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Core Ideas

As part of the submission process, we ask authors to prepare highlights of their article. The
highlights will consist of 3 to 5 bullet points that convey the core findings of the article and
emphasize the novel aspects and impacts of the research on scientific progress and environmental
problem solving.

The purpose of these highlights is to give a concise summary that will be helpful in assessing the
suitability of the manuscript for publication in the journal and for selecting appropriate reviewers. If

the article is accepted the highlights may also be used for promoting and publicizing the research.

Core Idea 1: 4€¢ High free asparagine and low lysine concentrations limit the nutritional
value of wheat grain.

Core Idea 2: 3€¢ Investigation of a biparental mapping population formed from the UK soft
wheats Claire and Robigus.

Core Idea 3: 4€¢ Breeding for lower free asparagine and higher lysine using Claire and
Robigus diversity is possible but limited.

Core Idea 4: CUST_CORE_IDEA_4 :No data available.

Core Idea 5: CUST_CORE_IDEA_5 :No data available.
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Core Ideas:

e High free asparagine and low lysine concentrations limit the nutritional value of
wheat grain.

e Investigation of a biparental mapping population formed from the UK soft wheats

Claire and Robigus.
e Breeding for lower free asparagine and higher lysine using Claire and Robigus

diversity is possible but limited.
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Abstract
Wheat is a major source of nutrients for populations across the globe, but the amino acid
composition of wheat grain does not provide optimal nutrition. The nutritional value of wheat
grain is limited by low concentrations of lysine (the most limiting essential amino acid) and
high concentrations of free asparagine (precursor to the processing contaminant acrylamide).
There are currently few available solutions for asparagine reduction and lysine
biofortification through breeding. In this study, we investigated the genetic architecture
controlling grain free amino acid composition and its relationship to other traits in a Robigus
x Claire doubled haploid population. Multivariate analysis of amino acids and other quality
traits showed that the two groups are largely independent of one another, with the largest
effect on amino acids being from the environment. Linkage analysis of the population
allowed identification of QTL controlling free amino acids and quality traits, and this was
compared against genomic prediction methods. Following identification of a QTL controlling
free lysine content, wheat pangenome resources facilitated analysis of candidate genes in this
region of the genome. These findings can be used to select appropriate strategies for lysine

biofortification and free asparagine reduction in wheat breeding programmes.
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Introduction

The nutritional quality of wheat has profound impacts on human health. As one of the largest
sources of average daily calorie intake in the world (18.2% in 2019) (FAOSTAT, 2021),
wheat is an essential source of macro and micronutrients. In 2019, 19.5% of average daily
global protein intake was estimated to be provided by wheat-based foods (FAOSTAT, 2021).
Similarly, between 2008 and 2017 in the UK, over 25% of average daily fibre intake was
provided by wheat-based foods (Gressier & Frost, 2021). Wheat flour is often fortified to
increase its nutrient content: in the UK, for example, wheat is fortified with calcium, iron,
thiamine, niacin and, most recently, folate (DEFRA, 1998; DHSC, 2021). The quantities of
different macro and micronutrients in wheat can have large impacts on population health
because of the scale at which wheat products are consumed. For example, it is estimated that
the addition of folate to UK flour will lead to a 20% decrease in neural tube defects in babies
(DHSC, 2021). Consequently, it is essential to ensure that the nutritional profile of wheat is
as beneficial as it can be for human health.

One way in which the nutritional profile of wheat can be improved is via optimisation
of its amino acid composition, with the concentrations of lysine and asparagine most
important. Free (soluble, non-protein) asparagine can be converted to the processing
contaminant, acrylamide, during high-temperature cooking and processing, and this has led to
ongoing efforts to reduce free asparagine concentration (Oddy et al., 2022). Lysine, on the
other hand, is not produced endogenously by humans or other monogastric animals, making it
an essential amino acid in the diet, but it is present in only small quantities in wheat and other
cereal grain and populations reliant on cereals for their nutrition may suffer from lysine
deficiency (Galili & Amir, 2013). Indeed, fortifying wheat flour by adding lysine has been
shown to improve indices of nutritional status in clinical trials in Pakistan, northern China,

and Syria (Hussein et al., 2004; Zhao et al., 2004; Ghosh et al., 2008). Flour fortification is
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unlikely to be a sustainable solution in developing countries and it would be much cheaper
and more efficient to increase the intrinsic lysine content of wheat grain. Therefore, the
amino acid composition of wheat grain could be optimised both by decreasing grain free
asparagine content and increasing lysine content.

In recent years, studies have investigated genetic strategies for the reduction of free
asparagine content in wheat grain. Induced and natural variation in the asparagine synthetase
2 genes, for example, has been found to impact significantly on free asparagine content
(Raffan et al., 2021; Oddy et al., 2021; Alarcon-Reverte et al., 2022) and quantitative trait
loci (QTL) for grain asparagine content have been identified from previous GWAS studies
(Emebiri, 2014; Peng et al., 2018; Rapp et al., 2018). However, the small number of stable
QTL available to breeders limits the progress that can be made to reduce grain asparagine
content in breeding programmes and no genetic strategies for soft (biscuit) wheat specifically
have been investigated. Similarly, there are limited strategies currently available for
increasing lysine content in wheat grain. Lysine biofortification via QTL identification and
marker-assisted breeding has been studied extensively in both rice (Wang et al., 2008; Zhong
et al., 2011; Yoo, 2017; Jang et al., 2020) and maize (Prasanna et al., 2020), but only two
studies have previously investigated lysine biofortification in wheat through association
studies. Peng et al. (2018) successfully identified QTL controlling free lysine and Jiang et al.
(2013) identified QTL for total lysine.

