correcting terms in the 3 X 3 X 3 system, but these are likely

- ———
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At first sight its estimation in confounded experiments appears complicated.
There is, however, no great difficulty, for we have the identity :

[A.B.Cl= 5 { [W.]- W]+ [X,] - [X,] + [V,] - [Vi]+ [Z,] - [Z,]},

as is easily verified from Table 43, or numerically from Tables 45 and 46b,
ignoring the confounding. i

In partially confounded experiments it is only necessary to substitute the
corresponding totals, freed from confounding, which are denoted by dashes in
Table 46, multiplying these by the necessary fraction to make them the equivalent
of totals over the whole experiment. Thus in the example already given ¥ and
Z are partially confounded and the totals [Y’] and [Z'] include only half the
plots and must therefore be multiplied by 2. (If there were four replications,

confounding all three-factor interactions, the multiplier would be 4.)" Thus in
our example we have :

[D'.8".N']= 3{694.6 - 715.6 + 721.7 — 721.2 + 2(317.8 — 316.%)
.. T2(407.0-397.4)} =+ 0.3
and the error variance is
2318+ 18+ 18+ 18+ 22(9+ g + 9+ g)}o? = 2402,
Consequently, in units of a single plot yield, here cwt. per acre,
D'.§'.N'= % (+03)=+0.04 + 2.24
since there are two replications, so that [D'.S".N'] would be the difference of two
sums of 8 plots each if there were no confounding. The same result may be
reached (more laboriously) by using the table of adjusted yields (Section roc).
If there were no confounding the error variance of [4'.B'.C"] would be

7 (8 x 18) 0? = 160% so that 2 of the relative information is retained, (With

all components. equally confounded # of the relative information would be
retained.) '

If one set of components of the three-factor interaction is completely
confounded, as must be the case in a single replication, clearly no estimate of
the linear component is possible unless it is assumed that the remaining
components are negligible. If this is assumed then each of the differences
[W,] - [W,], etc., provides a separate estimate of the linear component. Thus

with a single replication only, when ¥ is confounded, as in the example just
considered, we have

A B.C= {[W,] - W]+ [X,] - [X,]+ [Z,] - [Z.]},
the additional factor # being introduced to compensate for the omission of one

of the four estimates, together with a further factor 1 to give A'.B'.C’ in terms
of a single plot yield. Hence

D'.8".N'=§{396.5 — 402.6 + 405.9 — 403.5 + 407.0 — 397.4)
= §(+ 5.9)=+ 0.66 .
The error variance of A’'.B'.C" is now given by
31 (6% 9) 0¥ =202

so that the standard error of the estimate is here + 2.8, If there were no
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confounding the error variance would be % (8) ¢2 = Jo2. Consequeptly 2 of the
relative information is retained, but, of course, only on the assumption that the
other components are negligible. _ _

‘The sum of squares attributable to the corresponding single degree of
freedom is given by ,

5[5 (+ 5.9)]° =% (+ 5.9)*—0.64

This can be deducted from the sum of squares for error in Table 38, leaving
14 degrees of freedom for error. Clearly in a series of experiments this deduction
should be either made or not made consistently : it is not permissible to perform
the deduction only when the error is reduced thereby. _ i

The following alternative series of expressions (for a single replication,
Y confounded) may be noted. If

Q"= [4".B'.C']+ 5[Y,] -3 [Y]
30=3[4.B.C]+ [Y,]-[V;]
4.B.C=30-3(0)

The error variance of this estimate is
S 2

or

then

2o
and the sum of squares is
$0%= 51 (30)°
The above expressions are worth careful study. The total [4”.B".C"], which
would form the basis of the estimate in an unconfounded experiment, is corrected
by the requisite fractions of the block totals [¥;] and [Y;] to eliminate block
effects, giving fQ The fractional multipliers can then all be written down, if
the relative information, here §, is known, by multiplying the fractions that
would be used in an unconfounded experiment by the reciprocal of this relative
information. Thus 3=%x %, 3=%4x 3 and 2=% x 3. Note how 30 is used in
f O in the actual computation. )
placeTohistlt[elthod of adjustmgnt by means of block totals forms the basis of the
analytical methods applicable to confounded designs involving factors at both
two and three levels, which are described in the following sections.

I3. -CONFOUNDING WITH SOME FACTORS AT ';‘WO AND SOME AT THREE LEVELS.

Experiments containing factors at both two and three levels cannot b(;l s0
simply confounded as those containing factors at two or at three levels ?h' Yl;
because it is impossible to divide the treatment combinations into sets Whicl
correspond to the highest order interactions. The best designs are _thos_e which
confine the confounding as much as possible to the highest order interactions.
These designs necessarily involve the partial confounding of the more important
interactions also, the confounded degree or degrees of freedom in any 1epllca%_1‘?]n
being divided between different sets of treatment degrees of freedom. The
fraction of the information sacrificed on the more important interaction is,
however, quite small.
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Designs of this type are not quite so simple to analyse as designs of the
2" or 3" types. The designs must be balanced, and therefore the number of
replications used must be some multiple of the number required for a balanced
arrangement. The computation is similar for all the different patterns. An
?xample is given for the 3 x 2 x 2 design, which will illustrate the use of the
ormula.

I3a. Statistical analysis of 3 x 2 x 2 design.

Denote the three factors by A(o, 1, 2), B(o, 1), C(o, 1). Since 4 is not
a factor of 6 it is clear that the interaction B.C cannot be completely uncon-
founded if the experiment is arranged in blocks of 6 plots. The design of

Table 6o confounds B.C as little as possible.

TABLE 60. 3 x 2 x 2 DESIGN IN BLOCKS OF 6 PLOTS.

Ia Ib - IIa IIb I1Ia IIIb
a b ¢ a b ¢ a b ¢ a b ¢ a b ¢ a b ¢
0 o I o o o o o o o o 1 o o o o o 1I
© I o o 1 I o I I o 1 o o I I o1 o
I o o 1 o 1 1 o I 1 o o I 0 o 1 o I
1 I 1 1 1 o 1 1 o 1 1 I I I 1 1 1 0
2 o o 2 0 I 2 0 o 2 0 I 2 0 I 2 0 o »
2 I I 2 1 o 2 1 I 2 I 0 2 1 o 2 1 I b

The interactions B.C and A.B.C are partially confounded with block
differences in each replication, since the actual degree of freedom confounded
lacks orthogonality with both these sets. In each replication the confounding
is different, the three replications giving a balanced design which enables the
treatment degrees of freedom B.C and 4.B.C to be estimated without difficulty.

13b. Statistical analysis of 3 x 2 x 2 design. 5

Since the interaction B.C is partially confounded it is necessary to correct
t}fle ordinary interaction total [B.C] by means of the block totals [Za], [1b], etc.
I 7
[16) - [la] = g, [11b] - [I1a] = g,, [I1Ib] - [I1la] - g,
and if we calculate

30=3[B.C]+ g, + &2+ £a

it can easily be verified that Q is unaffected by block differences or treatment
effects other than B.C.

The estimate of B.C in units of the yield of a single plot is given by

B.C~ 15 Q- 15 (30)
when there are 36 plots. The error variance of B.C is o2, Note that in an
unconfounded experiment the estimate and error variance would be 2L [B.C]
and §o2. The corresponding sum of squares is

720 = 285 (30)*
as compared with % [B.C]* in an unconfounded experiment. The relative
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Thus % of the information is lost by the confounding when there is no reduction
in the error variance per plot. _ v .
The estimate of 4.B.C is obtained in a similar manner. Calculate the
three quantities
3R,= 3 [B.Cay] —g.+£:+ 85
3R, =3 [B.Ca,]+ g, g2+ &5
3R, =3 [B.Ca,)+g.+8:—&s
with the check that 3R, + 3R, + 3R, = 30. ] i
The interaction 4.B.C, in units of a single plot yield, is given by
A.B.C= & dev (R, Ry, R;)= 5 dev (3R,, 3R,, 3R,)
as compared with } [B.C.a,], etc., in an unconfounded experiment. The error
variance applicable to each of these quantities is $o*, as compared with § o*.
The sum of squares is given by
»o dev? (Ry, Ry, Ry)= 4% dev? (3R,, 3R,, 3R,)

The relative information is given by the ratio
1/3 _ 5

v - . -g/ g B 9 -
and the relative loss of information on each of the two degrees of freedom is

therefore 4. Note that Ixi+axd=1

. corresponding to the single degree of freedom confounded in each replication.

This 1s a property of balanced arrangements.
The reader will find it instructive to construct the above formule by means

of the rule given at the end of the last section, using only the fractions representing

the relative information.

13c. Example. _ _
The plan and yields of the experiment on potatoes already referred to in

Section 9d (1/65 acre plots) are given in Table 61.

TABLE 61. PLAN AND YIELDS (LB.) OF 3 X 2 X 2 EXPERIMENT.
Ia Ib Ila

na2 nop nip no nomp | namp
172 161 231 166 208 144

nom ni nap nomp nim na
192 145 204 253 190 Io4

namp nimp nm nam no nip
227 232 231 214 113 131
33 nam nm nom nr nimp

176 | 186 | 238 | 198 158 | 171

no nimp nop nz Hom nap
132 242 180 175 171 135

nomp nap namp nip nam nop
196 178 230 216 146 103

Iila IIIb IIb
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Using the results already obtained in Table 38 we have
3Q = 3( 61 )+ 170 — 6+ 127 = +108
3R, = 3(+63 )— 170 — 6+ 127 = +140
3R, = 3( —113)+ 170+ 6+ 127= —36
3R, = 3(— 11)+ 170 — 6 — 127 = +4

P.M = +2.25= +0.07 tons per acre.

P.M.N = +10.4, - 7.2, — 3.2= +0.30, ~ 0.20, — 0.10 tons per acre.
The sums of squares are : :
D.F. Sum of squares Mean square
P.M I 40.5 40.5
P.M.N 2 283.7 I41.9

Replacing the values already given in Table 39 by these, we can complete
the analysis as shown in Table 62.

TABLE 62. ANALYSIS OF VARIANCE OF 3 X 2 X 2 EXPERIMENT.

