
Patron:		Her	Majesty	The	Queen	 	 Rothamsted	Research	
Harpenden,	Herts,	AL5	2JQ	
	
Telephone:	+44	(0)1582	763133	
Web:	http://www.rothamsted.ac.uk/	

	
	 	

	
	

Rothamsted Research is a Company Limited by Guarantee 
Registered Office: as above.  Registered in England No. 2393175. 
Registered Charity No. 802038.  VAT No. 197 4201 51. 
Founded in 1843 by John Bennet Lawes.	

	

Rothamsted Repository Download
A - Papers appearing in refereed journals

Addy, J. W. G., Ellis, R. H., MacLaren, C., Macdonald, A. J., Semenov, 

M. A. and Mead, A. 2022. A heteroskedastic model of park grass spring 

hay yields in response to weather suggests continuing yield decline with 

climate change in future decades. Journal of the Royal Society Interface. 

19, p. 20220361. https://doi.org/10.1098/rsif.2022.0361 

The publisher's version can be accessed at:

• https://doi.org/10.1098/rsif.2022.0361

The output can be accessed at: https://repository.rothamsted.ac.uk/item/98980/a-

heteroskedastic-model-of-park-grass-spring-hay-yields-in-response-to-weather-

suggests-continuing-yield-decline-with-climate-change-in-future-decades.

© 24 August 2022, Please contact library@rothamsted.ac.uk for copyright queries.

24/11/2022 17:05 repository.rothamsted.ac.uk library@rothamsted.ac.uk

https://doi.org/10.1098/rsif.2022.0361
https://repository.rothamsted.ac.uk/item/98980/a-heteroskedastic-model-of-park-grass-spring-hay-yields-in-response-to-weather-suggests-continuing-yield-decline-with-climate-change-in-future-decades
https://repository.rothamsted.ac.uk/item/98980/a-heteroskedastic-model-of-park-grass-spring-hay-yields-in-response-to-weather-suggests-continuing-yield-decline-with-climate-change-in-future-decades
https://repository.rothamsted.ac.uk/item/98980/a-heteroskedastic-model-of-park-grass-spring-hay-yields-in-response-to-weather-suggests-continuing-yield-decline-with-climate-change-in-future-decades
repository.rothamsted.ac.uk
mailto:library@rothamsted.ac.uk


A Heteroskedastic Model of Park Grass Spring
Hay Yields in Response to Weather Suggests

Continuing Yield Decline with Climate
Change in Future Decades

John W. G. Addy, Richard H. Ellis, Chloe MacLaren
Andy J. Macdonald, Mikhail A. Semenov, Andrew Mead

August 18, 2022

Abstract

UK grasslands perform important environmental and economic
functions, but their future productivity under climate change is uncer-
tain. Spring hay yields from 1902 to 2016 at one site (the Park Grass
Long Term Experiment) in southern England under four different fer-
tiliser regimes were modelled in response to weather (seasonal tem-
perature and rainfall). The modelling approach applied comprised:
(1) a Bayesian model comparison to model parametrically the het-
eroskedasticity in a Gamma likelihood function; (2) a Bayesian vary-
ing intercept multiple regression model with an autoregressive lag one
process (to incorporate the effect of productivity in the previous year)
of the response of hay yield to weather from 1902 to 2016. The model
confirmed that warmer and drier years, specifically, autumn, winter
and spring, in the 20th and 21st centuries reduced yield. The model
was applied to forecast future spring hay yields at Park Grass under
different climate change scenarios (HadGEM2 and GISS RCP 4.5 and
8.5). This application indicated that yields are forecast to decline fur-
ther between 2020 and 2080, by as much as 48-50%. These projections
are specific to Park Grass, but implied a severe reduction in grassland
productivity in southern England with climate change during the 21st
century.
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1 Introduction

Grassland ecosystems perform critical environmental and economic roles. In
the UK, grassland covers nearly 40% of the total land area (Morton 2021),
supporting a wide range of biodiversity (Boatman et al. 2007) and provid-
ing important ecosystem services such as carbon storage (Ward et al. 2016,
Alonso et al. 2021) and rainfall capture to reduce flooding (ONS 2018). Man-
aged grassland (rough grazing and pasture) is the UK’s largest crop by area
at over 12 million hectares (DEFRA 2021), and underpins a livestock sector
worth over 13 billion GBP each year.

