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Abstract

Advances in sensor technology and agricultural equipment should enable farmers to
improve the precision management of nutrients, water and adjusted crop density,
but the decision of when to use what sensor and how many measurements to take
is still ad hoc. Hence, a systematic approach to sensor use for the determination of
soil conditions is necessary and could potentially reduce input use. Consequently,
the aim of this thesis is to investigate the uncertainty associated with soil property
predictions by spectroscopy in relation to its cost-effectiveness for soil management.
To achieve this aim, four case study fields were considered in the Cambridgeshire
fens (UK). A total of 747 locations were sampled for top-soil across the fields and
spectral measurements were made in the visible- (V), near- (N) and mid- (M)
infrared (IR) and X-ray fluorescence (XRF) regions. A subset of the soil samples
has been analysed for available P , exchangeable K, pH, organic C , total N and
their particle size fractions. The data collected from these fields was used to address
four main topics relevant to the application of spectroscopy in soil science.

Chapter 2 is concerned with the prediction of crop growth from soil NIR and
MIR spectra. Crop data derived from air-borne imagery was predicted by both
i.) a direct approach that used the soil spectra themselves and ii.) an indirect
approach that used soil properties estimated by calibrating the spectra to reference
measurements. Results show that estimated soil N, P, K and pH were significant
predictors of the crop data within the indirect approach, indicating potential for
the use of soil spectral data to inform precision management. Although the direct
approach is advantageous for accuracy, it does not provide information on how
soil properties can be managed to affect crop performance. The study concludes
that there is potential for associating crop response with soil reflectance spectra for
improved input management.

Chapter 3 asks to what extent the effort associated with spectral measurements
can be reduced at the cost of prediction accuracy associated with soil property
estimates. For this purpose, the magnitude of loss in accuracy was contrasted,
relative to field-scale predictions based on milled samples, by either reduced sample
processing or the use of existing spectral libraries. Additionally, the predictions
were performed for multiple sensors to assess whether their combined effect could
minimise the loss in accuracy resulting from reduced sample processing. The
study shows that reduced sample processing and spectral libraries have potential
to reduce time and cost implications for predicting soil organic carbon, clay and
pH from NIR and MIR spectra. Available P and K can only be predicted with
moderate accuracy from the milled field-scale samples. Combined predictions from
multiple sensors generally led to equal prediction accuracy or a small improvement
compared to separate NIR or MIR predictions. The loss of accuracy is specific to
the combination of soil property and sensor analysed. The results provide insight



into the expected differences in prediction accuracy and which factors need to be
taken into consideration to reduce effort for developing field-scale calibrations.

Chapter 4 is concerned with quantifying the effect of accounting for uncertainty
in soil property predictions from spectroscopy when making decisions about soil
management. By accounting for uncertainty, it was tested whether spatial
predictions of available P and K were sufficiently accurate to justify the precise
application of P and K fertiliser. The effect of uncertainty (compared to using the
mean kriging predictions) was quantified as an expected loss under both uniform
and precise fertiliser regimes of P and K. Results show that for all four fields, there
is an economic incentive for precise fertiliser application of P compared to uniform
application. In the case of K, economic advantages were found in two fields. The
results also indicate that in general, consideration of uncertainty led to risk-averse
fertiliser application. The magnitude of the expected losses and the difference in
loss between precise and uniform application were found to be dependent on (a)
the kriging variance, (b) the range of the dose-response curve in terms of available
P and K, (c) the range of estimated P and K values within the fields and (d) the
asymmetry of the loss function. Because reduced application of P fertiliser is not
only linked to economic benefits, we conclude that environmental benefits, such
as reducing eutrophication of watercourses from reduced P fertiliser applications,
should be included in the loss function.

Chapter 5 is concerned with the uncertainty in soil available P and K estimates
from spectroscopy as a function of total- and calibration sample size. The effect
of uncertainty on precise fertiliser management was quantified by the difference
in profit from applying fertiliser using the estimates of soil nutrient concentration,
accounting for uncertainty, relative to the profit that would be gained from applying
fertiliser informed by the true variation of available P and K. This difference in
profit was denoted as the expected loss. Based on the observed variation in P and
K in three experimental fields, 100 realisations per field were simulated for an in
silico experiment. For each simulation, the fields were sampled and a calibration
error was added. After kriging was performed, the fertiliser requirement needed
to minimise the expected loss associated with predictions was computed together
with the expected profit when data acquisition costs were accounted for. Results
show that calibration sample size outweighed the effect of total sample size on the
uncertainty associated with predictions. Equally, for the same calibration set size,
there were large differences in the kriging variance between total sample sizes. The
expected loss showed diminishing returns on investment suggesting that there is
an optimum sample size. However, the expected profit in our simulations was
dominated by the costs of sampling and spectroscopy. Consequently, no combination
of the total- and calibration sample sizes considered would result in a financial
gain and could thus be considered optimal. In case costs can be substantially
reduced, spectral methods offer a promising method for informing variable rate
management. The loss function approach is concluded to be an adequate method to
assess whether spectroscopy is effective for informing soil management and should
be applied in further case-studies to gain more robust insight in the value of applied
soil spectroscopy.
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Chapter 1

Introduction



1.1. Overview

1.1 Overview

Soil formation, and its subsequent variation in geographic space, is the result of
multiple deterministic processes that take place over various time-scales (Webster,
2000). The collection of data on soil variation is undertaken to make an inventory
or monitor changes over time. There are many reasons for which practitioners wish
to measure properties of the soil. Agronomists might want to inform management
decisions by using a map of soil variation in major nutrients relevant to crop growth.
Policy makers require information about the soil’s heavy metal content in order to
decide whether land remediation is necessary. Scientists monitor CO2 emissions from
soils under different treatments which will inform policy-making on sustainable soil
management practices. Decision-making based on data that describes soil-variation
accurately allows for informed interventions that are aligned with the expectation
of the respective management outcome.

Measurements of soil, however, have an associated uncertainty. Within the
decision-making context, social, economic and environmental costs can be incurred
as a consequence of not properly accounting for uncertainty in soil measurements.
For example, over- or under application of fertiliser will lead to economic losses
due to reduced yield or eutrophication of watercourses. The soil’s toxicity might
have adverse effects on human health when the decision is made to not remediate
land when, in reality contamination thresholds are breached. Failure to accurately
describe the soil’s greenhouse gas emissions under different treatments might lead
to inappropriate interventions to mitigate its role in global warming.

Generally, uncertainty of data on soil variation can be reduced by making
more measurements. In the case of estimating a mean value over a given area,
the uncertainty can be reduced by increasing the number of measurements taken
or by the implementation of more efficient sampling methods such as stratified-
or balanced sampling. In the case of mapping, the uncertainty associated with
the prediction of a soil property can be reduced by increasing the density of
measurements taken across the area of interest or by the inclusion of appropriate
covariates. A consideration to take into account, however, is that a large number
of samples have higher associated costs which may make obtaining precise enough
information impracticable. Increased accuracy of soil data is, thus, naturally
associated with more effort and higher costs. Soil spectroscopy holds a promising
solution to the challenge of generating large sample sizes since it is relatively
inexpensive, non-destructive, does not require hazardous chemicals and has
capacity to measure multiple soil properties from a single measurement (Viscarra
Rossel et al., 2006). Soil spectroscopy can thus serve as a means to provide higher
spatial and temporal resolution soil datasets at lower costs compared to traditional
laboratory methods. Given the potential of spectroscopy, the number of studies on
spectroscopy in the soil science and related peer-reviewed literature has increased
exponentially since 1990 (Guerrero et al., 2010).

In this thesis I investigate the uncertainty related to predictions made from soil
spectroscopy and develop methods to account for this uncertainty within the context
of decision-making for soil management.
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1.2. Background

1.2 Background

This section outlines the main principles of soil spectroscopy followed by the
remaining challenges in its application, which constitute the primary motivation
for the research presented in this thesis.

1.2.1 Principles of spectroscopy

The main principle of soil spectroscopy is that electromagnetic radiation will induce
an interaction with the analyte (soil aliquot) to be monitored (such as absorption,
fluorescence, emission or diffraction) which is characterized by a spectrum.

The radiation-analyte interaction is specific for the wavelength region that is
projected by the spectrometer. For near-infrared (NIR) and mid-infrared (MIR)
radiation, absorbance is measured which represents overtones and combinations of
fundamental frequencies of organic and inorganic molecules. That is, the atoms
within a molecule absorb quanta of energy from the photon by changes in the energy
state of their electrons; inducing a periodic displacement of the atoms relative to
one another and consequently stretching or bending of that molecule. Most of the
fundamental frequencies, the energy at which the first excited stage of a molecule
and its periodic displacement take place compared to its ground state, occur in the
MIR. Overtones and combinations of fundamental vibrations, particularly those of
hydrogen atoms, occur in the NIR (Spragg, 2000; Stenberg & Viscarra Rossel, 2010).
Absorption in the visible (V) radiation region induces electronic excitations within
atoms and molecules, due to the unsaturation and/or the presence of non-bonded
electrons in the absorbing molecules. The principle across V-, NIR- or MIR regions
is that a molecular bond will only absorb radiation with an energy quantum that
corresponds to the two energy levels of a specific bond. Since the energy quantum is
directly related to the wavelength or frequency, the spectra can be used for analytical
purposes (Stenberg & Viscarra Rossel, 2010).

The main signal to be measured in x-ray fluorescence (XRF) spectroscopy is
the emitted radiation from the analyte (or rather, the atom) as it changes from an
excited electronic energy level to its corresponding ground state. Primary x-rays
consist of energy levels that exceed the binding energy of the bound inner electrons
of an atom, leading to the ejection of an electron from the inner orbitals (typically
the K, and L lines, where K is closest to the nucleus). Consequently, the atom is
unstable and will regain its ground state through the transfer of an electron from
a high-energy outer orbital to the vacancy of the inner electron shell. The process
of outer- to inner orbital electron transfer emits energy known as secondary X-ray
photons, i.e. fluorescence (Kramar, 2000). The energy of element-specific secondary
X-rays produced by a sample is measured over a set time, giving the energy intensity
that results in the final spectrum.

This thesis is concerned with X-ray fluorescence (0.01–10 nanometer (nm)
range), visible-light (350–700 nm), near-infrared (700–2500 nm) and mid-infrared
(2500–25000 nm) spectroscopy. Given the principles of spectroscopy, spectra are
in essence a proxy of the soil variable of interest such as, for example, organic
carbon. Thus, to quantitatively predict organic carbon content, spectra have to
be calibrated by relating them to a known (sub)set of reference samples through
an empirical relation (i.e. regression). The (sub)set of known reference samples is

2



1.2. Background

required to be ’representative’ of the target set for which organic carbon will be
predicted. A representative sample can take on several meanings; e.g. coverage
of geographical/pedological/spectral variation. An optimal sample for calibration
purposes is ‘representative’ such that it covers the spread of the target variable.
In a sense, it might be biased when compared to the target population mean
for which the calibration model is used to predict. Within this thesis, the term
‘representative’ is used in the context of calibration. For further discussion on
‘representative’ samples, please see Kruskal and Mosteller (1979). The procedure
of using a subset to predict soil physical (e.g. particle size distribution), chemical
(e.g. major nutrients) and biological (e.g. microbial C) properties has been
reported extensively within the scientific literature (Sinfield, 2010; Kuang et al.,
2012;). Work has also been done on the use of soil reflectance spectra to determine
crop characteristics directly. These include predictions of grain yield in rice (Van
Groenigen et al., 2003) and plant N uptake (Börjesson et al., 1999; Stenberg et
al., 2005; Terhoeven-Urselmans, 2008; Wetterlind et al., 2008). However, there are
no studies that seek to explain how the variance in crop-yield metrics from soil
properties, estimated by reflectance spectra, can inform soil management.

1.2.2 Main research topics in soil spectroscopy

The capacity of soil spectroscopy to predict from a representative subset, at a lower
cost, with simpler and less laborious methods compared to traditional wet laboratory
analysis has the potential to facilitate the generation of larger datasets. Three main
topics have been the subject of recent research on the implementation of sensor
technology in soil science.

The first major topic considers the effect of combining various sensor technologies
for the prediction of soil properties. A wide array of sensors have been studied.
These include electrical conductivity (ECa), electromagnetic induction (EMI),
ground-penetrating radar, electro-chemical sensors and gamma-ray spectroscopy.
The general expectation is that combining different sensors will create more
robust predictions. Also, the confidence in predictions is increased since multiple
independent measurements are made on the same soil aliquot. Furthermore, each
sensor has a unique measurement support leading to a higher coverage of the soil
domain in question (Adamchuck & Viscarra Rossel, 2010). However, studies that
investigate the combinations of (V)NIR and MIR have been inconclusive reporting
both limited benefits (Clairotte et al. 2016; Viscarra Rossel et al., 2006) and general
improvements (Viscarra Rossel et al., 2006; Knox et al., 2015; Johnson et al., 2019;
Ng et al., 2019). Other studies examined the combination of either (V)NIR or MIR
with XRF spectroscopy (Towett et al., 2015; O’Rourke et al., 2016a; O’Rourke
et al., 2016b; Zhang and Hartemink, 2019; Benedet et al., 2020). In most cases,
the benefits of multiple sensors have been found to differ between soil properties.
However, few studies have investigated all three sensors combined (O’Rourke et al.
2016b) and the majority focused on large-scale databases rather than field-scale
data sets.

A second major topic of research is on the development of spectral libraries.
Spectral libraries are datasets that contain paired analytical and spectroscopy
measurements of soil properties that can be used to establish a calibration. The
main principle is to build libraries that are representative of the soil variation

3



1.2. Background

in the area of interest, potentially allowing for the prediction of soil properties
without performing a site-specific calibration. Notable efforts have been undertaken
for a wide variety of geographical scales, spectroscopy instruments and analytical
methodologies in the development of regional, continental and even global spectral
libraries (Shepherd and Walsh, 2002; Brown et al., 2007; Viscarra Rossel et al., 2008;
Viscarra Rossel & Webster, 2012; Stevens et al., 2013; Viscarra Rossel et al., 2016).
Over the years, however, limitations to the generalisability of spectral libraries
have been pointed out, such as differences between analytical instrumentation and
laboratory conditions or under-representation of soil-variation (Viscarra Rossel et
al., 2008; Wetterlind and Stenberg, 2010; Ge et al., 2011; Guerrero et al., 2014;
Guerrero et al., 2016; Grunwald et al., 2018). While recognising the limitations of
using spectral libraries, research has been directed at methodologies to address these
issues. One example, first proposed by Brown (2007) is to “spike” a spectral library.
Spiking consists of adding a small subset of samples representative of the target site
to an existing spectral library (see also: Viscarra Rossel et al., 2009; Guerrero et al.,
2010). Another methodology is to select observations from a spectral library that
are similar to the target site. Examples range from discretization by geographic
extent (Sudduth and Hummel, 1996; Seidel et al., 2019) or strata (e.g. soil class)
(Shepherd & Walsh, 2002; Seidel et al., 2019; Moura-Bueno et al., 2020) to metric
approaches that assess spectral characteristics and select a representative subset
based on similarities between spectra (Shenk et al., 2000; Ramirez-Lopez et al.,
2013; Lobsey et al., 2017).

The third major subject covers the portability of various sensor technologies.
One reason for which portability proves interesting is that it provides a means
to maximise the spatial density at which measurements are taken, consequently
reducing the spatial uncertainty of soil measurements (Webster & Oliver, 2007).
A second reason for which portability proves interesting is the reduction in effort
spent on sampling, handling and laboratory analysis (Reeves, 2010). For example,
measurements within the field (in-situ) avoid the process of having to air-dry, sieve
and grind the aliquot to get the most accurate reading. Consequently there have
been studies that reported on mobile sensor platforms (Christy et al., 2004; Taylor
et al., 2006; Adamchuck & Christenson, 2007; Christy, 2008; Adamchuck, 2011) or
the use of handheld-held spectrometers within the field (Stevens et al., 2008; Gras
et al., 2014; Webster et al., 2016; Hutengs et al., 2019). An important consideration
with in-situ measurements is that the accuracy in the soil property predictions
can be reduced due to effects of particle-size, aggregation and water content on
spectroscopy measurements. A number of studies have researched these effects, for
example, studies analysed the effect of different particle sizes (Nduwamungu et al.,
2009, Le Guillou et al., 2015; Coutinho et al., 2019; Wijewardane et al., 2020) and
soil water content (Bogrekci and Lee, 2006; Minasny et al., 2011; Ji et al., 2015).
These studies reported that the effect of particle-size, aggregation and water content
with in-situ spectral measurements can be substantial compared to conventional
laboratory measurements.

Although the successful application of spectroscopy for soil property predictions
is supported by peer-reviewed evidence, generalisability and cost-efficiency related
issues hamper its widespread implementation. Soil spectroscopy at the field-scale
adds large costs to the overall procedure due to the required high sample density
and costs for wet chemistry analysis to establish a robust calibration. The three
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1.2. Background

areas of research listed here can potentially enable more accurate predictions of soil
variables while reducing the overall effort of applied soil spectroscopy. However,
the uncertainty in soil property estimates from the use of multiple sensors, spectral
libraries and samples under reduced processing at the field-scale has been relatively
understudied (Reeves, 2010).

1.2.3 Contributing sources of uncertainty

The previous section outlined major topics within the field of soil spectroscopy and
efforts that are undertaken to gain accurate predictions while minimising the effort
of data acquisition. This section outlines factors that contribute to the accuracy of
predictions and how sources of error are introduced within the collection and use of
soil property data from spectroscopy.

Prediction errors from soil spectroscopy

The first source of error that occurs in the process of soil spectroscopy is the
analytical error of the laboratory methods that are used to establish reference values.
Although considered to be small within a single laboratory, the inter-laboratory
variation has been shown to be larger than expected (Pleijsier, 1986). The second
source of error is related to the spectral measurements. Specifically, the inherent
variation of the instrument in predicting the target. These variations are dependent
on the instrument used and on the conditions of the soil aliquot. Sources of
error include scattering effects, leading to non-linearities in the radiation-matter
interaction (e.g. absorption) (Stenberg & Viscarra Rossel, 2010), and the effect
of sample heterogeneity relative to the measurement support of the spectrometer.
For MIR, the diameter of the sampling beam lies in the range of 2–3 mm, for
VNIR this is greater than 5 cm whereas for XRF this is approximately 2 cm
(Soriano-Disla et al., 2014). The penetration depth of the spectrometers is typically
≤ 2 mm for VNIR, MIR and XRF (Kalnicky and Singhvi, 2001; Bänninger et
al. 2006) although other sensor technologies mentioned previously (e.g. ECa or
GPR) can measure at depths up to 60 m and 2 m respectively (Oliver, 2010; Liu
et al., 2016). The surface area and penetration depth of a sensor can depend on
instrument set-up and specific soil conditions (e.g. mineralogical-, water-content
and particle size variation) (Bowers & Hanks, 1965; Wu et al., 2009a; Wu et al.
2009b). In general, the measurement error is minimised by taking a representative
sub-sample which has been sieved to < 2 mm particle size and then ground to <
100 µm hence reducing the intra- and inter-particle variation (Soriano-Disla et al.,
2014). Additionally, replicate measurements on a single aliquot are averaged to
minimise the measurement error from the spectrometer. The third source of error
is associated with the calibration model, which is usually formed by regressing the
predictor variables (soil spectra) against the response variables (reference values
measured in the laboratory).

Spatial prediction errors

Often a practitioner requires a map of the soil property of interest. The fact that we
can only take a limited number of soil samples creates a necessity for interpolation,
i.e. we must predict values in between measurement locations. A large number
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of physical processes contribute to the formation of soil. Given the complexity
of these often cross-dependent deterministic processes, soil variation often appears
to be random (Webster, 2000). Geostatistics involves model-based predictions of
variable, z , in space at locations x1,x2, · · · ,xn by treating the target variable,
z(x), as outcome of a spatial random process Z(x).

Geostatistical prediction is done by kriging, which involves weighted averaging
of the observed values of a property, within a neighbourhood (Webster & Oliver,
2007). After Webster & Lark (2012), the kriging prediction at location x0 is given
by:

Ẑ(x0) =
N∑
i=1

λiz(xi) (1.1)

where the sum of the weights,
∑N

i=1 λi, is equal to 1. Kriging minimises the squared
errors of predictions at the locations where we have taken measurements, thus
leading to a model that is most closely in line with the observed data (Webster
& Oliver, 2007). The model that describes the global mean and its covariance is
described by:

Z(x) = µ + ε(x) (1.2)

where, µ represents the mean, ε is the random process with covariance
Cov[ε(xi) − ε(xj)], as the mean of ε(x) is considered equal to 0. Subsequent
modelling of the spatial variation within a geostatistical framework then is
supported by two main assumptions. One being the assumption of first-order
stationarity, i.e. µ is considered constant across the target area. Second-order
stationarity assumes that the covariance between two locations is solely dependent
on the distance that separates these two locations. Thus based on the second-order
stationarity assumption we assume:

Cov[ε(xi), ε(xj)] = C(xi − xj) (1.3)

where C(·) is a function of the lag, h, which is the distance in two or three dimensions
between two locations. The covariance function diminishes to zero for increasing lag
distances (i.e. the covariance between two locations reduces for larger lags).

There are instances in which the assumption of second-order stationarity does
not hold and an assumption of intrinsic stationarity is required, i.e. the variance of
the difference between two locations (var[ε(x)− ε(x + h)]) is stationary, which can
be described by half its expected value:

var[ε(x)− ε(x + h)] = E[{ε(x)− ε(x + h)}2] = 2γ(h) (1.4)

The spatial variance between the residuals ε is then generally described by one
of several standard parametric functions, ρ(h; θ). For a stationary Gaussian model,
the variogram (γ(h)), is given by:

γ(h) = c0 + c1{1− ρ(h; θ)} (1.5)

The correlation function is denoted by ρ(h; θ), of which its parameters (θ) are
estimated from observations. The intercept term (c0) is the conditional error
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variance. The sill (c1) is the variance of the observation process, which indicates the
limit up till which the underlying process is spatially correlated. The lag distance
up till which the underlying process is spatially correlated is referred to as the
range of the variogram.

The error introduced by model-based geostatistics is known as the kriging
variance (σ2

k) and can be further divided into i.) local uncertainty (i.e. the marginal
error at a particular location) and ii.) spatial uncertainty (i.e. estimation of the
joint error at multiple point-locations) (Goovaerts, 2001).

The effect of sampling on error

The kriging error variance depends on the number of samples and the sample design.
Generally it is assumed that for a given number of samples this variance is minimised
by implementing relatively even geographical coverage at spacings shorter than the
spatially correlated range. When soil sensors are used to estimate a soil property,
a second optimisation is required to develop a representative calibration set for
the prediction of the target property from the spectra. In this case, a calibration
sampling design is required that spans the range of the property (or feature) space
(Viscarra Rossel et al., 2011).

Thus, the sampling design is a dual-objective process. That is, samples have
to be representative of both geographic- and feature space. According to a review
by Viscarra Rossel et al. (2011), the majority of the peer-reviewed literature
considers either geographical space sampling or feature space sampling designs
while not covering both. Optimum designs for sampling a calibration set have been
implemented by response-surface sampling (Lesch, 2005) and conditional Latin
hypercube sampling (Minasny & McBratney, 2006). Several studies addressed both
geographic and feature space sampling (Minasny et al., 2007; De Gruijter et al.,
2010; Adamchuk et al., 2008, 2011). These studies on sampling in the context of
soil sensing did not take into account the value associated with reducing uncertainty
versus the costs associated with sampling which has been considered more recently
by de Gruijter et al. (2018) and Shaw et al. (2016). Further research is needed to
develop optimal sampling designs for soil spectroscopy that account for the cost of
the data collection effort and the value of the information to the research question
at hand.

1.2.4 The loss function

As described above, there are a range of error sources affecting the acquisition of
soil data and subsequent decision-making. Quantifying the uncertainty of these soil
predictions is not a goal in itself, however. Generally, there is a trade-off between the
accuracy and cost of sampling. Next to the laboratory analysis of reference samples,
the effort of sampling in itself constitutes arguably the largest cost and effort of data
collection in soil spectroscopy (de Gruijter et al., 2016). Correct acknowledgement
of uncertainty can inform this trade-off by evaluating the accompanying risk of any
decision-making based on soil data (Goovaerts, 2001).

Recent studies within the soil spectroscopy literature have acknowledged the
need to propagate errors and assess uncertainty in estimates (Brodský et al.,
2013; Viscarra Rossel et al., 2016; Somarathna et al., 2018; Ellinger et al., 2019;
Ramirez-Lopez et al., 2019). However, only few studies have been published that
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assess the effect of uncertainty in the context of decision-making (Fachner et al.,
2000; Gebbers & de Bruin, 2010). There is a need to assess cost-reducing measures
within spectroscopy balanced with the level of accuracy required for effective
decision-making in soil management.

The costs of sampling and data analysis for increased accuracy can be described
in a loss function framework. The loss is defined as the costs that are incurred due to
making a decision based on soil estimates that are uncertain. The rationale behind
this approach is to maximise the value of the information acquired (e.g. a soil map)
given the cost of the data collection procedure. Yates (1949) first described this in
the context of sampling effort for a monitoring survey. Uncertainty in data that
leads to deviation from the true value of z is expressed as the loss which is to be
minimised for a given criterion. The error is defined by z− ẑ, which is expressed by
the expected error value that can be used to define an optimum to minimise the loss
from uncertainty in our data. For example, in the context of precise application of
fertiliser, the loss can be due to under-application of fertiliser and consequent yield
loss (ẑ < z) or over-application and consequent financial loss from unused fertiliser,
or alternatively cause loss to the environment by eutrophication (ẑ > z) (Lark &
Knights, 2015). Incurred costs can be different for over- or underestimation and
hence the loss function may be asymmetrical. The loss function can be used to
assess whether the magnitude of uncertainty is such that management interventions
have their desired effects. If the latter is not the case, an additional reconnaissance
survey might be required. Although the loss function has been used in the context
of sampling for soil variables (Yates, 1949; Ramsey et al., 2002; Boon et al., 2011;
Marchant et al., 2013; Lark & Knights, 2015) thus far it has not been applied in the
context of soil spectroscopy.

1.3 Aim and objectives of the research

Spectroscopy has the potential to provide detailed information on the variation of
soil. However, adoption in an applied context is hampered by the failure to properly
account for uncertainty and issues of cost-efficiency.

The overall aim of this thesis is to explore the practical use of soil spectral
measurements to inform soil monitoring and management. The first step is to
quantify the uncertainty that is introduced under the various stages involved in
predicting soil properties by spectroscopy. This uncertainty can then be explicitly
accounted for in a loss function framework that can be used to investigate how
the expected loss can be minimised under different configurations of spectroscopy
measurements, calibration methods and sampling designs. This aim is addressed
through the following research questions:

1. Given the inherent uncertainty associated with spectral predictions, can soil
spectra predict crop performance indicators that inform management?

It is widely accepted that soil properties affect crop performance. The
first question that arises is to what extent the soil spectra can predict crop
performance indicators and if so, to what extent this could be used to inform
management. Predictions of crop performance can be done in two distinct
ways. The first approach is the direct route, in which the soil spectra by
themselves are used to predict crop performance indicators. The second
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approach is an indirect route, in which soil spectra are used to predict soil
variables which are then in turn used to predict crop performance indicators.
Within Chapter 2 I assess these two approaches to use soil spectra for the
prediction of crop performance to inform precise agricultural management.

2. To what extent can the effort associated with spectral measurements be
reduced and what is the effect of this reduction on the uncertainty of soil
predictions?

Field-scale calibration of soil spectral measurements is generally considered to
result in the most accurate predictions. This approach however, involves a
high expense of laboratory analysis and sample processing. Within Chapter
3, I investigate two approaches to reduce effort of field-scale calibrations and
quantify the impacts these approaches have on the uncertainty in predictions.