D.F. Sum of squares Mean square
Blocks .. o 6 i 5 24938.9 2017.0
Treatments o - s I 26302.1 239I.T
Error .. r = .. IQ 6363.8 334-9
Total .. Ly 35 57604.8

"T'wo two-way tables will be required to show the interactions between pandn
and m and 7. Since these interactions are not affected by the confounding the
tables can be obtained directly from Table 38 in the manner already described.
If a two-way table for p and m is also required it can best be built up by the
method of Section 3, using the value of P.M calculated above. These three
tables are given in Table 63. :

TABLE 63. TWO-FACTOR TABLES, TONS PER ACRE.
7o nr na (1) P

(r) 4.14 5.11 4.68 4.64 4.41 4.88

m 5.89 6.31 35.55 5.92 5.61 6.22

5.0 5.71 5.1z 5.28 5.01 5.55

(1) 4.70 5.50 4.82 5.01I
b 5-32 5.91 5.41 5-55
Since no one of the interactions between two factors is significant it will
scarcely be necessary to give a three-way table to exhibit the interactions between
all three factors, but if one is required the calculation may be carried out in
two stages as in the 3 x 3 x 3 example (Section 10c). Thus, neglecting the
interaction N.M.P,
- nomp= 589+ 5.32+ 6.22 - 5.01 —5.92 — 5.55 + 5.28= 6.23 '
To include the effect of N.M.P one half the values already obtained for this
interaction must be added to the lines (1) and mp and subtracted from the
lines p and m, thus
, nomp= 6.23 + 0.15= 6.38
The full sets)of values are shown in Table 64.

r
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TABLE 64. THREE-FACTOR TABLE, TONS PER ACRE.
(a) Neglecting N.M.P (b) Including N.M.P

, o nr - na | No ni RC
(1) | 387 4.94 4.42 () | 4.02 4.84 4.37
P 4-42 5.28 4.94 P 4.27 5.38 4.99
m 5.54 6.06 j5.21 m 5.39 6.16 5.26
mp 6.23 6.54 35.87 mp 6.38 6.44 5.82

13d. 3 x 2 x 2 x 2 design in blocks of 6 plots.

With three factors at two levels (but not with more) there is an arrangement
in blocks of 6 plots similar to that with two factors at two levels, only § of the
relative information on the interactions between pairs of factors at two levels
being sacrificed. 72 plots are required to provide a balanced design, The
12 blocks of this design are given in Table 65.

TABLE 65. 3 X 2 X 2 X 2 DESIGN.
Level of a | Ia Ib Ic Id ] IIa IIb IIc IId ‘ IIla IIIb III¢ IIId

o b (1) d ¢ c d (1) b d ¢ - b (1)
: : d ¢ b b. (1) d
Z: fi f (bI) (f) b (1) d (Ic) c (; (1) 2

In this table only one of the pair of combinations of &, ¢ and d for each level
of a is shown. = When (1) occurs bcd must occur also; similarly ¢d must
occur with b, bd with ¢ and bc with d. Thus the block Ib contains the treat-
ments @,, a,bcd, a,d, a,be, a,c, a,bd. _ ’ -
The required formule are simple extensions of those applicable to the

3 x 2 x'2 design. Denote the differences between the block totals in replication I
by £., g./, and g,”, where

& = [La]+ [1b] - [Ic] - [1d]

g’ = [la] - [Ib]+ [Lc] - [1d]

g."= la] - [1b] — [Ic] + [1d]

ith similar expressions for replications II and III. .

Wl. To estima'?e the interactions C.D, B.D and B.C, the quantity O must be

replaced in turn by

3Q = 3[C.D]+ g, +ga + &5
3Q7=3[B.D]+ 8.+ g2°+ &5’

3Q0"=3[B.Cl+ g."+ 8"+ &5 -
The three-factor interactions are obtained in the same way, the formula being
identical with those already given except for the introduction of dashes. -

The remainder of the computation proceeds as before, except that all

divisors must be doubled to allow for the increase in the number of plots.

[t

13e. Extension to 3 x 2" in blocks of 3 x 2™ and 3 x 2™*

‘With blocks of 3 x 2™! the methods and equations set out for the 3 x 2 x 2
design in blocks of 6 plots are immediately applicable. Take X, to represent
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the treatment combinations which are taken as positive in the interaction between
the 7 factors at two levels, and X, the combinations which are taken as negative
SO thgt with three factors b, ¢, and d at two levels, X, represents the four
combinations bed, b, ¢, d, and X, the four combinations be, bd, cd, (r). As

before three complete replications are necessary, the six blocks bei
shown in Table 66. ¥ eing those

TABLE 66. 3 x 2" DESIGN IN BLOCKS OF 3 x 2! PLOTS.

Ia ‘ Ib " ITa J IIb ” 1ITa [ IITb
aoXo daoX1 aoXx aoXo aoX1 aoXo
ar X1 arXo axrXo a1 Xx ar X arXo
azX1 azXo a2 X1 azXo I az2Xo a2X1

'The interaction between all the factors at two levels and the interaction
between these and the factor at three levels, will be partially confounded.
The only modification required in the formulz already given is a proportionate
increase in the numerical divisors to allow for the increased number of plots.

The extension of the 3 x 2 x 2 x 2 design follows exactly the same lines
as the extension of the 3 x 2x 2 design, giving blocks of 3 x 272 If, for
example, a fourth factor e at two levels is introduced the interactions B.C.E,
B.D.E and C.D, and their interactions with 4, might be chosen for partial
confounding. The design is given by writing b and e for b, and (1) and be for
no b, in the 3 x 2x 2 x 2 design. Thus block Ia will contain the plots

aob, ace, aycd, aybcde, a,c, a;bce, a,bd, a,de, a,d, a,bde, a,bc, a,ce.

It may be noted that there is no 3 x 2 x 2 design in a 6 x 6 quasi-Latin
square which leaves the main effects completely unconfounded. A design
exists which partially confounds the interaction between the two factors at
two levels and the interactions between all three factors, and in addition slightly
confounds the main effect of one of the factors at two levels. In view of the
additional complication in the computations we have omitted this design.

13f. 3 x 3 x 2 design.

Denote the three factors by 4 (o, 1, 2), B (o, 1, 2), C (0, 1). Since ¢ is
not a factor of 6 the interaction A.B cannot be completely unconfounded when
the experiment is arranged in blocks of 6 plots. Using / and ¥ to indicate the
different diagonal sets of the combinations of 4 and b, as indicated in Table 40,

we have the following design of 36 plots (Table 67) which partially confound
A.B (I) and 4A.B.C-({). of 36 plotaif 7) partially confounds

TABLE 67. 3 x 3 x 2 DESIGN IN BLOCKS OF 6 PLOTS.
[ Ia l Ib | Ic “ IIa ‘ IIb ‘ IIc

I, l I ' I

L 1 I J &

Co
(4

I
I;

L | L
I 3 1 1
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The first block, for example, will contain the treatments

a:1boco, asbico, agbyco, azbocy, agh,cy, arb,e,.
A similar design, which confounds 4.B Sj‘) and 4.B.C (), is obtained by writing
¥ instead of I. If 72 plots are available both designs should be used, so that
all four degrees of freedom for A.B, and also all four for A.B.C, are equally
confounded.

The method of analysis is similar to that applicable to the 3 x 2 x 2 design.
To estimate the I component of 4.B when there are 36 plots and the I components
are confounded the quantity 4

, 20, - 2[1,] - [Ib] - [Zc] ~ [1Ib] - [1Ic]
and two similar quantities 20, and 20; may be calculated. The sum of these
is zero.

The relative information is 2, so that, since % x {5= %, the estimate of
the interactions is given by

- A.B (I)= ‘19’(91, sz Qs)= 'IIE(Z_QUVZ 2 2Q3
the error. variance of each of these quantities being & o2. The sum of squares
for the two degrees of freedom is : '
b S(0%)- &5 S(20)?
The estimates of the confounded components of 4.B.C are obtained by
calculating the three quantities
2R, = 2[I,.C] - [Ib] + [Lc] + [1Ib] - [IIc]
etc., where (,.C] denotes the sum of the 7, components in the table of ¢, — ¢,.
The sum of the three quantities is 2[C]. The relative information is %, so that,
since § x += %, the estimate is given by
A.B.C ()= % dev R= % dev 2R
Note the introduction of an extra 2, since one of the factors is at two levels only.

The error variance of each of these quantities is § x 3o? = § %,

The sum of squares for the two degrees of freedom is

= 1 devZR= 5 dev? 2R

The formulz for the design of 36 plots which confounds the ¥ components
of interaction are obtained from the above formule by writing ¥ for I.

If 72 plots are available and both the / and ¥ components are confounded,
then to estimate A.B (I) the quantities Q are calculated as above, but each
total [/] is taken over the whole experiment and therefore includes 24 plots.
The relative information is now %, so that the divisor ¢ in the above formule
must be replaced by 21. Estimates for 4.B (¥) are similarly obtained. Estimates
for A.B.C (I) are obtained by calculating quantities R as above, but the relative
information is now £, so that all the divisors given above must be multiplied by 5.

13g. 3% 3 x 3x 2 design in blocks of 6 plots.
There are four designs, each of 108 plots (two replications), in which the
interactions of all pairs of factors at three levels are partially confounded in the

. same manner as in the 3 x 3 x 2 design in 36 plots. In each of the designs

two degrees of freedom of the interaction between all three factors at three

" levels are completely confounded. The actual sets of confounded degrees of

freedom are given in Table 68.
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TABLE 68. CONFOUNDED DEGREES OF FREEDOM IN 3 X 3 X 3 X 2 DESIGNS.

Design H “CW 3 S “y» wgn
Parti (A.B and 4A.B.D s ¥ ¥ I I
cjritflilgded 4.Cand ACD .. ¥ I I
B.C and B.C.D S I ¥ ¥ I
Completely
confounded A.B.C 1774 X - v 7

From this table it will be seen that if all four designs are used (432 plots
the / and ¥ components of all the partially confounded inte1"¢1ctti':)11(s42:1repcon2
founded equally, so that, as in the 3 x 3 x 2 design in 72 plots, the relative
information on A.B, A.C and A.D is §, and that on 4.B.D, A.C.D and B.C.D
is §. In addition all components of 4.B.C are equally confounded, the relative
information being 2. '

If the 27 combinations of the three-level factors are divided into the
following 9 sets of three:

K K2 Ka K4 Ks Ke 'K7 Ks Kg
000 I00 200 OIO0 IIO 210 020 120 220

III 211 OII I2T1 221 021 I0I 201 [ele) ¢
222 022 122 202 002 102 212 oI2 112

then the first 9 blocks of the “ Z” design are those given in Table 69, the
other g blocks being obtained by interchanging d, and d,.

TABLE 69. FIRST REPLICATION OF THE 3 x 3 x 3 x 2 “ Z " DESIGN.
Block | Ia Ib Ic Id Ie If Ig Ih Ii

do K: K Ks Ka K, Ko K3 Ks Ky
d: Ks Ks Kx K4 Ky K3 Ks K7 Kg
_The “ W,” ““X” and ““ ¥ ” designs are obtained from the * Z ” design
by 1nterch’angmg a,anda,, b, and b,,and ¢, and ¢, respectively in the expression
for the K’s.  Thus for “ W” we take K, to represent the combination 000,
211 and 122, ete. '

The estimates of the partially confounded effects are obtained in exactly
the same manner as in the 3 x 3 x 2 design. Thus to estimate A.B (I) in the
“Z” design the quantity

20,=2[1,] ap—[la] -[Id -[le] - [If] - [Ig] - [Ih]
— [11a] — [IIc] - [IXe] — [IIf] - [IIg] - [IIh]
and two similar quantities are calculated.