With global mean temperatures already 1.43◦C above the 20th century aver-
age (NOAA 2017) and predicted to increase to at least 1.5◦C above the 20th
century average by the end of the 21st century (Pörtner et al. 2022), it is vital
to understand the impact of climate change on UK grasslands. In general,
anthropogenic climate change is detrimental to ecosystems (Runting et al.
2017, Pörtner et al. 2022). The rapid rate of change is exceeding the abilities
of many organisms to adapt or migrate, resulting in widespread deterioration
in ecosystem structure and function (Pörtner et al. 2022). Grasslands, how-
ever, may be less negatively affected than other ecosystems, with Gao et al.
(2016) observing either apparent increases or no changes in global grassland
productivity between 1982 and 2011, and Hufkens et al. (2016) predicting an
increase in productivity for North American grasslands under future climate
scenarios.

The impacts of climate change are however site specific, and not all grass-
lands are responding positively. Wu et al. (2021) have observed consistent
productivity declines in across all major grassland types in northern China,
while Brookshire & Weaver (2015) documented a >50% decline in a grass-
land in the Greater Yellowstone Ecosystem in the USA. In the UK, Qi et al.
(2018) predict an overall slight decline (2.5-5%) in the productivity of per-
manent grasslands, but emphasise that differences in local weather patterns
resulting from climate change are likely to lead to different outcomes in dif-
ferent locations.

In this study, we seek to increase understanding of climate change impacts
on UK grassland productivity using 114 years of data (1902-2016) from the
Park Grass Experiment. We use these data to parameterise a model linking
hay yield to temperature and precipitation. The modelling approach applied
comprised: (1) a Bayesian model comparison to model parametrically the
heteroskedasticity in a Gamma likelihood function, which compared three
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methods for modelling heteroskedasticity; (2) a Bayesian varying intercept
multiple regression model with an autoregressive lag one process (to incor-
porate the effect of productivity in the previous year) of the response of
hay yield to weather (rainfall and temperature) from 1902 to 2016, using
the parametric structure of the mean-variance relationship assessed in (1).
We then forecast annual productivity under different climate scenarios and
models from 2020 to 2080.

2 Materials

2.1 Long-Term Hay Yield Data

The Park Grass Experiment is an agricultural and ecological long-term ex-
periment which has investigated the effects of inorganic fertilisers and organic
manures on permanent grassland since 1856 (Lawes & Gilbert 1859). It is
thought to be the oldest experiment on permanent grassland in the world.
Early on it became clear that the treatments affected species com- posi-
tion dramatically from what had been a uniform sward comprising about
50 species (Lawes & Gilbert 1880, 1859). The continuing effects on species
diversity and on soil function of the original treatments, together with later
tests of liming and interactions with atmospheric inputs and climate change,
has made Park Grass increasingly important to ecologists, environmental-
ists, and soil scientists (Silvertown et al. 2006). Studies of the variability
of grassland yield have concluded that the use of fertilisers (especially nitro-
gen) have led to the dominance of grasses on some of the plots on Park Grass
(Silvertown et al. 1994, Köhler et al. 2012, Macdonald et al. 2018) and that
hay yields are affected by productivity in the previous year (Jenkinson et al.
1994, Kettlewell et al. 2006, Silvertown et al. 1994). Historically, the rainfall
from March to July has been shown to be positively related to grassland
production (Cashen 1947, Lawes & Gilbert 1880). More recently, warmer
temperatures have been shown to be negatively associated with hay yield
(Addy et al. 2021).