The first approach is concerned with the reduction of sample processing. I
investigate the difference in accuracy between soil property predictions from
spectroscopy measurements taken on in-situ, unprocessed (i.e. fresh), air-dried
or milled soil samples. The second approach is the use of spectral libraries to
reduce the number of reference values needed compared to a bespoke field-scale
calibration. Both approaches increase uncertainty associated with predictions
compared with a field-scale calibration on milled soil samples. In order to
counterbalance the increase in uncertainty I explored whether multiple sensors
could minimise the prediction error when we construct calibration models from
spectra measured on different sample conditions or the use of spectral libraries.

3. What are the advantages of accounting for uncertainty in soil property
predictions when making decisions about soil management?

Using accurate and detailed soil maps has potential to improve field
management in terms of precise fertiliser applications. This is known as
precision agriculture (PA), the principal aim of which is to maintain or improve
current crop production levels while mitigating losses of agrochemicals to the
environment (Blackmore et al., 2003; Oliver, 2010). Thus, a fundamental
premise to PA is to acknowledge soil variation on a sub-field scale, characterize
it and inform decision-making on farm management. Farmers who adopt PA,
however, must consider the need, value, costs and possible other sources of
information to identify whether they can use it to improve their efficiency and
reduce environmental impact. The associated uncertainty of the information
acquired affects both its value and consequently whether sub-field soil
variation maps are seen as a reliable information source for decision-making
in a PA context. A soil map with high uncertainty imposes risk on farming
outcomes and the environment by inadequate management decisions.

Within Chapter 4, I quantify the uncertainty in soil nutrient estimates
from spectroscopy. A loss function framework is then developed to make
the uncertainty in the estimates explicit. Uniform and precise fertiliser
application regimes are contrasted in terms of incurred costs and fertiliser
used. Fertiliser usage and incurred costs under uncertainty provide insight in
the economic and environmental benefits of field-scale spectroscopy to inform
precise soil nutrient management.
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4. Can we use the loss function framework to inform the data-acquisition process
and sampling configurations for soil property prediction by spectroscopy?

Within Chapter 5, I explore how the data acquisition procedure in the context
of a soil spectroscopy survey affects uncertainty in predictions.

Associated uncertainties of predicted soil properties can be reduced by
increasing the density of measurements taken across the area of interest.
Equally the number of samples used as a subset for calibration will determine
the accuracy with which the overall sample population is predicted. Increase
in both the density and calibration samples has an associated cost which may
make obtaining precise enough information impracticable.

I formulate a loss function based on the costs of sampling, calibration and
the incurred costs from uncertainty in our soil estimates. The loss function
is in turn used to identify the effect of sampling configuration on prediction
uncertainty and its consequences for soil management.

1.4 Thesis structure

The thesis is organised in six chapters, including this introduction chapter. The
main chapters of this thesis include published (Chapters 2), submitted (Chapters 3
and 4) and unpublished (Chapter 5) manuscripts. Chapters 2–5 follow the outline of
these manuscripts and hence can be read by themselves. Appendices differ from the
originals that accompanied the publications to accommodate additional work done
over the course of my PhD. The bibliographies of all chapters have been combined
into a single list of references at the end of this thesis.
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Chapter 2

Predicting crop size from soil
spectra : the potential for
management



Abstract

How well could the growth of a leafy crop be predicted from soil reflectance spectra
and how might a grower manage the crop in the light of those predictions? Topsoil
from two fields was sampled and analysed for various nutrients, particle-size
distribution and organic carbon concentration. Crop measurements (lettuce
diameter) were derived from aerial-imagery. Reflectance spectra were obtained in
the laboratory from the soil in the near- and mid-infrared ranges, and these were used
to predict crop performance by partial least squares regression (PLSR). Individual
soil properties were also predicted from the spectra by PLSR. These estimated soil
properties were used to predict lettuce diameter with a linear model (LM) and a
linear mixed model (LMM): considering differences between lettuce varieties and
the spatial correlation between data points. The PLSR predictions of the soil
properties and lettuce diameter were close to observed values. Prediction of lettuce
diameter from the estimated soil properties with the LMs gave somewhat poorer
results than PLSR that used the soil spectra as predictor variables. Predictions from
LMMs were more precise than those from the PLSR using soil spectra. All model
predictions improved when the effects of variety were considered. Predictions from
the reflectance spectra, via the estimation of soil properties, can enable growers to
decide what treatments to apply to grow lettuce and how to vary their treatments
within their fields to maximize the net profit from the crop.

Based on:
Breure, T., Milne, A.E., Webster, R., Haefele, S.M., Hannam, J.A., Moreno-Rojas,
S., Corstanje, R., 2021. Predicting the growth of lettuce from soil infrared
reflectance spectra: the potential for crop management. Prec. Agr. 22, 226–248.
https://doi.org/10.1007/s11119-020-09739-x.



2.1. Introduction

2.1 Introduction

Leafy crops such as lettuce and brassicas are important commercial crops in the
UK. The value of these crops depends on quality indicators such as size and weight.
Growers size their crops either by direct observation in the field or from air-borne
imagery, which has become an established practice to connect crop phenotype with
marketability and crop management decisions within the growing season (Bauer et
al., 2019; Valente et al., 2020). Lettuces are sampled at frequent time-intervals for
fresh-weight, head-weight and head-diameter which determine their market value
and time of harvest. Lettuces that do not reach a desired size are not harvested;
indeed, frequently large parts of fields are deemed not worth harvesting.

The growth of the lettuce can be restricted by stresses such as shortage of
nutrients and water, low temperature, adverse weather, and pests and diseases.
Within-field variation of lettuce growth in the United Kingdom is often a result
of the soil’s varied capacity to provide water and nutrients. If growers have dense
information on soil variation within their fields, they are likely to be sufficiently well
informed to make two main decisions. First, they should be able to recognize a priori
where their crops will not reach a saleable quality and so where not to waste time
and resources on production. Second, they should be equipped to decide how best
to vary fertiliser and irrigation spatially (precision application) to maximize growth
without applying excess of either. In both cases production would be more profitable
and less harmful to the environment. Chemical analysis of soil by conventional wet
chemistry is expensive and time-consuming. The densest affordable sampling in
commercial conditions is one soil sample per ha (Muhammed et al., 2017). That has
generally been adequate to estimate mean values and average fertiliser requirements.
It is too coarse, however, for mapping the variation within individual fields in a way
that enables growers to vary their applications of fertilisers and water rationally.
Recent advances in reflectance spectroscopy could enable growers and their advisors
to obtain affordable useful information on soil variation at resolutions sufficient for
precision agriculture. However, estimated soil properties from reflectance spectra
need to be sufficiently accurate to explain variance in crop performance and so
inform management decisions.

The utility of near- and mid-infrared reflectance spectra from the soil to predict
crop performance and aid management was investigated. One route, which avoids
any issues of poor predictions of soil nutrients, is to examine the direct relation
between the spectral data and the crop response. A strong relation could tell the
grower where to expect good growth and where it is worth planting the lettuce
(and where not to plant). It does not tell the grower which soil properties might
be causing variation, however, and what action he or she should take to enhance
yield. The second route is to predict soil chemical properties from the spectral data
and identify which of those properties explain the variance in growth of the lettuce.
This route, though less direct and perhaps less accurate because of the issues related
to predicting soil nutrients, has greater potential for management; it should enable
the grower to vary the management in accordance with the variation of individual
soil properties that affect growth. To the authors’ knowledge, there are no studies
that seek to explain variance in crop-yield metrics from soil properties estimated
by reflectance spectra, however, work has been done using soil reflectance spectra
directly to determine crop characteristics. These include predictions of grain yield
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in rice (Van Groenigen et al., 2003) and plant N uptake (Börjesson et al., 1999;
Stenberg et al., 2005; Terhoeven-Urselmans, 2008; Wetterlind et al., 2008).

This study investigated both methods of predicting crop performance from
near- and mid-infrared soil reflectance spectra, i.e. directly from the soil spectra
and indirectly using soil properties estimated by reflectance spectra (Fig. 2.1).

Figure 2.1: Framework for predicting crop data (lettuce diameter in cm) from
soil spectra. The diameter of the lettuce may be predicted (i) directly from soil
spectral measurements (the left have edge of the triangle) using partial least squares
regression (PLSR) or (ii) by first predicting relevant soil properties from the soil
spectra and using these in a linear model (LM) or linear mixed model (LMM) to
predict lettuce diameter.

The following questions were addressed;

1. Can the diameters of lettuce be predicted directly from the soil-spectral data?
And if so, how well?

2. How accurately can important soil properties be predicted from soil-spectral
data?

3. Can values of soil properties predicted from the spectral data be used to model
and predict lettuce diameter?

The results are used to discuss whether soil spectral measurements could be used
in practice to help the grower (i) decide where to grow lettuce and/or (ii) manage
the nutrition, irrigation or planting density of the crop.
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2.2 Methods and materials

2.2.1 The fields and their sampling

The case-study is located in the Fenlands of eastern England. The soil there is
generally fertile and is well suited for their growth, though within individual fields
there is substantial soil variation, mainly in particle-size distribution and organic
matter content. The soil on the flat land is rich in organic matter and varies from
silty clay to sand on somewhat (up to 0.5 m) higher sinuous narrow strips known
locally as ‘rodhams’. It is known that the crop differs in its response on the flat land
from that on the rodhams to uniform management.

After consulting growers in the Fenland region, two fields were chosen for this
study. Field 1, covering 10.5 ha, is near the village of Prickwillow (52◦27′58.65′′N;
000◦21′51.02′′E). The sampling design was based around a 30-m square grid, with
three transects (on alternate rows) more intensely sampled at 6-m intervals. The
sampling strategy was designed to provide good coverage of soil conditions and to
enable us to assess the magnitude and spatial scale(s) of variation in soil properties.
Field 2 lies adjacent to Field 1 and covers 18.2 ha. The design was computed for
121 sample locations such that each point lay in the centre of its Dirichlet tile all of
which have the same area. This was done using the spcosa package (for more detail,
see Walvoort et al., 2010) which led to an approximate grid with an interval of 30
m. A further 36 of these points were selected with the BalancedSampling package
(Grafström & Lisic, 2019), balanced on the spatial co-ordinates and elevation. At
each location of the spatially balanced subset another sample point 6 m away at
a random orientation was added. The random orientation was computed with the
SpatialEco package in R (Evans, 2019). In both fields, additional sample locations
were added to ensure that the full range of soil conditions and elevation were
encompassed based on predictions from the LiDAR survey and satellite imagery
showing variation in soil colour. In all, 256 samples were taken from Field 1 and
161 samples from Field 2. Fig. 2.2 shows the fields with the sample locations.

At each sample location, three cores of topsoil (0–0.25 m) were taken using an
auger within a 0.5 m by 0.5 m quadrat. These cores were bulked for laboratory
analysis and spectral study.

2.2.2 Laboratory analysis

Sample preparation

The soil samples were dried in air, passed through a 2–mm sieve and milled.
The analyses on these samples are described in detail below. For spectroscopy
measurements, samples were placed in a stainless-steel cup together with a disc.
The samples were then milled for 35 s at 960 rpm in a TEMA Machinery Ltd mill
(Northants, UK).

2.2.3 Chemical analysis

Thirty sub-samples for each field were selected by balanced sampling on the spatial
co-ordinates and elevation from the sieved samples for chemical analysis and
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Figure 2.2: The two fields sampled. Field 1 includes the three transects sampled at
6-m intervals (Transect). The 30-m square grid (Grid) and additional sample points
capture variation in soil colour and elevation from satellite imagery and LiDAR data
(Extra). Field 2 includes the central points of Dirichlet tiles that all cover an equal
area, leading to an approximate grid (Grid). The sub-sample of points that contains
a paired sample within a 6-m radius (Radius) and additional sample points capture
variation in soil colour and elevation from satellite imagery and LiDAR data (Extra)

particle-size distribution. Chemical properties and particle-size distribution of the
soil samples were measured as follows.

Total carbon (C) and nitrogen (N) were determined by Dumas combustion in a
TruMac Combustion Analyser from LECO Corporation (Stockport, UK).

Exchangeable potassium (K+), calcium (Ca2+), magnesium (Mg2+) and sodium
(Na+) were determined in an ammonium nitrate extract (10 g of 2 mm sieved
soil in 1 M ammonium nitrate) by an Optima 7300 DV Inductively Coupled
Plasma-Optical Emission Spectrometer (ICP-OES) (Seer Green, UK).

Available phosphorus (P) was measured by the standard Olsen method in a sodium
bicarbonate extract (5 g of 2 mm sieved soil in 0.5 M NaCO3 (Olsen et al., 1954)
with a SANplus continuous colorimetric flow analysis from Skalar analytical
BV (Breda, The Netherlands).

Sulphur (S) was measured in a potassium phosphate extract from 5 g soil in 25 ml
solution. From the filtrate 9.5 ml was stabilized with 0.5 ml nitric acid (≈
68 %) and analysed by ICP–OES.

The soil pH was measured in a suspension of 5 g 2-mm sieved soil to 12.5 g deionized
water and measured with a thin semi-micro sealed combined pH electrode from
Fisher scientific (Loughborough, UK).

Particle-size fractions were determined by laser diffraction on a L-960 particle-size
analyser from Horiba scientific Ltd (Northampton, UK) in the AfSIS spectral
laboratory at Rothamsted Research. We set the upper limit for clay to 9 µm
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because we did not remove the organic matter. This is as recommended by
Konert & Vandenberghe (1997) and Fisher et al., (2017). The intervals were
therefore clay: <9 µm, silt: 9–50 µm, sand: >50µm.

2.2.4 Spectroscopy

Each sub-sample of milled soil was pressed into a small well (6 mm across and
approximately 1 mm deep) and placed in a Tensor II spectrometer from Bruker
scientific (Ettlingen, Germany) in the AfSIS spectral laboratory at Rothamsted
Research. Its reflectance spectrum in the range 1000–2500 nm, i.e. the near infrared
(NIR), was measured with a resolution of 1 nm and converted to wave-number units
(cm−1) by division by 10−7. Subsequently, the moisture bands were removed in
two regions: (7900–6849 cm−1) and (5587–5102 cm−1), respectively. All spectral
measurements were replicated three times for each sample.

Each sub-sample’s mid infrared (MIR) spectrum in the range 4000–600 cm−1

(2500–16 666 nm) was recorded on the same instrument with a resolution of 2
cm−1. The atmospheric CO2 bands were removed in the region 2430–2240 cm−1.
The reflectance, R, in both regions have been transformed to optical density (i.e.
absorbance, A) as A = log10(1/R).

Spectra were smoothed to remove noise using the Savitzky–Golay filter
(Savitzky & Golay, 1964) with a third-order polynomial in a moving window of
11. Subsequently, the spectra were standardized (by subtracting the means and
dividing the result by its standard deviation) after which the 1st derivatives of the
spectra were computed. For the NIR region, a filter length of 31 wavebands was
used (i.e. the spacing between points over which the derivative is computed). For
the MIR region, a filter length of 11 and a segments size (i.e. the range over which
the points are averaged) of 8 wavebands were used. Subsequently, the NIR and
MIR spectra were combined into a single matrix used in the subsequent modelling.
Processing was done using the prospectr package (Stevens & Ramiro-Lopez, 2013).

2.2.5 Statistical analysis

Partial least squares regression (PLSR)

The first aim was to predict the diameters of the lettuce from the soil spectra–i.e.
taking the route along the left-hand arm of the triangle in Fig. 2.1. Initially this
was done for each field and each variety of lettuce separately. This was because
the lettuce crops were grown and measured at slightly different times, and it
was unknown whether the different varieties would respond differently to the soil
conditions. The second aim was to predict the properties of the soil as measured by
wet chemistry from the reflectance spectra. For this part of the exercise, the data
from both fields together were treated as a single set. The combined data provide a
wider range across the soil properties than if each field were considered separately.

Both cases are in the general sense a common problem in statistics: we have a set
of predictor variables, x ≡ {x1, x2, . . . , xm}, and we wish to use the set to predict a
target variable, y. The task might at first seem to be one of straightforward multiple
regression. However, two features make that solution impracticable: (a) the spectral
estimates are strongly correlated with one another, and (b) there are more of them,
i.e more variates, than there are units (lettuces). One feasible solution now popular
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in such circumstances is partial least squares regression (PLSR). This method finds
a few orthogonal factors that maximize the covariance between the predictors and
the target variable, or variables if there are more than one.

Let X be an n × m matrix of n units (lettuces or quadrats) and m variates
(spectral estimates) and let y be the vector of length n of measurements (diameters
of the lettuces). Then define

X = SLT + E

and y = UqT + f . (2.1)

In these equations S is an n× p matrix of factor scores and L is the corresponding
orthogonal m × p matrix of loadings for the predictors in which p � m. In like
manner, U is an n × p matrix of factor scores for the target variable and q is the
corresponding vector of loadings. The matrix E and vector f are error terms, which
are assumed to be independent and identically distributed. These equations are
solved in such a way as to maximize the covariance between S and U.

In this way, the number of spectral predictors is reduced while maximizing
the effectiveness of those retained. The retained components predict directly the
diameters of the lettuces. In the indirect route, retained components predict
the soil properties as determined by wet chemistry. The method is not quite
as straightforward as multiple regression, and a final selection of the number
of components retained was determined by leave-one-out cross-validation and
calculation of the mean squared error (MSE) of prediction. In general, the MSE
initially decreases sharply as a function of the number of components retained and
then increases as a result of over-fitting. The number of components for which the
MSE was least was kept. In this paper, Lin’s concordance correlation coefficient
(Lin, 1989) was used to get a measure of the distance from the predicted data
relative to the 1:1 line. A value closer to 1 indicates a higher measure of both
accuracy and precision relative to observed values.

Multiple regression

Subsequently, linear mixed models were computed with lettuce diameter as a
response and soil properties derived from the spectra by PLSR as predictor
variables. Although lettuce size can be directly predicted from soil spectra,
as above, those spectra do not tell growers how they might manage the land
differentially to achieve some desired size of lettuce. For that, they would like to
know the soil’s nutrient status, carbon content and particle-size distribution. This
case therefore, takes the route along the right-hand side of the triangle (Fig. 2.1)
to answer the questions: are derived soil properties and lettuce diameters (after
controlling for different lettuce varieties) related? And if so, how strong are those
relations, which soil properties are deemed important for predicting the size of
lettuce, and how good is the prediction along that route? However, it important to
note here that the coefficients of the multiple regression reflect both the covariance
between predictor variables as well as their relation to the dependent variable.
Thus, an additional experimental field trial would be required to assess which soil
properties determine lettuce size. The multiple regression accounted for possible
different regression coefficients for the different varieties of lettuce. For each variety
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we separately fit a regression model of the form:

Yi = βTxi + εi (2.2)

Here Yi is the diameter of the ith lettuce, vector β comprises the regression
coefficients of the fixed effects xi which comprise a vector where the first entry is
one and the following represent the soil properties for observation i and εi is an
independent residual error. We assume that εi is a random variable drawn from a
normal distribution with zero mean and variance σ2, thus:

εi ∼ N(0, σ2) .

We set up the regression equations based on this model and solved them with
maximum likelihood (ML) estimation. In the event we noticed that the residuals,
the εi, appeared to be spatially correlated with a variogram defined by

γ(h) =
1

2
E
[
{ε(z)− ε(z + h)}2

]
, (2.3)

in which γ(h) is the semivariance of ε for points separated by the vector h, with
z ≡ {z1, z2} representing the coordinates in the two spatial dimensions.

Most variograms of crop yields and soil properties have fairly simple forms in
which γ(h) increases from some small value at short separating distances to a
constant or asymptote as the distance increases. To choose a suitable model we
estimated γ(h) by the method of moments, thus:

γ̂(h) =
1

2m(h)

m(h)∑
k=1

{ε(zk)− ε(zk + h)}2 , (2.4)

in which ε(zk) and ε(zk + h) are the residuals at places zk and zk + h separated by
the vector h and for which there are m paired comparisons. The variation appeared
isotropic, and so we treated the vector h as scalar h in distance only. By varying
h an ordered series γ̂(h) were obtained and these were graphed. The graphs that
contained the ordered series of γ̂(h) (experimental variograms) were used to assess
whether the fitted parameter values were sensible. All could be described by the
popular exponential model:

γ(h) = c0 + c1

{
1− exp

(
−h
a

)}
for h > 0

= 0 for h = 0 . (2.5)

In this equation c0 and c1 are variances, respectively the nugget and sill of the
correlated variance, and a is the distance parameter. The equation describes
second-order stationarity and so has equivalent covariances, cov(h) = c0 + c1−γ(h),
for incorporation into our prediction model. For convenience model parameters
were designated by θ ≡ {c0, c1, a}. To account for the spatial correlation of the
residuals we replace εi by ηi, which is drawn from a variance–covariance matrix Ξ
of error variables, i.e.

ηi ∼ N(0,Ξ) ,
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and depends on the spatial coordinates of the lettuce i; it is now spatially dependent.
The problem now is to estimate both the coefficients of the fixed effects, i.e. the

αj and βj, and the parameters of the random terms in θ . We do so by the method of
residual maximum likelihood (reml) introduced by Patterson & Thompson (1971)
and described in the current context by Lark & Cullis (2004). Briefly, the equation
we have to solve is

β̂ =
(
XTΞX

)−1
XTΞ−1y , (2.6)

in which the matrix X contains all the data for the predictors plus a column of 1s and
β includes the intercepts of equations (2.2), and vector y contains the corresponding
measured diameters of the lettuces. The elements of matrix Ξ are obtained by
maximization of the likelihood

L (β,θ |y) = c− 1

2
ln |Ξ| − 1

2

(
y − βTX

)
Ξ−1

(
y − βTX

)
. (2.7)

where c is a constant.

Selection of variables

Many soil properties can affect the growth of crop plants. Some of them are typically
strongly correlated with one another, and to include all in regression equations could
lead to spurious results from over-fitting. To avoid such an outcome, soil properties
were selected that are most likely to affect the growth of lettuce. These included
first the concentrations of the nutrients N, P and K. Total C was omitted as it was
directly related to total N. Particle-size distribution is important because it is closely
related to the soil’s capacity to hold water, so its measurement can serve as a proxy
for water-holding capacity. The soil’s pH can be important, and so it was added to
the list of predictors. Finally, Mg was added because many crops suffer magnesium
deficiency in the UK. The final list was as follows.

1. Total N, exchangeable K+, Olsen P.

2. Particle size, pH.

3. Exchangeable Mg2+, Ca2+, Na+, available S.

These variables were added one at a time in the regression in that specific order
(forward selection) as fixed effects using maximum likelihood (ML), since the
residual likelihood is a direct function of the number of fixed effects within the
model. The log-likelihood of models fitted by REML with different fixed effects are
not comparable. As the properties were added in this stepwise fashion, the updated
model was tested against the previous one by a log-likelihood ratio test (Woolf
1957). A chi-squared p-value of 0.05 was taken as threshold and any smaller value
(p ≤ 0.05) as evidence that an additional coefficient explained sufficiently more
of the total variance to justify inclusion of that property. Once a final set of soil
properties were selected as coefficients, the model was refitted by solving Equation
2.6 using REML for unbiased estimates of variance and covariance parameters.
The modelling procedure described above was computed for each field individually.
The partial least squares regression was done using the pls package (Mevik et al.,
2019). The linear models were computed using the nlme package in R (Pinheiro
et al., 2019). Linear mixed models and the spatial correlation structures were
computed using the geoR package (Ribeiro & Diggle, 2018).
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2.3 Results

2.3.1 Summary statistics and qualitative description

Three sampling locations in Field 1 and two in Field 2 had lettuce diameters less
than 50 mm and were evidently outliers. These individuals seem to have failed to
establish after transplantation and were therefore removed before analysing the
data formally. Tables 2.1 and 2.2 summarise the statistics of the crops with outliers
excluded. Most of the measured soil properties had near-normal distributions.
The pH and P were somewhat skewed, but as residuals from the PLSR were
approximately normally distributed for pH and P these were not transformed. The
distribution of available S and that of its residuals, on the other hand, were strongly
skewed, and its concentrations were transformed to logarithms (Table 2.3).

Table 2.1: The summary statistics of observed and predicted lettuce diameters for
n lettuce, along with the number of components used in the prediction and the
mean squared error (MSE) and Lin’s concordance correlation coefficient (CCC) of
the leave-one-out (LOO) cross-validation for that number of components – Field 1

Observed Predicted

Variety n Mean Std dev. Range Mean Std dev. Range Nr comp MSE CCC

All varieties 218 14.3 3.49 15.5 14.3 2.45 15.7 7 6.15 0.66

Etude 74 12.9 3.63 15.5 12.9 3.09 15.3 4 3.59 0.84

Challenge 71 13.8 2.67 10.5 13.8 2.06 8.34 5 2.87 0.74

Glassica 73 16.2 3.24 14 16.2 2.29 10.1 4 5.23 0.66

The spectral signatures of all soil samples were similar; all had smaller absorbance
features in the near-infrared (NIR) than in the mid-infrared region. The NIR
includes predominantly weak overtones and fundamental vibrational bands for H–N,
H–C and O–H bonds. Absorption bands within the near infrared (NIR) frequently
overlap, which makes it difficult to interpret the spectra directly. The MIR is
characterized by fundamental frequencies (no overlap) and directly relates to mineral
and organic compounds. For example, kaolinite in the Si–O stretching region
between 1200 and 1000 cm−1 and carbon functional groups in C–H aliphatic bonds
(e.g. –CH, –CH2) between 3000 and 2850 cm−1 (Viscarra Rossel et al., 2006; Du
& Zhou, 2009; Viscarra Rossel et al., 2011; Du et al. 2015). Loadings of the
PLSR decomposition can be used for qualitative interpretation of the NIR and
MIR spectra. Peaks are caused by the response variable, whereas troughs indicate
interference of different soil components (Haaland & Thomas, 1988).
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Table 2.2: The summary statistics of observed and predicted lettuce diameters for
n lettuce, along with the number of components used in the prediction and the
mean squared error (MSE) and Lin’s concordance correlation coefficient (CCC) of
the leave-one-out (LOO) cross-validation for that number of components – Field 2

Observed Predicted

Variety n Mean Std dev. Range Mean Std dev. Range Nr comp MSE CCC

All varieties 106 20.6 5.01 27.3 20.6 3.51 15.1 5 12.6 0.66

Challenge 59 19.1 4.18 18.8 19.1 2.90 10.4 1 8.93 0.65

Glassica 26 19.6 3.47 13.5 19.6 2.39 7.56 1 6.11 0.64

Yucaipa 21 26.1 5.11 18.7 26.1 4.89 18.7 6 2.07 0.96

2.3.2 PLSR diagnostics

The appropriate number of components for predicting lettuce diameter and soil
properties varied substantially according to variety and target property (Fig. S1).
For example, the MSEs of K+ and clay increased with numbers of components
retained. This result is likely to be caused by over fitting. The MSE for P diminished
gradually to a minimum at 11 components, whereas the MSE for total N diminished
rapidly to a minimum at four. Tables 2.1, 2.2 and 2.3 report the chosen numbers of
components.

As expected, the mean of the predicted lettuce diameters was close to the
observed diameters; the standard deviations of the predictions were smaller than
that of the observations. The scatter plots of predictions against the measured
diameters (top 4 panels Fig. 2.3) show that different varieties relate differently to
the soil spectra. The predictions of soil properties were generally close to true values
(Fig. 2.4). The log ratio of sand and clay over silt were computed to provide two
independent variables of particle size. The means of the predictions were also close
to the observations, with again standard deviations of the predictions smaller than
those of the observations. The predictions of Mg2+, P and pH had larger ranges
than the observed ranges. Nevertheless, these differences are small and fall within
the range of the residual mean squared error, leading to a slight over-prediction.

2.3.3 Relations between lettuce diameter and predicted soil
properties

The diameters of the lettuce were related positively to Ca2+, Mg2+, Na+, total N
and total C in both fields and for all varieties (Figs. 2.5, 2.6). There were consistent
negative relations with pH in both fields, probably because there are patches of
relatively acid peat in the fields. The correlation coefficient between pH and total
C was −0.83 based on the wet chemistry measurements (not shown). In Field 2,
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Table 2.3: The summary statistics of observed and predicted soil wet chemistry
data for the 60 calibration samples, along with the number of components used in
the prediction, the mean squared error (MSE) and Lin’s concordance correlation
coefficient (CCC) of the leave-one-out (LOO) cross-validation for that number of
components.