I3h. Extension to 3" x 2 designs in blocks of 3™ x 2 and 3*% x 2 plots.

‘The designs already given can be extended in the same manner as the
3x3x3and 3x 3x3x 3 designs (Section 10f).
.. It may be noted here that there is no reasonably simple 3 x 3 x 2 x 2 design
in blocks of 6 plots. A design in blocks of 12 plots (and more generally a design
for 3 x 3 x 2" in blocks of 3 x 3 x 2" plots) may be obtained by extending
the 3 x 3 x 2 design in the same manner as the extension of the 3 x 2 x 2
design to 3 x 2" in blocks of 3 x 2™ This design confounds 4.B and 4.B.C.D
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only, but there are other designs which sacrifice less information on 4.B, at
the expense of confounding A.B.C and A4.B.D, and generally increasing the
complications of the computations. We shall not consider them here.

I3i. 3 x 3 x 2 design in a 6 x 6 quasi-Latin square.

It is possible to form a square of which the rows are the blocks of Table 67,
and thus confound the I components of the interactions between the two factors
at three levels, and the columns are the similar blocks which confound the
¥ components of these interactions. Only one such square exists (except for
permutations of rows and columns). This square is shown in Table 70, where
the first figure of each number indicates the combination of the two three-level
factors, and the second figure the level of the factor at two levels.

TABLE 70. 3 x 3 X 2 DESIGN IN A 6 x 6 QUASI-LATIN SQUARE.
20 70 60 41 31 81
40 30 8o 91 51 1II
90 50 10 21 71 61
71 61 21 30 80 40
31 8I 41 50 10 QO
51 11 g1 70 6o 20

The estimates of the confounded interactions are computed in exactly the
same manner as in the 3 x 3 x 2 design in blocks of 6 plots, using row and
column totals instead of block totals. The relative information on the inter-
actions between the two three-level factors is 3, and that on the interactions
of all three factors is %. '

In this design there are only 8 degrees of freedom for error, but in view
of the small amount of information available on the three-factor interactions
these may justifiably be included in the estimate of error, giving 12 -degrees
of freedom in all, except in cases in which these interactions are likely to be
large. This saves an appreciable amount of computation.

14. CONFOUNDING WITH ONE OR MORE FACTORS AT FOUR LEVELS OR EIGHT LEVELS.

I4a. General method.

Since 4 and 8 are powers of 2 the possible systems of confounding when
one or more factors are at four or eight levels and the remainder are at two
levels can be derived quite simply by the general rule already given for factors
at two levels only.’

With any factor a at four levels there are associated three degrees of freedom,
which may be partitioned into single degrees of freedom as follows : '

A =az;+a,-a; —a,

A =a,-a,-a,+ a,

A" =a, —a,+a, —a,
The dashes are here used in a slightly different sense from those in Section 11.
A" represents the quadratic component of regression, 24" + A"’ represents the
linear component, and 24" — A’ represents the cubic component. If 4" is
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confounded and the cubic component is assumed to be negligible then 1A’
gives an estimate of the linear ‘component of the regression.

Using this partition, 4’ and 4" may be taken as representing the main
effects of two different two-level factors, in which case 4’ will be their inter-
action. A single factor at four levels may thus be formally replaced by two
factors at two levels. In a similar manner, a factor at eight levels may be
replaced by three factors at two levels.

14b. Example : 4 x 4 designs.

As an example we may consider the design of a 4 x 4 experiment (factors
a and b) in blocks of 8 and in blocks of 4 plots.

A 4 x 4 design is the equivalent of a 2* design. With blocks of 8§ plots
any single degree of freedom for interactions between the four two-level factors
may be confounded. We might, for instance, confound 4’.4".B’.B", which is
equivalent to A””.B”’. This would be the best single degree of freedom to
choose if we wished to keep the linear and quadratic components of interaction
as free as possible, without resorting to partial confounding. The partition
of the treatment combinations into the two types of sub-block would then be
given by the + and — signs in the product :

A”.B" = (ay —a, + a, — a,) (bs —b,+ b, —b,).
A Dbetter course, however, would be to confound different interactions in
different blocks. If four replications were available, for example, we might
confound A4".B", A".B’"’, A”’.B" and A”’.B”’ once each.
With blocks of four plots three degrees of freedom will be confounded in
each replication. With three replications the nine degrees of freedom repre-

senting interactions between 4 and B may be confounded in three sets. One
such group of sets is:

4 B A B A B
A// -B// A// .B/// A// .Bl
.‘4///.B/// A///.B/ A///.B//

The partition of the treatment combinations corresponding to the first set, for
instance, is given by the four combinations of + and — signs, + +,+ — , —+, — —,
in the two products A’.B’ and A".B". The three sets correspond to an
orthogonal set of 4 x 4 Latin squares, with the rows and columns representing
the four levels of the factors a and b respectively.

A balanced arrangement of this type is particularly useful when one of the
factors represents four different varicties, or other treatments for which all
possible comparisons are of equal interest, for in such a case the interactions
of A, A" and A" with B are all of equal importance.

14¢. Combined varietal and manuring trials in Latin squares.

There is not space here to give a complete enumeration of designs including
all the various combinations of factors at 2, 4 and 8 levels, but with the above
example in mind the reader should have no difficulty in constructing the design
he requires from the designs for factors at two levels given in Sections 5 and 8.
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In particular he should notice the possibilities of arranging combined varietal
and manuring (or cultivation) trials in 8 x 8 Latin squares.

Thus, for example, if four varieties and three fertilizers n, p, k are to be
tested, the design of Table 32 may be used, identifying the combinations 0
b and ¢ with the varieties, and a, d and e with #, p and k respectively. If V7,
etc. are defined as A’ etc. above, and V" is identified with B, and V” with C,
so that the combinations (1), b, ¢, bc of b and ¢ are replaced by v, 2, Vo> Vs
respectively, the following degrees of freedom will be confounded :

Rows : V'.NK, V"PK, V"”N.P
Columns: V'.P.K, VI.N.P, V" NK

With 8 varieties and the three standard fertilizers, variants of the design

of Table 33 may be used. If the combinations of @, b and ¢ are identified with

the varieties, and d, e and f with 7, p and k respectively, we shall then have the
following degrees of freedom confounded :

Rows : V'.N.K, V:.N.P, V*.P.K, V*.N.P.K, V*.P, VK, V".N.
Columns: V:.N.P, V2.N.P.K, V3K, V*.P.K, V°.N.K, V°.N, V".P.

Vi, V2, ... V7 being a set of 7 orthogonal varietal degrees of freedom of the
form 1_

=V, —Vy+ Vg —Vy+ Vs — Vg + Uy — Vg

etc., such that V2. V2= V3, etc. A second square can be formed by making
the cyclical change of varieties :

1»—»3:—04;—»5*}2»—06&)79—» 2o

8 being left unchanged. The square so formed will confound an entirely
different set of interactions. A further application of the same cyclical change
will confound a further set different from the first two, _but complete -b'alance
will only be obtained by using all the seven squares given by repetition of
the above cyclical change, when each interaction degree-of freedom between
manures and varieties will be confounded twice, & of the relative information

being thus retained. ' ] '
gI‘he reader who is interested in the structure of these designs will do well

to determine their connection with an orthogonal set of seven 8 x 8 squares,
such as that given in The Design of Experiments (2nd edition), or in Statistical
Tables for Biological, Medical and Agricultural Research. He may note further
that the pair of squares proposed in Section 8¢ for the design in 128 plots llsf'
not derivable from four squares of an orthogonal set, and should satisfy himse
as to the reasons for this. o .
There is a set of similar designs for g varieties and g treatment combinations

in g x ¢ squares. One such square is that given in Table 51, the first qumlaer
of each pair being now taken to represent the variety. By performing in turn
on the original square the following interchanges :

(1) 2 and 3, 4 and 7, 5 and 9, 6 and 8,

(2) 2762398512, 4or5m7mgoi4,

(3) 2H8H3m69+2, 475y, .
we generate three new squares. Balance is attained, for the four squares will

between them equally confound all components of interaction between treat-
ments and varieties, & of the relative information being retained.
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15. DUMMY TREATMENTS.

It frequently happens in factorial experiments that one or more of the
factors is of such a nature that certain treatment combinations are identical.
Thus if one of the factors consists of three different qualities of a fertilizer and
another consists of three different amounts of the same fertilizer (including no
fertilizer), there will in fact be no difference between the different qualities at
zero level of the fertilizer. If the formal factorial design is followed, three
identical plots having no fertilizer will be included in each replication. There
will consequently be additional degrees of freedom for error arising from
comparisons between identical combinations, and correspondingly fewer treat-
ment degrees of freedom. The partition of the treatment degrees of freedom
into their separate components will also be different. Confounding, moreover,
introduces further complication.

There is not space here to discuss all the modifications that are required
in the analysis of variance, if this analysis be conducted on strictly rigorous lines,
but we will give certain arrangements of this type which will illustrate the main
points.

Possible types of confounding are derivable from the ordinary factorial
designs already given, by using dummy treatments where necessary. Other
types not so derivable may also occasionally be of interest. For an example
of these latter see (8).

15a. Application of fertilizer at two different times.

As a first example let us consider the design of an experiment to determine
the response of sugar-beet to nitrogen applied at two different times, in con-
junction with early and late lifting of the crop. _

A 2x 2 x 2 design, with factors 7, time of application, and time of lifting,
might be adopted. This would give the treatment combinations
e, e, LU, en, en’, In, In’
where the dash indicates the later application of #, and e and / indicate earl
and late lifting. 'The combinations e and ¢’, and / and /, are in reality identical.

It is not difficult to see that the appropriate partition of the degrees of

freedom, and the estimates of the corresponding effects, are those given in
Table 71.

TABLE 71. PARTITION OF DEGREES OF FREEDOM.
Effect Estimate
Nitrogen (N) .. - Hentven'+Int In' —e—e' - 1-1)
Time of application (4 i(en—en'+ In - In')
Time of lifting (L) . Henten' —In—In'+ et e’ ~1-1)
N.L iia o i . Henten' —In—In' —e~e'+ 1+ 1)
A.L - s 7 = A Y(en —en’ — n+ In')

These degrees of freedom are all orthogonal, and the sums of s?uares, plus
the sums of square from e — e’ and [ - I, which are components of error, will

total to the sum of squares for the seven degrees of freedom obtained from the
treatment totals by keeping ¢ and ¢’ and / and I’ separate.
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If the experiment is arranged in blocks of 4 plots the confounding of the
formal three-factor interaction will give the two block types

4

e e
U l

en’ en
In In’

The e}'cpression for A.L above is now not orthogonal with blocks. It may
be replaced by the formal expression for the A.L interaction (with the numerical
factor changed), namely

: Wen—en'—In+In"+e—e" -1+ 1)
which is orthogonal with blocks. The function of the plots without 7 is to
act as compensators for any inequalities between blocks. It is clear that with
the same error variance per plot the variance of the estimate of this interaction

will be doubled by the confounding.