Consequently, the aim of this study was to investigate QTL, genomic prediction
accuracy, and candidate genes controlling the free amino acid composition of wheat grain in
a soft wheat mapping population developed from the varieties Claire and Robigus. Like many
UK varieties, these parents both lack the B genome homeologue of the asparagine synthetase-
2 gene, TaASN-B2 (TraesLDM3B03G01566640 in variety Landmark), the presence/absence

of which is a known source of grain asparagine content variation (Oddy et al., 2021). This
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mapping population, therefore, represents a useful resource for identifying additional
variation. Claire and Robigus are also represented by scaffold-level genome assemblies in the
wheat pangenome, facilitating candidate gene analysis. Furthermore, we investigated other
quality traits, such as grain size, hardness, and Hagberg falling number (HFN), to determine
whether QTL controlling nutritional traits overlapped with those controlling other quality

traits.

CSSA 5585 Guilford Rd., Madison, W1 53711



73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

The Plant Genome

Materials and Methods

Production of Doubled Haploid lines

Doubled Haploid lines of Robigus x Claire were produced using a modified Knox et al.
(2000) method. Wheat spikes were emasculated between growth stages GS55 and GS59.
Once the stigma was receptive it was fertilised with freshly shed donor maize pollen. After
one day, wheat florets were treated with Dicamba (20mgL!) (Sigma-Aldrich, D5417) and
injected into the plant stem (100mgL-'). Developing embryos were excised between 14 and
21 days. Under aseptic conditions, seeds were removed from the spikelets, surface sterilised
with 70% (v/v) ethanol (EtOH) for 1 min, rinsed with sterile distilled water, and immersed in
20% (v/v) commercial bleach solution with a few drops of Tween® 20 for 20 mins. They

were then rinsed with sterile distilled water three times.

Haploid embryos were excised and grown on 90mm Petri dishes in the dark on
Gamborg’s B5 media with minimal organics (Gamborg et al., 1968), 2% (w/v) sucrose, pH
5.8, 9gL-! Difco bactoagar at 20°C. When showing signs of germination, embryos were
transferred to a light incubator at 20°C. Any non-germinated 1 month old embryos were
given cold shock treatment at 4°C for 7 days to promote germination. Germinated plantlets
were vernalised for 4 weeks and were grown in the glasshouse until the 4-tiller stage. Plants
were then given colchicine (Sigma-Aldrich, C9754) treatment for 5 to 6 hours in the light at
room temperature, washed and transplanted to soil, acclimatised and grown in a glasshouse.
The mapping population was genotyped by Limagrain using a proprietary SNP array. The
genetic map comprising 872 loci was constructed using MSTMap Online

(http://mstmap.org/).

The mapping population was grown in field trials at the John Innes Centre Morley
Mill Hill field site (52°33'15.1"N 1°01'59.2"E), UK, in 2017 to 2018, and at the Church Farm

field site (52°38'N 1°10'E) in 2018 to 2019, using an unreplicated, completely randomised

CSSA 5585 Guilford Rd., Madison, WI 53711
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design. The H18 field trial was drilled on the 215 September 2017 and harvested on the 1%
August 2018. The H19 field trial was drilled on the 14t September 2018 and harvested on the
12 August 2019. Growth habit, heading date, plant height, and yield traits were scored in the

field.

Phenotyping

Grain diameter, kernel hardness index (KHI), and grain weight measurements were recorded
for 300 kernels from each line in the population using a Perten Single Kernel Classification
System (SKCS) 4100 (Calibre Control International Ltd., Warrington, UK). Grain length
(mm), width (mm), and area (mm?) measurements were recorded in triplicate for each sample
using a MARVIN Seed Analyser and software Marvin 4.0 (MARVIiTECH GmbH,
Wittenburg, Germany). Grain samples were milled to wholemeal flour in a coffee grinder and
flour moisture content was recorded using a Minispec nuclear magnetic resonance (NMR)
analyser (Minispec Mql10, Bruker Inc., Germany). Hagberg falling number measurements
were recorded using an FN 1000 as the average of two technical replicates (Perten, Sweden),
adjusting for flour moisture content as required according to manufacturer’s instructions.
Amino acid analysis was performed on wholemeal flour samples by HPLC as described
previously (Raffan et al., 2021) by Curtis Analytics (Sandwich, UK). Briefly, free amino
acids were extracted from 0.5g of wholemeal flour and underwent precolumn derivatisation
(Curtis et al., 2018). Samples were then run on an HPLC system identically to previously
described (Raffan et al., 2021). Three technical replicates were taken for each sample for

amino acid measurement.

Phenotypic data analysis
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The Plant Genome

Skewness and kurtosis were measured for all variables in each environment and normal plots
visually inspected in Genstat (VSN International, 2021) to determine if variables required
transformation. The data were appropriately transformed according to their distribution if
necessary (see Tables S1 and S2 for details of transformations). Subsequent analyses were
performed on transformed variables unless otherwise stated. Plotting was performed in R (R
Core Team, 2021) with the packages ggplot2 (Wickham, 2016), tidyverse (Wickham et al.,
2019), and cowplot (Wilke, 2020).

Broad-sense heritability for each trait was estimated as described in Covarrubias-
Pazaran (2019) using the packages dplyr (Wickham et al., 2022) and Ime4 (Bates et al.,
2015). Kendall rank correlation coefficients were performed on non-transformed data and
adjusted p values (Bonferroni correction) were calculated for plotting using R (R Core Team,
2021) and the package corrplot (Wei & Simko, 2021). Principal component analysis was
performed on untransformed, scaled variables using the package factoextra (Kassambara and
Mundt, 2020). Correlation network analysis was performed and plotted by filtering for
significant correlations where p < 0.001 using Kendall correlation with Bonferroni correction
using the packages corrr (Kuhn, Jackson and Cimentada, 2020), igraph (Csardi and Nepusz,
20006), and ggraph (Pedersen, 2021).