Observed Predicted

Property Mean Std dev. Range Mean Std dev. Range Nr comp MSE CCC

Total C/% 12.31 3.67 14.2 12.3 3.64 13.9 6 0.42 0.99

Total N/% 0.84 0.25 0.96 0.84 0.25 0.96 6 0.026 0.99

Ca2+/mg kg−1 7271 417.8 4958 7271 1063 3786 1 400 0.93

K+/mg kg−1 347 112 514 347 98 487 9 54 0.87

Mg2+/mg kg−1 419 117 480 419 113 485 10 29 0.97

Na+/mg kg−1 48.8 21.4 86.6 48.8 19.5 76.9 6 8.6 0.91

Mn2+/mg kg−1 0.51 0.34 1.65 0.52 0.32 1.18 5 0.12 0.94

P/mg kg−1 41.5 11 61.4 41.5 10.5 61.6 11 3.2 0.95

S/mg kg−1 13.3 13.8 69.1 12.3 11.4 67 6 6.6 0.86

pH 7.09 0.58 2.26 7.09 0.58 2.31 12 0.038 1

Sand/% 30.6 5.13 25.1 30.6 4.83 17.2 4 1.7 0.94

Clay/% 36 4.06 29.7 36 3.83 17.2 4 1.3 0.94

Silt/% 33.3 2.19 9.35 33.3 1.81 7.23 3 1.2 0.81

lettuce diameter related positively to Mn2+, available S and to log(sand/silt). The
relation between lettuce diameter and P was weakly negative, possibly due to a bias
from the PLSR predictions. As expected from the soil-forming history in the region,
the soil properties appear to co-vary with elevation (see Figs. 2.5, 2.6). The final
fitted LM (2.2) relating the predicted soil variables to lettuce diameter comprised
total N, K+(p ≤ 0.0001), log(clay) (p ≤ 0.0001) and pH (p = 0.003) for Field 1 as
coefficients; and variety, total N, K+ (p = 0.0187) and P (p = 0.001) for Field 2.

Further investigation of the LM residuals suggested that the exponential
variogram model (2.5) would describe their spatial autocorrelation well in both
fields. This model was therefore included in the regression (2.2). The final model
for Field 1 retained variety, total N, K+ (p = 0.0114) and log(clay) (p = 0.0004) as
coefficients. The final model for Field 2 retained variety, total N, K+ (p = 0.0195)
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Figure 2.3: Predicted versus measured lettuce diameter for both fields. The top
two rows show predictions from partial least squares regression (PLSR) from the
soil spectra, where the second row takes lettuce variety into account. The bottom
two rows show predictions from the multiple regression models (LM) and the linear
mixed models (LMM) from the IR predicted soil properties
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Figure 2.4: Leave-one-out predicted against measured soil properties for the 60
calibration samples from both fields by partial least squares regression (PLSR) with
the soil spectra. Metrics include the root mean squared error (RMSE) and Lin’s
concordance correlation coefficient (CCC)

and P (p = 0.0013) as coefficients (See Tables S1 and S2 in supplementary material
for fixed effects coefficients).

The variograms associated with covariance models for the spatial autocorrelation
term for Eq. 2.5 are in Fig. 2.7. The parameters for Field 1 are c0 = 2.9, c1 = 2.8
and a = 17.2 m. Those for Field 2 are c0=4.2, c1 = 6.8 and a = 29.2 m. The nugget
variance (c0) in Field 1 is approximately half of the total variance (c0 + c1). For
Field 2, it comprises somewhat less than half of the total. The nugget includes both
measurement error and very short-range, unresolved, spatial variation. The effective
limit of spatial correlation, i.e. the effective range (approx 3a), in Field 2 is almost

25



2.3. Results

Figure 2.5: Measured lettuce diameter coloured by elevation (LiDAR) against partial
least squares regression (PLSR) predicted soil properties–Field 1. Adj. R2 is the
coefficient of determination from linear regression between lettuce diameter and the
PLSR predicted soil property, adjusted by the degrees of freedom

twice that in Field 1. The mean-squared errors and Lin’s concordance correlation
coefficients for the LM and LMM predictions were computed (bottom 4 panels Fig.
2.3).

2.3.4 PLSR loadings and their interpretation

As previously described, the loadings of the PLSR decomposition can be used for
qualitative interpretation of the spectra. Peaks are caused by the soil property
used as the response variable, whereas troughs indicate interference of different soil
properties measured by the spectra. For each property included as a coefficient in the
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Figure 2.6: Measured lettuce diameter coloured by elevation (LiDAR) against partial
least squares regression (PLSR) predicted soil properties–Field 2. Adj. R2 is the
coefficient of determination from linear regression between lettuce diameter and the
PLSR predicted soil property, adjusted by the degrees of freedom

LMM, the loadings of the first component were plotted against wave number. The
loadings of the first component in the final fitted PLSR models to predict lettuce
diameter from the soil spectra were also plotted. The loadings from the total N
PLSR model and to some extent those of the K+ PLSR model align better than the
other soil properties with the loadings from the models that predict lettuce diameter
from the soil spectra (Fig. 2.8). Closer loading alignment indicates that the same
wave numbers explain an equal amount of variance from the response variable.
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Figure 2.7: Fitted exponential model for the spatial autocorrelation term in the
linear mixed model (LMM) for Fields 1 and 2, where ‘c0’ and ‘c1’ are the nugget
and sill of the correlated variance and ‘a’ is the distance parameter

2.4 Discussion

The aim of this study was to discover whether soil spectral measurements could be
used to predict variation in the diameter of lettuce grown in commercial fields, both
directly from the soil spectra and via predictions of soil properties.

2.4.1 Lettuce diameter prediction directly from soil spectra

For both fields, the predictions of lettuce diameter from the soil spectra were close
to observed values. These predictions were even better when separate models
were fitted to each variety (top 4 panels Fig. 2.2). As the varieties were grown
in blocks, the observed effect of variety could also be an effect of management
that is independent of the soil. For example, some parts in Field 2 were not
covered by the irrigation system. Furthermore, varieties associated with parts of
the field with larger variation in soil properties were better predicted by the soil
spectra (see concordance correlation coefficients in Tables 2.1, 2.2). Wetterlind et
al. (2008) found that plant N uptake could only be modelled accurately for fields
that showed a large range in soil organic matter and texture. The fields in this
study are characterized by large variation in soil properties and hence can fulfil this
requirement reference(Figs. S2 and S3).

2.4.2 Precision of soil property predictions from soil spectra

Overall, the predictions for soil properties were good (Fig. 2.4). The reported errors
might be optimistic for some properties because leave-one-out cross validation tends
to over-estimate the accuracy and precision in PLSR (Viscarra Rossel, 2008). The
errors (expressed as root mean squares, RMSEs) proved to be similar to those found
by other investigators: see Viscarra Rossel et al. (2016) for a review of 51 studies
in which soil organic carbon was predicted from reflectance spectra with RMSEs
ranging from 0.1 to 1.1%. However, the comparisons between results from this
study and those reported in the literature need to be viewed with caution because the
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variances depend to some extent on the concentration of the target variable: smaller
concentrations tend to be predicted with smaller errors. For example, Hutengs et al.
(2018) reported RMSEs of 0.14–0.24% for SOC in the range 0.62–2.70%, whereas
those from this study were 0.54% (from the leave-one-out cross validation) for the
range 6.21–20.41%. Soil properties that had larger RMSE in their predictions are not
spectrally active (e.g. S, P and K+). This accords with other studies in which the
prediction of non-spectrally active properties are functions of their correlation with
soil organic matter and particle-size distribution. Predictions for these properties
are hence less robust than SOC and particle-size fractions (Du & Zhou, 2009 and
references therein). See Table S3 in the supplementary material for the correlations
between laboratory reference values.

The numbers of components included in the PLSRs are akin to those reported
in the literature (namely from 3 to 9, Yang & Mouazen, 2007; Wang et al., 2015;
Hutengs et al., 2018). They rarely exceed 12, and they were fewer for soil properties
that have a direct relation to molecular bonds in the MIR (e.g. C and clay). More
components are generally retained for larger sets of spectral data where there are
more pronounced differences in lithology, climate and other soil forming factors–see
for example Dangal et al. (2019) and Lopo et al. (2016). The PLSR loadings from
the first component indicate that the NIR region explains little of the variance and
much less than those in the MIR region. This holds true for both the PLSR models
to predict lettuce diameter and the models to predict soil properties. These findings
accord with the literature. The loadings depend on the soil properties of interest
and are unique for each study; nevertheless, the MIR region generally leads to more
robust calibration than does the NIR (Viscarra Rossel et al., 2006; Yang & Mouazen,
2007).

2.4.3 Can values of soil properties predicted from the
spectral data be used to predict lettuce diameter?

The LMs that related lettuce diameter from predicted soil properties performed
reasonably well (MSE: 4.59 for Field 1 and MSE: 8.99 for Field 2). The prediction
performance of the LM implies that it captures a large amount of the explanatory
power of the IR spectra. However, the PLSR from the soil spectra alone predicted
the lettuce diameter more precisely than did the LMs. It seems that the IR spectra
capture more information about the soil relevant for crop growth than the soil
properties included in the LM. This effect aligns with studies that compare crop
predictions from IR spectra with crop predictions from laboratory reference values,
in which the first outperforms the latter (Börjesson et al., 1999; Wetterlind et al.,
2008).

The predictions from the LMMs (Eq. 2.5) were more precise than those from
the soil spectra (by PLSR alone) with a difference in mean squared error (MSE)
of 21 mm2 for Field 1 and of 51 mm2 for Field 2. This is because the LMMs
account for the spatial structure in the lettuce diameters through the random term
in the model. These results are somewhat misleading because the prediction of each
lettuce relies on its spatial auto-correlation with the other lettuces in the field. In
practice, growers would not be able to predict lettuce size at the beginning of the
season with this model because they would not have these other measurements.
Therefore, although the auto-correlation in the model is the necessary model giving
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the sampling design, it is not of practical use to the grower.

2.4.4 Can soil spectra help growers with management?

This study showed two different ways of using the soil spectra. First, PLSR was
used to predict lettuce diameter directly from the soil spectra. This does not allow
for precise fertiliser or irrigation management as there is no information in how soil
properties affect the lettuce response in the model. However, the predictions could be
of practical use to management when the areas predicted to be high or low-yielding
are consistent over seasons (which may not always be the case, Milne et al., 2012;
Diacono et al., 2013 and references therein; Kindred & Sylvester-Bradley, 2014) or
if the grower has prior knowledge on why some areas are high or low-yielding. In
this case, the management can be adapted based on an understanding of the causes
of poor yields. For example, variable-rate planting or deciding not to crop certain
areas if the soil spectra indicate likely poor yields that will lead to in-field yield
waste. In this particular case, when lettuce are predicted to be less than 0.1 m in
diameter (a size deemed too small by the growers) the grower may choose not to
plant there.

The second approach was to predict lettuce diameter from estimated soil
properties using a LM. Although predictions were poorer than the direct prediction
by using the reflectance spectra, this approach gives growers more information and
so could help them decide how to vary the application of fertiliser and irrigation
within each field. These models are relevant when estimated soil properties are used
for precise fertilization or irrigation. A remaining question is how to predict the
exact amount of each nutrient needed by the crop at each place in the field and when
to apply it (Baveye & Laba, 2015; Kindred et al., 2017). The grower therefore needs
prior knowledge on which soil properties influence crop growth for each specific
part of each field. With this understanding, potential environmental impacts of
farming can be minimised and profits maximised. This can be achieved by either
not planting in low-yielding areas (and therefore no cost of fertiliser, herbicide and
irrigation), or by managing inputs more precisely so that the economic return in
crop response exceeds the amount spent on inputs. The LM and LMM reported
here showed that total N, P, K and pH were significant predictors of lettuce size,
indicating that variable rate application based on these properties could be used
to advantage in lettuce production. Panagapoulos et al. (2006) demonstrated
such an approach by creating “lettuce production capability” maps from kriged
soil properties and identifying localised areas where the soil could be treated to
improve yield. This illustrates the potential utility of predicting the variation of soil
properties from IR spectra for the precision management of lettuce (in particular
fertiliser and management of soil pH).

Soil spectra offer great promise for the precision management of crops but
collecting the soil samples from the field and processing them (i.e. drying and
milling) adds to the expense for a farmer. Therefore in practice, field-based spectral
measurements are likely to be more attractive than spectral measurements made
in the lab. Currently there has been limited exploration of field versus lab-based
prediction errors with portable MIR spectrometers for soil properties other than
soil carbon constituents (Ji et al., 2016a; Hutengs et al., 2019). Differences between
field and lab-based MIR predictions range from 0 to 45% whereas the increase in
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error associated with VNIR techniques is reported to be as much as 57% (Ji et al.,
2016a; Hutengs et al., 2019). Field based prediction for pH, organic matter and
total nitrogen have been explored using (V)NIR with increases in prediction error
of 14%, 27% and 22% compared to lab-based spectral measurements, respectively
(Ji et al., 2016b). Most of the few existing studies on macro nutrient prediction
using portable (V)NIR/MIR spectroscopy show limited success (Wenjun et al.,
2014; Ji et al., 2016a). Poor prediction performance is commonly attributed to
the absence of distinct features in the IR spectrum and varying relationships
between total and available element content (Kuang et al., 2012; Pätzoldt et al.,
2019). Consequently, the prediction models for available major and trace nutrients
from soil spectra often prove to be less robust than those developed for particle
size fractions and soil organic carbon. An exception is the study by Mouazen &
Kuang (2016) with an 18% error increase for field-based soil available P predictions
compared to predictions from spectra measured in the laboratory. These accurate
predictions can probably be attributed to the large number of calibration samples
used by the authors. Given that the linear models showed K and P to be important
predictors of lettuce diameter, and that most studies show poor prediction of these
variables from field-based measurements, further development of sensor technology
is required for field-based measurements to be of practical use for this study’s
methodology.

In the study reported here, properties of 30 samples from each field were
measured by wet chemistry and the values were used to calibrate the models.
Samples of this size are more than a commercial grower could expect to take in
fields of 10.5 and 18.2 ha. In practice, there will be a trade-off between the number
of calibration samples, with their associated costs, and accuracy of the prediction.
Optimization of the sampling design, sample processing and the number of replicate
measurements are examples of other factors that affect the accuracy. Optimization
of sampling design depends not only on the sizes of samples to provide reference
data but also on good coverage of the conditions within the field (Ramirez-Lopez et
al., 2019 and references therein) or parent material (Sila et al., 2016). Once errors in
soil predictions have been properly estimated these must be propagated through to
the predictions of crop response. Only when these are properly accounted for could
one estimate the true value of measuring the soil spectra for precision application
of fertiliser and irrigation (Ramirez-Lopez et al., 2019).

Thus, the relevance of using the soil spectra directly or via estimated soil
properties will depend on the situation. This study showed that under optimal
conditions, there is potential for associating crop response to soil reflectance
spectra. This association can be made directly from the soil reflectance spectra or
by a regression that uses soil property values estimated by reflectance spectra.

2.5 Conclusions

Reflectance spectra from soil in the near- and mid-infrared range were related to
the diameters of lettuce grown in two fields in the Fenland region of England. They
led to reasonably precise predictions of lettuce diameter and therefore are of value
to the grower. The partial least squares regression (PLSR) that used soil spectra as
response variables showed a mean squared error (MSE) of 39 mm2 for Field 1 and
68.7 mm2 for Field 2. Predictions of lettuce diameter that used linear models with
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the PLSR estimated soil properties gave somewhat poorer results, with a difference
in MSE for Field 1: 6.9 mm2 and Field 2: 21.2 mm2). Predictions from the linear
mixed models were more precise than those from the raw spectra (by PLSR alone)
with a difference in MSE of 21.2 mm2 for Field 1 and of 51 mm2 for Field 2.

The spectra were related strongly to soil properties that determine crop growth,
specifically, nitrogen (measured as total N), available phosphorus (P), exchangeable
potassium (K+), clay content and pH. Using the values of the soil properties
estimated from the reflectance spectra to predict the sizes of the lettuce was
somewhat less precise than direct prediction from the spectra. The advantage to
the grower of the indirect prediction is the gain in knowledge about which soil
properties are important. This enables the grower to adapt the management to the
soil. Precise indirect prediction is only feasible with a suitable calibration dataset
that captures the variability of the underlying soil.
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Chapter 3

Quantifying uncertainty from
reducing field-scale calibration
effort



Abstract

The prediction accuracy of soil properties by proximal soil sensing has made
their application more practical. However, in order to gain sufficient accuracy,
samples are typically air-dried and milled before spectral measurements are made.
Calibration of the spectra is usually achieved by making wet chemistry measurements
on a subset of the field samples and local regression models fitted to aid subsequent
prediction. Both sample handling and wet chemistry can be labour and resource
intensive. We consider two approaches to reduce these expenses for predictions
made from visible-near-infrared ((V)NIR), mid-infrared (MIR) spectra and their
combination. First, we considered reducing the level of processing of the samples by
comparing the effect of different sample conditions (in-situ, unprocessed, air-dried
and milled). Second, we explored the use of existing spectral libraries to inform
calibrations (based on milled samples from the UK National Soil Inventory) with
and without ‘spiking ’ the spectral libraries with a small subset of samples from the
study fields. Prediction accuracy of soil organic carbon, pH, clay, available P and
K for each of these approaches was evaluated on samples from agricultural fields in
the UK.

Available P and K could only be moderately predicted with the field-scale dataset
where samples were milled. Therefore this study found no evidence to suggest
that there is scope to reduce costs associated with sample processing or field-scale
calibration for available P and K. However, the results showed that there is potential
to reduce time and cost implications of using (V)NIR and MIR spectra to predict
soil organic carbon, clay and pH. Compared to field-scale calibrations from milled
samples, we found that reduced sample processing lowered the ratio of performance
to inter-quartile range (RPIQ) between 0% and 76%. The use of spectral libraries
reduced the RPIQ of predictions relative to field-scale calibrations from milled
samples between 54% and 82% and the RPIQ was reduced between 29% and 70%
for predictions when spectral libraries were spiked. The increase in uncertainty was
specific to the combination of soil property and sensor analysed. We conclude that
there is always a trade-off between prediction accuracy and the costs associated with
soil sampling, sample processing and wet chemical analysis. Therefore the relative
merits of each approach will depend on the specific case in question.

Based on:
Breure, T.S., Prout, J.M., Haefele, S.M., Milne, A.E., Hannam, J.A., Moreno-Rojas,
S., Corstanje, R., 2021. Comparing the effect of different sample conditions and
spectral libraries on the prediction accuracy of soil properties from near- and
mid-infrared spectra at the field-scale. Soil & Tillage – Accepted
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3.1 Introduction

Farmers are interested in the spatial variation of soil properties because this
helps them explain the variation in crop performance and so infer appropriate
interventions. Mapping subfield soil variation in the traditional manner (i.e.
analysed by wet chemistry analysis) is usually deemed too expensive to obtain the
accuracy required for precision agriculture (Muhammed et al., 2017). Improvements
in technology, mean proximal and remote soil sensing (for example using visible
(V), near-infrared (NIR) and mid-infrared (MIR) spectroscopy) now offers an
alternative and less resource demanding approach to predict soil variation than
measurements based on wet chemistry (Viscarra Rossel & Bouma, 2016). Due to
the reduced labour and monetary inputs, soil spectroscopy can be implemented at
finer sampling scales than traditional sampling. For example, at a 10-m scale, which
is reported to be necessary to characterise spatial and temporal soil variability for
site-specific management (McBratney et al., 1996). Despite the practical advantages
of using soil spectral measurements over wet chemistry, issues of efficiency still
need to be addressed before wide-scale adoption is practical (Reeves, 2010). These
largely relate to reducing sample processing and using spectral libraries to minimise
resource input under the constraint that to be practically useful, however, they
should maintain accuracy near to that of laboratory methods (Viscarra Rossel &
McBratney, 1998).

The common methodology of soil preparation before the measurement of soil
reflectance spectra includes air-drying and sieving (<2 mm) and for MIR milling
(<100 µm). Minimizing the sample processing can reduce the accuracy in the soil
property predictions due to effects of particle-size, aggregation and water content on
spectroscopy measurements. A number of studies have researched these effects for
(V)NIR/MIR soil spectroscopy. For example, studies analysed the effect of different
particle sizes (Nduwamungu et al., 2009; Le Guillou et al., 2015; Coutinho et al.,
2019; Wijewardane et al., 2020), soil water content (Bogrekci & Lee, 2006; Minasny
et al., 2011; Ji et al., 2015) and in-field (V)NIR measurements (Stevens et al., 2008;
Gras et al., 2014) on soil spectroscopy predictions.

Within the soil IR spectroscopy discipline, there have been efforts to develop
spectral libraries (a point-dataset with paired reflectance and wet chemistry
measurements) at local, regional, continental (Shepherd & Walsh, 2002; Viscarra
Rossel & Webster, 2012; Stevens et al., 2013) and even global scales (Viscarra
Rossel et al., 2016). Where traditional soil survey data already exists, creating a
spectral library has the potential to minimise the effort of developing field-scale
calibrations.

Ideally, existing literature would be consulted to infer a quantified effect on
prediction accuracy of using either reduced sample processing or spectral libraries to
minimize calibration expenses. However, comparison across literature is hampered
by differences in case-study characteristics (e.g. overall variance of soil properties
and their counterparts in the calibration and validation set) and methods (e.g.
number of samples with wet chemistry used in the calibration, chemometric models
considered, (cross-)validation techniques used etc.). For example, due to increased
availability of portable MIR spectrometers, recent studies have explored the accuracy
of in-situ MIR measurements. However, the comparison between these studies is not
straightforward as there are differences in the number of replicate measurements
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taken (Webster et al., 2016; Hutengs et al., 2019), whether or not in-situ means
<2 mm sieved soils (Webster et al., 2016), the MIR spectrometer may be different
(Dhawale et al., 2015; Ji et al., 2016; Webster et al., 2016) and the range of wave
numbers captured can vary (Dhawale et al., 2015; Ji et al. 2016).

Prediction accuracy from spectral libraries at a local-scale have also been shown
to be affected by different instruments or laboratory conditions, under-representation
of the local soil type and differences in lithology, climate and other soil forming
factors (Wetterlind & Stenberg, 2010; Ge et al., 2011; Guerrero et al., 2014). To
overcome some of the limitations of using spectral libraries, Brown (2007) developed
an approach to compute adequate models for new local target sites by adding local
samples to a spectral library, which has been described as ‘spiking’ (Viscarra Rossel
et al., 2009). Spiking has been shown to improve prediction accuracy (Guerrero et
al., 2010; ; Wetterlind & Stenberg, 2010; Guerrero et al., 2014; Guerrero et al., 2016;
Seidel et al., 2019)

We are unaware of any previous research that examined the effects of in-situ
sensing, particle size variation, aggregation and soil water content on spectral
measurements for both (V)NIR and MIR spectroscopic predictions within a single
study. Furthermore, contrasting the effect on prediction accuracy of reduced
sample processing with that of spectral libraries on a single dataset will advance
our understanding of when one approach could be preferable over the other. To
that end, we explored the following questions:

• What is the difference in accuracy between soil property predictions from
(V)NIR, MIR and (V)NIRMIR spectroscopy measurements taken on in-situ,
unprocessed (i.e. fresh), air-dried or milled soil samples?

• If we were to use a spectral library rather than a field-scale calibration, does
subset selection from a national spectral library by region or pedological
characteristics minimise the prediction error?

• What can we learn from these findings to determine the best way in which to
reduce laboratory, sampling preparation and handling efforts whilst minimising
the loss in prediction accuracy?

3.2 Methods

Using soil samples from four fields within the Cambridgeshire fens in the UK, we
evaluated two approaches for reducing the expense associated with soil variable
predictions made from visible-near-infrared ((V)NIR), mid-infrared (MIR) spectra
and their combination. The first considers reducing effort related to sample
processing (Fig. 3.1 A) and the second by using regional and stratified soil spectral
libraries (with and without spiking) (Fig. 3.1 B). The sample processing steps
ranged from standard laboratory processing of soil for spectral analyses (air-dried,
sieved and milled) to a gradual reduction of the laboratory processing effort
(removing milling, sieving and air-drying) to taking spectral measurements in the
field without sample processing. Wet chemistry was conducted on the field-scale
dataset, which was then split into calibration (75%) and validation (25%) subsets.
For the reduced sample processing analysis, the calibration samples were used to
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Figure 3.1: A schematic showing two strategies to reduce the effort required to make predictions about soil properties from
visible-near-infrared ((V)NIR) and mid-infrared (MIR) reflectance spectra. The first is to reduce the processing of the soil samples
used for calibration and those used for prediction (in-situ, unprocessed and air-dried). The second uses soil spectra from a National Soil
Inventory (NSI). In this case the soils for prediction must be air-dried, sieved and milled to accord with those from the NSI. They can
be chosen according to how representative they are, in this study based on geographic location (Regional library) or soil type (Stratified
library). In both cases we also consider “spiking” the library set with soils from the field-scale dataset for which we wish to predict soil
properties. PLSR stands for partial-least squares regression, the method of regression used in this study. LOOCV stands for leave-one-out
cross-validation, the procedure used in this study to select the final model for prediction.
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develop regression models between the measured soil properties and the spectra for
each processing method.

We used two methods to subset a national soil inventory (NSI) into spectral
libraries. Samples were selected i.) in close geographical extent to the field-scale
dataset (the regional library) and ii.) by the two soil types found at the field site
(the stratified library). Representative samples from the field-scale calibration
subset were selected to spike the regional and stratified libraries. Regression models
were developed for the regional and stratified libraries (and spiked versions). All
prediction models were applied to the field-scale validation subset and model
accuracies computed. Details of data collection, processing and analysis of the
various datasets are presented below.

3.2.1 Formation of spectral libraries

Field-scale dataset

The four experimental fields used in this study make up the field-scale dataset and
are located within the Cambridgeshire fens, south-east of England (UK). The fens
contain complex soils which are a combination of peat with underlying alluvial and
marine silts that became elevated features in the landscape due to lowering of the
peat surface by oxidation and wind erosion (Hodge et al., 1984). The two soil types
present are classified according to the World Reference Base taxonomy as a drainic
sapric Histosol (dr sa HS) and a mollic Gleysol (mo GL) (IUSS Working Group WRB
2015). Field 1, covering 8.2 ha, with British National Grid reference: TL607880, lies
adjacent to Field 2 which covers 16.9 ha. Field 3 lies 8.3 km south-west, covering
5.1 ha and Field 4 lies 7.5 km south of Field 1 and Field 2, covering 8.9 ha. Three
soil cores of topsoil (0–25 cm) were taken within a 0.5 m × 0.5 m quadrat at 25
sampling locations in each field. The fields were sown with lettuce which do not
have a substantial root system, and any previous thatch layer was mixed in by
tillage. For each sampling location, the three soil cores were bulked and mixed for
laboratory analysis and spectral study, described in detail below (see also Breure
et al., 2020). Direct spectral measurements of the soil surface were also taken at
the sample locations in each field. Given the restricted number of samples for each
field, we considered them as a single dataset. Since three locations had incomplete
measurements we continued the analysis with a field-scale dataset where n = 97.