There is now one error degree of freedom
e—¢e +1-1
the other being absorbed by the confounding. The reader will do well fo set
out the formal expressions derived from the ordinary 2 x 2 x- 2 design for all
the degrees of freedom. He will find that the above error degree of freedom
is twice the difference of the formal expressions for A4 and N.4, while the
estimate of A in Table 71 is the sum of these expressions.

15b. Alternative designs. ‘ '

It is instructive also to consider alternative designs for the above experiment.
If the main interest of the experiment is a comparison of the effects of early and
late application of nitrogen the above design may be considered unsuii';lblie in
that only one half of the plots contribute information on this point. alter-

native set of treatments would be
e, I, en, en’, In, In’
one of each of the duplicates being omitted..
‘ . . -
The estimates of the treatment effects will then be those given in Table 72.

TABLE 72. PARTITION OF DEGREES OF FREEDOM.

Effect Estimate
N i v Yen+ en' + In+ In' — 2e - 21)
A . .. Aem—en'+In-In')
I5 ol 2 Yen+ en' —In—In'+e—-1)
N.L R Yen+ en’ — In - In' — 2e+ 2l)
A.L o 5 Yen — en' — ln+ In")

‘These estimates are orthogonal. Note, however, that if N a\_nd L interact,
L as here defined will be different from the L in the previous design.




70

Another design including the same treatments is that given by the 2 x 2 x 2
design containing factors » early, n late, and time of lifting. The treatment
combinations will then be

e, l, en, In, en’, In’, enn’, Inn’

Here again only half the plots enter into the comparisons on time of
application, but one quarter of the plots receive a double dressing of nitrogen,
thus giving an estimate of the curvature of the response curve. The appropriate
partition of the degrees of freedom is given in Table 73.

TABLE 73. PARTITION OF DEGREES OF FREEDOM.

Effect Estimate
Response to double dressing (N') .. Menn'+ Inn' — e — 1)
Curvature (N”) .. o o Memn'+-Inn' —en—In—en’ - In'+ e+ 1)
Time of application (4) Y(en+ In—en' — In')
Time of lifting (L) .. 1(enn’ — Inn'+ en — In+ en’ — In'+ e - 1)

LN .. : i e Yenn' — Inn' — e+ )
L.N" o . s . Y(enn' — lun’ —en+ In—en'+ In'+ e - 1)
L4 .. 275 W i W Y(en — In—en'+ In')

If the formal three-factor interaction is confounded this is equivalent to
confounding L.N". If the formal two-factor interactions between time of lifting
and 7 early, and time of lifting and # late, are also confounded in their turn,
each of the three equally frequently, two-thirds the relative information on
L.N', LN" and L.A will be obtained. The above two-factor interactions- are,
in fact, (L.N’ + L.4) and }(L.N’ - L.A).

15¢. 3 x 3 x 3 design including quality differences.
If we wish to experiment on three forms of nitrogen, each form being at

three levels, in conjunction with three levels of phosphate, the ordinary 3 x 3 x 3
design will give three sets of three identical treatment combinations.

The partition of the treatment degrees of freedom (including dummies)
will therefore be as follows :

N 2 QO 2 QO.N.P 4
P 2 O.N 2 Error 6
N.P 4 QP 4

N, P and N.P are estimated in the ordinary manner from the 3 x 3 table for
nand p. O and Q.N will be estimated from the 3 x 2 table for 9o, 4, and ¢,,
and 7, and n, (n, being omitted).

It may be reasonable to suppose that the differences due to quality at the
higher level of # are double those at the lower level. If this is the case the
efficient estimates of the quality differences in units of the differences at the
lower level of n will be given by % the differences of

n1Qo + 2M,q0, 1,G, + 21,Q1, N,q, + 28,9,
meaned over all levels of p. Deviations from this supposed type of quality
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effect, i.e. the interaction Q.N, will be given by the differences of

27190 — Maqo, 2M,91 — Nyq1, 21,0 — Naq,
which are orthogonal to the above differences. (The reader will find it
instructive to take some numerical example and check that the sums of squares
for QO and Q.N, calculated from the above expressions, total to the sum of

squares for the 3 x 2 table less the sum of squares for the #, — n; component
of N.)

Similarly the interactions Q.P and Q.N.P will be given by the interactions
of the two 3 x 3 tables containing the values of the above expressions for
all levels of p.

If the experiment is arranged in blocks of nine plots, the ordinary type of
3 x 3 x 3 confounding being employed, it will be found that both Q.P and Q.N.P,
if calculated as above, will be affected by block differences. The simplest
procedure is to construct the standard 3 x 3 table for ¢ and p, including the
dummy treatments. The quantities in this table will be free from block effects,
and consequently the 4 degrees of freedom for interactions will be compounded
of O.P, Q.N.P and certain error components. They will therefore serve to
test for interaction between ¢ and p.

We can, however, improve on this procedure by constructing a 3 x 3 table
of the quantities

[7100g0] + [m2Pogo] + 3 So(no)
etc., or better (if the quality effect is of the type considered above) of the quantities

[, Do Gol + 2[ns Po go] + } So(no) — % Sa(no),
So(n,) being the sum of the n, plots in blocks containing neither 7, poq, nor
n,P0q0, and S,(n,) being the similar sum in blocks containing 7,p,9,. Both
these sets of quantities are orthogonal to blocks and to the main effects and the
other two-factor interactions, and there is little loss of information.

It might be thought that the three-factor interaction could be dealt with
in the same way, but unfortunately the analogous expressions are not orthogonal
to the above expressions for O.P, owing to the n, terms. They will, however,
form estimates of the three-factor interaction, though the tests of significance
Q.P and N.Q.P will not be independent, and the error sum of squares cannot
be deduced by subtraction.

The simplest way of obtaining an estimate for error is to include the three-
factor interactions in the error sum of squares. If this is not considered
advisable the analytical procedure appropriate to the ordinary 3 x 3 x 3 design
may be followed, utilizing dummy treatments and omitting the 6 additional
degrees of freedom from error.

The above methods of procedure, though not exact, will suffice for most
practical purposes. The reader who is interested in the general problem should
consult (3) and (8), where exact methods are evolved for some examples of
this type.
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16. ARRANGEMENTS WITH SPLIT PLOTS.

16a. Structure and analysis of split-plot designs.

An experiment of any design may have its plots divided into two or more
parts for subsidiary treatments. This procedure is of practical utility when
treatments are included which are of such a nature that they necessitate large
plots, as for example may occur in combined varietal and manurial trials, in
which it is often inconvenient to use such small plots for the varieties as are
practicable for the fertilizers.

The use of split-plots in randomized block experiments, however, results
in a loss of information on the whole-plot treatments (with a compensating
gain on the sub-plot treatments and their interactions with the whole-plot
treatments), compared with the information which would be obtained in an
ordinary factorial design using the same sub-plots, even without confounding,
and the use of split-plot designs should therefore not be resorted to without
good practical reasons unless the effects of the treatments to be associated with
the whole plots are not of primary importance. On the other hand if the use
of an ordinary factorial design would necessitate an arrangement in randomized
blocks, whereas the use of split-plots enables a Latin-square design to be
adopted for the whole-plot treatments, the latter design does not necessarily
result in any loss of efficiency even on the whole-plot comparisons, owing to
the generally higher efficiency of the Latin square.

The formal analogy between split-plot designs and ordinary confounded
experiments will be immediately apparent. In split-plot designs main effects
are confounded, instead of high-order interactions, . the whole plots being
analogous to the blocks of an ordinary confounded experiment. Analytically
the important difference is that whereas in confounded experiments the small
amount of information on the confounded interactions accruing from inter-
block comparisons is ordinarily ignored, in split-plot experiments the information
from whole-plot comparisons is retained, so that in all split-plot designs there
are two different errors, one relating to the whole-plot comparisons and the
other to the sub-plot comparisons.

The analysis of split-plot experiments is formally simple. The analysis
of variance is divided into two parts. The first part is calculated from the
yields of the whole plots, and furnishes errors and tests significance for the
whole-plot treatments, exactly the same procedure being followed as in an
ordinary randomized block or Latin square arrangement. The second part is
calculated from the yields of the sub-plots, deducting those parts of the sums
of squares which have already been accounted for in the analysis of the whole
plots. This is equivalent to analysing the deviations of the sub-plots from
their respective whole-plot means. - '

~In order to make the mean squares of the two parts of the analysis comparable
it is customary to work both parts in units of a single sub-plot. 'The sums of

-
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squares of the first part (as calculated from the whole-plot totals) will therefore
be divided by an adl:(’iitional factor equal to the number of sub-plots in a whole
plot. In calculating the standard errors applicable to the total yields of whole
lots the whole-plot error mean square must consequently be multiplied by this
actor. .

In the special case in which the whole plots are split into two parts only
the differences between the pairs of sub-plots may be analysed directly in exactly
the same .manner as the totals of the pairs. The sums of squares from these
differences will then also be divided by an extra.2. One extra degree of freedom
representing the mean difference, i.e. the main effect of the treatment for which
the split is made, and corresponding to the correction for the mean in the
analysis of the totals, will be included in the analysis of the differences. The
calculation of the total sum of squares of the experiment gives a check on the
calculation of the totals and differences of the pairs and their sums of squares.

- Many useful extensions of the split-plot type of design are available. In
general, plots may be split into any number of units, and the resultant sub-plots
may if desired be subjected to a further split, and so on indefinitely. Correspond-
ing to each split a different estimate of error will appear in the analysis of variance.

The whole plots may be arranged in either randomized blocks or Latin
squares. The treatments of the sub-plots will ordinarily be arranged at random
within each whole plot. If confounding is resorted to it is not necessary to
include all the sub-plot treatments in every whole plot. Designs of this type
are exactly parallel to the more complex types of confounding already discussed,
with main effects substituted for one or more of the confounded interactions.

Furthermore in certain cases it is possible to impose Latin-square restrictions
on sets .of sub-plots. Such designs are parallel to the designs already given
under the name of quasi-Latin squares. By replacing interactions by main
effects such squares are seen to yield a number of designs in which whole rows
or both rows and columns are subjected to different treatments, most of the
interactions of the Latin-square treatments with these being determined with
full precision. Quasi-Latin squares which have both rows and columns subjected
to different treatments may conveniently be called plaid squares, while if either
rows or columns, but not both, are so treated they may be called half-plaid
squares. The use of split-plot Latin squares in varietal trials is a further
important application.

Examples of these extensions will be given at the end of the section. First,
however, we will give an example of a simple split-plot design in randomized
blocks.

16b. Example : a wvarietal and manurial trial on oats.

The results of this experiment have already been given in Section 9a.
The plan and yields of the individual plots are given in Table 74, the analysis
of variance in Table 75. :
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TABLE 74. VARIETAL AND MANURIAL TRIAL: PLAN AND YIELDS IN } LB.