Recent research has examined how long-term agricultural field experiments
can improve our understanding of current scientific issues, such as the ef-
fects of changes in the management in soil organic matter (Poulton et al.
2018), and how changes in weather influence the yields of winter wheat given
different amounts of nitrogen fertilizer (Addy et al. 2020). Studies into un-
derstanding variations in grassland yield have concluded that the use of fer-
tilisers (especially nitrogen) have led to the dominance of grasses on some of
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the plots on Park Grass (Silvertown et al. 1994, Köhler et al. 2012, Macdon-
ald et al. 2018). Further research has also shown a dependence in hay yield
productivity with the previous year (Jenkinson et al. 1994, Kettlewell et al.
2006, Silvertown et al. 1994).

We developed our modelling approach of the Park Grass hay yield data by
incorporating an understanding of the predictive distribution of this dataset
into the model. The variances of hay yields from the plots on Park Grass
experiment increase as total yields increase, illustrating non-constant resid-
ual variances, also known as heteroskedastic errors. Heteroskedastic errors
are common for yield data, which can lead to biased estimates of model
coefficients (Damesa et al. 2018). Non-constant residual variances may be
modelled as a functional response of model predictions (Carroll & Ruppert
1988). Such models include replacing the mean-variance relationship with a
known relationship such as a quadratic function (Argyropoulos et al. 2017).
We show here how the parametric log-logistic function can be used to model
heteroscedastic errors of the Gamma likelihood function for Park Gras hay
yields (harvested around mid-June) from 1902 to 2016. The dependence of
hay yield productivity with the previous year is formalised by including an
autoregressive lag-one term in our model. We then apply our model to fore-
cast spring hay yields until 2080 under different future climate scenarios.

The Park Grass Long-Term Experiment comprises of several different fer-
tiliser regimes. Treatments were selected to provide a range of four fertiliser
regimes, to assess whether climate impacts differed between nutrient-limited
grassland (typical of natural grasslands) and nutrient-rich grassland (typi-
cal of grassland managed for forage or biomass production). Yields from
the longest time-series plots (unlimed treatments) were selected as they pro-
vide the longest time-series. The treatments selected were no fertiliser (plots
2.2, 3, 12), 96 kg N ha-1 plus minerals (P, K, Na & Mg; plot 14.2), 48 kg
N ha-1 plus minerals (plot 16) and minerals only (plot 7). Plots 14.2 and
16 both received N as sodium nitrate; P, K, Na and Mg were applied as
triple superphosphate (17 kg P ha-1), potassium sulphate (225 kg K ha-1),
sodium sulphate (15 kg Na ha-1) and magnesium sulphate (10 kg Mg ha-1)
respectively. Here we present an analysis of the hay yields (harvested around
mid-June) from 1902 to 2016. A change in harvest method was introduced in
1960; yields from 1960 onwards were corrected using the relationship derived
by Bowley et al. (2017) to facilitate a continuous analysis of hay yields over
the selected time periods. For more information about these plots and the
Park Grass experiment more generally see Macdonald et al. (2018).
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2.2 Rothamsted Meteorological Station Data

Seasonal total rainfall (TR; mm of rainfall per 3 months) and mean temper-
ature (MT; [daily maximum temperature ◦C + daily minimum temperature
◦C]/2 averaged over three months) from 1902 to 2016 were derived from the
Rothamsted Meteorological Station records. The cropping season for these
analyses were from autumn to spring (September – May inclusive) each year.

The mean annual temperature at Rothamsted (UK) has been steadily in-
creasing from the 1970s to 2016, with slight year-to-year variability (Figure
1 & Supplementary Figure 1). Compared to mean temperature, there has
been no trend in annual total rainfall from 1902 to 2016, only considerable
year-to-year variability (Figure 1).