Spectral library subsetting

We formed two spectral libraries. The samples that make up the two spectral
libraries are a subset of the National Soil Inventory (NSI) dataset of England and
Wales (McGrath & Loveland, 1992). The topsoil samples (0–15 cm) were taken as
part of a 5 km × 5 km grid-based soil survey from 1979–1983. A full description of
the survey methods, analytical methods and available data is given in the LandIS
database (www.landis.org.uk; Proctor et al., 1998).
The two spectral libraries were selected according to two different methodologies,
and we refer to these as the regional library and stratified library (Fig. 3.2):
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Figure 3.2: A.) National Soil Inventory (NSI) samples selected with the regional
approach overlaid on the SoilScapes (1:250.000) dataset with the centroids of the
study fields, B.) NSI samples selected with the stratification approach, overlaid on
the SoilScapes polygons of the two major soil types that occur in the study fields.

i. Regional library Based on the SoilScapes dataset (1:250,000 scale) (Farewell
et al., 2011) a regional grid was selected around the case study area. We
classified our field-scale dataset by two soil type descriptions: ‘Fen peat soils’
and ‘Loamy and sandy soils with high groundwater and a peaty surface’. We
placed the regional grid such that it was centred around these two soil types
within our case-study area and encompassed the fields sampled (Fig. 3.2A).
The grid size was 65 by 55 km. The furthest distance from a field to a grid
node was 68 km and the closest distance 4.5 km. The total number of samples
was 159.

ii. Stratified library The NSI dataset was stratified by the two dominant soil
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types found within the case-study area using the SoilScapes dataset. We
extracted all of the NSI samples where the centroid of the cell they represent lay
within either a ‘Fen peat soil’ or ‘Loamy and sandy soils with high groundwater
and a peaty surface’ polygon (Fig. 3.2B). The total number of samples was
109.

3.2.2 Sample air-drying, sieving and milling

The soil samples for the field-scale dataset were air-dried for 7 days, aggregates were
crushed in a roller mill and passed through a <2 mm sieve. The samples were then
placed in a stainless steel cup together with a disk and milled for 35 seconds at
960 rotations per minute in a TEMA Machinery Ltd mill to a powder (<100 µm)
(Northants, UK).

The soil samples of the NSI, which we used to make spectroscopy measurements,
were stored as a powder (<100 µm) in plastic sample bottles in the Rothamsted
archive.

3.2.3 Wet chemistry analysis

The following laboratory methods were used for the samples from the field-scale
dataset. Total carbon (C) (%) was determined by combustion (Dumas method)
using an elemental analyser by LECO (TruMac Combustion Analyser, Michigan
USA). Total C was assumed to represent total organic C as these soil types are
unlikely to contain substantial amounts of carbonates. Available potassium (K) (mg
kg−1) was determined by ammonium nitrate extraction and Inductively Coupled
Plasma–Optical Emission Spectrometer (ICP–OES) (MAFF, 1986). Available
phosphorus (P) (mg kg−1) was measured by the standard Olsen method (Olsen et
al., 1954). The pH was measured in a 1:2.5 ratio of H2O. Particle-size fractions (%)
were determined by laser diffraction (Breure et al., 2021a).

For the NSI the values held in LandIS for the first sampling of the NSI were
used. The laboratory methods for the soil properties of interest were measured
as follows: Organic carbon (%) by loss-on-ignition for soils that were estimated
to contain more than 20% organic carbon (Avery & Bascomb, 1982), otherwise
by dichromate digestion (Kalembasa & Jenkinson, 1973). Extraction methods
for extractable potassium (K) and phosphorus (P) were standardized by their
volume rather than their weight (MAFF, 1988). Extractable K (mg L−1 of soil)
was determined from a filtered ammonium nitrate extract with flame photometry
(MAFF, 1986). Extractable P (mg L−1) by the standard Olsen method. Soil pH
was measured in a 1:2.5 ratio of H2O. Clay content (% < 2 µm) was measured
using the pipette method on < 2 mm mineral (peroxide-treated) soil (for further
details see McGrath & Loveland, 1992).

3.2.4 Spectroscopy

(V)NIR measurements

Whereas spectroscopy measurements for the NSI dataset were taken only on milled
samples (as this is the condition of the available stored samples in the NSI),
the spectroscopy measurements for the field-scale dataset were taken on in-situ,
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unprocessed, air-dried and milled samples (Fig. 3.1). The VNIR spectra from
in-situ, unprocessed, and air-dried samples were taken using an ASD FieldSpec
4 spectrometer (Malvern Panalytical Inc., Westborough USA) in the range of
350–2500 nm with a resolution of 3 nm at 700 nm and 10 nm at 1400- and 2100 nm.
In-situ measurements were taken with the ASD contact probe after we removed
the rubber o-ring and placed a Prolene Thin Film (Chemplex Industries Inc.,
Florida USA) across the glass sampling interface to avoid contamination. In-situ
measurements were taken where the top-soil appeared dry and we placed the ASD
contact probe on the soil surface, ensuring good contact, without plant residues or
stones to take spectral measurements. In-situ measurements were taken at three
different locations within the 0.5 m × 0.5 m quadrat used for soil sampling. The
measurements on unprocessed samples were taken on the fresh bulked sample,
before air-drying, sieving and milling.

These samples were placed within a petri-dish and measured with the ASD
contact probe. The fresh, unprocessed, bulked samples did not show aggregation
and were rather moldable due to their high volumetric water content (ranging from
20–45%), resulting in a relatively smooth surface once the sensor was placed on the
sample due to compression. Replicates were taken at three different locations within
the petri-dish. The measurements on the air-dried samples were performed on the
bulked samples before sieving and milling. The bulked sample varied from aggregates
that were approximately 5 cm in width to aggregates reduced to powdery soil, the
stone content was negligible. A subsample was (re)poured in triplicate into a glass
vial and measured with the ASD Muglight. The milled soil samples were pressed
into a small well in replicates of three (6 mm across and approximately 1 mm deep)
and placed in a Tensor II spectrometer (Bruker scientific, Ettlingen Germany) in the
AfSIS spectral laboratory at Rothamsted Research. Its absorbance spectrum in the
range 9997–3999 cm−1 (1000–2500 nm), i.e. the near infrared (NIR), was measured
with a resolution of 4 cm−1 (1 nm). The reflectance, R of the ASD FieldSpec4 was
transformed to optical density (i.e. absorbance, A) as A = log10(1/R) to align with
the Tensor II measurements. All triplicate measurements were averaged.

The samples from the NSI database were also measured using the Tensor II
instrument, spectroscopy measurements were taken on two aliquots of the sample
and were averaged.

MIR measurements

We took in-situ, unprocessed and air-dried MIR measurements using the Agilent
4300 FTIR spectrometer (Agilent Technologies, Santa Clara USA) in the range of
4000–650 cm−1 (2500–15 385 nm) with a resolution of 4–16 cm−1 (15–62 nm). The
in-situ MIR measurements were taken at the same locations as the in-situ VNIR
measurements. Equally to the (V)NIR measurements, the MIR measurements for
the unprocessed and air-dried samples were taken within a petri-dish and replicate
measurements were taken at three different locations. For the milled soil samples,
each sub-sample’s mid infrared (MIR) spectrum in the range 4000–600 cm−1

(2500–16 666 nm) was recorded on the Tensor II with a resolution of 4 cm−1

(16.6 nm). The same well plates with soil aliquots prepared for NIR measurements
were used by switching the light source on the Tensor II to MIR. The procedure
was repeated for the measurements on the NSI samples.
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Spectral pre-processing

All spectra were smoothed to remove noise using the Savitzky–Golay filter
(Savitzky & Golay, 1964) with a third-order polynomial in a moving window of 11.
Subsequently, all spectra have been transformed to their standard normal variate
and were subject to 1st order derivatization. The derivatives for the (V)NIR spectra
were computed with a filter length of 11 (i.e. the spacing between points over
which the derivative is computed), a segment size of 31 (i.e. the range over which
the points are averaged). Subsequently, two column regions in the (V)NIR spectra
were removed as these correspond to moisture absorption bands: (7900–6849 cm−1)
and (5587–5102 cm−1), respectively (Bowers & Hanks, 1965). For the MIR spectra,
we used a filter length of 11 and a segment size of 8. The atmospheric CO2 bands
were removed in the region 2430–2260 cm−1 for the MIR spectra (Sandford &
Allamandola, 1990).

3.2.5 Data-subsetting and selection of spiking subset

The field-scale dataset was split into a dataset for calibration (75%) and validation
(25%). We followed the standard procedure were samples are selected to span the
range of soil variation anticipated across the samples. This was done using the
Kennard-Stone sampling algorithm on the euclidean distance of the 1st derivative
(V)NIRMIR spectra from milled samples, to select a subset of 75% that represented
the field-scale dataset spectrally (Kennard & Stone, 1969).

The spiking methodology comprised two main steps. Firstly, we took 10% of
our milled calibration field-scale dataset as a spiking subset (n = 7). Again these
were chosen by Kennard-Stone sampling. Second, we applied additional weighting
to the spiking subset when we regressed the spectra to laboratory reference values.
Weighting was applied by adding the spiking subset m times, where m was the ratio
between the size of the spectral library and the spiking subset (Table 3.2) (Guerrero
et al., 2014).

3.2.6 Partial least squares regression and model validation

Partial least squares methods were used to regress the absorbance measurements
against the wet chemistry reference values. The partial least squares (kernel)
algorithm selects orthogonal components that maximize the covariance between the
predictor (spectral matrix) and the response (wet chemistry data). We performed
a leave-one-out cross validation with the calibration dataset to gain the root
mean squared error (RMSE). To avoid over fitting we allowed our models to
have a maximum of fifteen components. The number of components retained was
equal to the model that gave the lowest RMSE in the cross-validation. For more
robust comparison across literature studies, we additionally include the ratio of
performance to inter-quartile range (RPIQ). This method provides a standardized
metric using the inter-quartile range of the observed data and is recommended by
Bellon-Maurel et al. (2010) as suitable for IR spectroscopy predictions on skewed
response variables. It is described by:

RPIQ =
qyi (3)− qyi (1)√∑

(yi−ŷi)2
N

(3.1)
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where y and ŷ are the observed and predicted data for the ith observation, N the
total number of samples, qyi(3) the 3rd- and qyi(1) the 1st-quantile of the observed
data. We further computed the prediction bias as the mean of (y − ŷ).

The predictions from different sample conditions and those from spectral libraries
were then evaluated on the field-scale validation set. PLSR residuals of the spectral
libraries were evaluated for each individual model to assess for the presence of
outliers in the spectral library due to subsetting of the NSI by stratification or
region. After evaluating the PLSR standardized residuals from the spectral libraries
(both with and without spiking) for each soil property, we removed data points
that we considered to be outliers. Cut-off values of −3 and 3 for the standardized
residuals were used to remove observations.

3.2.7 Model-averaging of PLSR predictions and their
evaluation

Combining predictions from multiple sensors can lead to better accuracy. The PLSR
predictions from (V)NIR, MIR matrices for each property were used for an ordinary
least squares (OLS) multiple regression, known as the Granger–Ramanathan
averaging method (Granger & Ramanathan, 1984). The OLS regression in its
general form is:

Y = w0 + w1z1 + · · ·+ wkzk , (3.2)

where Y is a vector of random observed values, z is a vector of PLS predictions, the
wi, i = 1, 2, . . . , k, are weighting coefficients of the k individual predictors included in
the regression. This equation was solved for the intercept (w0) and the k coefficients
for each of the spectral matrix combinations (z). The intercepts correct for bias if
one of the individual predictors is biased.

To evaluate predictions from in-situ, unprocessed, air-dried and milled samples,
we compared models from (V)NIR, MIR and their model average (V)NIRMIR. Since
model-averaging gave consistent equal- or improved predictions from milled samples,
we evaluated the spectral library predictions on the model averaged (V)NIRMIR
predictions only.

Analysis was done using the following R packages: spectral processing
using prospectr (Stevens & Ramirez-Lopez, 2013) and partial least squares
regression using pls (Bjørn-Helge et al., 2019). Kennard-Stone sampling using
resemble (Ramirez-Lopez & Stevens, 2016), Granger–Ramanathan averaging
using GeomComb (Weiss & Roetzer, 2016). Graphics were created with ggplot2
(Wickham, 2016) and maps using QGIS3 (QGIS development team, 2019).

3.3 Results & discussion

3.3.1 The selection of representative samples for calibration

Soil spectroscopy is applied under the assumption that the calibration dataset
is representative of the target population. It is therefore important that the
calibration set spans the range of wet chemistry values in the validation dataset.
This was the case for all of the soil properties we considered except for available P
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and K, which had a slightly lower minimum in the validation data compared to the
calibration data (Table 3.1).

Table 3.1: Summary statistics of the field-scale dataset that was used to regress
laboratory reference values to soil spectra with partial least squares methods.
Kennard-stone sampling was performed on the combined (V)NIRMIR spectra to
select 75% of the samples for calibration and 25% for validation (see method section
2.5)

Dataset Property n Mean Median Std dev. Min Max Range Skew

Organic C/g kg−1 12.99 12.94 3.44 6.26 20.41 14.15 −0.02

F
ie

ld
-s

c
a
le

pH

97

7.31 7.48 0.46 5.37 7.77 2.40 −2.29

Clay/% 35.80 36.57 4.69 22.70 44.63 21.94 −0.38

P/mg kg−1 46.17 44.65 12.28 25.32 86.70 61.38 0.72

K/mg kg−1 283.34 278.93 120.41 86.65 705.22 618.57 0.86

Organic C/g kg−1 13.06 13.15 3.43 6.26 20.41 14.15 −0.04

C
a
li
b

ra
ti

o
n pH

73

7.32 7.49 0.46 5.37 7.74 2.37 −2.41

Clay/% 35.59 36.19 4.74 22.70 44.63 21.94 −0.46

P/mg kg−1 47.42 45.83 13.15 27.12 86.70 59.58 0.68

K/mg kg−1 289.46 274.93 125.87 91.97 705.22 613.25 0.97

Organic C/g kg−1 12.79 12.45 3.54 6.58 18.08 11.50 0.05

V
a
li
d

a
ti

o
n pH

24

7.27 7.45 0.47 5.68 7.77 2.09 −1.84

Clay/% 36.46 37.26 4.55 30.14 44.38 14.24 −0.07

P/mg kg−1 42.34 44.22 8.25 25.32 54.20 28.88 −0.77

K/mg kg−1 284.94 298.82 104.40 86.65 513.25 426.60 0.14

The spectral libraries subsetted from the NSI captured the range of wet
chemistry data in the field-scale dataset (Table 3.1 and Table 3.2). However, for
all soil properties the distribution differed between the field-scale dataset and the
spectral libraries. The spiking subset selected by the Kennard-Stone algorithm
encompassed the complete range of the calibration dataset for organic carbon only.
A comparable, but incomplete, range was selected for clay, available P and K
(Table 3.1 and Table 3.2). The pH distribution was not well captured in the spiking
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subset, with a range of 0.81 in the spiking subset compared to the range of 2.37 in
the calibration dataset.

Table 3.2: Summary statistics of the spiking subset and the spectral libraries used to
regress laboratory reference values to soil spectra with partial least squares methods

Dataset Property n m Mean Median Std dev. Min Max Range Skew

Organic C/g kg−1 13.39 15.29 5.07 6.26 20.41 14.15 −0.15

S
p

ik
in

g

pH

7 -

7.41 7.51 0.27 6.82 7.63 0.81 −1.32

Clay/% 33.90 36.66 6.90 22.70 40.04 17.34 −0.63

P/mg kg−1 49.27 42.30 20.38 28.35 86.70 58.35 −1.11

K/mg kg−1 295.82 262.77 190.39 115.41 690.04 574.63 1.08

R
e
g
io

n
a
l

li
b

ra
ry

Organic C/g kg−1 158 22 5.83 2.80 7.24 0.70 56.40 55.70 3.28

pH 158 22 7.20 7.50 0.74 4.60 8.20 3.60 −1.34

Clay/% 127 18 30.76 28.70 14.59 3.00 73.20 70.20 0.36

P/mg kg−1 158 22 37.12 30.50 26.74 4.00 162.00 158.00 1.94

K/mg kg−1 158 22 335.04 305.00 261.13 28.00 2776.00 2748.00 5.23

S
tr

a
ti

fi
e
d

li
b

ra
ry

Organic C/g kg−1 109 15 12.19 9.20 10.29 0.70 56.40 55.70 1.59

pH 108 15 6.53 6.90 1.12 3.60 8.00 4.40 −0.74

Clay/% 62 8 29.28 26.50 16.26 3.00 73.20 70.20 0.36

P/mg kg−1 108 15 31.91 29.00 20.91 2.00 120.00 118.00 1.33

K/mg kg−1 108 15 249.09 205.00 182.47 21.00 1066.00 1045.00 1.46

3.3.2 The effect of sample processing on soil property
prediction accuracy using (V)NIR, MIR and
(V)NIRMIR

As expected, the effort of sample processing and homogenisation, i.e. air-drying and
milling, led to the best predictions in all soil properties. The RPIQ values for organic
carbon, clay and pH predictions from milled samples compare favourably to existing
literature (Figs. 3.3–3.5). For example, several studies list RPIQ values that range
from: 2.49–3.6 for organic carbon, 1.55–2.25 for pH and 3.88–6.4 for clay (Nocita et
al., 2014; Terra et al., 2015; Clairotte et al., 2016; Hermansen et al., 2016; O’Rourke
et al., 2016). We note that most of the studies listed predicted soil properties at
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a different geographical scale, hence comparison needs to be viewed with caution.
Although the RPIQ metric allows for better comparison, variances are dependent
on the concentration of the target variable which in turn depends on geographical
extent and soil variation present. Available P and K could be moderately predicted
only under milled sample conditions (Fig. 3.6 and Fig. 3.7).

Figure 3.3: Predicted versus measured organic carbon by partial least squares
regression under different soil conditions (in-situ, unprocessed, air-dried and milled)
for (V)NIR, MIR, and (V)NIRMIR. RMSE: root mean squared error, RPIQ: ratio
of performance to inter-quartile range. Prediction models for the top three rows
are based on spectra made by handheld spectrometers whereas the models in the
bottom row are based on benchtop spectrometer data (details in method section
2.4).

Contrasting (V)NIR, MIR and (V)NIRMIR predictions

Model-averaged (V)NIRMIR led in most cases to either equal or consistent, albeit
small, improvement in predictions compared to (V)NIR and MIR predictions by
themselves (Figs. 3.3–3.7). The limited benefit of (V)NIRMIR compared to MIR
for milled samples has been previously observed by Clairotte et al. (2016) in
their study on soil organic carbon. Our results indicated that model-averaging did
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Figure 3.4: Predicted versus measured clay by partial least squares regression under
different soil conditions (in-situ, unprocessed, air-dried and milled) for (V)NIR, MIR,
and (V)NIRMIR. RMSE: root mean squared error, RPIQ: ratio of performance to
inter-quartile range. Prediction models for the top three rows are based on spectra
made by handheld spectrometers whereas the models in the bottom row are based
on benchtop spectrometer data (details in method section 2.4).

improve accuracy for organic carbon predictions from in-situ and air-dried samples
in particular (Fig. 3.3). Granger-Ramanathan averaging ensured in most cases that
the (V)NIRMIR predictions were more accurate or comparable compared to the
best predictions of either (V)NIR or MIR, this has also been shown in other studies
(O’Rourke et al., 2016). We further note that model-averaging improved prediction
by reducing bias, demonstrated in our study for available K predictions from milled
samples (Fig. 3.7).

For in-situ and milled sample conditions, predictions of organic carbon, pH
and clay based on MIR measurements outperformed (V)NIR predictions. (V)NIR
predictions of organic carbon, pH and clay outperformed those from MIR for
unprocessed or air-dried conditions (Fig. 3.3, Fig. 3.4, Fig. 3.5). Over all four
sample conditions, predictions from milled samples did not always guarantee the
best accuracy. (V)NIR predictions from air-dried samples of pH were equal to the
most accurate predictions from milled samples (RPIQ = 2.6 for both). Clay, pH
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Figure 3.5: Predicted versus measured pH by partial least squares regression under
different soil conditions (in-situ, unprocessed, air-dried and milled) for (V)NIR, MIR,
and (V)NIRMIR. RMSE: root mean squared error, RPIQ: ratio of performance to
inter-quartile range. Prediction models for the top three rows are based on spectra
made by handheld spectrometers whereas the models in the bottom row are based
on benchtop spectrometer data (details in method section 2.4).

and organic carbon predictions from air-dried samples outperformed those from
milled samples for the (V)NIR range only (Figs. 3.3–3.5).

Nduwamungu et al. (2009) did not find improvements in predictions from <2 mm
soil samples for the NIR range. Both Le Guillou et al., (2015) and Wijewardane et
al. (2020) reported that predictions from fine ground samples always outperformed
those from non-fine ground for the MIR region. Results in this study align with
the literature. For the (V)NIR range, milling did not strictly show improvement in
predictions. However, milling always led to the most accurate predictions from MIR
spectra.

Spectrometer differences and sample heterogeneity

Observed differences in prediction accuracy cannot be solely attributed to sample
conditions because the spectra from handheld spectrometers are not directly
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Figure 3.6: Predicted versus measured available P by partial least squares regression
under different soil conditions (in-situ, unprocessed, air-dried and milled) for
(V)NIR, MIR, and (V)NIRMIR. RMSE: root mean squared error, RPIQ: ratio of
performance to inter-quartile range. Prediction models for the top three rows are
based on spectra made by handheld spectrometers whereas the models in the bottom
row are based on benchtop spectrometer data (details in method section 2.4).

comparable to those measured by benchtop spectrometers.
MIR predictions from in-situ, unprocessed and air-dried samples underperformed

compared to MIR predictions from milled samples. This can be explained in part by
the small support size of the FTIR 4300 sampling interface (2–3 mm), which results
in problems to scan a representative area of the soil sample (Reeves 2010). Ji et al.
(2016) found that small-scale soil heterogeneity and electrical noise contributed up
to 50% of the total prediction error of soil properties in their in-situ MIR study.
Hutengs et al. (2018) found that the MIR portable spectrometer used in this study
measured spectra with the same accuracy as a DRIFT benchtop spectrometers
(equivalent to the Tensor II in this study) for milled samples, particularly when
replicate measurements with the handheld instrument were taken at different
locations to account for the small support size of the sampling interface.

For the (V)NIR spectra, predictions of organic carbon and pH from air-dried
samples outperformed those from milled samples. Several studies reported that
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Figure 3.7: Predicted versus measured available K by partial least squares regression
under different soil conditions (in-situ, unprocessed, air-dried and milled) for
(V)NIR, MIR, and (V)NIRMIR. RMSE: root mean squared error, RPIQ: ratio of
performance to inter-quartile range. Prediction models for the top three rows are
based on spectra made by handheld spectrometers whereas the models in the bottom
row are based on benchtop spectrometer data (details in method section 2.4).

(V)NIR predictions within the field outperformed those under lab conditions
(Stevens et al., 2008; Gras et al., 2014). Stevens et al. (2008) explain their results
are due to the dryness of the soil, soil roughness and vegetation cover associated
with their in-situ measurements. Spectral processing to mitigate confounding
effects is also mentioned as a potential contributing factor to good predictions
from in-situ reflectance measurements. Although the benchtop spectrometer
used to collect milled (V)NIR spectra has a reduced wavelength range (excluding
the VIS region), no large differences between benchtop and laboratory (V)NIR
spectrometers have been reported when compared on the same sample conditions
(Hodge & Sudduth 2012; Knadel et al., 2013; Lopo et al., 2016). However, the
usefulness of the VIS region, particularly for organic matter predictions, has been
pointed out in multiple studies (Fystro et al. 2002; Islam et al., 2003). Conversely,
Chang et al. (2001) and Dunn et al. (2002) reported poor predictions for organic
matter in their studies from VIS. The VIS region also relates to texture, structure,
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moisture and mineralogy. It appears that the soil’s brightness as a predictor for
soil properties has an application within limited geological types/parent materials
(Stenberg & Viscarra Rossel et al., 2010). One other factor that could contribute
to increased prediction accuracy is that (V)NIR measurements from the handheld
spectrometer tend to smooth effects of sample heterogeneity on the spectrum, since
measurements were averaged over a larger surface area (10 mm spot size for the
contact probe and 12 mm for the mug light) (ASD Accessories User Manual).

Although the predictions from unprocessed samples were the least accurate,
the effect of soil moisture content was not as large as we expected based on
the range of volumetric water content (20–45%). Soil moisture reduces total
reflectance, particularly for the H2O bands, where the magnitude of this relation
changes between different soil types (Bowers & Hanks, 1965; Minasny et al., 2009).
Although this effect generally reduces robustness of a calibration, in our case-study
the timing of sampling might have enhanced a distinction between spectra from the
two soil types due to their difference in water holding capacity.

3.3.3 The use of spectral libraries compared with field-scale
calibration models

Across the variables considered, unsurprisingly the field-scale calibration model led
to the best predictions (Fig. 3.8). Comparing our regional and stratified spectral
libraries (without spiking), the regional library performed best for organic carbon
whereas the stratified library performed best for pH. Organic carbon predictions
from the unspiked regional library showed good precision (i.e. they captured the
range) but poorer accuracy, i.e. large RMSE and bias (Fig. 3.8). Predictions for
pH from the unspiked stratified library showed moderate precision and accuracy
(Unspiked stratified: RPIQ = 1.2, Bias = 0.02). Clay, available P and K showed
poor results for spectral libraries without spiking (Fig. 3.8).

Our poor clay predictions contrast with the literature, for example, Waiser
et al. (2007) state that kaolinite, smectite and muscovite minerals have distinct
spectral features which leads to accurate predictions. In our study, the poor clay
predictions were likely due to different laboratory methods and the high organic
matter content of the soil: samples from the National Soil Inventory were pre-treated
with H2O2 and measured by the pipette method. The field-scale dataset samples
were not pre-treated due to their high organic carbon content and were measured
by laser diffraction. The confounding effect of different laboratory methods on
prediction performance of spectral libraries has been mentioned within the literature
previously (Viscarra Rossel et al., 2016). Differences between laboratory methods
also occurred for available P and K, in particular the fact that the NSI extractions
were standardised by volume of soil rather than their weight (McGrath & Loveland,
1992). Given the organic nature and therefore low bulk density of the two soil
types in the case study area, the standardisation by volume will have affected
the comparison to the field-scale dataset (standardised by weight). Additionally,
available P and K are known to have weak or no spectral features in the IR region
(Kuang et al., 2012).

Spectral library predictions of organic carbon and clay improved substantially
once spiked (Fig. 3.8). Clay predictions were still poor from the spiked regional
library compared to the field-scale dataset with a large bias (Spiked regional: Bias

52



Figure 3.8: Predicted versus measured organic carbon, pH, clay, available P and K from the spectral libraries and spiked spectral libraries
and the field-scale dataset. Models and predictions were performed using milled samples and by model-averaging predictions from (V)NIR
and MIR spectra. RMSE: root mean squared error, RPIQ: ratio of performance to inter-quartile range.
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= 2.7, Field-scale: Bias = 0.02). Spiking only improved predictions for pH from
the regional library (Unspiked regional : RPIQ = 0.49, spiked regional: RPIQ =
1.4). Once spiked, organic carbon and pH predictions from the regional library
outperformed the stratified library, suggesting that geographical representation,
rather than soil type in the spectral library is more representative of the relation
between these properties and spectral reflectance. This potentially reflects a
regional soil signature caused by a specific land use or management in the area
(the case-study area is used for outdoor horticulture). Clay predictions from the
spiked stratified library outperformed those from the spiked regional library. Clay
is unaffected by local management and more closely related to soil lithology and
parent material, which could explain the better representation of the stratified
library for this property.

3.3.4 Contrasting time and cost implications of spectroscopy
predictions from spectral libraries and samples with
reduced processing

The decision whether to reduce sample processing or use spectral libraries depends
on the soil property of interest. In our analysis we found that neither reduction
in effort would allow accurate prediction of P or K but both showed promise for
predictions of organic carbon, clay and pH. For these variables, the choice of which
approach to use in practice will depend on the accuracy required, the number of
prediction samples needed and the costs associated with field sampling, preparation
and handling and laboratory costs. This will be case study specific, but here we
place the relative differences in uncertainty in the context of the data acquisition
process. For example, our results showed that RMSEs for organic carbon from spiked
spectral libraries (RMSE = 0.63–0.98) were lower compared to the lowest RMSEs
under in-situ (RMSE = 1.4) and unprocessed (RMSE = 1.5) sample conditions.
The lowest RMSE for organic carbon predictions from air-dried samples (RMSE =
0.76) lay in between the spiked stratified and regional library predictions. However,
the use of spiked spectral libraries still requires sampling a field-scale dataset where
samples need to be air-dried, sieved and milled so they are comparable to the samples
from the library.