TABLE 73,

V3

V3

V3

<
— A A — A — A

Area of each sub-plot: 1/80 acre.

VARIETAL AND MANURIAL TRIAL :

n3 156 | na 118 nz 109 | n3 99
nr 140 | 7o 103 no 63 | n: 70
Mo  III | m1 130 o 8o | na2 94
n3 174 | nz 157 n3 126 | m 82
no I17 | mr 114 n: 9o | na 100
nz 161 [ n3 141 n3 116 | no 62
n2 104 | mo 70 ns3 96 | no 60
ni 8 | ns 117 na 89 | nx 102
n3 122 | no 74 na 112 | 73 86
nr 89 | na 81 7o 68 | 71 64
n1 103 | no 64 nz 132 | n3 124
na Ijz nz 133 nr 129 | no 89
nt 108 | n2 126 n2 118 | no 53
n3 149 | 7o 70 ns 113 | m 74
n3 144 | n1 124 nm3 104 | M2 86
nz 121 | no 96 no 89 | nx 82
o 61 | n3 100 no 97 | nt 99
nx 91 | 72 97 nz 119 | m3 121

Lo

V2

V2

Us

V2

— — o  ——
@

Correction for mean

Whole Blocks
lots Varieties
p Error
Total

plots

Sub- {Nitrogen

Total

N x Varieties
Error

«—«« Rows »—>

(28.4 links x 44 link rows.)

D.F.

ANALYSIS OF VARIANCE (SUB-PLOT BASIS).
Sum of squares

778336.06
15875.28
1786.36
6013.30

23674.94
20020. 50

321.75
7968 .76

51985.95

b

Mean square

3175.06
893.18
601.33

6673 .50
53.63
177 .08
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The sums of squares for varieties, nitrogen, and their interactions are calculated
from the two-way table (Table 34) in the manner explained in Section 9a.
The sum of squares for blocks is calculated from the block totals in the ordinary
manner, dividing by 12 after squaring, and the total sum of squares between
whole plots is calculated from the whole-plot totals, dividing by 4 after squaring.
The total sum of squares for the whole experiment is calculated directly from
the yields of the 72 sub-plots. The whole-plot error is then obtained by
subtraction of the sums of squares for blocks and varieties from the total sum
of squares between whole plots, and the sub-plot. error is obtained by subtraction
of this total and the sums of squares for nitrogen and the interactions from
the total sum of squares for the whole experiment. The formal analogy of this
analysis with that of Table 12 should be noted.

It is immediately clear that the effect of nitrogen is definitely significant,
but that the varietal differences do not approach significance. The deceptive
appearance of the table of the yields of the treatment combinations (Table 76)
in this respect should be noted. Here, although the differences between the
varieties are not significant, the varieties fall in the same-order, v,, v,, v3, at
each level of n. This is characteristic of split-plot experiments in which the
whole-plot error is substantially greater than the sub-plot error, being due to
the fact that the same whole-plot errors affect all levels of the sub-plot treatments.

In the present example the interactions mean square is very decidedly
below expectation, but not quite significantly so. Had it been significantly
below expectation, this could of course only have been due to chance, unless
there were some error or defect in the statistical analysis : for this reason if
significantly sub-normal resuits occur repeatedly in any type of work the statistical
procedure should be reviewed, both in its numerical and theoretical aspects.

16¢. Calculation of standard errors.

Since there are two different errors applicable to whole-plot and sub-plot
comparisons respectively, the calculation and use of the standard errors applicable
to the yield totals of Table 34 require a little care. The varietal totals are
totals of 6 whole-plots (= 24 sub-plots) and their standard error is therefore
(from the whole-plot error mean square)

V6 x 4 x 601.33 = 424 x 601.33= 120.1
The nitrogen totals are totals of 18 sub-plots, and their standard error is therefore
(from the sub-plot error mean square)

+/18 x 177.08 = 56.4

The values in the body of the table are totals of 6 sub-plots, and in any
comparison which involves the average effects of nitrogen and its interactions
with varieties, but does not involve a mean varietal difference, the appropriate
standard error of a single value is therefore

V6 x 177.08= 32.6
Such comparisons include those between two values in the same line of the
table or between the mean of two sets of values all in the same line, or any
comparison made up of components of this type, and any interactions between
varieties and nitrogen. '
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The conversion factor for the body of the table is 80/112 x 4 x 6 and those
for the margins are } and } of this.” The final table of results is shown in
Table 76. -

Normally it will not be necessary to make comparisons between values in
the body of the table which include any component of the mean varietal
differences, and therefore in presenting the results it will usually be sufficient
to give only the above three standard errors.

TABLE 76. MEAN YIELDS OF VARIETAL TRIAL IN CWT. PER ACRE.

Ho n1 na n3 Mean

2 12.8 16.0 19.8 2I.2 17.4 _
V2 14.3 17.6 20.5 22.3 18.7‘Li 0.894
v3 | 15.5  19.4 20.9  22.6 19.6J

Mean | 14.2 17.7 20.4 22.0 18.6

+ o.560
S.E. of body of table (interactions and 7 effects only): + o.g7o.

A comparison of this type may be required, however, when combining the
results of experiments.- We might, for instance, have a series of smaller trials
on the same three varieties conducted at only two levels of nitrogenous manuring,
o and 0.2 cwt. N per acre, and in the interests of uniformity we might then
desire to abstract the mean of 7, and 7, from the results of the experiment under
consideration. The standard error of these means can be derived as follows.
Calculate the variance (the square of the standard error) of the mean of each
pair of values from the standard error given in Table 76 for the body of the

table. This is " 2
. - %(0.970)* = 0.470 ,
Also calculate the variance of the varietal means from this standard error, and
subtract this from the actual variance of the varietal means given in the table.
This gives 2 . '
s (0:894)* — 1 (0.970)? = 0.799 — 0.235= 0.564

which is the additional component of error variance due to whole plots. Add
these two variances together

: 0.470 + 0.564 = 1.034
and take the square root, 1.017, which is the required standard error. The
point of this calculation is that the additional component of error due to whole

plots is not increased by taking a mean over some instead of all the sub-plots
in a whole plot.

16d. Efficiency.

It is immediately apparent that the whole plot comparisons are less precise
than the sub-plot comparisons involving the same number of sub-plots, the ratio
of the error variances being 601.33 : 177.08= 3.40 : 1. If instead of assigning
varieties to whole plots we had completely randomized all 12 combinations of
varieties and amount of nitrogen there would only be a single error. The
expected value of this error can be found by the method of Section 75, replacing
each treatment mean square by the corresponding error mean square (Table 77).

\
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This gives an error mean square of 254.22, so that the precision of the varietal
comparisons would have been increased by complete randomization in the ratio
601.33 : 254.22 = 2.37, while the precision of the nitrogen effects and its inter-
actions with varieties would have been decreased in the ratio 177.08 : 254.22= 0.70.

TABLE %77. CALCULATION OF ERROR WITH COMPLETE RANDOMIZATION.

D.F. Sum of squares Mean square
Blocks .. " .. o8 5 15875.28
Whole plots .. .. 12 72(1)5.96 6orx .3g
; Sub- : 177.0
Remainder Sub-plots L - 5_4 9562.32 77
Total within blocks .. 66 16778.28 254.22

If the differences between varieties and the effects of nitrogen are of equal
importance, then a completely random arrangement will clearly be the better,
if not precluded by practical difficulties of sowing, etc. In certain cases,
however, it may be that one set of main effects is of less importance than the
other set and the interactions of the two sets. Thus, for example, the choice
of variety might be dictated by other considerations than those of yield, in
which case the primary function of the above experiment would be to determine
the response to nitrogen and its possible variation from variety to variety. In
this case the split-plot type of design is most appropriate. Similatly in an
experiment including artificial fertilizers and dung there may be no particular
point in determining with high precision the response to the dung (which is
likely in any case to be of uncertain composition, and will certainly be applied
in practice if available) though the variation in response to artificials in the
presence and absence of dung may be of vital interest.

6e. Confounding of interactions in split-plot designs.

= In at:lj;lition fo {:ronfounding the iain_effects of the whole-plot treatments,
we may confound one or more interactions between the sub-plot factors with
whole-plot differences, thus reducing the number of sub-plots in each whole-
plot. The possibilities are very numgrous, designs being most simply derived
by applying different treatments to the blocks (now called whole plots) of
ordinary designs. Thus in a combined varietal and manurial trial the varietal
plots may be split into four for all combinations of the manurial factors #, p, &,
the two sets of combinations (1), np, nk, pk and n, p, k, npk being assigned to
different whole-plots, so that N.P.K is confounded with whole-plots. With
6 varicties and 2 complete replications, each replication (12 whole-plots) being
arranged in a block, the degrees of freedom in the analysis of variance will
partition as in Table 78.

TABLE 78. DEGREES OF FREEDOM IN SPLIT-PLOT DESIGN.

Whole-plots Sub-plots
Blocks .. .. .. 1 N,P,K .. oee 3
Varieties . . 5 NP, NK, PX .. 3
NPK .. I V x manures ~° .. 30
V.N.P.K 5 Error .. .. .. 36
Error I1
Total 23 Total' .. .. .. 72
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We may, however, advantageously confound one of the degrees of freedom
for V.N.P.K with blocks, thus reducing each block to 6 whole-plots, one for
each variety, and three for each of the two groups of manurial treatments.
There will then be 3 degrees of freedom for blocks and 10 for whole-plot error.
In similar designs with fewer varieties and whole-plots, in which the available
degrees of freedom for whole-plot error are small, N.P.K and V.N.P.K may
conveniently be included in the estimate of this error.

A further and most advantageous alternative is to arrange the whole-plots
in a 6 x 6 Latin square. To do this, three complete replicates will be required.
If one of the degrees of freedom for V.N.P.K is confounded with rows it will
be found that N.P.K must be confounded with columns. Table 79 shows a
square of this type after randomization, with numbers representing the varieties,
and a dash the group of treatments (1), np, nk, pk.

TABLE 79. 6 x 6 LATIN SQUARE WITH SPLIT-PLOTS (6 x 23).
6I
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16f. Half-plaid Latin squares.

The treatment of whole rows or columns of a Latin square with a set of
subsidiary treatments is a device which is very frequently useful. It is, however,
only possible with certain special types of square analogous to the quasi-Latin
squares already discussed.

At the outset it should be stressed that rows and columns must be completely
randomized among themselves, as in quasi-Latin squares with confounded
interactions. The arrangement of the replicates of the subsidiary treatments
in blocks is therefore not permissible, but the additional degrees of freedom
for error are a certain compensation for this disadvantage.

In order to ascertain if a square of the required type exists it is first necessary
to see if there is a system of confounding which will give two suitable sets of
degrees of freedom for confounding with rows and columns. If there is no
confounding of interactions with the rows (these being subjected to the subsidiary
treatments), ie. if the number of treatment combinations of the remaining
factors is equal to the side of the square, all that is required is an arrangement
which confounds the whole factorial system (including subsidiary treatments)
in randomized blocks of a size equal to the side of the square, i.e. an arrangement
of the type that has already been enumerated for confounding in randomized
blocks.