2.3 Future Climate Scenarios

Transient climate scenarios for the period 2017 to 2080 were generated by the
LARS-WG stochastic generator (Lazzarotto et al. 2010, Semenov et al. 2010,
Semenov & Stratonovitch 2015) and were based on the climate projections
from global climate models (GCMs) from the Coupled Model Intercompar-
ison Project Phase 5 (CMIP5) ensemble (Taylor et al. 2012). To account
for uncertainty in future climate projections two contrasting GCMs from the
CMIP5 ensemble were used, i.e. HadGEM2-ES from the UK Meteorological
Office (Martin et al. 2011) and GISS-E2-R-CC from the Goddard Institute
for Space Studies (Chandler et al. 2013). Predicted absolute changes in mean
annual temperature over Northern Europe by 2080 for the RCP 8.5 emission
scenario (Moss et al. 2010) were substantially different for these two GCMs,
6.1 ◦C for HadGEM2-ES (Figure 1) compared to 3.9 ◦C for GISS-E2-R-CC
(Supplementary Figure 1)(Semenov & Stratonovitch 2015). The CMIP5 sim-
ulations were driven by a set of emission scenarios consistent with the Repre-
sentative Concentration Pathways (RCPs) (Moss et al. 2010). The four RCPs
were based on a range of projections of future population growth, technolog-
ical development and societal responses, i.e. RCP 8.5 (business-as-usual or
a worst-case emission scenario), RCP6.0 (stabilisation without overshoot),
RCP 4.5 (stabilisation without overshoot) and RCP2.6 (peak and decline).
To account for uncertainty resulting from emission scenarios, we used two
RCPs, i.e. RCP 4.5 and RCP 8.5. For each combination of GCM and RCP,
LARS-WG was applied to generate 1000 transient samples which were used
as inputs to the statistical models to forecast future spring hay yields.
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3 Modelling the Predictive Density

3.1 Constant Variance and heteroskedasticity

In this section we investigate how changing the variance function can improve
the predictive accuracy of a model fitted to the Park Grass hay dataset. For
the four different fertiliser treatments (six plots in total) the variance in hay
yield increases as yields increase. We compare the use of several methods
(Table 1) and compare the predictive accuracy of each method in a Bayesian
model comparison (Figure 2).

We can predict hay yield yi (t dm ha-1) as a linear combination of vari-
ables (xij) and model parameters βj (e.g. mean spring temperature ◦C) such
that, y = Xβ+ ε. Where, y is the vector of observed hay yields from 1902 to
2016, X is the matrix of model variates of interest, βj is a list of j model co-
efficients and ε is the error term of the model, with model predictions ŷ being
estimated as Xβ. Assuming yi ∼ N(Xβ, σ2), where the model variance σ2 is
constant over all predictions ŷi, we may obtain the probability of observation
i given model parameters β and variance σ2 (p(yi|β, σ2)). One issue with this
commonly-used model form is the assumption yi ∼ N(Xβ, σ2) is the one of
constant variance over all observations of y. We observe heteroskedasticity of
hay yield (Supplementary Figure 2), where variability in hay yields increases
with higher yields. As shown in Supplementary Figure 2, a Normal likeli-
hood function with constant variance (Model 1, see Table 1) was fitted to
the Park Grass hay yield data to illustrate the impacts of heteroskedasticity.
This model over-predicted the variance at low yields and under-predicted at
higher yields, with credible intervals going into the negative for smaller yields.

There are several ways to deal with non-constant residual variance of a con-
tinuous response variable, as seen for hay yields here. A common method in-
volves the transformation of the response variable, y, using either the square-
root or natural-log function (Welham et al. 2014), depending on the severity
of non-constant residual variance. For the square-root transformation the
distribution of the model is now given as p(

√
y|β, σ2), with all inferences

about model coefficients and model error given on the scale of
√
y. Model 2

in Supplementary Figure 2 shows that a Normal model with constant vari-
ance on the square-root scale adequately modelled the variation in hay yield
of the Park Grass experiment across the range of plots. Although the vari-
ances seem low, all inferences about model coefficients and model error are
given on the scale of

√
y and predictions have to be back-transformed onto

the original scale of the data.
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Heteroskedasticity of model residuals may also be modelled using a Gamma
likelihood function for data which is non-negative, such as these hay yields.
From a Gamma likelihood function, yi ∼ Gamma(υ, λi) with a shape pa-
rameter υ and separate rate parameter λ for each prediction (ŷi). For non-
negative values in y, a log-link function, log(y) = Xβ, may be used to ensure
the prediction of positive values (Dobson 1990). The Gamma likelihood
function for hay yield (y) is given as p(y|υ, λ) and can be reparameterised
to incorporate model predictions of y, with ŷ = eXβ, given ŷ = υ/λ and
σ2 = ŷ2/υ (McCullagh & Nelder 1989).