Prediction accuracy under in-situ, unprocessed and air-dried conditions was good
but calibration samples had to be analysed with wet chemistry data compared to the
spectral library approach, where wet chemistry data was already available. In some
situations, the cost of a greater number of samples to be processed and analysed
by wet chemistry could be offset by reduced hours spent on field sampling (in-situ)
or handling of the samples (unprocessed and air-dried) (Fig. 3.1). For example,
for (V)NIR predictions only, there was no loss in accuracy for organic carbon, pH
and clay predictions from air-dried samples. Hence, the benefits of milling became
redundant. Similarly there is a trade-off between the two approaches in terms of
laboratory, sampling and handling costs occurs for clay predictions. In our study, the
best clay predictions under in-situ and unprocessed sample conditions were roughly
equal to those from the stratified spiked spectral library (in-situ : RPIQ = 3.6,
unprocessed : RPIQ = 3.4, spiked stratified : RPIQ = 3.3). Clay predictions from
air-dried conditions approximated those of the milled field-scale dataset (air-dried :
RPIQ = 4.3, milled : RPIQ = 4.6).
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It should of course be considered whether the additional loss in accuracy affects
the value of the final dataset created from soil property predictions. For example,
predictions with reduced accuracy can be of practical use depending on the available
budget and purpose of the analysis. An error of 0.12 units of pH (predictions from
air-dried or milled samples) in determining liming requirements for an agricultural
field could lead to an erroneous under or over application of 1.5 t limestone per ha−1.
Whether variable rate liming under this condition is cost-effective compared with a
field average will depend on specific circumstances of the subfield variation and the
price of limestone. Equally this question can be asked for predictions from different
sample conditions or spectral libraries that showed a higher error variance.

3.4 Conclusions

This study contrasted the magnitude of loss in accuracy, relative to field-scale
predictions on milled samples, by either reduced sample processing or the use of
spectral libraries. The results show that there is potential to reduce time and cost
of using near- and mid-infrared spectra to predict soil organic carbon, clay and
pH. We found that reduced sample processing lowered the ratio of performance to
inter-quartile range (RPIQ) by 0% to 76%. The use of spectral libraries reduced
RPIQ of predictions by 54% to 82% and was reduced in the range of 29% to 70%
for predictions when spectral libraries were spiked. The reduction in uncertainty
was specific to the combination of soil property and sensor analysed. We conclude
that the decision about which approach to use will depend on the case-study in
question because implications of cost and uncertainty will vary from case to case.
This study provides insight into the expected differences in prediction accuracy and
which factors need to be taken into consideration to reduce effort for developing
field-scale calibrations with near- and mid-infrared soil spectra.
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Chapter 4

A loss function to evaluate
agricultural decision-making under
uncertainty



Abstract

The excessive use of fertiliser in food production systems has caused substantial
negative environmental impacts. To minimise these impacts, the application of
fertiliser needs to be more precise, which requires detailed information about soil
variation. Modern sensor technologies can offer this information at significantly
lower costs than wet-chemistry analysis. However, in order to incentivise farmers
to adopt these technologies, we must acknowledge and account for uncertainties
in predicted soil-nutrient content to make this approach risk neutral or positive to
yield and income. Here we present a framework that accounts for the uncertainty
and determines the cost-benefit of soil-nutrient data from sensors to economically
rationalise the precise application of fertilisers. For four fields, we determined
the uncertainty associated with variation in soil P and K predicted from sensors.
Using published fertiliser dose–yield response curves we then quantified the effect
of estimation errors from sensor data on expected financial losses. The expected
losses from optimal precise application were compared with the losses expected from
uniform fertiliser application (equivalent to little or no knowledge on soil variation).
The asymmetry of the loss function meant that underestimation of P and K generally
lead to greater losses than the losses from overestimation. We demonstrate that
substantial financial gains can be obtained from sensor based precise application of
P and K fertiliser, with savings for our fields of up to £76 ha−1 for P and up to
£73 ha−1 for K, with concurrent environmental benefits due to a reduction of 13–25
kg ha−1 applied P fertiliser when compared with uniform application. Our results
showed that the framework can be used to account for uncertainty in sensed soil
data, so providing the most cost effective and environmentally sustainable soil and
fertiliser management approach for farmers.

Based on:
Breure, T.S., Haefele, S.M., Hannam, J.A., Corstanje, R., Webster, R.,
Moreno-Rojas, S., Milne, A.E. 2021. A loss function to evaluate agricultural
decision-making under uncertainty: a case study of soil spectroscopy. Precision
Agriculture – Under review
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4.1 Introduction

Annually, an estimated global total of 9–14 million tonnes of phosphorus (P) leaches
into watercourses (Beusen et al., 2016; Chen et al., 2016). This excessive use of
fertiliser in food production systems has caused substantial negative environmental
impacts. To minimise these impacts, the application of fertiliser needs to be more
precise, varying across the field according to crop requirements and soil supply. This
aligns with the ambition of precision agriculture.

Precision agriculture (PA) aims to produce sufficient crops sustainably
for society’s needs while minimising costs to the producer and harm to the
environment. This involves the management of spatial and temporal variation
within fields and so it requires intense information (Blackmore et al., 2003).
Farmers who adopt PA must consider the need, value, costs and possible other
sources of information to identify whether they can use it to improve their efficiency
and reduce environmental impact. The associated uncertainty of the information
they acquire for this purpose affects both its value and consequently what is their
view of this approach to management. Current decision-making on variable rate
application (VRA) of fertiliser is based primarily on yield responses as functions
of management inputs in agronomic trials (Pringle et al., 2004a, 2004b). To vary
fertiliser intelligently, however, farmers need to have detailed maps of nutrient
status or fertiliser requirement for their fields.

Obtaining detailed soil information to support VRA requires intense sampling.
A general consensus is that around 10 observations per hectare are required,
though McBratney et al. (1996) suggested that sampling at 10-m intervals might
be necessary to map nutrient status for such management. Both the sampling
and laboratory analysis of soil collected are laborious and time-consuming. The
whole process by conventional wet chemical analysis is too expensive for the
sizes of samples required to map soil variation accurately within fields. Recent
developments in spectroscopy offer an affordable and effective alternative with
instruments designed for use both in the laboratory and in the field (Li et al.,
2015). X-ray fluorescence (XRF) spectroscopy has been available for several
decades, and more recently infrared (IR) reflectance spectroscopy has become
feasible for analysing and predicting soil properties on numerous samples cheaply
(Bellon-Maurel & McBratney, 2011; Viscarra Rossel & Webster, 2012). The net
result is substantially cheaper than chemical analysis alone and enables surveyors
to obtain sufficient detail on the spatial variation of soil properties affordably
(Viscarra Rossel & Bouma, 2016).

All measurements embody some degree of error, however, and so soil data
have associated uncertainty. Nevertheless we have considered the errors in
standard chemical analyses by modern equipment are small enough to be ignored.
Spectroscopic estimation introduces yet another source of error. That is, calibration
equations which describe the relationship between the wet chemistry measures and
the soil spectra will also have an associated error. Finally, measurements of the
soil cannot be made at all locations, and so interpolation is necessary to estimate
the soil variables between measured locations. This interpolation, usually done by
kriging, has an associated prediction error. These errors accumulate through the
whole procedure and are embodied in the error variances of the final estimates.
Ignoring the resultant uncertainty can lead to false inferences from the data and

58



4.1. Introduction

hence faulty decision-making (Goovaerts, 2001; Cherry et al. 2008; Heuvelink,
2018).

Given the ease with which spectroscopy can replace conventional chemical
methods for analysing soil and the potential financial savings, it is important to
know how the errors it introduces affect the final spatial predictions. This is because
errors carry with them costs. Over-estimation of a plant nutrient concentration in
the soil, say P, would lead to a farmer’s applying too little fertiliser and to loss
of potential yield and income. Under-estimation of the concentration would lead
to the farmer’s over-fertilizing, spending unnecessarily on fertiliser, to the point
of spending more than earned in increased yield of crop. If the excess fertiliser
finds its way into water bodies and causes pollution there is a further cost to
water companies, which has been estimated to range between 75 and 114 million
pounds sterling per year for England and Wales (Pretty et al., 2003). Although P
is chemically adsorbed by soil particles, it can leach to the environment after long
and excess application (Carpenter et al., 1998; Smil, 2000). Algal growth is limited
by the N:P ratio, and loss of P or N from fields into water courses accelerates
eutrophic algal growth (Redfield, 1958). Costs associated with eutrophication range
among others from restorative measures such as dredging, treatment of drinking
water (including removal of algal toxins), loss of important species and ecological
damage generally (Pretty et al., 2003).

Yates (1981) set out the principles by which one might assess the balance between
costs of survey and benefits that would accrue from greater accuracy. The aim
is to minimise the sum of sampling costs and expected losses due to errors. For
this Yates defined a loss function and suggested how it might be minimised. The
loss function is a generic approach studied not only in the context of soil survey
(Lark & Knights, 2015) but also in environmental protection (Goovaerts, 1997) and
mining (Journel, 1984). Because overestimation and underestimation incur losses for
different reasons the loss function may be asymmetrical. Given a loss function and
an error distribution for the information, one may make a decision that minimises
expected losses (e.g. Journel, 1984; Goovaerts, 1997).

Here we are concerned with the prediction of available P and potassium
(K) for precise management of fertiliser in horticultural crops. We set out to
discover the potential for soil spectral methods (near- and mid-infrared and X-ray
fluorescence) to predict how these soil variables change within well-managed fields
and so determine the effect of prediction errors on the expected loss. For this we
considered soil samples from four fields in the Cambridgeshire Fens of the UK.
Concentrations of available P and K estimated from soil spectra were used to predict
how concentrations vary across the fields and to compute the associated error
variances from interpolation. We determine the expected losses associated with
varying applications of fertiliser given the error variance of our predictions. The
expected loss is compared with the losses should we have used our estimates from
wet chemistry to determine a single application rate per field. From this we draw
some general conclusions about the effect of uncertainty in our soil nutrient status
on economic and environmental losses and draw some practical considerations for
implementing the loss function.
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4.2 Methods

4.2.1 Data

Data were obtained in sample surveys of four fields in the Fen district of
Cambridgeshire, England, in 2018 and 2019. The region was originally dominated
by peat, much of which has oxidized since the land was drained in the 17th century.
The land surface is now 1 to 2 metres lower than it was except for the natural
sinuous drainage channels containing mineral sediment. These former channels,
known locally as ‘rodhams’, have become elevated features in the landscape (Hodge
et al., 1984), and they are clearly distinguishable on LiDAR (light detection and
ranging) imagery. We used the LiDAR raster (2 m × 2 m resolution) from the
British Environment Agency as a basis for our sampling. The sampling design of
Field 1 (8.2 ha) was based around a 30-m square grid, with three transects (on
alternate rows of the grid) more intensely sampled at 6-m intervals. The designs
for Field 2 (16.9 ha), Field 3 (5.1 ha) and Field 4 (8.9 ha) were computed for initial
numbers of points (121, 107 and 100, respectively) by spatial coverage sampling
(Walvoort et al., 2010). Each point lay in the centre of its Dirichlet tile. All tiles
in each field were of equal area, ensuring spatial coverage of the entire field. This
led to an approximate grid with an interval of around 30 m. A sub-sample of 36
(Field 2), 26 (Field 3) and 32 (Field 4) of these points were selected with balanced
sampling (Grafström & Lisic, 2019) on the spatial coordinates and LiDAR. At each
location of these sub-samples, we added another sampling point 6 m away at a
random orientation to estimate the short-scale spatial variance. In all fields extra
sample points were also added to ensure coverage of the range of soil conditions
and LiDAR. The decision for the location of these extra points was based on the
LiDAR survey and satellite imagery showing variation in soil colour. In all, the
numbers of sampling points for the fields were 256 (Field 1), 161 (Field 2), 138
(Field 3) and 142 (Field 4). Supplementary Fig. S4) shows the field boundaries
with the sampling points. Three soil cores of topsoil (0–25 cm) were taken within a
0.5 m × 0.5 m quadrat at each sampling location. These three cores were bulked
and mixed for spectroscopic measurements. A subset of 30 samples from each field
was taken for further laboratory analysis. The subset was selected from the total
sample by balanced sampling on the spatial coordinates and LiDAR data.

Available P was measured by the standard Olsen method (Olsen et al., 1954)
and a SANplus continuous colorimetric flow analysis (Skalar Analytical BV, Breda,
Netherlands). Available K was determined in an ammonium-nitrate (NH4NO3)
extract and Inductively Coupled Optical-Emission Spectroscopy (Optima 7300 DV,
Seer Green, UK). The soil samples were dried in air and milled, and sub-samples were
pressed into small wells (6 mm across and approximately 1 mm deep) and placed in
a Tensor II spectrometer (Bruker, Ettlingen, Germany). The absorbance spectrum
in the range 9998–3999 cm−1 (1000–2500 nm), i.e. the near-infrared (NIR), of each
sub-sample was measured with a resolution of 1 cm. Each sub-sample’s mid-infrared
(MIR) spectrum in the range 4000–600 cm−1 (2500–16 666 nm) was recorded on the
same instrument with a resolution of 2 cm−1. A DP-6000 Delta Premium portable
X-ray fluorescence (pXRF) (Olympus Ltd, Center Valley, USA) was used to scan
the soil samples. The pXRF features an Rh X-ray tube operated at 10–40 keV with
a high resolution (<165 eV) silicon drift detector. The pXRF was set to scan for
30 seconds at both 10 and 40 keV. The pXRF was set up in an instrument stand,
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and samples where placed on the aperture in a sample cup covered with a Prolene
Thin Film (Chemplex Ind, Florida, USA). Potential drift in the XRF analyser was
reduced by scans of a stainless steel 316-alloy clip containing 16.13 % Cr, 1.78 % Mn,
68.76 % Fe, 10.42 % Ni, 0.20 % Cu, and 2.10 % Mo tightly fitted over the aperture
prior to the measurements on each aliquot. The pXRF samples where measured in
three replicates on one aliquot, near- and mid-infrared spectra were measured on
three aliquots of each soil sample. Further analysis was done on the mean spectra
of those three measurements.

4.2.2 Spectral processing and calibration

The raw spectra were pre-processed first by the Savitzky–Golay filter (Savitzky
& Golay, 1964) and then transformed to standard normal variates and their first
derivatives to give four sets of spectra, including the original raw spectra. The
H2O bands (7900–5587 and 6849–5102 cm−1) were removed from the NIR spectra
(Bowers & Hanks, 1965). The region of 4464–4115 cm−1 was removed from the MIR
spectra to account for the CO2 peak at 4248 cm−1 (Sandford & Allamandola, 1990).
The 10 keV XRF spectra were subset to the range of 0.5–7.8 keV, the 40 keV XRF
spectra to the range of 0–24.4 keV. The 10- and 40-keV spectra were then combined.

Calibration was done by partial least squares (PLS) regression with the kernel
algorithm. We selected the number of components to be included in the model as
follows. First, we computed the mean squared error (MSE) between the known
values and the predictions by leave-one-out cross-validation (LOO-CV). The
standard deviation of the LOO-CV residuals was also computed. To minimise
over-fitting, we computed models for a maximum of 15 components. Subsequently,
we chose the model that included the fewest components, yet lay within the MSE’s
standard deviation of the model that had the smallest error overall (Hastie et al.,
2009, section 7.10).

Preliminary analysis showed that whilst XRF tends to give the most accurate
predictions of P and K, this was not always the case, and so in this study we
chose to combine all three sets of spectra. The PLS predictions from NIR, MIR
and XRF matrices for each property were used for an ordinary least-squares (OLS)
multiple regression, known as the Granger–Ramanathan averaging method (Granger
& Ramanathan, 1984). The OLS regression in its general form is

Y = w0 + w1z1 + · · ·+ wkzk , (4.1)

where Y is a vector of random observed values, z is a vector of PLS predictions, the
wi, i = 1, 2, . . . , k, are weighting coefficients of the k individual predictors included in
the regression. This equation was solved for the intercept (w0) and the k coefficients
for each of the spectral matrix combinations (z). The intercepts correct for bias if
one of the individual predictors is biased. Given the variation in prediction accuracy
between different spectral processing methods, Granger–Ramanathan averaging was
subsequently performed for a second time. The vector z in Equation 4.1 now
takes the OLS predictions from the four sets of infrared and XRF spectra (raw,
Savitzky–Golay filtered, standard normal and first derivative).

Each prediction has associated with it an error, and we treated these errors as
ones arising from the use of the regression model. We computed the prediction error
by re-predicting on the calibration data. Effectively, this is equivalent to the residual
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mean-squared deviations, which is biased and likely to be over-optimistic about the
calibration model’s performance. However, we decided to implement this approach
for two reasons. First, we minimised over-fitting models by choosing ones with the
smallest MSEs of the LOO-CV and taking into account the standard deviation of
residuals of the LOO-CVs. Second, predictions from the LOO-CVs overestimate the
MSEs in the presence of outliers. Since we use all the calibration data to predict all
locations in the sampling design, we computed the MSEs using fresh prediction on
the calibration set. The error variance of these predictions, of which there are n, is
hereafter referred to as

var[ε̂y] =
1

n

n∑
i=1

(yi − ŷi)2 ,

and it has been propagated through into the geostatistical model.

4.2.3 Geostatistical predictions

Following Lark et al. (2006) we model the spatial variation using the empirical best
linear unbiased predictor (E-BLUP). This combines in an additive way fixed effects
(e.g. the unknown mean, coefficients of a trend) and random effects (the spatially
correlated random variation), thus:

Y (x) =
J∑
j=0

βjfj(x) + ε(x) . (4.2)

Here the β are unknown coefficients, the fj(x) are typically first- or second-order
polynomials, and the ε(x) represents the residuals from the trend, which are assumed
to be second-order stationary random variables, jointly normally distributed with
zero means and n× n covariance matrix Cd with variogram γ(h):

γ(h) =
1

2
E[{ε(x)− ε(x + h)}2] , (4.3)

where h is the lag in distance and direction between any two points. We treat the
random variation as isotropic, so that h becomes a scalar in distance only: h = |h|.
We then examined the variogram of ε(x) by the method of moments. In all cases
the random residuals could be successfully described by the isotropic exponential
variogram model:

γ(h) = c0 + c1

{
1− exp

(
−h
a

)}
for 0 < h

= 0 for h = 0 . (4.4)

Here c0 and c1 are variances, respectively the nugget and sill of the correlated
variance, and a is the distance parameter. Parameters for a plausible model can
be found by maximum likelihood (ml) or maximization of the likelihood of the
residuals given the data (reml). Lark et al. (2006) and Webster & Oliver (2007) give
the derivation of the equations in full. The reml estimation method is preferred,
because it reduces bias in random effects parameters due to the uncertainty in
the fixed effects parameters. However, the ml may be compared between models
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with different fixed effects structures, but such a comparison is not valid for reml.
Therefore, we first use the ml method to select the fixed effects for our model.

Preliminary investigations (visual inspection and marginal plots) suggested
that the estimated soil properties, y, have long-range trends across the fields. We
consider these as fixed effects. Estimated soil properties also vary systematically
with elevation as recorded by LiDAR, so we consider this as another fixed effect.
We added in each trend variable (fixed effect) in turn and tested whether its
addition was significant by a log-likelihood ratio test. We took a chi-squared
p-value from the log-likelihood ratio of 0.05 as threshold and treated any smaller
value (p ≤ 0.05) as evidence that additional trend parameters should be included.
After the selection of fixed effects, we re-estimated the fixed effects and random
effects in Equation (4.2) using residual maximum likelihood (reml). If c0 was less
than var[ε̂y] then it was added to the diagonal of the covariance matrix Cd and
Equation (4.2) was solved again. Next, we used the final variograms for universal
kriging. This provided us with predictions and their kriging variances.

We cross-validated the linear mixed model to gain an additional measure of
accuracy. The linear mixed model was re-estimated for each iteration to diminish
bias in parameter values (Hastie et al., 2009, section 7.10). The LOO-CV of
the linear mixed-models were evaluated with the mean- and median-standardized
squared prediction errors (SSPEs) (Lark, 2000).

4.2.4 Theory of the loss function

The loss function, L(F ), for a given application of fertiliser, F (kg ha−1), is defined
as the difference in profit that results from applying a given amount of fertiliser F
compared with the economic optimal amount F0:

L(F ) = Φ(F0)− Φ(F ) , (4.5)

where the profit Φ(F ) is the difference between the income from the crop (price of
the crop × yield) and the cost of the fertiliser:

Φ(F ) = M × Yield− V × F , (4.6)

where M is the price of the crop (£ t−1), V is the cost of the fertiliser (£ kg−1) and
yield in t ha−1.
We assume that the yield is given by the dose–response equation:

Yield = α + ηRξF+S + ν(ξF + S) , (4.7)

where S is the concentration of the available nutrient in the unfertilised soil, F is
the applied fertiliser (kg ha−1), ξ is the increase in nutrient concentration (mg kg−1)
in the soil for every 1 kg ha−1 fertiliser applied, and α, η, ν and R are parameters,
then the optimum amount of fertiliser can be calculated from this and is given by

F0 = ln

(
B/ξ − ν
ηRS lnR

)
/ξ lnR , (4.8)

where B = V/M , known as the break-even ratio.
By definition, the loss given by Equation (4.5) is zero when the optimum amount of
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fertiliser is applied. However, computing the optimum amount of fertiliser to apply
relies on one’s knowing the nutrient concentration, S, in the soil, and it is unlikely
that one would know it precisely.
Given the error distribution, g(s), of the nutrient concentration S we can compute
optimum fertiliser rate that maximizes the expected profit

Fopt = ln

(
B/ξ − ν

η lnR
∫∞
0
RSg(s)ds

)
/ξ lnR . (4.9)

This also minimises the expected loss function, E[L(F )], which we define here as
the difference between the profit where S is known without error and associated
optimum fertiliser, F0 in Equation (4.8), is applied

E[L(F )] = Φ(F0)−
∫ ∞
0

{Φ(F )} g(s) ds . (4.10)

4.2.5 Parameterization and analysis of the loss function

All fields sampled were cultivated for lettuce, and so we computed loss functions
associated with this crop. The dose response curve for P was derived from Prasad
et al. (1988) and for K from Greenwood et al. (1980). We assumed that for every
1 kg of P added in fertiliser 0.18 kg becomes available to the crop (Muhammed et
al., 2017), and for every 1 kg of K added in fertiliser, 0.62 kg becomes available to
the crop (Blake et al., 1999). Furthermore, we assumed that the added nutrients
are contained in the top 25 cm of the soil (the sampling depth). We took from
Milne et al. (2006) the value of 480 kg m−3 for bulk density of this peat soil. Given
the support of our kriged predictions (2 m × 2 m), it follows that an addition of
1 kg fertiliser per ha leads to an increase in the concentration of this layer of 0.15
mg available P kg−1 and 0.52 mg available K kg−1, equal to ξ in the dose–response
Equation (4.7). Greenwood et al. (1980) listed a mean base nutrient concentration
of 69 mg available K kg−1 for the unfertilised soil in their study, which was used as
an additive component. We assumed a profit margin (M) of £90 per tonne of lettuce
per hectare. The prices of fertiliser (V ) were taken as £0.36 per kg P fertiliser and
£0.29 per kg K fertiliser. Table 4.1 lists the parameter values of the dose–response
equations for P and K.

Table 4.1: Dose–reponse equation parameters as relevant to Equation 4.7

Soil property α η ν R ξ

P 142.15 −145.8 −0.776 0.98 0.15

K 63.3 −63.3 0 0.98 0.52

We assessed the profitability of variable-rate application (VRA) based on kriged
maps by computing the total expected loss (Equation 4.10) across each field. We did
so by comparing the expected loss for each field between that from VRA, E[L(Fopt]),
and a uniform application (UA) based on wet chemistry alone, E[L(FUA]).
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4.2.6 Software

Analysis was done with base R commands as well as the following R packages
as implemented in RStudio: data handling with the tidyverse (Wickham et al.,
2019) package, computation of the sampling designs using the spcosa (Walvoort et
al. 2010), BalancedSampling (Grafström & Lisic, 2019) and SpatialEco (Evans,
2019) packages, spectral processing using prospectr (Stevens & Ramirez-Lopez,
2013), partial least squares regression using pls (Bjørn-Helge et al., 2019),
Granger–Ramanathan averaging using GeomComb (Weiss & Roetzer, 2016),
model-based geostatistics using the geoR package (Ribeiro & Diggle, 2018) and
handling of spatial objects using the raster (Hijmans, 2020) and rgdal (Bivand et
al., 2020) packages. Graphics were created with base R and the package ggplot2
(Wickham, 2016).

4.3 Results

4.3.1 Uncertainty in kriging predictions from soil properties
estimated by spectroscopy

The distribution of available K was strongly positively skewed, and the data were
therefore transformed to logarithms to stabilize the variances. The correction as
described by Laurent (1963) was used to estimate kriging predictions and their
variances back to the original scale (Equation 1 in Suppl. material). The nugget
variances, c0 in Equation (4.4), were underestimated for the following variogram
models: available K (Fields 3 and 4) and available P (Fields 1 and 2). We therefore
added var[ε̂y] to the diagonal of the covariance matrix Cd and solved Equation (4.2)
again to account for the under-estimation of the error. Data of both P and K in
all four fields were fitted with a linear trend model as fixed effects (Table 4.2).
Fitting trend coefficients, as expected, resulted in smaller semivariances than their
equivalents of the original variables, i.e. the difference between black discs and
circles (Fig. 4.1). The LOO-CV results of the mixed model variograms accorded
overall with expectations for both P and K and all four fields (Suppl. Fig. S5).

4.3.2 Loss function on variable-rate fertiliser application

The fitted dose–response curves for P and K affected the profit Φ(F ) and the loss
function L(F ) = Φ(F0)−Φ(F ) differently because of their asymmetry characteristics
and by association the expected loss, i.e. loss from imperfect knowledge, E[L(F )] in
Equation (4.10). For available P, the dose–response curve declines linearly in yield
for large values of P (Fig. 4.2). That is to say over application of fertiliser results
in financial losses due to excess fertiliser application and reduced yield. This makes
effects of large application rates with large soil P fertiliser have a more dramatic
impact than for K where the dose-response curve is characterised by an asymptote
and so the associated prediction of profit and loss converge at large rates of applied
fertiliser (Figs 4.3 and 4.4). For both P and K, larger uncertainty of the predicted
soil nutrient content (high σ2

k) increases the expected loss and reduces the profit.
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Figure 4.1: Linear mixed model variograms for all fields, ◦ refer to the experimental
variograms of the original variable, • refer to the experimental variograms of the
residuals from the trend model, – refers to the final model fitted by restricted
maximum likelihood procedures.

As expected, the fertiliser rate that minimises the expected loss (Fopt) is greater
than the optimal fertiliser rate when the soil variable is known without error
(F0) for all fields, again because of the asymmetry of the loss functions. The
asymmetry means that overestimation generally leads to larger losses than does
underestimation of soil P and K. Error variance in the estimates of P and K in the
soil consequently leads to larger recommended applications of fertiliser than if one
had perfect knowledge (σ2

k = 0) (Figs 4.5 and 4.6).
The optimal P fertiliser application varied substantially in all fields. The

variation was less pronounced for K, particularly in Field 1. Across the entire
Field 1, all the kriging estimates of K fall on the asymptote of the dose–response
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Table 4.2: Fixed effects and parameters estimated by reml of the exponential
variograms, L stands for LiDAR (elevation), and x1 and x2 are the spatial
coordinates. The variogram parameters are the nugget variance (c0) the sill (c1)
and the range (a) respectively.