Thus, for example, in an 8 x 8 square with the rows sown with one or
other of two varieties any one degree of freedom for the interaction of varieties
with the other factors may be confounded with the columns. If the other
factors form a 2 x 2 x 2 system then the interaction chosen will naturally be

V.A.B.C.
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If four varieties are included the natural system of confounding with the

columns will be of the type

V,.AB, V,.A.C, V;.B.C.
Partial’ confounding may be resorted to if desired, two sets of this type being
confounded in a single square. .

The actual construction of any required square can be easily effected.
All that-is necessary is to write down the sets of varietal and treatment
combinations which confound the chosen interaction degrees of freedom,
rearranging these sets so that the cross grouping in rows forms sets which each
contain all combinations of the other treatments but only one variety.

Table 8o shows an 8 x 8 square for four varieties and a 2 x 2 x 2 treatment
system. The above set of interactions is confounded with the columns. (In
order to exhibit the structure the rows and columns have not been randomized.)
Such a square will not provide a very precise varietal test, but will furnish
accurate information on possible interactions between the varieties and the
other treatments.

TABLE 80. 8 x 8 HALF-PLAID SQUARE FOR FOUR VARIETIES.

U1 1 8 3 6 4 5 2 7

V1 8 1 6 3 5 4 2

Va2 6 3 1 8 2 7

7
Va 3 6 8 1 7 2 4 5

5

6

wr

N
N
[>-]
-

V3 4

V3 5 4 2 7 1 8 3 6
7

vs | 2 4 5 3 6 8 1

V4 7 2 5 4 6 3 1 8

Similar squares of other sizes are possible. Thus a 6 x 6 square may
include two or three varieties in addition to the six treatment combinations
forming a 3 x 2 system (factors @ and ). If there are two varieties the arrange-
ments of Section 13a will be required, partially confounding V.B (3 information)
and V.A4.B (§ information). If there are three varieties one of the arrangements
of Section 13f will be required, or if two squares are available both arrangements
may be used, giving § information on V.4. o _

If there is confounding of interactions as well as subsidiary treatments with
the rows, the construction of the squares requires a little more care. Thus,
for instance, with a 3 x 3 x 3 system of treatments and 3 subsidiary treatments
applied to the rows one of the sets of confounded degrees of freedom shown
in Table 43 would have to be adopted for the columns, and a set of the type

vV, A.B.C, V.A.B.C,
for the rows.
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TABLE 81. A 9 x g HALF-PLAID SQUARE.

B 73 g1 g5 g9 14 Pp7  p2 P
6 77  ¢8 g3 g4 r2  p5  p9  p1
2 ¢6 p4¢ P8 Pp3 g7 71 15 79
94 ¢ pg pr ps g3 16 r7 72
rt 75 g6 g7 g2 19 p3 Py P8
ps  p9 r7 rz 16 pr g4 g8 g3
p7 P2 13 r4 18 pb g9 gr g5
9 gt p2  p6 p7 g5 8 13 14
PR iy TR B S C e gy

Table 81 shows a square (randomized) of this type. This design has
recently been proposed for a rotation experiment on sugar-cane, including
3 varieties (p, ¢ and 7), 3 quantities and 3 forms of nitrogenous fertilizer
(combinations 1—g) and 3 levels of irrigation Sa, b and ¢). It is intended that
two squares should be laid down at each place, in different phases of the
rotation, and that the experiment should be conducted at two or more places.
The following sets of keys for the combinations 1—¢ (Table 82), together with
re-randomization, will serve to generate four squares confounding different sets
of three-factor interactions.

SN AN N ol & O

* TABLE 82, AMOUNT AND TYPE OF FERTILIZER.

Amount of I 1I 111 v
fertilizer : o I 2 o1 2 o I 2 oI 2
I I 4 7 1 7 4 I 3 2 1 2 3
Type of {2 2 5 8 3 9 6 4 6 3 7 8 9
fertilizer 3 3 6 9 2 8 3 7 9 8 4 5 6

With equal representation and no dummy treatments, half information would
be obtained on the three-factor interaction of varieties, type and amount of
fertilizers and three-quarters information on the other three-factor interactions.
The existence of dummy treatments will modify these fractions somewhat.

The experiment originally suggested was one involving nitrogenous fertilizers
only,but enquiry elicited (1) that the chief interest of the station was in varieties,
(2) that irrigation was likely materially to affect the optimal level of manuring,
and possibly the response to different forms of manuring, and (3) that varieties
had already shown differences in their behaviour on good and poor soils and
therefore might be expected to respond differently to manuring. It is quite
probable, too, that varieties will behave differently under different conditions
of irrigation. A factorial experiment is therefore essential if information of any
real value is to be obtained. A half-plaid square is eminently suitable, since
it would be exceedingly difficult to irrigate single plots differently.

As a further example the reader may construct an 8 x 8 square with a
2 x 2x 2x 2 system of treatments and two subsidiary treatments. He may
also construct a set of 4 x 4 squares for four varieties, with four treatments
(2 x 2) within the squares, sacrificing one-third the information on interactions
between varieties and other, treatments ; and also a similar set of 4 x 4 squares
for two varieties, retaining full information on all two-factor interactions.
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16g. Plaid squares.

Instead of confining the confounding of main effects to rows only, different
sets of main effects may be confounded with rows and with columns. Thus
columns might be assigned to different varieties and rows to different cultivations.
Upon randomization a typical Scotch plaid pattern will result.

Table 83 shows an example (before randomization) of this type of arrange-
ment, comprising three varieties, three cultivations and a 3 x 3 system of
treatments within the square. The following degrees of freedom are confounded :

Rows: U, AB.V (Y), AB.U.V (4 d.f)

Columns : V, A.B.U (X), A.B.U.V (4 d.f.),
the four-factor interactions being those derived from the interaction of the
other confounded sets. The partition of the degrees of freedom will be that
shown in Table 84. The remainder terms contain three- and four-factor
interactions only.

TaBLE 83. A 9 x 9 PLAID SQUARE.

Vo k%3 Va
—_—h e~
1 6 89243573

%<5 7 3 1 6 8 9 2 4
9 2 4 57 3 1638
8 16 492357

vi<3 5§ 7 8 1 6 4 9 2
4 92357816
(6 8 1 2 49 7 3 5

a7 3 5 648 1 2 4 ¢
2 497356381

TABLE 84. DEGREES OF FREEDOM IN THE Q x 9 PLAID SQUARE.

Rows Square
Uu.. .. 2 Zl 9o oo oo oo oz B
Remainder 6 Bl oo e 2
Two-factor interactions. . 24
Columns Remainder .. .. .. 36
V .. .. 2 =
Remainder 6 Total .. .. .. 8o

As further examples of the plaid square the reader may construct the 8 x 8

square confounding :
Rows : U, V.AB, U.V.A.B,
Columns: V, U.A.B.C, UV.A.B.C

and a set of 4 x 4 squares for two varieties, two cultivations, and four treatments
within the square. He may also convince himself that no simple 12 x 12 plaid
square exists for two varieties, two cultivations, and a 3 x 2 x 2 system of
treatments within the square.

16h. Use of Latin squares with split plots in varietal trials.

In an ordinary varietal trial which does not include any other factors all
comparisons are required with equal accuracy. When the varieties can be sown
(or planted) in approximately square plots small numbers of varieties (up to




82

8 or so) can be conveniently arranged in Latin squares, while if the numbers
are large (25 or over) the quasi-factorial designs Eescribed in the next section
are suitable. In the intermediate range (10 to 24), Latin squares with split
plots and Graeco-Latin squares (described below) provide a useful set of designs.

In a split-plot Latin square for 14 varieties, for example, the varieties are
divided into 7 pairs, these pairs being arranged in a 7 x 7 Latin square, one of
each pair being assigned at random to one half of each whole-plot. 'The analysis
of variance will, as usual, be divided into two parts, the partition of the degrees
of freedom being that shown in Table 85.

TABLE 85. 7 X 77 SPLIT-PLOT LATIN SQUARE : PARTITION OF DEGREES OF FREEDOM.

Whole plots - Sub-plots
Rows . 6 Varieties .. 7
Columns 6 Error (5) .. 42
Varieties 6 —
Error (@) .. 30 Total" .. .. 49
Total .. .. 48

There are two types of varietal comparison, one between varieties forming
a pair, and the other between varieties not forming a pair. These have different
errors, that of the former being calculated from the sub-plot error variance (b),
and that of the latter from the mean of the two error variances (a) and (b).
More generally, if each whole-plot is subdivided into % sub-plots, the error
variance of any two varieties not occurring in the same set of & is given by the
weighted mean of the variances (@) and (b), the weights being in the ratio 1 : &-1.

16i. The Graeco-Latin square.

The main objection to the above type of design is that if the errors (a)
and (b) are very unequal the comparisons between varieties in the same set
and between varieties in different sets are by no means equal in accuracy.
An alternative design, which overcomes this disadvantage at the expense of
certain addition complication in the analysis, can be derived from a Graeco-
Latin square. .

A Graeco-Latin square consists of a pair of superimposed Latin squares,
one formed of ‘Latin, and the other of Greek letters, fulfilling the condition
that every Latin letter occurs once and once only with every Greek letter, and
vice versa. 'The two squares are thus mutually orthogonal, and a Graeco-Latin
square is consequently derivable from any pair of squares of an orthogonal set.
Graeco-Latin squares are known to exist for all numbers except even numbers
which are not a multiple of 4. Of these latter numbers only 6 has been
exhaustively investigated. For this number there is no such square.

If we take the Latin and Greek letters of a Graeco-Latin square to
represent varieties (lor other treatments) a design similar to that of a Latin
sguarc with split-plots results. The usual randomization process must be
adopted, i.e. randomization of rows and columns and randomization of the
Greek and Latin letter within each pair of plots. The letters should also be
assigned to the varieties at random. Table 86 shows a 7x 7 design after

randomization.
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TaBLE 86. 7 x %7 GRAECO-LATIN SQUARE.

a 8 ¢ e € b ‘a
f & d 7 ¢ 8 y
B f c d ¢ € ]
e Y n a b a g
€ c g a 8 a d
b ¢ Y 8 f e n
.c € a v a 7 ¢
8 d 8 b g S e
¢ b 8 g v d ¢
a 7 f ¢ e 8 a
d e b c 7 g f
v 3 a 8 a ¢ €
] a € ¢ d Y B
g a e f 8 c b

L
The analysis can be effected by forming two tables, one of the sums and
one of the differences of the pairs of plots. These should be set out as in
Table 87.

TABLE 87. ANALYSIS OF A GRAECO-LATIN SQUARE.