Model 3 in Supplementary Figure 2 shows the fitted Gamma model to Park
Grass hay yield data. The variance around yields from low-yielding plots
(plots 3, 2.2, 12) was adequately modelled, but was drastically over-estimated
for higher-yielding plots (plots 16 and 14.2). We may decide to model each
plot (j) with their own shape parameter (υj). A model with individual shape
parameters for each plot adequately estimated the variance at low and high
yields. However, such an approach fails to model the mean-variance relation-
ship of Park Grass hay yields as part of the underlying biological process and
this relationship may be better understood as a function of model predictions.

3.2 Modelling Variances

The variance associated with Park Grass hay yields was shown to vary with
predictions of y that could not be modelled adequately with a common shape
parameter from a Gamma distribution. The mean-variance relationship may
be modelled with an estimate of σ2

i for each ŷi. Where, var(y) = g(ŷ|τ) (Car-
roll & Ruppert 1988) with τ variance parameters. Although heteroskedas-
ticity may be modelled by shape parameter υ of the Gamma likelihood func-
tion, the mean-variance relationship of the Park Grass dataset was shown to
plateau with mean estimates greater than 3 t ha−1 (see Model 4 as illustrated
in Supplementary Figure 2). We may use a non-parametric smooth relation-
ship for a mean-variance relationship (Muller & Stadtmuller 1987). However,
we can use a three parameter non-linear log-logistic functional relationship,

var(y) = τ3

/(
1 + e(−(ŷ−τ1)/τ2)

)
(1)

(Finney 1971), where, τ1 is the mid-point in the log-logistic curve, τ2 the rate
towards the mid-point and τ3 the maximum variance for a mean prediction.
The likelihood function is now conditional on model parameters β and vari-
ance parameters τ (p(y|β, τ)). The fitted mean-variance relationship is given
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in Supplementary Figure 2 as Model 5, where the variances around each
plot were adequately modelled using a three parameter log-logistic function
(Equation 1) and have similar estimates as Model 4.

3.3 Bayesian Priors and Posteriors

Given the likelihood function of the Normal distribution, posterior densities
of model coefficients may be derived through Bayes rule, where

p(β, σ2|y) ∝ p(y|β, σ2)p(β)p(σ2)

(Gelman et al. 2013, Lee 2012). A Cauchy(25) prior (Gelman 2006) was used
for σ2 for both models Model 1 and Model 2. For Model 3 and Model 4, a
uniform prior was used for the shape parameter for the Gamma likelihood.
Priors for the variance log-logistic model, Model 5, were empirically chosen
through investigation of the model parameters. The posterior for Model 5
becomes,

p(β, τ |y) ∝ p(y|β, τ)p(β)p(τ).

For posterior estimates above, samples were drawn from a gradient based
Hamiltonian Markov Chain (Neal 2010). The Hamiltonian Markov Chain
was written in R (R Core Team 2018), with 2000 iterations used to sample
the model posterior with a burn-in of 100 samples. For all analyses, 89%
credible intervals were used, see McElreath (2020) for information regarding
credible region.

3.4 Model Prediction

The posterior predictive distribution of all models fitted was obtained by

p(ỹ|y) =

∫
p(ỹ|θ∗)p(θ∗|y)dθ∗

(Gelman et al. 2013). The value θ represents a list of model and variance
coefficients β and τ (or σ2 depending on the model), ỹ the new simulated
data, and θ∗ the sampled coefficients from the Markov Chain. One thousand
samples were drawn randomly from the model posterior, p(θ∗|y), and sim-
ulated predictions were based on the given likelihood functions (McElreath
2020).