Bayesian modelling was performed on untransformed variables in R using the
package rstanarm (Goodrich et al., 2020). Variables were scaled before modelling and
individual linear models for each predictor variable were created to guide the selection of
informative priors. Simulations of the posterior distribution were subsequently performed to
check model fit and intervals were plotted using the package bayesplot (Gabry and Mabhr,
2022). R? estimates were obtained by taking the median of leave-one-out cross validation

adjusted estimates.

CSSA 5585 Guilford Rd., Madison, WI 53711
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Linkage analysis
Multi-environment single trait linkage analysis was performed in Genstat for each trait to
detect QTL present in both environments, following selection of the most appropriate
variance-covariance model according to the Bayesian information criterion. Simple interval
mapping (SIM) was initially performed to identify putative QTL. These QTL were then used
as covariates in composite interval mapping (CIM). QTL identified from CIM were then used
to construct the final QTL models. Pseudo-markers were generated every 2 ¢cM in the map.
The minimum cofactor proximity was set at 30 cM and the minimum separation for selected
QTL at 20 cM. Significance thresholds were determined by the Li and Ji method (Li & Ji,
2005) with a genome-wide significance level of 0.05.

Single-environment linkage analysis was performed in R using packages qtl (Broman
et al., 2003) and qtl2 (Broman et al., 2018). Single-environment linkage analysis was made
into an interactive app using the packages shiny (Chang et al., 2021), plyr (Wickham, 2011),

and rsconnect (Atkins, McPherson & Allaire, 2021), accessible at https:/t9onwp-

wheatworker.shinyapps.io/QTL_Browser/ and in supplementary data file 1. As before, SIM

was performed first to identify covariates for use in CIM. Identified QTL from CIM were
then used to create single QTL models as well as additive QTL models. Upper and lower
95% confidence intervals for QTL location were calculated using the Bayesian credible
interval method in R/qtl and expanded to the closest markers. Pseudomarkers were generated
every 2 ¢cM in the map and the minimum marker covariate proximity was set at 20 cM. A

logarithm of the odds (LOD) score of 3 was used as the significance threshold.

KASP assays and statistical analysis

Varieties were grown and DNA extracted as previously described (Oddy et al., 2021). KASP

marker sequences for dwarf and wild-type alleles of RAt-BI were found on CerealsDB

CSSA 5585 Guilford Rd., Madison, W1 53711
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(Wilkinson et al., 2020). Assays were run in 96-well plates in an Applied Biosystems™ 7500
Real-Time PCR System. Primer mix was made using 46puL dH,0O, 30pL common primer
(100uM), and 12uL of each tailed primer (100uM). Each reaction contained 0.14ul. KASP
primer mix, 2.86uL water, S5pul KASP low-ROX mix (PACE), and 2uL. DNA sample. Cycling
conditions were 95 °C for 15 min, followed by 10 cycles of 95 °C 20s, 61 °C 60s (reducing
anneal 0.6 °C per cycle), followed by 30 cycles of 95 °C 20s, 55 °C 60s. Data were then read
and analysed using KlusterCaller genotyping software (LGC Biosearch Technologies).
Statistical analysis was performed using a REML model, using asparagine data from
two previous field trials (Curtis et al., 2018). The analysis performed was the same as in
Oddy et al. (2021), but with Rht-B1 allele status included as an additional term nested within
the variety factor. The fixed effects model was: Year * (TaASN-B2*TaRHT-B1/Variety) *

Treatment. The random effect model was: Year/Block/MainPlot/SplitPlot.

Genomic prediction

Genomic prediction was performed for each trait via five-fold cross validation with 10,000
permutations using the R package rrBLUP (Endelman, 2011). The “mixed.solve” function
within this package was used to estimate marker effects for each trait, with the identity matrix
being left unspecified. Pearson correlation coefficients were calculated for the results from
the training and testing datasets to estimate genomic prediction accuracy. For within year
prediction estimates, training and testing datasets came from the same trial. For between year
prediction estimates, training and testing datasets were from different trials. Further detail is
available as R markdown in supplementary data file 2. Scripts were submitted to the high-

performance computing cluster at Rothamsted Research via SLURM for execution.

Candidate gene analysis

CSSA 5585 Guilford Rd., Madison, WI 53711

Page 12 of 62



Page 13 of 62

197
198
199
200
201
202
203
204
205
206
207

208

The Plant Genome

The gene content of the lysine QTL was determined for all wheat pangenome varieties at
chromosome scale assembly by identifying the location of the markers in these varieties and
extracting genes from Ensembl Biomart (Howe et al., 2021). Genes residing within the region
n variety Chinese Spring v1.0 were submitted to KnetMiner

(https://knetminer.com/Triticum_aestivum/) (Hassani-Pak et al., 2021) for ranking on

relevant keywords (“Lysine”, “Storage proteins”). Expression of the top hits was then
investigated in expVIP (Borrill, Ramirez-Gonzalez, & Uauy, 2016) to further narrow down
plausible candidate genes. Transcript per million (TPM) data for the Azhurnaya
developmental time-course experiment were extracted from expVIP for plotting in R using
the package pheatmap (Kolde, 2019). Corresponding Claire and Robigus genes were then
identified from these Chinese Spring candidate genes in Ensembl and pairwise aligned via