Variogram parameters

Field Soil property Fixed effects c0 c1 a

1
P/mg kg−1 x1, x2, x

2
1, x

2
2, x1x2 17 67 50

K/mg kg−1 x1, x2, x
2
1, x

2
2, x1x2 2930 1942 40

2
P/mg kg−1 L, x1, x2 13 57 39

K/mg kg−1 L, x1, x2 3337 4917 32

3
P/mg kg−1 L, x1, x2, x

2
1, x

2
2, x1x2 22 40 30

log(K/mg kg−1) L, x1, x2, x
2
1, x

2
2, x1x2 0.023 0.097 6.62

4
P/mg kg−1 L 30 125 14

K/mg kg−1 x1, x2, x
2
1, x

2
2, x1x2 260 2473 12

curve, hence F0 = 0 for all locations (Fig. 4.6A). The σ2
k increases the probability

that kriging estimates fall below the asymptote, however. In those situations
application of fertiliser becomes necessary to minimise the expected loss (Fig. 4.6B).
The kriged estimates of available K in Fields 1, 2 and 4 were larger than the range
of the dose–response curve (Fig. 4.7). Consequently, applying no fertiliser for a
major portion of the field was more profitable (Fig. 4.6B, 4.6D and 4.6H). The
total expected loss on a field-basis was less for variable-rate P and K application
(E[L(Fopt)]) than the total loss of blanket fertiliser application arising from the
wet chemical analysis (E[L(FUA)]) (Table 4.3). There was a financial incentive
of VRA of P fertiliser across all fields (ranging from £12–£76 ha−1) and for K
fertiliser across two fields (ranging from £15–£73 ha−1). That is, for available K the
difference between E[L(Fopt)] and E[L(FUA)] was small in Fields 1 and 4. Less P
fertiliser was used on a field-basis under VRA (Fopt) than with uniform application
(FUA) in Fields 1 and 2 (Table 4.3). Within those fields, total P fertiliser use was
reduced by VRA with 13–25 kg ha−1 compared with uniform application. Most K
fertiliser would be used on a field-basis in all cases under VRA (Fopt) (Table 4.3).

67



4.3. Results

Figure 4.2: Dose-response curves for available P (exponential + linear) and available
K (exponential) fitted based on data from Prasad et al. (1988) (P) and Greenwood
et al. (1980) (K). See Table 4.1 in the main text for parameter values.

Figure 4.3: Profit and loss under zero error variance, expected profit and loss under
an error variance of 5 mg kg−1 and an error variance of 200 mg kg−1 for a range
of estimated soil P values from 10 to 80 mg kg−1. The range of P fertiliser applied
spans 0 to 120 kg ha−1.
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Figure 4.4: Profit and loss under zero error variance, expected profit and loss under
an error variance of 50 mg kg−1 and an error variance of 2000 mg kg−1 for a range of
estimated soil K values from 100 to 600 mg kg−1. The range of K fertiliser applied
spans 0 to 225 kg ha−1.

4.4 Discussion

4.4.1 Error approximation and the estimation of the
variogram

Error propagation is rarely taken into account in soil surveys based on spectroscopy.
Ramirez-Lopez et al. 2019, listed two other studies in which the propagation of errors
was reported in the last 10 years (Brodský et al., 2013; Viscarra Rossel et al. 2016).
Somarathna et al. (2018) and Ellinger et al. (2019) also propagated errors from
infrared spectral into predictions of soil carbon. Error propagation is important
for two reasons. First, Somarathna et al. (2018) found that acknowledging the
measurement error, in our case var[ε̂y], reduces uncertainty in spatial predictions
(as supported by Clark et al., 2010). The extent to which this has an effect
will depend on the complexity of the target variable’s spatial variation and the
geographical extent of the study. Second, acknowledgement of the uncertainty (and
its minimization) is necessary to detect small rates of change in the soil property
of interest by monitoring over time (Viscarra Rossel et al., 2016). Here we are
concerned with variation in space, and it is this variation that determines whether
variable rate application is relevant.

In four of the eight LMMs we included LiDAR as a fixed effect, and all LMMs
except one included geographic trends (i.e. in the spatial coordinates) in the model.
Kriging within reml is based in the assumption of second-order stationarity of the
random part of the process. That is why we separated out the fixed effects of trend
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Figure 4.5: Optimum P fertiliser application with perfect knowledge of soil P (F0),
optimum application when accounting for σ2

k in our estimate of soil P (Fopt)

and LiDAR and also why we treat each field separately. Having an exhaustive
covariate allowed one to do that and to approximate the uncertainty of the target
variable more accurately than otherwise (Lark, 2009).

4.4.2 Data requirements and estimation of the loss function

Use of the loss function imposes constraints on the required data. For example, we
estimated the soil’s bulk density from general knowledge in the area (see method
section 3.4). We know that the density of soil on the rodhams differs from that of
the peaty soil between them. Even in the best scenario, these estimates embody an
error which should ideally be accounted for. Similarly, the modelled response of the
crop contains error and this should be incorporated in the framework, although in
our description wed did not include this for reasons of clarity.
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Figure 4.6: Optimum K fertiliser application with perfect knowledge of soil K (F0),
optimum application when accounting for σ2

k in our estimate of soil K (Fopt)

4.4.3 The loss function to estimate the value of variable-rate
application

Based on the differences in E[L(F )] between Fopt and FUA, there appears to be little
financial incentive for variable-rate application of K fertiliser in Fields 1 and 4. The
difference in E[L(F )] between Fopt and FUA is larger for Fields 2 and 3. For available
P, most kriged estimates lay in the linearly increasing range of the dose–response
curve, and there is a financial incentive to implement variable rate application for
all fields, although Field 1 does not show a large difference (Table 4.3).

The difference in total K fertiliser used between F0 and Fopt was especially large
for Field 2, which can be explained by the high nugget variance (c0) and sill (c1)
(Fig. 4.1 and Table 4.2). Field 4 has the largest E[L(F )] values for P (Table 4.3),
which can be attributed to large values of σ2

k (Fig. 4.7), a short range parameter (a)
and large sill (c1) in the variogram (Fig. 4.1 and Table 4.2). Additionally, the smaller
applications of P fertiliser under VRA than under uniform application for Fields 1
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Figure 4.7: Box-plots of kriging predictions and the kriging variance (σ2
k), by field

for available P and K, horizontal lines represent the nutrient value for which the
maximum yield, Max(Y), is obtained on the fitted dose–response curve.

and 2 means that VRA poses less environmental damage than uniform application
would; that is, there would be less P lost from the soil to pollute waterways and
cause eutrophication.

The large expected loss under uniform application of P in Fields 3 and 4 can be
attributed to a biased estimate of the mean concentration of soil P across the field
and hence FUA. Sampling by a W-design has been found to be equivalent to random
sampling in the estimation of a mean concentrations of nutrients (Marchant et al.,
2012). However, because the samples that make up our W-design were chosen a
posteriori (the samples come from the set that was analysed by wet chemistry and
these were selected to span the range in the field) we suspect that mean estimates
of available P and K are biased.

We further note that the expected loss under uniform application of K fertiliser
is large for Field 3. The large expected loss can be attributed to the combination
of a small range relative to the dose–response curve combined with a long-tailed
distribution of kriging variances caused by back-transformation from the logarithmic
scale.

Overall, the expected loss, E[L(F )], and hence Fopt was found to depend on (a)
the kriging variance, (b) the ranges of P and K for which the dose-response curves
were calibrated, (c) the range of estimated values in the fields and (d) the asymmetry
of the loss function. These factors need to be properly quantified, parameterized
and accounted for in the loss functions so that farmers can make their decisions with
confidence, while taking into account uncertainty.
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Table 4.3: The estimated mean nutrient value for each field by wet chemistry
(µUA), fertiliser used per hectare for perfect knowledge (F0), variable-rate application
(Fopt) and uniform application based on wet chemistry samples (FUA). Expected
loss (from perfect knowledge) for variable-rate application, E[L(Fopt)], and uniform
application, E[L(FUA)]

Fertiliser / kg ha−1) Expected loss / £ ha−1

Field Area / ha−1 Nutrient µUA / mg kg−1 F0 Fopt FUA E[L(Fopt)] E[L(FUA)]

1 8.2

P

40 106 107 120 33 45

2 16.9 37 94 95 120 30 54

3 5.1 55 97 98 62 34 110

4 8.9 56 54 61 57 90 137

1 8.2

K

337 0 3 0 9 9

2 16.9 302 6 44 0 21 36

3 5.1 189 200 221 144 44 117

4 8.9 312 6 17 0 8 11

4.4.4 Implications of the loss function approach on
decision-making

Although quantification of uncertainty (based on data and current models) allows
one to make statements with confidence, it can also identify where the effort of
reducing uncertainty will result in the largest gains. The loss function has enabled
scientists and managers to decide how much field-work and analysis is required to
answer specific questions in environmental monitoring. For example, it is used to
optimize the size of samples for survey; see Yates (1981), Journel (1984), Goovaerts
(1997), Lark & Knights (2015) for examples. Relevant decisions within a sampling
campaign involve (a) where and when to take samples, (b) what measurements to
make on the samples, and (c) with what accuracy to take these measurements.

The loss function framework provides a method to assess the quality of
predictions from spectroscopy beyond specific metrics such as R2 and investigate
whether the accuracy is ‘sufficient’ to address relevant questions. In this particular
study to test the hypothesis whether soil spectroscopy could adequately predict the
spatial variability to justify variable rate application of P and K fertiliser.

For example, if sampling, handling and spectroscopy costs are less than the
difference between E[L(Fopt)] and E[L(FUA)] then VRA is worthwhile. These costs
could be reduced by measuring the reflectance spectra of the soil surface on the
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run in the field. It would then be feasible to obtain data at 10-m intervals, as
McBratney et al. (1996) stated to be necessary to characterize within-field soil
variation accurately. So far, however, trials to estimate P and K in the soil from
visible–NIR in the field by Cozzolino et al. (2013), Daniel et al. (2003), Kuang
et al. (2012) and Ji et al. (2014) have produced disappointing results. Reports of
R2-values lie in the range 0.09–0.87 for predictions of available P and 0.03–0.87 for
available K. We found no reports to support within-field estimation of available P
and K from MIR and XRF spectroscopy.

Within six out of eight fields in our case-study, the cost-effectiveness of VRA
was primarily driven by increases in yield, in some cases at the cost of applying
more fertiliser compared to uniform application. The excess use K fertiliser does
not pose a direct threat to the environment. The overuse of P fertiliser on the
other hand, particularly in Field 3, might minimize economic loss at the cost of
the environment. However, it could be argued that increased efficiency gained by
VRA also has potential to reduce the total land area used to reach an equivalent
level of yield outputs. Setting aside agricultural land in areas vulnerable to leaching
is a recognized strategy to manage P levels at the catchment scale (Schoumans
et al. 2014). In that case it would need to be ensured that leaching or artificial
drainage is not the driving force behind low P levels at the field-scale in the first
place (Baveye & Laba, 2015). Furthermore, our results further showed that the
environmental benefit of fertiliser savings from VRA was not strictly accompanied
with an increase in profit (Field 1). Hence, in order to account for the environmental
benefits of precise fertiliser application, our results suggest that costs of P leaching
(e.g. remediation) need to be included in sustainable P management strategies
aimed at precise fertiliser application. The loss function framework presented could
be adapted to place a larger penalty on over-application of P fertiliser based on the
costs of leaching. Consequently, the loss function framework can provide a stepping
stone towards fulfilling the requirement to quantify the economic and environmental
benefits of sustainable P management (Brownlie et al., 2021).

4.5 Conclusions

This study has shown that there was an economic incentive for precise fertiliser
application of both P and K fertiliser once we accounted for uncertainty in
soil-nutrient concentrations estimated from sensors. Given that farmers need to
subtract the costs of sampling and sample analysis from their gross income, further
study should use the loss function to define an optimum where both uncertainty
of information and the effort to collect the data by sampling and analysis are
minimised.

In order to quantify the societal benefits of precise fertiliser application
holistically, however, environmental costs need to be taken into consideration. Our
results showed environmental benefits occurred from precise fertiliser application
even though no large increase in profit was gained. These findings have implications
for policy aimed at sustainable management of P fertilisers. That is, we recommend
that the loss function could be adapted to include environmental costs of P leaching
to assist in quantifying both the economic and environmental benefits of precise
fertiliser application.

Furthermore, the loss function we defined can be extended to other studies within
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the environmental sciences. We discussed the use of the loss function for robust
decision-making based on uncertain data, the identification of gaps in knowledge, to
assess the accuracy of information in answering questions and as a method to assess
where reduction in uncertainty leads to the largest gains.
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Chapter 5

Investigating the effect of
uncertainty under different sample
sizes



Abstract

Few studies to date have investigated the effect of uncertainty in soil property
estimates from spectroscopy on soil management. In this study we considered
the implications for variable rate application of phosphorus (P) and potassium
(K) fertiliser. First the uncertainty in soil available P and K estimates from
spectroscopy was quantified as a function of the calibration set size at the field-scale.
Based on the observed variation in P and K in three experimental fields, we
simulated 100 realisations per field for an in silico experiment. To simulate the
process of sampling soil and predicting fertiliser requirement, we performed sampling
on our simulated fields using a spatial coverage design with 20 close-pairs. We
added a calibration error to each sample value to simulate the error associated
with spectroscopic prediction. Kriging was used to estimate the variation in the
soil property of interest. We then computed the fertiliser requirement needed to
minimise the expected loss associated with predictions, where the expected loss is
defined as the difference in profit between applying fertiliser based on the estimated
soil nutrient concentration accounting for uncertainty relative to the profit that
would be gained from fertiliser application given the true value of available P
and K. We also considered the expected profit when accounting for sampling
costs. Results showed that calibration sample size outweighed the effect of total
sample size on the uncertainty associated with predictions. Equally, for the same
calibration set size, there were large differences in the kriging variance between
total sample sizes. When data acquisition costs were disregarded, the expected loss
for available P was particularly affected by the total sample size. For available
K, the calibration sample size had a predominant effect on the expected loss. The
expected loss showed diminishing returns on investment suggesting that there is
an optimum sample size. However, the expected profit was dominated by the costs
of sampling and spectroscopy, indicating that currently using spectral methods to
inform fertiliser management is not cost effective. That is, no combination of the
total- and calibration sample sizes considered would result in a financial gain and
could thus be considered optimal. Should costs substantially reduce then spectral
methods offer a promising method for informing variable rate management. We
conclude that the loss function approach is an appropriate method to assess whether
soil spectroscopy is a cost-effective means to inform soil management. We further
suggest its application in different case-studies to gain more robust insight in the
value of applied soil spectroscopy.

Based on:
Breure, T.S., Haefele, S.M., Corstanje, R., Hannam, J.A., Moreno-Rojas, S., Milne,
A.E. 2021. Quantifying the effect of prediction uncertainty from soil spectroscopy
for different total- and calibration sample sizes in the context of soil management.
– In preparation
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5.1 Introduction

Sustainable management of the soil requires explicit knowledge about the spatial
variation of its properties. It is not feasible to measure soil properties everywhere
and hence soil samples are taken from a limited set of locations. Interpolation
methods (for example inverse distance weighting or kriging) are then used to predict
the values of the variables at unmeasured locations. Kriging provides the best
unbiased prediction at each unsampled location together with its associated error
variance (Cressie, 1990). A prediction based on kriging is a weighted averaging
of the observed values for the soil property within a neighbourhood. The weights
are determined from a model that describes the spatial dependency of the variable
of interest. For robust estimates of model parameters that describe the spatial
dependency, a minimum sample size of 100 observations has been suggested,
although this depends on the underlying complexity of the soil variation and its
geographical extent (Webster & Oliver, 1992; Lark, 2000). Given the costs and
time expenditure of traditional soil analyses, the number of samples required for
kriging is often impractical.

To overcome this problem, there have been many applications of soil spectroscopy
as a method to characterise soil chemical, physical and biological properties
(Guerrero et al., 2010). This application is not only motivated by the fact that
spectroscopy is relatively inexpensive compared to traditional laboratory methods,
but also that it is non-destructive (in the case of in-situ measurements), does not
require hazardous chemicals and has the capacity to predict multiple soil properties
from a single measurement (Viscarra Rossel et al., 2006). Soil spectroscopy has the
potential to provide cost-effective prediction of soil properties allowing for more
samples to be processed than traditional methods and so potentially providing
more information about soil variation.

To predict a soil property of interest using spectroscopy the spectra must be
calibrated. This is usually done by undertaking wet chemistry measurements on
a representative subset of samples and deriving a statistical model (known as
the calibration model) to relate the spectra to the wet chemistry measures. The
calibration model is then used to predict the values for the total sample population
of interest. This model is subject to uncertainty, however, and is potentially biased.
For both accurate and precise predictions, a calibration set that includes coverage of
property (or feature) space is required (Viscarra Rossel et al., 2011; Schmidt et al.,
2014). Violation of this central assumption in the use of soil spectroscopy can lead
to model instability and introduce bias and error in estimates (Bellon-Maurel et al.,
2011). The number of samples used for calibration will also affect the uncertainty
associated with predictions and the cost of soil data acquisition by spectroscopy.

The two sources of uncertainty described above (kriging error and calibration
error) can usually be reduced by increasing sampling effort. The kriging error can
be reduced by increasing the sampling density. The calibration error can be reduced
by increasing the number of calibration samples. The effort of sampling in itself
constitutes a large cost of a survey by soil spectroscopy as well as the laboratory
analysis of the calibration samples (deGruijter et al., 2018). According to a review
by Viscarra Rossel et al. (2011), the majority of the peer-review literature on
soil spectroscopy considers either geographical space sampling or feature space
sampling designs while not covering both (van Groenigen & Stein, 1998; de Gruijter,
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2002; de Gruijter et al., 2006). Sampling methods for a calibration set have been
implemented by response-surface sampling (Lesch, 2005) and conditional Latin
hypercube sampling (Minasny & McBratney, 2006). Several studies addressed both
geographic and feature space sampling (Minasny et al., 2007; De Gruijter et al.,
2010, 2016; Adamchuk et al., 2008, 2011; and Shaw et al., (2016). Except for de
Gruijter et al. (2018) and Shaw et al. (2016), these studies on sampling in the
context of soil sensing did not take into account the value associated with reducing
uncertainty versus the costs associated with sampling.

One method to address both the costs and accuracy of a survey effort is through
the loss function framework described first by Yates (1949). Yates (1949) described
the expected loss in accuracy as a function of sampling effort, which consequently
allows one to determine the sampling effort required to minimise the expected
loss accounting for the costs associated with the sampling. It is referred to as
an expectation since the estimate itself has an associated probability distribution.
The concept of the loss function was further developed by Lark & Knights (2015).
The expected loss is described by a function that determines the costs incurred from
decision-making based on an estimated value, given its deviation from the true value.
Lark & Knights (2015) noted that in general the loss function is asymmetric since
the consequences of over- and underestimation are different in kind and magnitude.
Depending on the loss function’s asymmetry, there might be a slight preference
towards either over- or underestimation. Consequently, the optimum value might
actually not be equivalent to the largest expected financial gain.

Within this study we considered soil spectral predictions of potassium (K) and
phosphorous (P) to inform variable rate fertiliser management. The costs incurred
within this decision-making context are associated with a.) the loss in yield due
to insufficient amount of fertiliser and b.) the financial loss due to overapplication
of fertiliser. Our aim was to quantify the uncertainty in the prediction of available
P and K from spectral measurements for different total- and calibration sample
sizes. We then investigated the effect of this uncertainty on decision-making for soil
management using the loss function framework. For that purpose, we identified the
following research questions:

• How does total sample size and total number of calibration samples affect
prediction accuracy?

• How does total sample size and total number of calibration samples affect
expected loss when sampling costs are not accounted for?

• How does total sample size and total number of calibration samples affect
expected profit when sampling costs are accounted for?

5.2 Methods

5.2.1 Case study area, sampling, wet chemistry analysis and
spectroscopy

Our simulated fields were based on data obtained in sample surveys of three fields
in the Fen district of Cambridgeshire, England, in 2018 and 2019. The region was
originally dominated by peat, much of which has oxidized since the land was drained
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in the 17th century. Due to the oxidization, the underlying alluvial and marine silts
have become exposed showing complex sub-field soil variation.

To characterise the variation in P and K across the study fields we took soil
samples from across each field. The sampling designs, wet chemistry methodology,
spectroscopy and calibration are described in detail in Breure et al. (2021a), hence
we summarise them briefly here. The sampling design of Field 1 (8.2 ha) was based
around a 30-m square grid, with three transects (on alternate rows of the grid) more
intensely sampled at 6-m intervals. The designs for Field 2 (16.9 ha), and Field 3
(8.9 ha) were computed by spatial coverage sampling (Walvoort et al., 2010). From
these initial points we selected a subset with balanced sampling (Grafström & Lisic,
2019) on the spatial coordinates and elevation (measured by LiDAR). The number of
samples in this subset was 36 for Field 2 and 32 for Field 3. At each location of these
sub-samples, we added another sampling point 6 m away at a random orientation
to estimate the short-scale spatial variance.

Spectroscopic measurements were taken on each of the soil cores. This
comprised near-infared (NIR) and mid-infrared (MIR) measurements using a
Tensor II spectrometer (Bruker, Ettlingen, Germany), and X-ray fluorescence
(XRF) spectra, measured by a DP-6000 Delta Premium portable X-ray fluorescence
(pXRF) spectrometer (Olympus Ltd, Center Valley, USA). The pXRF samples
where measured in three replicates on one aliquot, near- and mid-infrared spectra
were measured on three aliquots of each soil sample. Further analysis was done on
the mean spectra of the three measurements. In terms of spectral pre-processing,
we applied the Savitzky–Golay filter (Savitzky & Golay, 1964) on the raw spectra
and then transformed them to standard normal variates and their first derivatives.

In order to predict a given variable from soil spectra, we developed a calibration
model by regression of the soil spectra (using partial least squares regression) onto
wet chemistry measurements made on a subset of the soil cores (for details see Breure
et al. 2021a). In each field we selected 30 locations to be measured by wet chemistry
using a balanced sampling approach on the coordinates and elevation (from LiDAR).
These samples measured by wet chemistry constituted our calibration set.

5.2.2 Simulated variation in available P and K

Our aim was to simulate the process of sampling across a field to predict the
soil properties from spectral measurements, selecting a subset of these samples
for calibration, and then predicting the spatial variation in P and K from point
spectral measurements to inform fertiliser management. By accounting for sampling
effort when optimising the profit associated with this decision, we can determine the
number of samples and the calibration set that would have been optimal for each of
our simulated fields. To assess this, we used random realisations of the true variation
in each field as follows.

The random realisations were based on the kriged map of true soil property
predictions. Before we could krige, a variogram model was required to describe
the spatial dependence between sample locations. The main assumption of the
variogram is that the mean and variance are stationary across the area of interest.
Based on preliminary plots this assumption did not seem to hold since available P
and K varied systematically with the coordinates and elevation. We therefore fitted
a linear mixed model to the data whereby the trend factors were fixed effects and
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the spatial autocorrelation was captured in the random term (see Lark & Cullis,
2004). For the random term a variogram model form needs to be selected a priori.
An initial investigation suggested that the exponential variogram model fitted well
so we adopted that for our analysis. This model is given by the equation:

γ(h) = c0 + c1

{
1− exp

(
−h
a

)}
for h > 0

= 0 for h = 0 . (5.1)

In this equation c0 and c1 are variances, respectively the nugget and sill of the
correlated variance, and a is the distance parameter.

To test the significance of the coordinates (eastings, northings and an interaction
term) and elevation as trend parameters, we added each in turn and performed a
log-likelihood ratio-test. Fitting was done by Maximum Likelihood to allow for the
comparison between models with a different number of fixed effect parameters. A
chi-squared p-value of 0.05 from the log-likelihood ratio was taken as significant
evidence that the trend parameters should be included. Once we came to a final
set of fixed effects, both the fixed and random effects (variogram parameters) were
estimated by residual maximum likelihood (REML). REML is generally preferred
since it reduces bias in the random effect parameters due to uncertainty in the fixed
effect parameters (Lark et al., 2006). The estimates of the random- and fixed effect
parameters are listed in Table 5.1.

In the later step where we generated realisations of the field and sample in silico,
we adopted an automated process for fitting the variogram and kriging (see below).
Therefore, to reduce the chances of problematic fitting we removed the trend from
the raw data and considered only the residuals when creating our in-silico realisations
of the field and sampling process. The trend surface was only readded at the step
where we determined the fertiliser requirements. To create our in-silico fields we
kriged the residuals onto a 2 m × 2 m grid (Webster & Oliver, 2007). Kriging
naturally smooths the true variation in the field, therefore to simulate more realistic
variation we added a component of noise to our simulated data by sampling from
Norm(0,

√
c0), where c0 is uncorrelated variance, known as the nugget variance of the

fitted variogram. The outcome of these realisations overcome the conditional bias
introduced by kriging and portray a more realistic of the global variation (Goovaerts,
1997; Deutsch & Journel, 1998). We considered these simulated data the underlying
true values of the soil variable and denominated this true value at any given location
as S.

5.2.3 Estimating the error from the calibration regression

The next step in our investigation was to formulate an equation that described the
prediction error variance as a function of the number of calibration samples (nc).
Given our limited samples with wet chemistry reference values for each field, we
pooled all samples used for calibration. The pooled set was used to select calibration
samples by the conventional method of using the Kennard-Stone algorithm on a
matrix of combined NIR, MIR and XRF soil spectra. This method allows for
selecting samples with a uniform distribution over the predictor space based on their
Euclidean distances (Kennard & Stone, 1969). The number of calibration samples
was varied from 20 samples to 80 samples by increments of 6 samples. We used the
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Table 5.1: Exponential variogram parameters (random effects) and trend parameters (fixed effects) used for the simulation of trend
residuals in each field, where c0 is the nugget variance, c1 the sill, a the distance parameter, β0 the intercept, λ elevation as measured by
LiDAR and x and y are coordinates.

Random effects Fixed effects

Soil property Field c0 c1 a β0 λ x y x2 xy y2

P
1 17 68 53.2 77.2 - −0.01 −0.33 3.11e−05 −7.42e−05 8e−04
2 13 57.3 38.5 5.89 −6.52 0.03 0.083 - - -
3 29.7 125 13.6 4.80 −34.38 - - - - -

K
1 2939 1942 39.5 648.6 - −0.29 −2.97 1e−03 0.001 0.007
2 3337 4918 31.5 −51.42 −113.9 0.095 0.59 - - -
3 260 2473 11.9 356.3 - −0.61 −0.45 0.003 0.001 0.001
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calibration dataset for predicting the remaining validation set. The mean-squared
error was used as an accuracy metric to describe the error variance, denoted by σ2

nc
.

5.2.4 Modelling procedure to compute kriging predictions
for different sample sizes

We simulated the process of predicting the soil nutrient status from spectral
measurements as follows. First, we simulated the process of selecting the sampling
points for spectral measurement in the field. For this we computed a spatial
coverage sampling design for Nt samples. A spatial coverage design allows
sample locations to be evenly spread across the domain of interest to minimise
the maximum interpolation error (Webster & Oliver, 2007). In order to gain a
robust estimate of the soil variation in space, sampling locations should include
distances shorter than the range at which the variable is spatially correlated. The
requirement of including the spatially correlated range can be met more effectively
by including paired observations within close distance for a subset of the design
(Lark & Marchant, 2018). Thus, a subset of 20 locations were selected by balanced
sampling on the eastings, northings and LiDAR and an additional sample point
added 6 m away from each in a random direction. At each sample location in our
in-silico experiment, we assumed the soil variable is predicted from spectroscopy. To
account for the error associated with this, we sampled from the normal distribution
Norm(0, σnc) and added that to the simulated true value of the soil to give our
observed predicted value. These observed values were then kriged as follows.