3.5 WAIC and Selecting Predictive Distribution

We have already discussed the fitting adequacy of each of the models de-
scribed in Table 1. We used the Watanabe–Akaike Information Criterion
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(WAIC) (Watanabe 2013, 2010) to compare the predictive accuracy (Ve-
htari et al. 2017) of the Normal and Gamma models outlined above. The
WAIC was preferred over such summaries as the coefficient of determination
to understand the predictive accuracy of the proposed variance models as
the WAIC incorporates variance structures through the likelihood function.
For all WAIC values, 89% Bootstrapped credible intervals were calculated
for Models 1, 3, 4 and 5 (McElreath 2020). Model comparison of the WAIC
could not be achieved for Model 2, due to inferences not being conducted on
the natural scale of the data.

3.6 Posterior Predictive Accuracy

When comparing the overall model fits, Models 4 and 5 had the lowest WAIC
values (Figure 2), and so the best predictive accuracy. The WAIC for the
Normal model with constant variance (Model 1) and for the Gamma model
with a constant shape parameter (Model 3) had the highest WAIC values
and therefore had the poorest predictive accuracy. Modelling the mean-
variance relationship of the Gamma model as a log-logistic function (Model
5) provided a similar model fit to a Gamma model with individual shape
terms for each plot (Model 4). Model 5 was preferred over Model 4 as we
modelled the functional mean-variance relationship of hay yields. Although
Model 4 gives a similar predictive fit to Model 5, when modelling covariates,
such as weather, a functional understanding of the mean-variance relationship
was preferred.

3.7 Modelling Covariates

Having addressed the issue of heteroskedasticity of model errors and by func-
tionally modelling the mean-variance relationship as a three parameter log-
logistic function (Model 5) to better understand the predictive distribution
of the Gamma likelihood, we investigated the influence of weather on the
historic Park Grass hay yields. Hay yield was modelled as a linear combina-
tion of weather variables and a lag-one autoregressive process (βρ) (Marin &
Robert 2014), with varying intercepts for each treatment (βj; j = 2.2, 3, 12,
14.2, 16 and 7). The lag-one autoregressive process accounts for the correla-
tion of the previous year’s yield with the current year’s yield. The relationship
between spring rainfall and temperature and hay yield was curvilinear and
modelled as a quadratic relationship (i.e. each of rainfall and temperature
represented by linear and quadratic terms). (A log-link function was used to
model parameters, and therefore model parameters refer to the link scale.)
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The autoregressive lag-one process, βρ was modelled as log(yt−1i) to be on
the same scale as the log-link function.

4 Hay Yield and Climate Change

4.1 Influence of Covariates on Hay Yields

From the model presented here, warmer temperatures in autumn and win-
ter were negatively associated with subsequent hay yields on Park Grass,
βMTAut (deg C) = −0.045 (SD= 0.004) and βMTWin (deg C) = −0.013 (SD =
0.006) (Table 2). With average seasonal temperatures steadily increasing at
Rothamsted from 1902 to 2016 (Figure 1) and hay yields from the Park Grass
Experiment steadily declining over the same period, this association supports
the evidence that warmer temperatures tend to reduce yield in grasslands
(Addy et al. 2021). The effect of each weather variable in spring (both rain-
fall and mean temperature) was curvilinear, with negative coefficients for
the second order quadratic terms (Table 2), suggesting an optimum spring
weather to maximise spring hay yields. The relative magnitude of decline in
hay yields due to an increase in autumn mean temperature was considerably
greater than for winter mean temperature. However, due to the curvilinear
relationship between hay yield and mean spring temperature, the effect of
increase in spring temperature was dependent upon whether or not the opti-
mum temperature was transgressed and if so by how much (Supplementary
Figure 9). If spring temperature increases much further in future then hay
yield loss will become yet more severe.