Differences of pairs of plots
(Latin minus Greek)
a b ¢ d ... Total a b ¢ d .... | Total

Sums of pairs of plots

w R

Total

TaBLE 88. 7% x %7 GRAECO-LATIN SQUARE: PARTITION OF DEGREES OF FREEDOM.

Table of sums Table of differences
Rows of square 6 Total (Latin-Greek) 1
Columns of square 6 Latin letters .. .. 6
Latin letters .. 6 Greek letters .. 6
Greek letters . . .. 6 Error (b) . . 6
Error (a) B 7 | =
Total .. .. .. .. 48 Total .. .. .. .. 49

The analysis of variance follows the lines indicated in Table 88. Sums
of squares for the differences of the varieties represented by the Latin letters
and those represented by the Greek letters appear in both parts of the analysis,
and are derived from the marginal totals of the tables of sums and differences.
The * interactions ”’ of both tables give the estimates of error (a) and (b) between
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“ whole plots ”” and “sub-plots” respectively, corresponding to the errors (@) and
(6) of Table 85. Thus estimates of the two types of error are separately obtained.
_If the mean yields of the different varieties are taken as estimates of the
varietal differences the error variance of the difference of two varieties in the
same letter group (i.e. both Latin or both Greek) is, as before, derived from
the mean of the two variances (@) and (b), while the error variance of the difference
of two varieties in different letter groups is derived from a weighted mean of
the two variances, the weights being in the ratio p— 1 : p+ 1. The mean yields
may be immediately obtained from the sum of the two sets of column totals,
and the difference of the two sets of row totals, of Table 8.
. It is worth noting that if the two error variances (2) and (b) are widely
different more accurate estimates of the varietal differences may be obtained

by taking a weighted mean of the estimates derived from the sum and difference
tables of Table 87.

16j. The hyper-Graeco-Latin square.

Similar designs with the whole plots split into three or more parts may be
constructed by the use of three or more squares from an orthogonal set. Such
designs may be called hyper-Graeco-Latin squares.

The analysis of variance follows lines similar to that of a Graeco-Latin

square, but the sums of squares cannot be derived from two-way tables.. The

TABLE 89. ANALYSIS OF A HYPER-GRAECO-LATIN SQUARE.
Latin letters

Vari Is:
V\;l}:ﬁ::y;l?)tta tsotals: [[z:;zz] [[zlcj;},] i [Ef:z]
k[a] - [e,] k[B] - [ws]  R[c] - [w.]

simplest procedure is to set out the varietal totals for each group of letters (Latin,
Greek, etc.) as in Table 89, and also the corresporiding totals of the whole plots
containing the varieties 4, b, etc. (denoted by [w,], [w,], etc.). The difference of
the second line from % times the first line is then taken. The second line (of the
Latin letter table) provides estimates of the differences of the Latin letters derived
from differences of whole plots, while the third line provides estimates derived
from sub-plot differences. The sums of squares of the deviations, divided by
Pk and by pk (k — 1) respectively, give the two sums of squares corresponding
to the two sets of p — 1 degrees of freedom for the Latin letters in the whole-plot
and sub-plot parts of the analysis respectively. The sums of squares for the
Greek, etc., letters are derived similarly. The k- 1 degrees of freedom for the
contrasts of the k groups of letters are derived from the contrasts of the total
{th tthe first line of Table 89 and the corresponding totals for the Greek, etc.
etters. - '

The error variance of the difference of the mean yields of two varieties in
the same group is derived from a weighted mean of the variances of whole and
sub-plots, the weights being in the ratio 1 : £~ 1, and that 'of two varieties not

in the same group is derived from a second weighted mean, the weights being
in the ratio p—1:p(k—1)+ 1.
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17. VARIETAL TRIALS—QUASI-FACTORIAL DESIGNS.

Plant breeders frequently wish to compare a large number of new strains—
numbers such as 100 to 1000 are by no means uncommon. With such a large
number of varieties arrangements in randomized blocks including all the varieties
will usually be ineffective in eliminating fertility differences, while Latin squares
are clearly impossible. The classical way of arranging such trials is by the use
of “ controls,” i.e. plots growing a standard variety. These may be arranged
either systematically or at random. Recently, however, new methods of
arranging such trials have been devised, which make possible the use of blocks
containing only a few plots, or, what is even more useful in many cases, the
use of Latin squares. Most of these designs may be classified as “ quasi-
factorial,”’* since their structure can be derived from confounded factorial
designs. Such designs are always more efficient than designs involving controls,
and will also be more efficient than designs in ordinary randomized blocks when
there are any considerable inequalities of fertility.

It would take us too far afield to describe all these designs in detail.. We
shall therefore merely give an outline of the more useful types, without any
attempt to describe the methods of computation. The reader who wishes to
utilize the designs should refer to the original papers, (11), (12) and (13), where
he will find a full description, together with numerical examples of the
computations. .

17a. The lattice.t

This is the simplest of the quasi-factorial designs in randomized blocks.
If we have, say, go varieties, numbered 1—qo, the rows and columns of the
two-way table (Table go) :
TABLE go. SETS FOR LATTICE DESIGN.
I 2 3 4 5 6 7 8 g9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
3t 32 33 34 35 36 37 38 39 4o
41 42 43 44 45 46 47 48 49 350

51 52 53 54 55 56 57 58 59 6o
61 62 63 64 65 66 67 68 69 4o

71 72 73 74 75 76 77 78 79 80

81t 82 83 84 83 8 87 88 89 go
divide the varieties into two. groups of sets containing 10 and g varieties each
respectively. In a lattice design the varieties in each set are arranged in the
field in randomized blocks, each group of sets being replicated equally. 'Thus,
for example, with 6 replications, each group of sets will be replicated 3 times,
there being 27 blocks of 10 plots each, of which three will contain varieties
1—10, and 30 blocks of g plots each, of which three will contain varieties 1, 11,
21, 31, 41, 51, 61, 71, 8I. :

*] have previously used the term *‘ pseudo-factorial,” but * quasi-factorial ”’ seems preferable both descriptively
and etymologically.
t The name is new.
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The design is parallel to a factorial design, each variety being represent-
able by a combination of two factors, one at g levels corresponding to rows,
and the other at 10 levels corresponding to columns. In the replications of the
first grouping the main effects of the first factor are confounded with blocks,
in the replications of the second grouping the main effects of the second factor
are confounded. The main effects of one or both factors will enter into the
comparison of any pair of varieties, and therefore there is some loss of information
on all such comparisons, comparisons between varieties which have a set in
common being slightly more accurate than comparisons which have no set in
common. This loss of information must be taken into account when assessing
the efficiency of the design. The efficiency factor* for a p x q lattice is

pg-1
pg+p+q-3
In the most useful case, when p= ¢, i.e. when the sets form the rows and
columns of a square, it is

p+1
p+3
It may be noted that in any case ¢ should not differ widely from p.

If p and ¢ are small the efficiency factor becomes somewhat small. For
25 varieties, for example, it is = . This means that if there were no reduction
in error variance per plot by reduction of block size from 25 to 5 plots, a lattice
design would only give § of the information that would be given by an ordinary
arrangement in randomized blocks of 25 plots. Of course it rarely happens
that there is no reduction in error variance, though the reduction is sometimes
small. Moreover there is no reason why the information accruing from the
block comparisons should not be taken into account, provided that the experiment
has sufficient replications to give an adequate estimate of error for the inter-
block as well as the intra-block comparisons. This procedure will recover most
of the lost information and makes the design much more attractive for a moderate
number of varieties.} '

In order to utilize the information from inter-block comparisons, and to
make these as accurate as possible, all the blocks forming a complete replication
should themselves be arranged in a compact block on the ground. Pairs of
these replications should contain one replication in each grouping, assignment
of the grouping being at random within the pair. The sets should be assigned
at random to the blocks of each replication.} Moreover the numbers of Table
9o (or the position within the table) should be assigned at random to the varieties.

*Decfined as the ratio of the vaiiance of a varietal comparison in a design in ordinary randomized blocks to the
average variance in a lattice design occupying the same number of plots and having the same error variance
per plot.

1+This procedure is not discussed in the papers referred to above, but it is hoped to publish something on the
matter shortly. In the simplest cases the additional computation required appears to be very small.

}This method of arrangement is somewhat different from that of the example of (11), in which the use of inter-
block comparisons was not envisaged.
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17b.  Triple and balanced lattices. .

If the number of varieties is a perfect square, and a square lattice is
constructed as above, it is always possible to superimpose a Latin square on
this square. The letters of this Latin square may be used to denote a third
group of sets, which may be arranged in randomized blocks in the same manner
as the other two groups. We thus arrive at what may be called a triple lattice.
It will be noted that all three groups of sets bear exactly the same orthogonal
relationship to one another, every set of each group containing one and only
one variety from every set of the other two groups.

The advantage of introducing a third grouping is that the efficiency factor
pt+r1 . d of pt+1
p———+ 21 Instead o ”
If the number p is such that a full set of orthogonal Latin squares exists,
further groupings corresponding to. these squares may be made. When all the
P — 1 squares are used (giving p+ 1 groupings) complete balance is attained,
comparisons between every pair of varieties being of equal precision. The

is increased, being

efficiency factor of a balanced lattice is This corresponds to the fact

that in ecach replication p — 1 degrees of freedom out of the total of p? —1 are
confounded, so that the loss of information (blocks being completely ineffective) is

p-1 I
pE-1 p+ 1

This is a property of balanced arrangements, which has already been referred to.

Full sets of orthogonal squares are known to exists for all prime number
and for p= 4, 8 and 9. No such set exists for p= 6. For prime numbers the
method of construction is very simple, each line of the first square being derived
from the previous line by moving the letters one column to the right, each line
of the second square by moving the letters two columns to the right, and so on.
Sets of 8 x 8 and 9 x g squares are given in The Design of Experiments (2nd
edition). The 10 groups for 81 varieties may also be derived by the successive
transformation given in Section 14¢ of the square of Table 51. The first and
second numbers of the treatment combinations and the rows and columns of
each square give the 10 different groupings. The transformation given in
Section 14c for the 8 x .8 square of Table 33 generates the groupings for 64
varieties in a similar manner, except that in the fourth square only the grouping
given by the columns is required.

In all these lattice designs only a single replication of each grouping is
necessary for the statistical reduction of the results, provided that information
from inter-block comparisons is not required, but the actual number of
replications will depend on the degree of precision desired, and will usually
exceed these minimal requirements except in the case of balanced lattices.

17¢. Lattice squares. .
Instead of arranging the sets of a balanced lattice in randomized blocks,
the groups of sets may be taken in pairs, and for each pair a square may be

T ——

——
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constructed having its rows formed of the sets of one group and its columns
of the sets of the other group. If pis odd, 4 (p+ 1) squares will be required
for balance, but if p is even each group must be included twice to give p + 1
squares. If the rows and columns of each of these squares be rearranged amongst
themselves in random order, and the resultant squares set out on the ground,
we shall have an arrangement which is in essence a set of Latin squares with the
quasi-factors confounded with rows and columns.