Visual inspection is unsuitable for the number of variograms to be estimated
within our analysis, hence we implemented the following approach to gain initial
parameter estimates for an exponential variogram. First, we computed the
bounding box around the spatial coverage sampling design. The initial estimate of
the distance parameter (a) was one tenth of the diagonal of the bounding box. We
used half the diagonal as the maximum distance for the experimental variogram.
Second, we computed the omnidirectional experimental variogram using the
method of moments (Webster & Oliver, 2007). The minimum of the experimental
variogram’s semivariance was taken as the initial estimate for the nugget parameter
(c0). The mean value of the median and maximum semivariance was used as the
initial estimate of the sill parameter (c1). The variogram parameters were then
estimated by REML. In cases where the estimated nugget parameter was lower
than the known error from calibration, σ2

nc
the model was refitted with (c0 = σ2

nc
),

similarly c0 was restricted to not fall below zero. The variogram model was then
used to perform ordinary-kriging. Once we obtained the kriging predictions and
their error variances at each location, we re-added the trend to the predictions.
This procedure was repeated for 100 realisations for each soil variable (available P
and K) and field and for each combination of total sample size (Nt) and calibration
set size (nc). For total sample size Nt we considered values between 100 and 520
and for the calibration set size (nc) we considered values between 20 and 80.
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5.2.5 The loss function and variable costs of the data
acquisition

The deviation in estimates of available P and K compared to the true value was
then assessed within the context of decision-making on fertiliser management. We
quantified the effect of error in the estimates by a loss function, L(F ), for a given
application of fertiliser, F , which is generically defined as the difference in profit that
results from applying a given amount of fertiliser F compared to an economically
optimal amount of fertiliser F0:

L(F ) = Φ(F0)− Φ(F ) , (5.2)

where the profit Φ(F ) is the difference between the income from the crop (price of
the crop × yield) and the cost of the fertiliser:

Φ(F ) = M × Yield− V × F , (5.3)

where M is the price of the crop (£ t−1) and V is the cost of the fertiliser (£ kg−1).
Given our focus on precise fertiliser application, we assume that the yield is given
by the dose–response equation:

Yield = α + ηRξF+S + ν(ξF + S) , (5.4)

where S is the concentration of the nutrient in the soil, F is the applied fertiliser (kg
ha−1), ξ is the increase in nutrient concentration (mg kg−1) in the soil for every 1
kg ha−1 fertiliser applied, and α, η, ν and R are parameters. Equation 5.4 describes
the generic dose response curve function. Since the case-study area was used for the
cultivation of lettuce we derived relevant dose response curves from the literature
for both P and K for this crop (Greenwood et al., 1980; Prasad et al. 1988). We
assumed that for every 1 kg of P added in fertiliser 0.18 kg becomes available to
the crop (Muhammed et al., 2017), for every 1 kg of K added in fertiliser, 0.62 kg
becomes available to the crop (Blake et al., 1999). Furthermore, we assumed that
the added nutrients are contained in the top 25 cm of the soil (the sampling depth).
We took from Milne et al. (2006) the value of 480 kg m−3 for bulk density of this
peat soil. Given the support of our kriged predictions (2 m × 2 m), it follows that
an addition of 1 kg fertiliser per ha leads to an increase in the concentration of this
layer of 0.15 mg available P kg−1 and 0.52 mg available K kg−1, equal to ξ in the
dose–response Equation (5.4). Greenwood et al. (1980) listed a mean base nutrient
concentration of 69 mg available K kg−1 for the unfertilised soil in their study, which
was used as an additive component. We assumed a profit margin (M) of £90 per
tonne of lettuce per hectare. The prices of fertiliser (V ) were taken as £0.36 per kg
P fertiliser and £0.29 per kg K fertiliser.
Based on Equation 5.3, we then calculated the economically optimum amount of
fertiliser, which is given by:

F0 = ln

(
B/ξ − ν
ηRS lnR

)
/ξ lnR , (5.5)

where B = V/M , known as the break-even ratio. By definition, the loss given by
Equation (5.2) is zero when the optimum amount of fertiliser is applied. However,
computing the optimum amount of fertiliser to apply relies on an exact estimate Ŝ
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whereas predictions from kriging have an associated error distribution, f(s). Given
the error distribution, we computed the optimum fertiliser rate that maximizes the
expected profit:

Fopt = ln

(
B/ξ − ν

η lnR
∫∞
0
RSf(s)ds

)
/ξ lnR . (5.6)

The application of Fopt minimises the expected loss function, E[L(F )], which we
define here as the difference between the profit where S is known without error and
the profit under the fertiliser application based on the kriged soil nutrient value, Ŝ.

E[L(F )] = Φ(F0, S)− Φ(F, Ŝ) . (5.7)

We computed E[L(F )] for two scenarios. One where the fertiliser regime, F given
Ŝ equals the application of F0 (Equation 5.5) and the second where we account for
the uncertainty in our estimate of Ŝ and F equals the application of Fopt (Equation
5.6).

As explained in the introduction, a major constraint to accurate predictions are
the costs involved of spectroscopy at the field scale. Major components are the costs
of sample sieving, milling, weighing, wet chemistry for calibration, spectroscopy and
the sampling campaign itself. The costs with regards to the total number of samples,
Nt, and the number of samples used in calibration, nc, were approximated as a simple
linear function formulated by the variable costs of a field-work survey, spectroscopy,
sample processing, sample handling and analytical measurements.

C(Nt, nc) = ΩNt + δnc (5.8)

Based on the sampling procedure for our case-study fields, we estimated the variable
costs of sampling at £5.7 per sample. We assumed the same variable costs for all
sample sizes, given the relatively small areal extent of the fields. Spectroscopy costs
were equivalent for both Nt and nc and consist of both milling and loading sample
plates for the benchtop spectrometer on a rate of 60 samples for one full working
day of technical staff, which are included in the variable costs for the total number
of samples (Ω). Based on a salary of £135 per day this would be equivalent to
£2.25 per sample. However, given the separate measurement procedure for the
XRF spectra, we doubled this value, to £5.50.

The costs associated with nc were approximated as a function of the sample
handling (sieving and weighing) and the wet chemistry costs, denoted as δ. Based on
our sample processing experience, we assumed that sieving and weighing would take
up 20 minutes per sample (one and a half working day for 60 samples to sieve and
weigh), equivalent to £3.38 per sample. The costs of analysing available Potassium
(K) by ammonium-nitrate extraction and ICP-OES was estimated at £14.70 per
sample. The analysis for plant available Phosphorus (P), by the Olsen method was
estimated at £16.30 per sample.

We expected that the sampling costs would exert a strong influence on the
expected profit. Hence, we applied a scaling factor to the data acquisition costs
(C(Nt, nc)) to explore to what degree sampling costs would need to reduce to make
variable rate fertiliser supported by spectroscopy financially viable. We applied a
scaling factor of 5%, 1% and 0.5% of the original value to assess its effect on the the
expected profit.
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5.2.6 Overview of the modelling procedure

The entire procedure described above is summarised in Table 5.2. Based on this
procedure, we quantified the uncertainty in predicted soil P and K as a function of
calibration sample size nc and total sample size Nt. We then assessed the expected
loss associated with precise fertiliser application under uncertainty, excluding data
acquisition costs. Subsequently, we calculated the expected profit accounting for
costs of the data acquisition procedure. The differences in expected profit would
determine which combination of total- and calibration sample sizes leads to the
largest financial gain under a precise fertiliser application regime under current
estimated costs. Finally we explored the impact of reducing the costs associated
with the data acquisition procedure. Together these results determine: a.) the
effect of increased sampling activity on prediction uncertainty b.) the value of
information under these different sampling designs and c.) whether soil spectroscopy
is cost-effective given the conditions in this case-study.

Table 5.2: Overview of the modelling procedure.

Step Action
i Simulate true residuals based on trend parameters from REML fit (Table 5.1)
ii Spatial coverage sampling for Nt locations
iii Select subset of spatial coverage samples by balanced sampling
iv Random sample from subset neighbour locations within 6 m buffer distance
v Sample from Norm(0, σnc) to add calibration error to samples
vi REML estimation of exponential variogram parameters
vii Universal kriging to gain kriged predictions and their variances
viii Add trend surface to kriging predictions

ix Estimate F0 and Fopt given Ŝ and f(s) (Eq. 5.6)
x Compute the expected loss (E[L(F )]) excluding the costs of data collection (Eq. 5.7)
xi Subtract the expected profit (Φ(Fopt)) (Eq. 5.3) with the data acquisition costs (Eq. 5.8)

5.2.7 Software

Analysis was done with base R commands as well as the following R packages
as implemented in RStudio: data handling with the sf and tidyverse packages
(Pebesma, 2018; Wickham et al., 2019) , computation of the sampling designs using
the spcosa (Walvoort et al. 2010), BalancedSampling (Grafström & Lisic, 2019) and
SpatialEco (Evans, 2019) packages, spectral processing using prospectr (Stevens &
Ramirez-Lopez, 2013), partial least squares regression using pls (Bjørn-Helge et al.,
2019), Granger–Ramanathan averaging using GeomComb (Weiss & Roetzer, 2016),
model-based geostatistics using the geoR and georob packages (Ribeiro & Diggle,
2018; Papritz, 2020) and handling of spatial objects using the raster (Hijmans, 2020)
and rgdal (Bivand et al., 2020) packages. Graphics were created with base R and
the package ggplot2 (Wickham, 2016).
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5.3 Results

5.3.1 Error variance as a function of the number of
calibration samples

Based on the best performing accuracy metrics from the different validations of the
PLS calibration regression, we selected the results from the 1st derivative spectra for
available K and the standard normal variate spectra for available P. The relationship
between the number of calibration samples and the error variance was described by
a simple exponential function:

σ2
nc

= A+ bωnc (5.9)

where nc is the number of calibration samples used for the regression, and A, b and
ω are model parameters.
For available K the function reaches its asymptote after around 30 calibration
samples, indicating a limit to how accurately available K can be predicted. The error
variance for available P shows a more gradual decrease where it appears to reach
the asymptote around 80 calibration samples (Fig. 5.1). The estimated parameters

Figure 5.1: The mean squared error (σ2
nc

) as a function of calibration sample size
(nc) as described by Equation 5.9 and the data from

for the exponential equations are given in Table 5.3.

5.3.2 Prediction uncertainty under different sample sizes

For available P, an increase in the number of calibration samples (nc) showed a
decrease in the mean kriging variance (Fig. 5.2). For the total sample size (Nt),
there was a similar trend in the kriging variance, following the exponential function
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Table 5.3: Parameters for the exponential equation that describes the error variance
σ2
nc

as a function of the number of calibration samples (nc) used in regression

Soil property A b ω

P −0.26 47.93 0.94
K 54.6 2603595 0.73

fitted in the preliminary step (see Equation 5.9 and Fig. 5.1). For a given value of
nc, the kriging variance is more accurately estimated once Nt increases. For available
K, there is a sharp decrease in the mean kriging variance from 20 to 35 calibration
samples, reflecting where Equation 5.9 reaches its asymptote (Fig. 5.2). Similarly

Figure 5.2: Kriging variance (σ2
k) distributions for the in-silico simulation results as

a function of total sample size (Nt) and calibration sample size (nc)
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to the kriging variance, the estimated nugget parameter declines as nc increases.
However, nugget variance as a function of Nt exhibits different behaviour. There
are no substantial differences in the mean value of the estimated nugget parameter
for different values of Nt. Across both soil properties and all fields, the variance
of the estimated nugget parameter distribution reduces for an increasing number of
total sample size (Nt) (Fig. 5.3).

Figure 5.3: Nugget variance (c0) distributions for the in-silico simulation results as
a function of total sample size (Nt) and calibration sample size (nc)

5.3.3 Expected loss without accounting for data acquisition
costs

The mean expected loss (E[L(Fopt)] / £ ha−1) shows significant differences between
the smallest and largest values of total sample size (Nt) across all fields for available
P. The expected loss for available is less sensitive to the number of samples used for
calibration (nc) (Fig. 5.4). For available K, there is a sharp decrease in the expected
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loss from 20 to 35 nc samples . For all fields, the increasing Nt has less sensitivity
on the expected loss. In fields 2 and 3, when nc = 35 or larger, the expected loss
shows a small decrease as Nt increases.

Figure 5.4: Expected loss (E[L(Fopt)]) distributions for the in-silico simulation
results as a function of total sample size (Nt) and calibration sample size (nc).

Within our computation of (E[L(Fopt)] / £ ha−1) we accounted for the
uncertainty in the soil estimates. The probability distribution described by the
kriging variance is integrated within the denominator of Equation 5.6 to compute
the optimum amount of fertiliser under uncertainty. Generally, accounting for
uncertainty reduced the expected loss (compared to E[L(F0)]), although the effect
was marginal (Supp. Fig. S9 and S10). Field 2 for available K proved an exception
as the reduction of the expected loss by applying Fopt compared to F0 was more
pronounced (Suppl. Fig. S10).

5.3.4 Expected profit when data acquisition costs are taken
into account

For each field, the expected profit (Φ(Fopt) / £ ha−1) from P and potassium fertiliser
declines linearly when total- and calibration sample size increases (Fig. 5.5). The
linear relation shows that the sampling costs predominate (Equation 5.8) over the
potential increases in profit based on the non-linear dose-response curve (Equation
5.4). The slope differs for Field 2 as the overall sampling costs are spread over a
larger area.

The last step in our analysis was to apply a scaling factor to the data acquisition
costs (of both total- and calibration sample size, Equation 5.8), to assess at which
expense the implementation of spectroscopy would become financially viable. These
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Figure 5.5: Expected profit (Φ(Fopt)) distributions for the in-silico simulation results
as a function of total sample size (Nt) and calibration sample size (nc).

results are shown in Fig. 5.6 where the distribution of Φ(Fopt) over the range of nc
was plotted against total sample size (Nt). The results showed that for available P
and K across all fields, the data acquisition costs would have to fall below 5% of their
assumed value in our case study to eliminate the decline in (Φ(Fopt)) as function
of Nt. In the scenario of 0.5% of the current data acquisition costs (C(Nt, nc)),
sampling by spectroscopy leads to an increase in expected profit in all cases except
for available K in Field 1 (Fig. 5.6). We note that the y-axes in Fig. 5.6 do not
start at 0 and indeed the effect of sampling on the expected profit is marginal.

5.4 Discussion

5.4.1 Uncertainty in soil properties predicted from
spectroscopy at the field-scale

Our analysis showed that the number of calibration samples has a large effect on the
kriging variance. The Kriging variance is less sensitive to total sample size for the
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Figure 5.6: Expected profit (Φ(Fopt)) distributions for the in-silico simulation results as a function of total sample size (Nt) over the
range of calibration sample size (nc). Colors indicate the scaling factor applied to the data acquisition costs (C(Nt, nc)), given in % of the
original data acquisition costs.
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range of sample sizes we selected. These findings contrast to the literature, where
the contribution of the spectroscopic model prediction error to the uncertainty of soil
property estimates was found to be small relative to the spatial uncertainty (Brodský
et al., 2013; Viscarra Rossel et al. 2016). However, these studies were concerned
with the prediction of soil organic carbon, which has distinct spectral features in the
IR region (Kuang et al., 2012) as opposed to available P and K. Ramirez-lopez et
al. (2019) propagated the calibration error through in their mapping of particle-size
fractions and exchangeable calcium content and showed that the contribution of the
calibration error variance was relatively large, resulting in enhanced smoothing of
the kriging predictions due a high nugget variance.

Furthermore, the relationship between uncertainty introduced by the calibration
error and the spatial uncertainty is likely to be dependent on the underlying soil
variation and the number of samples considered. We considered a range in total
sample size from 100 (and above) since this number is generally considered the
minimum required to gain a robust estimation of the variogram. Other interpolation
approaches (e.g. inverse distance weighting or trend surface analysis) could be
considered to allow for fewer total samples. However, these methods do not quantify
uncertainty in the soil estimates. As a result, uncertainty in the estimates cannot
be accommodated for which adds increased risk to the decision-making. Within
the methodological framework used in this study, the distribution over different
geostatistical realisations could provide a measure of uncertainty when different
interpolation methods are used (Goovaerts, 1997). Geostatistical realisations of
the soil variable are drawn from the joint distribution given the spatial variation
at sample locations (in this case the predictions from soil spectra). Hence, the
use of these realisations would have supported a more realistic approximation of
the variance in predictions compared to drawing from the uncorrelated variance
component, Norm(0,

√
c0), only (see Method section 5.2.2).

Across varying numbers Nt, sampling designs included a fixed number of
close-pair points. Close-pair points ensure better estimation of the spatial
covariance parameters (Lark & Marchant, 2018; Wadoux et al., 2019). Further
investigation can reveal how a variation in the close-pair points will affect the
estimation of the variogram. That is, sampling design effects are specific to the
underlying variogram model, observed in this study. Depending on the nugget
variance of the original variogram (Table 5.1), the effect of total sample-size on the
nugget variance parameter was reduced for larger values of Nt. We attribute this
to the fact that the nugget parameter estimate approximated the true underlying
short-scale variance.

Another consideration regarding the total sample size is its effect on estimating
the underlying trend. The total sample size was computed by a spatial coverage
sample design, that allows for robust estimation of the trend parameters (Brus,
2019). Since we removed the trend surface prior to ‘sampling’, the effect of the
total sample size on the trend estimation has been ignored. In an actual soil
survey however, the difference in how well the trend has been estimated is known
to have a large effect on subsequent kriging predictions and the representation of
associated uncertainty (Lark, 2009). Consequently we would expect the discrepancy
of expected loss between different total sample sizes to increase as the trend surface
is approximated with increasing accuracy.
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5.4.2 The expected loss from informing fertiliser management
based on spectroscopy estimates

Overall, the results of the expected loss showed that soil spectroscopy could provide
accurate field-scale estimates of available soil nutrient concentration. The expected
loss was in the range of 4.2 – 30 £ ha−1 for available P and 0.4 – 17.9 £ ha−1 for
available K. These values are negligible compared to the mean profit per hectare
and thus indicate that estimates for soil spectroscopy are sufficiently accurate to
pose minimum risk when used to inform soil management decisions. Furthermore,
in both cases (for available P and K) there were diminishing returns on investment
for increased sample sizes, indicating that there will be an optimum number for
both total and calibration samples. We note however, that the magnitude of the
expected loss and resulting calculated optimum are determined by the formulation
of the loss function. For example, the true values for available K in fields 1 and 2
were generally above the asymptote of the dose-response curve (Suppl. Fig. S8).
Consequently, omitting fertiliser application for large parts of the Field resulted
in the largest financial gain. Equally, the asymmetry in the loss function might
explain the contrast in the expected loss between F0 and Fopt for available K in
Field 2 (Suppl. Fig. S9, S10). Given the asymptote in the dose response curve
for K fertiliser, risk-averse over-application of fertiliser under uncertainty leads to a
lower expected loss.

5.4.3 How cost-effective is spectroscopy at the field-scale?

Our results show that under current costs of data acquisition including the sampling
procedure, the implementation of spectroscopy was not cost-effective. These findings
were supported by a linear decrease in expected profit for a large number of Nt and
nc samples. For soil spectroscopy to become cost-effective, the current costs need to
reduce by at least 95%.

Breure et al. (2021b) explored the expected loss associated with precise and
blanket fertiliser application of P and K for the same fields used in this study. They
concluded that the difference in the expected loss between these two fertiliser regimes
could be indicative of the allowable expense for a field-survey. The differences in
expected loss between these two fertiliser regimes lay in the range of £ 15–47 ha−1

for available P. The differences in the expected loss for available K lay in the range
of £ 0–15 ha−1. Given Equation 5.8, the lowest sampling costs in this study are £49
ha−1 and £47 ha−1 for available P and K, respectively. These values approximate
the difference in expected loss between precise and blanket fertiliser of P. However,
the lowest sampling cost (£49) is based on Field 2 which is almost twice the size of
Field 3 that showed a difference of £47 ha−1 between precise and blanket fertiliser
application.

Our findings hold true under the current case-study assumptions of crop- and
fertiliser price, data acquisition costs and the formulation of the loss function.
Further studies are required to elaborate on these assumptions. For example, we
did not consider a scaling effect of the sampling costs per sample relative to the
total sample size. Within a larger geographical area, the variable costs per sample
will scale with an increase in total sample size due to reduced travel-time between
locations (Lark & Knights, 2015). Equally, the economy of scale might be applicable
to the number of samples analysed by wet chemistry. That is, for a larger number of
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samples a laboratory might charge a lower price per sample. Our results showed a
marked decrease in the sampling costs due to the field size. Further work is needed
on the scaling effects both in terms of the study area’s spatial extent and associated
economics. We also assumed that yield is uniquely constrained by the crop’s uptake
of available P and K. In reality, it is unlikely that crop yield is unambiguously
constrained by available P and K concentration only. In reality, crop yield is affected
by additional factors such as other soil properties, water availability, disease pressure
and weather conditions over the growing season. For example, Lark et al. (2020)
developed boundary line models to represent the joint variation of soil nutrient status
and crop yield. Their results suggested that the application of P fertiliser should
be tailored to variations in soil pH. Where yield is considered dependent on the
interaction between two soil variables, the ability of soil spectroscopy to estimate
multiple soil properties from a single spectrum might enhance its cost-effectiveness.

5.5 Conclusions

Our results showed that the uncertainty in soil property predictions was
predominantly determined by the number of samples used for calibration.
No combination of total- and calibration sample sizes that we considered would
render soil spectroscopy a cost-effective method to inform fertiliser regimes.
Although using estimates from spectroscopy led to a relatively small expected loss,
the costs of data acquisition dominated the expected profit under the ranges of
total- and calibration sample sizes considered. However, the expected loss from
using estimates of available soil nutrients from spectroscopy to inform fertiliser
applications showed a diminishing return on investment when the costs of data
collection were ignored. This suggests that an optimum sample size exists, in case
data acquisition costs could be reduced or offset. Overall, our findings showed that
the loss function approach can be successfully used as a method to investigate the
value of soil spectroscopy for informing decisions on soil management. We therefore
suggest an extension to different case-studies to investigate the generalisability of
our findings.
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Synthesis



6.1. Introduction

6.1 Introduction

The overall aim of this thesis was to investigate the uncertainty associated with
soil spectral measurements and its effect on soil monitoring and management.
Within the literature review, I identified the need to quantify the uncertainty that
is introduced under the various stages involved in predicting soil properties by
spectroscopy. Another research gap that I identified was the effect of uncertainty
on agronomic decision-making. I also discussed the potential of a loss function
framework to investigate how the expected loss can be minimised under different
configurations of spectroscopy measurements, calibration methods and sampling
designs.

The research gaps identified in Chapter 1 were translated into four main questions
central to my PhD project. Within this final Chapter, I discuss how my PhD research
has contributed to answer these four questions formulated at the start of my project.
The research outcomes are also compared with the existing literature and I suggest
directions for future research. Finally, I provide the main conclusions based on my
PhD research project.

6.2 Overview of findings

The first research question was: can soil spectra be used to predict crop
performance indicators, given that spectral measurements are inherently uncertain?
To investigate this question, I looked at two distinct approaches to predict crop
data using soil spectra and what their implications are for management. The
first approach used the soil spectra directly to predict the crop data. The second
approach involved the calibration of the spectra to estimate soil properties, which
were in turn used to predict the crop data. Results showed that the direct approach
led to more accurate predictions of crop data compared to the indirect approach.
However, estimated soil N, P, K and pH were significant predictors of the crop data
along the indirect approach, confirming the utility of soil spectral data to inform
precision management. The difference in accuracy between the two approaches
quantifies the additional uncertainty by using soil estimates to predict crop growth.
Although the direct approach was more accurate, this did not supply an mechanistic
understanding on how soil properties might be affecting crop performance. This
suggests that direct predictions might be used to inform variable-rate planting
when crop performance is consistently linked to soil spectra over multiple growing
seasons. The predictions of soil properties can be used to inform precise applications
of fertiliser and liming. The study concludes that under optimal conditions, there
is potential for associating crop response to soil reflectance spectra.

The second research question was to what extent the effort associated with
spectral measurements be reduced in light of its effect on the uncertainty of soil
predictions? Chapter 3 involved a study that contrasted the magnitude of loss in
accuracy, relative to field-scale predictions on milled samples, by either reducing the
sample processing steps or through the use of spectral libraries. Additionally, the
predictions were performed for multiple sensors to assess whether their combined
effect could minimise the loss in accuracy resulting from reduced sample processing.
This chapter showed that both reduced sample processing and spectral libraries
potentially could reduce time and cost implications for predicting soil organic carbon,
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clay and pH from near- and mid-infrared spectra. Available P and K could only
be predicted with moderate accuracy from the milled field-scale samples. The
spectral library approach proved more sensitive to specific conditions of its use.
For example, different laboratory methods used for the spectral library and the
field-scale dataset introduced error. Another finding was that the most effective
method with which samples were selected from a national soil database, proved
to be specific for each soil property. Combined predictions from multiple sensors
generally were of equal accuracy or improved slightly compared to NIR and MIR
predictions by themselves. Particularly, results showed that the combined effect
was beneficial for the prediction of soil organic carbon from samples measured in
the field or under air-dried conditions. The loss of accuracy was specific to the
combination of soil property and sensor analysed. The results provided insight into
the expected differences in prediction accuracy and which factors need to be taken
into consideration to reduce effort for developing field-scale calibrations. I concluded
that the appropriate method to use will depend on the accuracy required, the
number of prediction samples needed and the costs associated with field sampling,
preparation, handling and laboratory costs.

The main research question with regards to Chapter 4 asked: what are the
advantages of accounting for uncertainty in soil property predictions when making
decisions about soil management? By accounting for uncertainty, I could test
the hypothesis whether spatial predictions of available P and K were sufficiently
accurate such that precise application of P and K fertiliser was economically and
environmentally justified. The effect of uncertainty (compared to using the true
values, i.e. the mean kriging predictions) was quantified as an expected financial
loss under both uniform and precise fertiliser regimes. For all four fields, there was
an economic incentive for precise fertiliser application of P compared to uniform
application. In the case of K, economic incentives existed in two out of the four
fields. The magnitude of the expected loss and the difference in loss between precise
and uniform application was found to be dependent on (a) the kriging variance,
(b) the range of the dose-response curve in terms of available P and K, (c) the
range of estimated P and K values within the fields and (d) the asymmetry of
the loss function. Although uncertainty led to risk-averse fertiliser application in
general, less P would be applied under a precise fertiliser regime compared to uniform
application for two fields. However, results showed that the environmental benefit of
fertiliser savings from precise applications was not always accompanied with a large
increase in profit. Hence, it was concluded that the environmental benefits, such
as reducing eutrophication of watercourses, from reduced P fertiliser applications
should be included in the loss function.

The research question relevant to Chapter 5 asked whether the loss function
framework could be used to inform the data acquisition process and sampling for
soil property prediction by spectroscopy. To investigate this, I considered the
implications of uncertainty in soil nutrient estimates from spectroscopy for informing
precise application of P and K fertilizer. Different total- and calibration sample
sizes were considered and used to investigate the variation in the kriging variance,
expected profit and the expected loss. Furthermore, I applied a scaling factor to
the data acquisition costs to explore to what degree sampling costs would need to
reduce to make variable rate fertilizer supported by spectroscopy financially viable.

The loss function analysis showed different effects for the sample sizes considered
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between soil properties and fields. Although using estimates from spectroscopy led to
a relatively small expected loss, the costs of data acquisition dominated the expected
profit under the ranges of total- and calibration sample sizes considered. However,
the expected loss from using estimates of available soil nutrients from spectroscopy
to inform fertiliser applications showed a diminishing return on investment when
the costs of data collection were ignored. This suggests that an optimum sample
size exists, in case data acquisition costs could be reduced or offset. I concluded
that the loss function approach is an appropriate method to assess whether soil
spectroscopy is a cost-effective means to inform soil management. Furthermore, I
suggested its application in different case-studies to gain more robust insight in the
value of applied soil spectroscopy.

6.3 Future research

6.3.1 Different methods to account for uncertainty

The quantification of uncertainty in soil estimates played a central role within this
thesis. Within this section I discuss the knowledge gaps revealed during this thesis
research and alternative approaches that can be considered to quantify uncertainty.