BLAST using Geneious Prime 2020.1.2 to identify variation.
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Results

Phenotypic analysis

We measured free amino acid concentrations and other grain quality traits in the Robigus x
Claire mapping population from field trials grown in 2017-2018 (H18) and 2018-2019 (H19)
(Figure 1; Figure S1). Aspartic acid, asparagine, and glutamic acid were the most abundant of
the free amino acids measured, with concentrations of free amino acids consistently higher in
H19 than in H18 (Figure 1a). Principal component analysis revealed harvest year to be a key
driver of variation in this dataset (Figure 1b) and, notably, the second harvest year (H19) also
showed lower yield alongside the increased free amino acid content of the grain (Figure 1b).
PCA and correlation network analysis revealed that most of the other quality traits measured
here were uncorrelated with the amino acids (Figure 1b; Figure 1c; Figure S2; Figure S3),
except for grain yield which showed negative correlations with a subset of amino acids

(Figure 1b; Figure 1c; Figure 2a).
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Figure 1. Characterisation of the Robigus x Claire mapping population. a.
Measurements of amino acids in the 2017-2018 (H18) and 2018-2019 (H19) harvest years.
b. Principal component analysis of all traits in both years along the first two principal
components. ¢. Correlation network analysis of all traits across both years (GH omitted,

Kendall correlation, only links with significance <0.001 shown).

To understand whether any of the traits we measured could predict free asparagine or lysine

content in the grain, we constructed Bayesian linear models with the quality traits and harvest
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year as explanatory variables (Figure 2b; Figure 2¢). In both the free asparagine (Figure 2b)
and lysine (Figure 2c¢) models, environment had the greatest effect whereas other variables
had little explanatory power. Nevertheless, the variance explained in the models was still

reasonable for asparagine at 56.5%, but only 22.2% for lysine.
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Figure 2. Relationships between free asparagine/lysine and other agronomic
measurements. a. Linear modelling of free asparagine content against grain yield. The grey
shaded ribbon shows 95% prediction intervals sampled from the posterior distribution. b. and
c. Parameter values from multiple linear modelling of asparagine (b.) and lysine (c.) as

explained by other quality traits measured in this population.
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OTL analysis

Broad-sense heritability estimates varied substantially between the different amino acids,
with free asparagine and lysine showing heritability estimates of 0.60 and 0.45, respectively
(Table S1). Aspartic acid showed the highest heritability of the amino acids measured here,
with an estimate of 0.82. Heritability estimates for the size traits were generally very high, as
expected, and correlation of these values between years was also stronger than the correlation
of amino acids between years (Table S1).

We identified QTL for grain free asparagine content and lysine content on
chromosomes 4B and 1A, respectively (Figure 2a; Figure 2b; Table 1), which had significant
effects across both environments but were also affected by QTL by environment effects
(Figure 2c; Figure 2d; Table 1; Table S2). The asparagine QTL on 4B explained 2.6% of the
variance in HI18, when free asparagine concentrations were lower overall, whereas it
explained 14.8% of the variance in H19, when free asparagine concentrations were elevated
(Table 1). In both years, the Robigus allele was associated with the higher free asparagine
concentrations. In contrast, the lysine QTL on 1A explained 12.1% of the variance in HI8,
when free lysine was lower overall, and only 2.6% of the variance in H19, when free lysine
concentrations were elevated. The Claire allele was associated with higher free lysine
concentrations in both years in this case. Multi-environment linkage analysis of amino acid
and grain measurements revealed many QTL controlling the other amino acids and quality

traits as well (Table 1; Table S2; Table S3).
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Figure 3. Identification of QTL controlling free asparagine and free lysine. a. Multi —
environment genome scan plot for asparagine. b. Multi — environment genome scan plot for
lysine. ¢. Impact of the asparagine QTL on free asparagine concentrations in both field trials.
d. Impact of the lysine QTL on free lysine concentrations in both field trials. Error bars show
plus and minus two times standard error of the mean. Significance values are taken from the

corresponding years of the multi-environment linkage analysis.

The QTL controlling asparagine on chromosome 4B appeared to overlap with QTL

for several other traits, including plant height, KHI, grain diameter, and grain weight (Figure
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S4). As a result, we investigated whether variation in the RA#-BI dwarfing gene was
associated, since Claire possesses the wild-type Rht-Bla allele, whereas Robigus possesses
the dwarf Rht-B1b allele (Table S4). We screened cultivars that had been measured for grain
asparagine content in two previous field trials for the different RA#-B1 alleles (Table S5) and
investigated whether this had any association with asparagine content through a REML
analysis (Table S6). Our results indicate the Rht-B1 status did not have any significant effect
on asparagine content in these trials, suggesting that the cause of the asparagine QTL is

something other than RA¢-B1 variation.

Table 1. Multi-environment QTL for measured amino acids. Chr. (Chromosome), ¢cM

(centimorgan), Mbp (megabase pair location in Chinese Spring v1.0).