There is, of course, no absolute necessity for designs of this type to be
balanced, but the attainment of balance, at any rate when p is odd, does not
demand an excessive number of replications, and simplifies the computations
and the interpretation of the results.

Table g1 shows a balanced set of three lattice squares for 25 varieties (before
randomization of rows and columns).

TABLE 91. BALANCED SET OF LATTICE SQUARES FOR 25 VARIETIES.

Square I Square II Square III
I 2 3 4 5 I 13 25 7 19 1 15 24 8 17
6 7 8 9 10 20 2 14 21 8 18 2 11 25 ¢
II 12 13 14 1§ 9 16 3 15 22 10 19 3 I2 2I
16 17 18 19 20 23 10 17 4 II 22 6 20 4 13
21 22 23 24 2§ 12 24 6 18 3 14 23 7 16 3§

The method of construction of similar sets for other prime numbers should
be apparent from a study of this table. Sets of squares for 64 and 81 varieties
are provided by the transformation given in Section 14¢ of the squares of
Tables 33 and 51, together with the square formed by arranging the varietal
numbers in systematic order, as in the first square of Table g1.

These lattice squares are particularly attractive, since they enable the
advantages of Latin square design to be utilized, whereas the comparisons
within the sets of an ordinary lattice by means of Latin squares instead of
randomized blocks would require more replications than are usually available.
The efficiency factor is, however, somewhat low, being

p-1

p+ 1T
as is easily verified from the property referred to above. With 25 varieties it
has the value of 4. The average increase in precision with § x 5 Latin squares
in the Rothamsted experiments has been found to be 2.5 : 1, so that the average
net gain in precision on similar land by the use of lattice squares instead of
ordinary randomized blocks for 25 varieties may be expected to be 1.67 : 1 or 67
per cent. This average gain will be somewhat increased by utilizing inter-row
and column comparisons in those experiments in which the land is found to be
very uniform.

17d. Three-dimensional lattices.

- Instead of arranging the varietal numbers in a two-way table, as in Table 21,
they may be arranged in a three-way table, i.e. spatially in the form of a cube
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or cuboid. A three-dimensional lattice, defining three groups of sets, may then
be constructed by taking lines parallel to the edges of this cube or cuboid.
Thus if there are p x g x 7 varieties there will be pg sets of r varieties, pr sets
of g varieties, and gr sets of p varieties. With p= ¢= 7 there will be three
groups of p* sets of p varieties. Thus an arrangement for p x ¢ x r varieties
in blocks of p, g and 7 plots, or for p* varieties in blocks of p plots, is provided.
The efficiency factor in the latter case is

2(p%+ p+ 1)

2p% + 5p+ 11
Using a three-dimensional arrangement of p?® varieties in the form of a
cube, we may also obtain three groups of p sets of p* varieties by taking layers
of this cube parallel to each of the faces in turn. The p? varieties of each set
may be compared by means of a set of lattice squares, the use of two of the

three groups being all that is really necessary. We thus arrive at an arrange-
ment for p® varieties in p x p lattice squares. The efficiency factors are

pP—1 pPP+p+1 q 2=t PiP+p+1

p+1 prepr3 M0 pr 1 pTipr 2]
respectively, according as two or three groupings in sets of p* are taken, the
total number of replications required (p odd) being (p+ 1) and F(p+ 1)
respectively.

17e. Non-factorial designs : balanced incomplete blocks.*

In all the designs so far considered the number of treatment combinations
is some multiple of the number of plots in a block or in a row or column of a
Latin square, and moreover each replication of the design falls wholly in one
set of blocks or rows or columns. There is a further useful family of designs
in randomized blocks which does not in general fulfil these conditions. This
is the family conforming to the condition that every pair of treatment combinations
shall occur together in the same number of blocks. These designs are balanced,
all treatment comparisons being of equal accuracy. Balanced lattices are
members of this family, and other members are derivable from certain of the
confounded designs already discussed. There are, however, many other members
of the famil w%u'ch are not so derivable. The series of chief interest to the
agronomist is a set of designs for p*+ p+ 1 varieties in blocks of p+ 1 plots,
with p+ 1 replications. The structure of this set of designs is dependent on
that of the orthogfonal sets of p x p squares. They can be derived from the
corresponding balanced lattices by adding one new variety to each block (the
same variety being added to all the bl(;-l(-:‘gs of one grouping), and forming 4n
additional block from all the p + 1 new varieties.

Balanced incomplete blocks are described in (5) and (12), and we shall not
discuss them further here.

*Previously called symmetrical incomplete randomized blocks.
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17f. The introduction of additional treatments in quasi-factorial designs.
The designs described in this section require a large number of blocks,

-and the possibilities of using these blocks as plots for additional treatments

should not be lost sight of. If, for instance, there are six replicates of a simple
lattice design, there will be sets of three blocks containing identical varieties,
and these might be used as plots to compare three additional treatments and
to ascertain whether the varieties interacted with these treatments. It will be
noted that interactions between the additional treatments and the sets of varieties
will inflate the inter-block error. This source of disturbance can be allowed
for if necessary, but frequently it will not be sufficiently large to be of any
moment,

__f—
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NOTES

NoTE 1. NUMBER OF FIGURES REQUIRED IN THE COMPUTATIONS AND RESULTS.

It is a common fault in numerical work to retain too many figures both in the results and the
intermediate calculations. On the other hand certain calculations require considerably greater
accuracy than others, e.g. in the correction for the mean in the analysis of variance a large number
of figures must be retained. There is not space here to give any detailed discussion of the matter,
but the following hints may be of assistance.

(?) Significant figures.
The number of significant figures is the number of figures counting from the first figure not
zero and excluding terminal zeros. Thus 237, 0.00237, 23700 all contain three significant figures.

(i) Observed yields, etc.

Only three significant figures need be retained if the standard error of a single observation
is not less than 3—5 per cent. of the mean (as in the yields of field plots). It pays to round off
if the field results are given to greater accuracy. Fractions are best decimalized, as working in
units of a quarter or a half of the ordinary units of measurement introduces dangerous possibilities
of error. When a computing machine is used working means are best avoided, especially if they
are such as to introduce negative numbers.

(%) Analysis of variance. !

Sufficient figures should be retained in the sums of squares to give four significant figures-in
the error sum of squares. In cases of doubt the retention of an extra figure or two does not seriously
increase the work.

(iv) Presemtation of vesults.
Three significant figures are normally sufficient in agricultural field experiments. In-general
the number of figures required depends on the accuracy of the final results.

(v) Standard errors.
A good 10 inch slide rule (three significant figures) will give all necessary accuracy, and is
very convenient, since square roots may be read directly.

NoTE 2. NUMERICAL DIVISORS IN THE ANALYSIS OF VARIANCE, ETC.

The sum of squares corresponding to any single degree of freedom is obtained by squaring
some quantity O which is the sum of certain multiples (positive, negative and zero) of the plot
yields. The divisor d by which 0% must be divided is equal to the sum of the squares of these
multipliers. In the special but common case in which the multipliers are all + 1, ~ 1 or o the
divisor is equal to the number of plot yields going to make up Q.

Technically Q is said to be a linear function of the plot yields Y, Y2y . e e ie.
O=lbhyn+hya+........
where Ii, o, ...... are numerical quantities (the above multipliers), so that
d= L%+ LEy ...

If more than one degree of freedom is involved there are several Q, and dev? Q must be divided
by a divisor d, which is calculated as above, provided no plot yield enters into more than one Q.
If this occurs the difference of any two ) must be taken and a divisor calculated for this difference
by the above rule. d is equal to one half of this divisor.
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The estimates of the corresponding effects are obtained by dividing the Q by some divisor \d
which depends on the conventions adopted. In the case of main effects and interactions of factors
at two levels ) is equal to a half. With factors at more than two levels A is equal to unity unless
one or more of the interacting factors is at two levels only (see Section 13¢ for an example).

The error variance of Q is equal to d times the error variance of a single plot, and consequently

3 3 o B g 9 q
the error variance of the estimate is Xz times the error variance of a single plot.

NoTe 3. ORTHOGONAL FUNCTIONS.

If the effects corresponding to two degrees of freedom are estimated from two quantities
QO and Q’ such that
O=bhyi+th yat ......
O=Uryx+laya+......

as in Note 2, the two degrees of freedom are orthogonal if
Llsylalat+...... =

i.e. if the sum of the products of the corresponding multipliers of the plot yields is zero. With
three degrees of freedom there are three such sums of products, which must all be zero, and so on.

Similarly two sets of degrees of freedom are orthogonal if the corresponding pairs of Q’s and
Q"s are orthogonal, provided that no plot yield enters into more than one such pair.

NortE 4. HINTS ON THE USE OF CALCULATING MACHINES.

(1) Arrange the computations so as to avoid having to write down intermediate steps : the
transfer of numbers from the machine to paper, and back again to the machine, consumes a large
amount of time, and introduces possibilities of error.

(2) Always compute sufficiently carefully to avoid mistakes, . Checking should be regarded
as an assurance that no errors exist, not as a method of correcting errors.

(3) In long computations, such as extensive sums of squares, record the value attained at
suitable intervals, so as to facilitate the location of possible errors, but do not clear the machine.

(4) In calculating sums of squares or products accumulate the sum of the multipliers whenever
possible, even if this sum is already known, either by means of a 1 on the right of the keyboard,
or by means of the register provided on some machines for this purpose.

(5) Partial sums of the multipliers (such as block totals) may be obtained by recording the
sum of the multipliers at the appropriate intervals, clearing this sum (but not the sum of squares)
if convenient.

(6) In a sum of squares in which the sum is also being accumulated an occasional negative
value (say — 123) may be treated by the process :

1229999999
123

151289999877

the top line of figures being written on the keyboard. If there are a considerable number of
negative numbers it is best to square all the positive numbers, record and clear their sum (but not
the sum of squares), and then square all the negative numbers, Sums of products can be dealt
with similarly.
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(7) In covariance work with two variables the two sums of squares and twice the sum of
products can be obtained simultaneously by the process:

1230000456
123000045

01512901121760207936

: ine i ; her
(A 10x 10X 20 machine is required for three-figure numbers). If the sums of squares (toget
with the sums) are also calculaged separately the sum of products will also be checked (but beware
of negative numbers and errors of copying from the machine).

(8) In covariance work with more than two variables one sum of squares and one sum of
products (or two sums of products) can be obtained simultaneously by writing two variables at
opposite ends of the keyboard.

(9) In covariance work with more than two variables the most effective method of checking
in many types of analysis is to construct an identical table of the sums (s) of the corresponding
values of each variable. The various sums of squares of the s table provide a complete check,
by reason of the identity

s2= (a+ b+ )= a%+ b+ ¢+ 2ab+ 2ac+ 2bc.

More detailed checks are provided by the identities

as= a®+ ab+ ac
etc. I .
(10) If several divisions by the same divisor have to be performed it is best to multiply by

the reciprocal of the divisor.
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