One major dependency within uncertainty analysis is deciding which variables
are considered uncertain. An example within this thesis can be found in the context
of fitting a linear mixed effect model to distinguish which soil properties affect
crop growth (Chapter 2). Li et al. (2009) found ignoring measurement error
of covariates in maximum likelihood estimation for spatial mixed effect models
leads to attenuated regression coefficients and inflated variance components. Hence,
within the context of Chapter 2, attenuated regression coefficients could lead to
false inferences about which soil properties explain crop growth. For example, error
within the georeferencing of crop data might lead to erroneous parameter estimates
and hence false inferences from the model. Thus, further studies should investigate
the relation between soil spectra and crop data that accounts for the uncertainty in
covariate data used in the computation of linear mixed models.

Deciding which variables are considered uncertain equally affects model-based
geostatistics. The issue can be illustrated by the example of nugget variance
estimation under different calibration predictions. Within this thesis, variogram
parameters were estimated based on field-scale predictions only. However, when
a spectral library is used, the error source of analytical methods for the soil
reference values are generally unknown (Viscarra Rossel et al., 2016). Although the
analytical measurement error can be considered small within a single laboratory,
the inter-laboratory variation has been shown to be larger than expected (Pleijsier
1986). The results in Chapter 3 confirmed these differences by the increase
in calibration error of clay, which was attributed to discrepancy between the
analytical method used in the spectral library and the field-scale dataset. Chapters
4 and 5 showed that it was necessary to fix the nugget parameter for a realistic
approximation of the calibration error. Given that kriging estimates are most
sensitive to unreliable estimates of the nugget variance (Brooker, 1986), it is
important to approximate the calibration error (and thus the nugget variance)
correctly. Alternative methods for the estimation of covariance parameters can
be useful in case the calibration error is unknown. Markov Chain Monte Carlo
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(MCMC) methods to estimate spatial covariance parameters have been found
to approximate the nugget closer to observed short-range variation in the field
(Minasny et al. 2011). Parameter estimation by MCMC methods also allows for
inference of the error variance in data from different sources (Somarathna et al.,
2018).

Within Chapter 5, we assumed that the calibration errors were spatially
independent (Conforti et al. 2015; Viscarra Rossel et al. 2016). However, high
concentrations of available P and K could have a larger error due to the smoothing
effect of the calibration regression. Within the case-study area in this thesis,
high values are associated with pockets of peat within the field and calibration
errors would thus exhibit spatial autocorrelation. Different error models might be
applicable to quantify the calibration error as a function of the prediction range.
For example, treating the error in a multiplicative context (i.e. as the ratio between
the prediction and the true value) allows for systematic dependence of the error on
the range of the variable (Tian et al. 2013).

6.3.2 Reflections on soil spectroscopy

The second subject this thesis is concerned with is soil spectroscopy. Within this
section I discuss the knowledge gaps apparent from research and discuss further
investigations that are required.

Chapter 2 reported on the importance of soil N, P, K and pH in the prediction of
crop performance across the case-study fields. These soil properties are also relevant
to agricultural decision-making in terms of precise fertiliser and liming requirements.
A literature review by Sternberg et al. (2010) states that the predictions of some
soil properties, such as pH and the contents of plant nutrients, cannot be predicted
consistently (Stenberg et al., 2010). The principle explanation for this is that
available P and K have weak or no spectral features in the IR region (Kuang et
al., 2012). Consequently, they are dependent on their correlation with spectrally
active components such as soil C fractions. Another factor is that some nutrients are
more mobile than others (e.g. N). Prediction of available N using IR-spectroscopy is
challenging in general, because of the volatilization of ammonia during the drying of
the soil samples (Wang et al. 2015). In a scenario where a larger set of calibration
samples is required, in-situ measurements provide an alternative to reduce costs.
Although Chapter 2 reported low predication accuracies for available P, K and pH
under in-field conditions, in-situ XRF measurements were not considered. Current
literature does not report studies on in-field sensing of available P and K using a
combination of (V)NIR, MIR and XRF spectrometers. Thus further research should
investigate how in-situ predictions perform for P, K and pH by using a combination
of (V)NIR, MIR and XRF sensors on the field-scale.

Another research gap is the use of XRF spectral libraries for field-scale
predictions. Although the performance between sensors is partially case-study
specific, inclusion of XRF spectra has been shown to substantially improve
prediction accuracy for some soil properties, notably particle size factions and
heavy metal content (Kalnicky and Singhvi, 2001; Carr et al., 2008; Zhang &
Hartemink, 2019; Benedet et al., 2020). Hence, research could explore the use of
XRF spectral libraries for soil property predictions at the field-scale.

A second aspect on spectral libraries is that, to reduce complexity, I did not
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consider a full factorial analysis in Chapter 2. As mentioned in Chapter 1, studies
have contrasted approaches based on similarities between spectra to subset a
national soil database with a geographic extent/stratification approach (e.g. Seidel
et al. 2019). However, few studies have contrasted this with predictions at the
field-scale under reduced sample processing conditions (Chapter 2). Another
extension to this could be to contrast field-scale prediction under reduced sample
processing with predictions based on transfer functions developed using spectral
libraries. A transfer function allows for the use of spectral libraries measured on
dried and milled soil samples to predict on samples where the spectra have been
measured in the field. Literature has reported that standardisation methods can
mitigate the effect of soil moisture on spectra measured in the field (Minasny et
al., 2011; Ji et al., 2016). However, these methods require a subset that contains
spectra from both milled and in-situ samples to establish the transfer function.
Thus, a relevant question is how does this contrast in predication accuracy and
reduced effort compare to making predictions from in-field measurements (under
dry conditions) or spectral libraries combined with spiking (Chapter 2)?

Throughout this thesis, standard methodologies reported in the literature
have been used for pre-processing spectra. There is no consensus on the spectral
pre-processing methods that lead to the most accurate calibration predictions
of soil properties (Dardenne, 2002; Stenberg & Viscarra Rossel, 2010). Within
this thesis, the use of XRF spectra, as opposed to the factory calibration on
the instrument was required to gain good prediction accuracy (O’Rourke et al.
2016a, 2016b; Zhang & Hartemink, 2019). Within the subsequent analysis of
the raw spectra (Chapter 4 and 5) I assumed that similar spectral pre-processing
methods used in IR spectroscopy applied to XRF spectra. However, these spectral
processing methods have not taken into account the different physical processes
that underlie XRF spectroscopy compared to IR. That is, secondary excitations
have been recorded to vary in their intensity by a factor of up to 20 and are
strongly matrix dependent, requiring correction (Kramar 2000). Matrix effects can
be introduced due to physical differences such as the soil’s mineralogy, particle size,
surface irregularities and moisture content. Equally, chemical matrix effects refer
to the interference of certain elements on the XRF spectrum in the presence of
other elements. For example, X-ray intensities of Zn are more strongly absorbed
in the presence of Fe (Horta et al., 2015). It follows that an IR pre-processing
method such as a standard normal variate can be biased towards an element with
a high concentration in the sample. Zhang & Hartemink (2019) found little effect
of different processing methods applied on XRF spectra in their predictions of
particle size, pH, total C and total N. However, further research is required in how
pre-processing affects predictions for different soil properties in a wider variety of
soil types.

6.3.3 Further development of the loss function

I used the loss function to assess soil spectroscopy and the effect of its associated
uncertainty on decision-making. Within this section I discuss the knowledge gaps
that I identified relevant to the loss function framework and how they might be
investigated.

Within Chapters 4 and 5 I introduced the loss function framework to inform
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decision-making based on uncertain soil data. Naturally, the decision-making
context of applied soil spectroscopy encompasses more trade-offs than dealt within
this research. For example, both Chapters 4 and 5 described the combined use
of NIR, MIR and XRF spectra. However, there is a need to account for the
costs associated with using different sensors and investigate their merit within
a loss function framework. For example, XRF measurements require a separate
procedure compared to NIR and MIR which both have been measured with the
same spectrometer by changing the light source. Research into the merit of different
sensors could also utilise the loss function framework to contrast portable/mobile
sensors, that typically provide a higher density of samples predicted with reduced
accuracy compared to the standard benchtop spectrometers used in this study.
Such studies could build on results from Chapter 5 and can provide valuable
insight into the trade-off between the cost-effectiveness of mobile sensor platforms
compared to their accuracy in the context of decision-making.

Knowledge gaps are not only present in the application of the loss function
but also how it has been formulated in the first place. Chapter 4 showed that
environmental incentives for precise fertiliser application where not strictly tied
to economic incentives. Within Chapter 4, I discussed that the loss function’s
asymmetry could account for environmental incentives such that a larger penalty
is placed on over-application of fertiliser. Such studies can quantify the potential
environmental benefits of precise fertiliser applications and perhaps inform the
level of required compensation necessary to incentivise sustainable fertiliser
practices. That is, generally the farmer is interested in maximising his/her total net
income. Some studies reported a lack of economic incentive for precision agriculture
practices after taking into account all associated costs (i.e. acquisition of equipment,
maintenance and depreciation) (Yang et al., 2001). The fact that environmental
and economic incentives for precise fertiliser application do not necessarily coincide
(Chapter 4), provides a new perspective to this debate. The inclusion of impacts
to the environment is likely to affect the value of precise fertiliser application based
on soil spectroscopic information and requires further investigation.

Lastly, the magnitude of the expected loss and difference in loss between the
estimates and the true values were found to be dependent on a.) the kriging variance,
b.) the range of the dose-response curve in terms of available P and K, c.) the range
of estimated P and K values within the fields, and d.) the asymmetry of the loss
function. In Chapters 4 and 5 I assumed that yield is unambiguously constrained
by a limitation in available P or K, which is not likely to be the case in practice.
Further studies could inform the loss function by agricultural field experiments to
investigate the effect of precise fertiliser application based on soil spectroscopy. Such
an approach would allow for increased certainty that the magnitude of the expected
loss is realistic since the loss function has been tailored in line with the soil under
study. Within such a study, an extension could be to perform a sensitivity study
on the important parameters that define the loss function to gain further insight in
the effect of uncertainty on the expected loss.

The loss function analysis in Chapter 5 showed that total sample size (density)
exerted a large effect on the expected loss. The a priori decision of sampling density
requires further research. Kerry and Oliver (2008) described a method to estimate
an empirical variogram from covariate data. An empirical variogram allows for the
identification of an approximate spatial scale of variation. The range of the spatial
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autocorrelation can then in turn be used to determine an appropriate sampling
density, as described first by McBratney & Webster (1986). Another approach is to
compute an average variogram from a database of variogram parameters (Wadoux
et al., 2019). Further studies could investigate both approaches and use the loss
function framework to assess the effect of their recommended sampling density on
prediction accuracy and decision-making.

A second topic of research that is related to the a priori decision on the
sampling design, is how to inform the placement of the samples. Whether to adopt
design-, model-assisted or model-based sampling, is dependent on the objective
of the study. Viscarra Rossel et al. (2016) found that although the total organic
C stocks estimated by the three different sampling designs where similar, the
variances of both the designs informed by a model where smaller compared to the
probability-based approach. The loss function framework could in such cases be
used to investigate whether the difference in uncertainty is relevant to the study’s
objective. In that particular case, what is the minimum variance in organic C
stock estimates that allows for the detection a difference in organic C stock in
subsequent monitoring? However, model-based estimates are generally associated
with higher expenses for sampling, thus the loss function framework might support
a study that contrasts different sampling design practices and their accuracy within
a decision-making context (e.g. organic C stock change).

6.3.4 Generic reflection on this thesis research

The effect of the soil’s natural variability within a case-study on the research findings
cannot be reduced by improved model structure (Chapters 2,3,4,5), calibration of
the model parameters (Chapters 2,3,4,5) and the resolution of simulations (Chapter
5). The question is then how we can generalise from case-study results to the overall
empirical advances from the research presented in this thesis? The Cambridgeshire
fens are characterised by large sub-field scale variability due to their specific soil
formation history. There are stark contrasts between peat soils and alluvial/marine
silts within each field. Sub-field scale variability determines to what extent the use of
soil sensors is applicable. A suitable range of calibration is required to gain accurate
predictions (Wetterlind et al., 2008). It follows that sub-field scale variability also
determines what minimum accuracy of the sensor is required to measure variation
in soil properties. That is, the measurement error should be smaller than the
short-range variation of the target soil property (de Gruijter et al. 2010). These
main characteristics determine if field-scale calibrations are likely to be effective.

The composition of the soil also affects whether certain properties can be
accurately predicted. For example, a diverse set of phosphorus binding mechanisms
in soil determine its availability for plant uptake. Ahmed et al. (2019) characterised
orthoP and molecular mechanisms for the adsorption of P to goethite in a purely
chemical system (without spectral interference of soil components). Available P
as analysed in this thesis, however, is not a chemically defined component and
its relation with spectrally active components is soil type specific. Given that
the prediction accuracy of P is dependent on its relation to spectrally active soil
components, the variety of P binding mechanisms in soils thus leads to a wide
variety of surrogate correlations other soil components and hence variable results
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between case-studies (Chang et al., 2001; Pätzoldt et al., 2019). For example,
this case-study soil’s contain large variation in, generally high, organic matter
content. However, other studies have reported indications that available P and
K could be predicted accurately only for soils low in organic matter (Hu et al.,
2016). Differences in prediction accuracy reported between studies show the wide
constraints of the soil’s composition and its relative effect on the value of soil
spectroscopy. In some cases, these constraints can be approximated for certain soil
properties. For example, the mineralogy of soils in Eastern and Southern Africa
is constrained by weathering processes (Shepherd and Walsh, 2002). In other
cases, constraints are imposed by anthropogenic factors, such as the application
of fertiliser. However, fertilisation can also disturb the surrogate correlations on
which the prediction accuracy of non spectrally active soil properties is dependent.
To determine whether a non-spectrally active soil property can be predicted
accurately prior to a soil survey is a difficult and an understudied question. Thus,
it is important that the research presented within this thesis should be viewed in
context of the soil’s variability and spatial characteristics of the case-study.

In addition to the soil’s natural variability, another characteristic of a case-study
area is its spatial extent. Consequently some of the conclusions might change once
applied on a broader geographical scale. For example, wet chemistry analysis costs
could be subject to the economy of scale within the loss function framework (Chapter
5). As mentioned within Chapter 5, we also did not consider a scaling effect of
the sampling costs per sample relative to the total sample size. Within a larger
geographical area, the variable costs per sample will scale with an increase in total
sample size due to reduced travel-time between locations (Lark & Knights, 2015).

Given that the effectiveness of spectroscopy is dependent on the soil’s natural
variability and spatial extent of the case-study area, its application appears to be
context-specific for its case-study area. The question on whether soil sensing is
viable to implement in the first place is an important and difficult question to answer
due to these factors. However, the quantification of uncertainty and understanding
its effect in context of the study’s objective plays a central role towards a further
understanding of the value of soil spectroscopy.

6.4 Conclusions

Literature reviews on soil spectroscopy have provided useful insight in the
prediction accuracy for a wide range of soil properties under different sample
preparation, calibration data collection, spectrum acquisition and assessment of
calibration accuracies. The previous sections showed that these methodologies
indeed all influence how effectively spectroscopy can estimate soil properties and
the magnitude of associated uncertainty. However, to date, few studies have looked
beyond accuracy metrics and asked what precision is required within the context
of soil management. I believe that this thesis has made a substantial contribution
in quantifying and understanding the effect of uncertainty from soil spectroscopy
within the context of soil management.

The models formulated within this thesis are statistical and hence give a relativist
and scale-dependent measure of the soil’s variation. The question of generalisability
accompanies most of the studies in soil science, given the complex natural variability
of soil. The challenge is to move beyond the characteristics of a case-study. Although
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spectroscopy might be able to provide accurate predictions, the required accuracy
is context-dependent and thus it is unrealistic to assume it will be effective in all
cases. The main two questions to answer are i.) whether soil spectroscopy will be
effective, and if so, ii.) how should it be implemented?

As shown, the loss function framework can be used to decide whether predictions
from spectroscopy are adequate and when they might not be. The results indicate
that spectroscopy as a method can benefit soil management but was restricted in
its application by associated costs. These findings emphasise the importance of
looking beyond spectroscopy as a technique on its own and assess its relevance for
characterising soils and the value of knowledge obtained.

In order to validate research funds allocated to soil spectroscopy, the value of
information acquired needs to be assessed in light of the study’s objective. The
research in this thesis has presented such work within an applied spectroscopy
context. Given the centrality of soil to many environmental processes, an exciting
variety of topics lie ahead to assess the potential of soil spectroscopy to enhance
research.
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Chapter 2 – Supplementary material

Figure S1: Mean squared error (MSE) as a function of the number of components
included within the partial least squares regression (PLSR) model in a leave-one-out
(LOO) cross-validation procedure. Four examples of soil properties illustrate the
numbers of optimum components for each soil property.



Figure S2: Range of estimated soil properties by lettuce variety for Field 1.
Soil properties were estimated from Near and mid-infrared (IR) spectroscopy
measurements by partial least squares regression.



Figure S3: Range of estimated soil properties by lettuce variety for Field 1.
Soil properties were estimated from Near and mid-infrared (IR) spectroscopy
measurements by partial least squares regression.



Coefficient

Property LM LMM

Intercept −29.1 8.44

Total N/% 8.42 2.40

K+/mg kg−1 0.01 0.01

log(clay) 5.63 7.57

pH 4.60 NA

Variety Etude 66.11 −0.58

Variety Glassica 24.98 −3.79

Total N : Etude −5.46 3.83

Total N : Glassica 7.88 10.67

K+ : Etude −0.01 −0.01

K+ : Glassica 0 −0.01

log(clay) : Etude −17.7 −20.4

log(clay) : Glassica −16.19 −15.20

pH : Etude 8.38 NA

pH : Glassica −3.78 NA

Table S1: Linear model (LM) and linear mixed model (LMM) fixed effects
coefficients – Field 1



Coefficient

Property LM LMM

Intercept 8.71 8.47

Total N/% 10.24 9.56

K+/mg kg−1 0.01 0.01

P/mg kg−1 −0.04 0

Variety Glassica −0.52 0.29

Variety Yucaipa 4.08 0.16

Total N : Glassica −0.61 −0.43

Total N : Yucaipa −3.40 −2.29

K+ : Glassica 0 0

K+ : Yucaipa 0.08 0.09

P : Etude 0.02 0

P : Yucaipa −0.47 −0.51

Table S2: Linear model (LM) and linear mixed model (LMM) fixed effects
coefficients – Field 2



Property Total C/% Total N/% Ca2+/mg kg−1 K+/mg kg−1 Mg2+/mg kg−1 Na+/mg kg−1 Mn2+/mg kg−1 P/mg kg−1 S/mg kg−1 pH Sand/% Clay/% Silt/%

Total C/% 1 · · · · · · · · · · · ·

Total N/% 1 1 · · · · · · · · · · ·

Ca2+/mg kg−1 0.89 0.90 1 · · · · · · · · · ·

K+/mg kg−1 0.14 0.14 0.08 1 · · · · · · · · ·

Mg2+/mg kg−1 0.74 0.74 0.64 0.42 1 · · · · · · · ·

Na+/mg kg−1 0.55 0.55 0.36 0.22 0.76 1 · · · · · · ·

Mn2+/mg kg−1 0.44 0.44 0.45 −0.39 −0.03 −0.16 1 · · · · · ·

P/mg kg−1 0.02 0.02 −0.01 0.84 0.22 0 −0.44 1 · · · · ·

S/mg kg−1 0.56 0.57 0.61 −0.02 0.50 0.62 −0.01 −0.17 1 · · · ·

pH −0.83 −0.83 −0.68 0.04 −0.59 −0.72 −0.42 0.27 −0.70 1 · · ·

Sand/% 0.73 0.71 0.52 0.12 0.45 0.44 0.26 0.08 0.30 −0.69 1 · ·

Clay/% −0.51 −0.49 −0.26 −0.21 −0.35 −0.39 −0.06 −0.16 −0.12 0.50 −0.91 1 ·

Silt/% −0.75 −0.75 −0.74 0.11 −0.40 −0.31 −0.50 0.10 −0.46 0.69 −0.65 0.28 1

Table S3: Correlation between soil properties (n = 60) used to regress against near- and mid-infrared reflectance spectra by partial least
squares methods



Chapter 3 – Supplementary material

Notes on the difference in prediction accuracy metrics between the
leave-one-out cross-validation (LOOCV) and the independent validation
set

Prior to the study we anticipated that the confounding effects of soil moisture
content, particle size variation and aggregation would reduce the generalizability of
calibration models. Consequently, one would expect a larger discrepancy between
accuracy metrics from the LOOCV and those from the independent validation set
for predictions from in-situ, unprocessed and air-dried samples. As a reference, we
have included the prediction accuracy metrics for the LOOCV calibration and the
independent validation set in table format.

Table S4: Prediction accuracy metrics from in-situ samples for the leave-one-out
cross-validation on the calibration set (Calibration) and the predictions on the
independent validation set (Validation). Ncomp: number of components included in
the partial least squares regression. RMSE: root mean squared error, RPIQ: ratio
of performance to inter-quartile range.

Calibration Validation

Condition Property Sensor Ncomp RMSE RPIQ Bias RMSE RPIQ Bias

Organic C/g kg−1 7 1.80 2.90 0.01 1.80 3.40 0.37

In
-s

it
u

pH

(V
)N

IR

3 0.35 0.71 0.01 0.33 0.92 −0.05

Clay/% 8 3.6 1.90 −0.03 2.70 3.00 0.41

P/mg kg−1 1 15.00 1.20 0.22 9.70 0.85 5.50

K/mg kg−1 2 120.00 1.10 0.76 68.00 1.70 22.10

In
-s

it
u

Organic C/g kg−1 7 1.90 2.70 −0.01 1.70 3.60 0.42

pH

M
IR

7 0.33 0.77 0.00 0.29 1.10 −0.07

Clay/% 5 3.90 1.80 0.05 2.50 3.20 −0.28

P/mg kg−1 1 17.00 1.10 0.23 9.00 0.91 4.29

K/mg kg−1 2 140.00 0.94 4.79 74.00 1.60 26.60



Table S5: Prediction accuracy metrics from unprocessed samples for the
leave-one-out cross-validation on the calibration set (Calibration) and the
predictions on the independent validation set (Validation). Ncomp: number of
components included in the partial least squares regression. RMSE: root mean
squared error, RPIQ: ratio of performance to inter-quartile range.

Calibration Validation

Condition Property Sensor Ncomp RMSE RPIQ Bias RMSE RPIQ Bias

Organic C/g kg−1 8 1.60 3.30 −0.03 1.50 4.10 0.17

U
n

p
ro

c
e
ss

e
d pH

(V
)N

IR

6 0.35 0.71 0.00 0.28 1.10 −0.02

Clay/% 12 3.20 2.10 0.04 2.40 3.40 0.00

P/mg kg−1 1 16.00 1.10 −0.50 9.30 0.88 5.06

K/mg kg−1 4 120.00 1.00 0.21 86.00 1.40 28.1

Organic C/g kg−1 7 2.20 2.40 0.01 2.70 2.30 −0.14

U
n

p
ro

c
e
ss

e
d pH

M
IR

3 0.45 0.56 0.00 0.41 0.75 0.02

Clay/% 2 3.80 1.80 0.07 3.20 2.50 −0.49

P/mg kg−1 2 20.00 0.89 0.14 10.00 0.80 4.48

K/mg kg−1 2 160.00 0.81 6.00 77.00 1.50 15.50



Table S6: Prediction accuracy metrics from air-dried samples for the leave-one-out
cross-validation on the calibration set (Calibration) and the predictions on the
independent validation set (Validation). Ncomp: number of components included in
the partial least squares regression. RMSE: root mean squared error, RPIQ: ratio
of performance to inter-quartile range.

Calibration Validation

Condition Property Sensor Ncomp RMSE RPIQ Bias RMSE RPIQ Bias

Organic C/g kg−1 8 0.98 5.20 0.00 0.82 7.40 0.00

A
ir

-d
ri

e
d

pH

(V
)N

IR

12 0.21 1.20 0.00 0.12 2.60 −0.05

Clay/% 8 2.60 2.60 0.04 1.90 4.30 −0.20

P/mg kg−1 4 12.00 1.50 −0.57 11.00 0.76 7.29

K/mg kg−1 4 110.00 1.20 −3.06 74.00 1.60 28.70

Organic C/g kg−1 4 2.20 2.30 0.00 1.40 4.30 0.03

A
ir

-d
ri

e
d

pH

M
IR

7 0.39 0.63 0.00 0.33 0.92 0.05

Clay/% 4 4.50 1.50 0.00 3.00 2.70 −0.08

P/mg kg−1 1 16.00 1.10 0.22 9.20 0.89 4.44

K/mg kg−1 2 120.00 1.00 2.78 70.00 1.70 21.30



Table S7: Prediction accuracy metrics from milled samples for the leave-one-out
cross-validation on the calibration set (Calibration) and the predictions on the
independent validation set (Validation). Ncomp: number of components included in
the partial least squares regression. RMSE: root mean squared error, RPIQ: ratio
of performance to inter-quartile range.

Calibration Validation

Condition Property Sensor Ncomp RMSE RPIQ Bias RMSE RPIQ Bias

Organic C/g kg−1 9 1.60 3.10 0.02 0.88 6.80 −0.22

M
il
le

d

pH

(V
)N

IR

12 0.27 0.94 0.00 0.15 2.10 −0.03

Clay/% 11 3.00 2.30 −0.01 2.10 3.80 −0.16

P/mg kg−1 15 12.00 1.50 −0.10 7.50 1.10 −0.53

K/mg kg−1 12 110.00 1.20 1.31 76.00 1.60 −11.20

Organic C/g kg−1 9 1.10 4.60 0.01 0.42 15.00 0.05

M
il
le

d

pH

M
IR

15 0.20 1.30 0.00 0.13 2.40 −0.02

Clay/% 6 2.10 3.30 0.04 1.90 4.20 −0.15

P/mg kg−1 13 10.00 1.70 −0.14 8.30 0.99 4.50

K/mg kg−1 9 98.00 1.30 −1.38 76.00 1.60 18.40



Chapter 4 – Supplementary material

With regards to Chapter 4, supplementary figures are provided on the sampling
design, the cross-validation results of the linear mixed model variograms, the kriging
predictions and their variances that informed the loss function analysis.

Figure S4: Field boundaries and the sampling points.



Figure S5: Leave-one-out cross validation of the linear mixed models. The linear
mixed model was re-estimated for each iteration to diminish bias in parameter values.
Metrics include the standardized squared prediction error (SSPE) and the root mean
squared error (RMSE).



Figure S6: Kriging predictions and their kriging variance (σ2
k) by field – available K

(mg / kg−1)



Figure S7: Kriging predictions and their kriging variance (σ2
k) by field – available P

(mg / kg−1)



Back-transformation of log kriging predictions and variances

The transformation was done following Laurent (1963).
Re-transformed kriging predictions, ykt, were computed by:

ykt = e(yk+0.5σ2
k) (6.1)

where yk and σ2
k are the kriging predictions and kriging variance respectively, on a

logarithmic scale.
The re-transformed kriging variances, σ2

kt were computed by:

σ2
kt = e2(yk+σ

2
k) × eσ2

k − 1 (6.2)

Chapter 5 – Supplementary material

This section contains the supplementary figures as referred to in Chapter 5.

Figure S8: Dose-response curves for available P (exponential + linear) and available
K (exponential) fitted based on data from Prasad et al. (1988) (P) and Greenwood
et al. (1980) (K). See Table 4.1 in the main text for parameter values.



Figure S9: The expected loss (E[L(F )]) as a function of total sample size (Nt) and calibration sample size (nc) under two different fertiliser
regimes. In the first regime, the optimum amount of fertiliser was computed based on the mean kriging prediction (F0). In the second
regime, optimum amount of fertiliser was computed that maximises the expected property given the error distribution associated with
the kriging prediction (Fopt) – available P / mg kg−1.



Figure S10: The expected loss (E[L(F )]) as a function of total sample size (Nt) and calibration sample size (nc) under two different
fertiliser regimes. In the first regime, the optimum amount of fertiliser was computed based on the mean kriging prediction (F0). In the
second regime, optimum amount of fertiliser was computed that maximises the expected property given the error distribution associated
with the kriging prediction (Fopt) – available K / mg kg−1.
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