Multi-environment single trait linkage analysis (H18 and H19)

Trait Marker Chr. cM Mbp -logio(p) H18(%) H19(%) High val.
Ala WC.0223839 7B 211.2 719 5.03 7.1 5.7 Robigus
Asn  WC.0221262 4B  114.47 601 5.96 2.6 14.8  Robigus
Asp WC.0218489 1B 54.4 530 5.4 8 5.9 Claire

WC.0214359 3A2 2.3 738 7.95 7.3 15.3 Robigus
WC.0221037 4A 148.8 703 8.08 12.6 9.3 Claire
WC.0227146 4D 48.8 16 3.7 5.5 4.1 Claire
GIn WC.0221302 4B 103.7 547 3.5 54 4.5 Robigus
WC.0228471 6B 19.7 25 5.09 8.2 6.7 Claire
Glu WC.0221329 4B 100.8 518 4.27 3.7 10.1 Robigus
Gly WC.0226796 4B 155.2 327 4.26 3.2 5.3 Robigus
Iso WC.0223785 7B 211.2 717 3.6 6.8 3.7 Robigus
Lys WC.0218011 1A2 27.3 593 4.95 12.1 2.6 Claire
Phe WC.0220622 3B1 78.1 116 3.83 6.2 5.6 Robigus

QTL for aspartic acid also appeared to overlap with QTL for other traits (Table 2).
For aspartic acid on 4A and 4D, there are co-locating HFN QTL, suggesting that these two
traits are under the control of the same locus. The location of the QTL on 4D matches the

Rht-D1 polymorphism between Claire and Robigus found at 18.78 Mbp in Chinese Spring.
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Multi-environment single trait linkage analysis (H18 and H19)

Chr. Trait Marker cM Mbp -log(p) H18(%) H19(%) Highval.
4A Asp WC.0221037 148.8 703 8.08 12.6 9.3 Claire
KHI WC.0221037 148.8 703 8.26 14.8 14.7 Robigus
HFN WC.0188904 147.1 733 8.24 11.5 10.3 Robigus
Area WC.0220938 149.7 709 2.22 3 3.2 Claire
Length WC.0221119 149.7 702 7.12 1.8 6.5 Claire
4B Asn WC.0221262 114.47 601 5.96 2.6 14.8 Robigus
KHI WC.0226741 110.8 594 4.30 4.2 8.6 Robigus
4D Asp WC.0227146 48.8 16 3.7 5.5 4.1 Claire
Width  WC.0227146 48.8 16 5.98 8 8.9 Robigus
Diam  WC.0227146 48.8 16 7.84 7.6 8.1 Robigus
HFN WC.0227149 56.9 17 10.92 23.5 5.6 Robigus
Height WC.0213051 56.9 17 28.97 27.8 38.9 Robigus

295
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Genomic prediction

Following our modelling of asparagine and lysine using agronomic measurements and
QTL models, we calculated the accuracy of genomic prediction (GP) for within and between
year prediction of traits (Figure 4a; Figure S6; Table S1). Prediction accuracy was more
consistent when performed across years rather than within years (Figure S6), so these were
used for further interpretation. Prediction accuracy for lysine was the lowest of all traits at a
mean accuracy of 0.10, whereas accuracy for asparagine was around 0.34. Of all amino acids,
aspartic acid had the greatest prediction accuracy results. Prediction accuracies for the other
functional traits were generally higher than the accuracies for amino acids, as expected from
the higher heritability of these traits. Comparing the amount of variation explained by
genomic prediction methods and additive QTL models, we can see that the GP models

explain more variance than the additive QTL models for all traits (Figure 4b).
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heritability (shown as bars). Bars are shaded according to the trait group that they belong to

(amino acid, size, or other).
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Lysine QTL candidate gene analysis

The gene content and QTL size of the lysine QTL on 1A, the HFN/aspartic acid/KHI QTL on
4A, and the asparagine QTL on 4B differed substantially (Table S7). Due to the size of the
4A and 4B QTL, we were unable to plausibly narrow down candidate genes, whereas the
lysine QTL on 1A was much smaller so amenable to further analysis. We investigated the
gene content of the lysine QTL for all genomes assembled to chromosome scale in the wheat
pangenome and gene content varied to a small extent between the different varieties (Table
S8). Most notably, the QTL did not match any locations in variety Julius and matched to an
unanchored scaffold in Stanley.

KnetMiner analysis of the genes residing in Chinese Spring in the lysine QTL was
undertaken with relevant keywords to highlight possible candidate genes, and these genes
were subsequently investigated for their expression patterns from expVIP. Pairwise analysis
of the top KnetMiner hits in the lysine QTL showed that the top hit
(TRAESCS1A02G445700) differed between Claire and Robigus. TRAESCS1A02G445700,
or TaHDT-A1, has been identified as a member of the histone deacetylase family in wheat. A
deletion within the CDS of the gene in Robigus means that the most highly expressed
transcript cannot be expressed (Figure 5) and the two missing exons from this most highly
expressed transcript form a zinc finger/C2H2 DNA binding domain, which is important for

transcriptional regulation.
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throughout development in variety Azhurnaya.
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Discussion

Limited variation in Claire and Robigus for asparagine and lysine improvement

Soft wheat breeding in the UK has relied heavily upon Claire and Robigus as parents since
their development in 1999 and 2005, respectively. A recent study found that UK winter
wheats developed between 2002 and 2017 could be clustered into four distinct populations,
and two of these populations were characterised by their Claire or Robigus heritage
(Shorinola et al, 2022). The varieties within these population groups characterised by Claire
and Robigus heritage are also almost entirely soft wheat varieties, further emphasising the
importance of these two varieties in UK soft wheat breeding. This large contribution of Claire
and Robigus as parents to soft wheat breeding means that opportunities for nutritional
improvement have often been limited to variation between these two parents.

Our analysis found that there is variation between Claire and Robigus and that this
does impact asparagine and lysine content to a small extent. Asparagine had a moderate
heritability (0.60) across both field trials in the study, whereas the heritability for lysine was
lower (0.45). One QTL was found for asparagine and lysine each, both explaining less than
10% of the variance on average. The asparagine QTL identified here (peak at 601.4 Mbp in
Chinese Spring) lies around 60 Mbp from another QTL (peak at 660.7 Mbp in Chinese
Spring) identified by Peng et al. (2018), suggesting that these may coincide, whereas the
lysine QTL does not overlap with previously identified QTL. Genomic selection had a
predictive ability of 0.34 on average for asparagine, indicating that this method may be better
suited for breeding because of the genetic architecture of this trait (many small-effect QTL).
Rapp et al. (2018) also found that GS had a predictive ability of around 0.5 on average for
asparagine, the higher estimate in this study likely due to within environment prediction and

analysis of a more diverse mapping population. GS only achieved a predictive ability of 0.10
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for lysine, indicating that only incremental advances in lysine content are possible using
Claire and Robigus. Previous GWAS studies using more diverse panels have found more,
larger-effect QTL controlling asparagine and lysine content (Peng et al., 2018; Rapp et al.,
2018), indicating that there may be beneficial alleles in more diverse germplasm.
Consequently, UK soft wheat germplasm will require diversity beyond Claire and Robigus to
make changes to asparagine and lysine content beyond the incremental improvements found

here.

Trade-offs between amino acid content and other traits
Another aspect we wanted to investigate in this population was whether there were any
relationships between amino acids and other traits. Amino acids tended to correlate positively
with one another and were mostly unrelated to the other measured traits, with the exception
of grain yield and kernel hardness index. A negative correlation between grain yield and free
asparagine has previously been documented (Xie et al., 2021), but in other experiments the
association has been positive (Malunga et al., 2021; Xie et al., 2021). In our analysis, this
association mostly arose because of the effect of environment on both yield and asparagine.
Environmental stress can lead to decreases in yield whilst increasing free asparagine, whilst
other variables (e.g., nitrogen fertiliser) can lead to increases in both yield and free asparagine
(see Oddy et al. (2022) for review). Our modelling of asparagine through these variables
mostly indicated environment as the driving force in our study, but there was still a slight
negative association with yield and plant height as well as a slight positive association with
kernel hardness. Kernel hardness, like grain free asparagine content, is known to increase
with nitrogen application, which may underly this small association with asparagine.

A strong environmental effect on free asparagine concentration has been observed in

response to many different stressors (see Oddy et al., 2020 for review) and it is under
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stressful conditions that the highest asparagine levels are often observed. These increases in
grain asparagine concentration vary massively, causing unexpected blips in acrylamide
content in food products and posing the greatest threat to food safety and regulatory
compliance, so elimination of this environmental response would be of great interest. A weak
environmental effect was seen in this study: during the 2018-2019 season the average amino
acid concentrations rose whilst the yields dropped. Interestingly, the asparagine QTL we
identified here had greater effect in this season, enabling reductions of 15.68% in free
asparagine concentrations in those lines possessing the Claire allele over those possessing the
Robigus allele. This suggests that this QTL may be more effective under more stressful
conditions, so selection of the Claire allele at this locus may prove beneficial for reducing the
large free asparagine increases observed following environmental stress. This is in contrast to
the effect of the TaASN-B2 deletion, which has a greater effect when grain asparagine
concentrations are lower (Oddy et al., 2021), when plants are not suffering from sulphur
deficiency. Future work would therefore benefit from identification of similar QTL that are
associated with lowering asparagine content from the high levels seen during stress. This
would enable the stacking of alleles that are beneficial under both stress and non-stress
conditions, to ensure that free asparagine concentrations are minimised in all environments.
We also wanted to understand whether any QTL controlling amino acid content had
pleiotropic effects on other traits. The asparagine QTL we identified on chromosome 4B
appeared to overlap with QTL for plant height in the first year, suggesting that there might be
an impact of the RAt-B1b allele on asparagine. The Rht genes are dwarfing genes used during
the green revolution that have many impacts on crop traits beyond height (Casebow et al.,
2016) and Claire and Robigus both possess different Rht genes on 4B and 4D

(www.cerealsdb.uk.net/cerealgenomics/CerealsDB/Excel MAS data_May_2013.xIs).

However, this QTL overlap was not present in the second year of analysis and we found no
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association between RA#-Bl status and grain asparagine content in our analysis of previous
field trials, suggesting that the QTL controlling height and asparagine may be distinct. The
QTL controlling asparagine did overlap consistently with a QTL for KHI though, with the
‘increasing allele’ belonging to Robigus for both traits. Kernel hardness and free asparagine
content are both known to correlate under certain conditions with nitrogen content (Oddy et
al., 2022), so this QTL may be linked to nitrogen use efficiency/uptake. The KHI QTL on 4B
also exhibited a similar genotype by environment effect pattern to the asparagine QTL, with a
greater effect of the QTL observed in the second trial year. Selection for the Claire allele at
this QTL would therefore be suitable in the context of soft wheat breeding, where both softer
textures and lower asparagine content are desirable.

Interestingly, we found much more genetic control of free aspartic acid concentration
in this population compared to the other amino acids. Heritability was high (> 0.8), genomic
prediction accuracy was moderate (> 0.5, same as grain weight), and there were four multi-
environment QTL controlling the trait. Two of the QTL controlling aspartic acid also
overlapped with QTL controlling HFN. One of these QTL was situated on 4D and overlapped
with traits for plant height and grain size as well, indicating that this may be due to RAt-D1
allele status, which is known to impact HFN as well as plant height (Fradgley et al., 2022).
The second QTL controlling both aspartic acid and HFN was situated on 4A and also
overlapped with traits for grain size and KHI. Previous work has identified a major QTL
underlying pre-harvesting sprout (PHS) variation on 4A, but both Claire and Robigus share
the same MKK3-A allele which underlies this QTL (Shorinola et al., 2017). Li ef al. (2021)
also identified a PHS QTL in a similar region on 4A but this does not overlap with the region
identified here. One possible source of variation underlying the QTL controlling aspartic acid
and HFN on 4A is the Triticum dicoccoides introgression in Robigus, which matches the

region this QTL is found in (Przewieslik-Allen et al., 2021). The antagonistic relationship
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between HFN and asparagine at this QTL could be a result of increased HFN reducing

proteolysis, and thereby preventing accumulation of free amino acids.

Lysine candidate genes

Scaffold-level genome assemblies of Claire and Robigus (Walkowiak et al., 2020)
enabled us to investigate the lysine QTL in greater depth, identifying the candidate gene
TaHDT-A1, encoding a histone deacetylase. The wheat histone deacetylase family is very
large, encompassing approximately 50 genes (Jin et al., 2020, Li et al., 2022). Histone
deacetylases function mainly to inhibit gene expression because histone deacetylation causes
chromatin condensation, with roles in many different developmental processes and
environmental responses. In wheat, it is known that differences in grain lysine content can be
caused by differential expression of lysine-poor storage proteins (prolamins). Gill-Humanes
et al. (2014), for example, identified downregulation of gliadins (a class of prolamins) as a
method of increasing lysine content in wheat, and Moehs ef al. (2019) showed that mutation
of wheat prolamin binding factor (WPBF’), a DOF-class transcription factor, increased lysine
concentration. Lower prolamin protein content is also associated with increased lysine
content in barley (Rustgi et al., 2019). However, the prolamins confer the viscoelastic
properties of wheat dough that are required for the manufacture of many products, including
bread, so this must also be considered when trying to breed for higher lysine content.

In maize, grain lysine content is similarly affected by the abundance of lysine-poor
proteins in the prolamin family called zeins. The expression of particular zein genes is
determined by a bZIP transcription factor called Opaque? (Gavazzi et al., 2007), and the
mutant line lacking a functional Opaque? gene is characterised by higher kernel lysine
content (Mertz, Bates & Nelson, 1964). Interestingly, the lysine QTL identified in this study

is situated upstream of an Opaque?2 orthologue on chromosome 1A: TraesCS1A02G329900,
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otherwise known as SPA (storage protein activator), which is known to activate storage
protein synthesis in wheat (Albani et al., 1997). The A genome homeologue of SPA does not
differ in sequence between Claire and Robigus, but differential expression of SPA (through
differences in HDT1 regulation) is a possible mechanism by which this QTL could affect
lysine content.

Future work investigating HDT1, SPA, and other regulatory genes of storage proteins
in wheat would help to elucidate their effects on grain lysine content and would be useful for
expanding the germplasm available to increase lysine content, given the limited QTL and
small effect of GS we found. Chromosome-level assemblies of Claire and Robigus would
also enable further analysis of this mapping population in the future. Combining both
increased diversity and pangenomes, sequencing of the Watkins collection and construction
of genome assemblies will enable novel diversity to be identified that can be introgressed into

elite soft wheat germplasm as well (Shewry et al., 2022).

Conclusions
The nutritional quality of UK soft wheat can be improved incrementally using
diversity from Claire and Robigus, but greater diversity is required to make larger gains. The
genetic architecture of different amino acids differs considerably, and they are often
controlled by QTL that impact other quality traits as well. Future soft wheat breeding in the
UK should therefore consider use of more genetic diversity and using pleiotropic QTL to the

benefit of farmers and consumers.
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Supplementary figure 1. Trait measurements from the Claire x Robigus mapping
population grown across two years (H18 and H19). a. Concentration of amino acids
(mmol per kg) in wheat grain in both environments. b. Measurements of other quality and

agronomic traits across both environments.
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Supplementary figure 2. Correlation of traits taken from both H18 and HI19

environments. Kendall correlation coefficients shown in upper right triangle and significance

asterisks from adjusted p values (Bonferroni correction) shown in lower left triangle. HFN

(Hagberg falling number), KHI (kernel hardness index), Diam (diameter), KW (kernel weight),

Hd (heading date), PH (plant height), GY (grain yield).
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Supplementary figure 4. Multi-trait analysis of the asparagine QTL on 4B in the Claire x

Robigus mapping population. Blue indicates Robigus additive allele whilst red indicates

Claire additive allele. The darkness of colour corresponds to the magnitude of the effect.
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Supplementary table 1. Broad sense heritability estimates, kendall correlation coefficients for

traits across both environments, and within and between environments average genomic

prediction accuracies (as Pearson correlation coefficients). Heritability estimates and genomic

prediction performed on transformed data, kendall correlation coefficients performed on non-

transformed data.

Within environment GP r

Between environments GP r

Traits h? r H18 H19 Mean H18 train H19 train Mean

Amino acids
Ala 0.37 0.00 0.26 0.29 0.27 0.24 0.24 0.24
Asn 0.60 0.34 0.36 0.48 0.42 0.35 0.33 0.34
Asp 0.82 0.51 0.59 0.52 0.55 0.51 0.55 0.53
Glu 0.61 0.33 0.34 0.33 0.33 0.25 0.26 0.25
Gln 0.69 0.30 0.47 0.55 0.51 0.45 0.43 0.44
Gly 0.00 -0.12 0.06 0.22 0.14 0.17 0.12 0.15
Iso 0.71 0.39 0.48 0.48 0.48 0.42 0.44 0.43
Leu 0.35 0.18 0.14 0.19 0.17 0.13 0.13 0.13
Lys 0.45 0.15 0.00 0.20 0.10 0.09 0.10 0.10
Phe 0.34 0.17 0.17 0.31 0.24 0.09 0.07 0.08
Ser 0.00 -0.14 0.11 0.40 0.25 0.20 0.15 0.17
Tyr 0.00 -0.23 0.16 0.12 0.14 0.08 0.10 0.09

Functional traits
Area 0.91 0.63 0.61 0.67 0.64 0.61 0.58 0.59
Length 0.96 0.77 0.71 0.77 0.74 0.73 0.72 0.73
Width 0.84 0.55 0.53 0.47 0.50 0.43 0.40 0.41
Diameter 0.90 0.60 0.62 0.56 0.59 0.57 0.57 0.57
KHI 0.85 0.58 0.46 0.50 0.48 0.41 0.40 0.41
Weight 0.89 0.59 0.58 0.54 0.56 0.53 0.53 0.53
HFN 0.64 0.34 0.51 0.33 0.42 0.35 0.37 0.36
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Supplementary table 4. Sources of variation related to asparagine and falling number
screened in this study in the Claire x Robigus mapping population. Chr. (chromosome).

Source of variation Claire Robigus Chr. Reference

ASN-B2 PAV Absent Absent 3B Oddy et al., 2021

ASN-B1 Non-functional Functional 5B Oddy et al., 2021

ASN-A3.1 Non-functional Non-functional 1A Oddy et al., 2021

Rht-B1 Rht-Bla (WT) Rht-B1b (Dwarf) 4B Wilkinson et al., 2020
Rht-D1 Rht-D1b (Dwarf) Rht-D1a (WT) 4D Wilkinson et al., 2020

T. dicoccoides introgression ~ Absent Present 4A Przewieslik-Allen et al., 2021
TaMKK3A A A 4A Shorinola et al., 2016
PM19-A1 promoter InDel Deletion Deletion 4A Shorinola et al., 2016

CSSA 5585 Guilford Rd., Madison, WI 53711



Page 59 of 62 The Plant Genome

Supplementary table S. List of UK winter wheat varieties separated by Rht-B1 allele status.

Type Rht-B1 WT Rht-B1 DWARF
G1 Avalon Malacca
Cadenza Shamrock
Crusoe Skyfall
Gallant Solstice
Hereward Spark
G2 Bonham Evoke Cashel
Charger Podium
Cordiale Rialto
Cubanita Shango
Einstein Sterling
G3 Claire Invicta Icon
Cocoon Scout Monterey
Croft Tuxedo Robigus
Delphi Warrior Torch
Diego Weaver Zulu
G4 - Hard Badger Icebreaker Gator
Buster Kielder Goldengun
Dickens Relay Oakley
Duxford Savannah Santiago
Evolution Solace
G4 - Soft Alchemy Leeds Myriad
Cougar Revelation Panacea
Denman Rowan
Horatio Twister
Lancaster Viscount
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The Plant Genome

Supplementary table 6. REML analysis of factors influencing asparagine content in field
trials from 2011 — 2012 and 2012 — 2013.

Fixed term Wald statistic d.f. Wald/d.f. chi pr
Year 125.04 1 125.04 <0.001
Rht_B1 0.17 1 0.17 0.676
ASN_B2 3.49 1 3.49 0.062
Treatment 125.4 1 1254 <0.001
Year.Rht_B1 2.79 1 2.79 0.095
Year.ASN_B2 0.07 1 0.07 0.796
Rht_B1.ASN_B2 0.73 1 0.73 0.393
Year.Treatment 84.24 1 84.24 <0.001
Rht_B1.Treatment 3.09 1 3.09 0.079
ASN_B2.Treatment 6.57 1 6.57 0.010
Year.Rht_B1.ASN_B2 0.02 1 0.02 0.877
Rht_B1.ASN_B2.Variety 92.97 58 1.6 0.002
Year.Rht_B1.Treatment 3.34 1 3.34 0.068
Year.ASN_B2.Treatment 7.01 1 7.01 0.008
Rht_B1.ASN_B2.Treatment 0.73 1 0.73 0.394
Year.Rht_B1.ASN_B2.Variety 7.35 7 1.05 0.393
Year.Rht_B1.ASN_B2.Treatment 1.55 1 1.55 0.213
Rht_B1.ASN_B2.Variety.Treatment 64.83 58 1.12 0.251
Year.Rht_B1.ASN_B2.Variety.Treatment 6.54 7 0.93 0.478
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The Plant Genome

Supplementary table 7. Physical locations of the HFN and Asn QTL in varieties Chinese
Spring and Robigus.

Trait Chr. Location Peak Lower CI Upper Cl QTL size No. of
(Mbp) (Mbp) (Mbp) (bp) genes
HFN  4A CS 733 691 745 54,058,906 824
Asn 4B CS 601 533 632 96,765,195 754
Lys 1A CS 593 590 594 4,471,109 50
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The Plant Genome

Supplementary table 8. Physical location of the lysine QTL in the wheat pangenome

(chromosome level assemblies) and gene content.

Genome Chr Lower Ci Upper CI QTL size No. of genes
IWGSC 1A 590 594 4,471,109 50
Arinalrfor 1A 598 603 4,559,393 55
Jagger 1A 592 596 4,481,576 60
Julius NA NA NA NA NA
Lancer 1A 591 595 4,548,456 59
Landmark 1A 593 595 2,101,319 38
Mace 1A 586 591 4,477,846 55
SY Mattis 1A 596 601 4,560,453 66
Norin61 1A 589 594 4,645,175 58
Stanley scaffold_v3_2071 5 NA NA NA
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