From our model (Table 2), the autoregressive lag-one estimate was estimated
as βρ = 0.304 (SD = 0.019). Hence any benefit from good weather for hay
yield in year t − 1 has a carryover to hay yield in year t. Due to the log-
link function to guarantee positive estimates of hay yield, an increase of 1
in log yield at year t − 1 would increase predicted yield in year t by 35%
(1–exp(0.304)). Auto-regressive processes for the yield of perennial crops
are often overlooked but are important to include to maximise the predic-
tive accuracy of models (and for some crops, autoregressive processes may
extend over several years). Although an autoregressive lag p process of the
Park Grass dataset may have been modelled, a lag-one process was selected
because this process is well documented in Park Grass hay yields (Jenkinson
et al. 1994, Kettlewell et al. 2006, Silvertown et al. 1994).
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4.2 Modelling Variances

Modelling the mean-variance relationship of the Gamma likelihood for hay
yields as a log-logistic function was successful in overcoming the over-estimation
of variances seen for the earlier models (Figure 4). The variance associated
with hay yield increased up to a yield of around 2-3 t ha-1, after which the
variance associated with yield plateaued (Figure 4), with a maximum esti-
mated variance of 0.731 (SD = 0.041) (Table 2; τ3 parameter see Equation 1).

The success of this modelling approach shows how variances may be mod-
elled by functions sampled from a posterior distribution. However, the use
of a parametric function to model the mean-variance relationship may be
considered as another assumption of the model, and other functions may be
needed to model the mean-variance relationship in other datasets. The log-
logistic function was chosen because the variances of Park Grass hay yields
were shown to plateau at mean estimates greater than 3 t ha−1 (see Model
4 in Supplementary Figure 2).

4.3 Hay Yield in Future Climate Scenarios

Using the HadGEM2 weather model, forecasted hay yields to 2080 under
RCP 4.5 and 8.5 showed decreasing hay production across all plots (Figure
3). RCP 4.5 and 8.5 gave similar predictions for yield until 2060, after which
RCP 8.5 projections continued to decline while RCP 4.5 plateaued. The
high-input plots 14.2 and 16 of the Park Grass experiment had the greatest
absolute decline in hay yield across all future climate projections. However,
all plots had a relative decline of around 50% (Table 3). In 1902 the projected
hay yield for section 14.2 was 4.24 t ha−1 (CI: 2.92, 5.77; Figure 3), in 2080
for HadGEM2 RCP 8.5 the forecast hay yield for plot 14.2 is 2.01 t ha−1 (CI:
0.97, 3.65), 47.51% lower than the respective 2020 yields (Table 3). Gener-
ally, using HadGEM2 weather model (Figure 2) forecast a steeper decline in
annual yield compared to forecasts based on the GISS climate model (Sup-
plementary Figure 3, Supplementary Table 1). The projections for hay yield
under GISS RCP 4.5 declined until 2060 and plateaued thereafter, whereas
those under GISS RCP 8.5 continued to decline between 2060 and 2080 (by
an average of 25.2% across all plots).

5 Discussion

From 1902 to 2016, there were associations between (a) warmer autumn and
winter temperatures and lower hay yields and (b) spring rainfall and hay
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yields in all four contrasting fertiliser regimes (six plots) at Park Grass (Ta-
ble 2). (For a visual summary of the covariates from the Park Grass weather
varying intercept model see Supplementary Figures 4-9.) These responses
concur with previous studies which showed the yield of grassland to be re-
duced by warmer temperatures (Addy et al. 2021) and less rainfall (Cashen
1947, Lawes & Gilbert 1880). Further, there was a forecast decline of hay
yields from 2020 to 2080 for RCP 8.5 for both HadGEM2 and GISS across all
future climate scenarios, with climate model HadGEM2 providing a greater
relative decline in hay yield compared to GISS. This forecasted decline in hay
yields was due to warmer temperatures which are expected to rise throughout
the 21st century for both HadGEM2 and GISS (Figure 1 & Supplementary
Figure 2), as the Park Grass hay model in Table 2 has parameterised the
negative relationship between warmer temperatures and lower yields from
1902 to 2016, whilst those models provide no consistent trend in total rain-
fall from 2020 to 2080.

Excluding rough grazing, over 10 million hectares of grassland are farmed
in the UK (DEFRA 2021). Temperate grasslands may be classed by man-
agement intensity (Whitehead 2000): intensive, single-species swards for milk
producers with high mineral nitrogen application 250-400 kg N year-1 (i.e.,
> plot 14.2); moderate, grass-clover swards with moderate fertiliser inputs
(similar to or < plot 16); or extensive, with no inputs (as with plots 2.2,
3, 12). The average mineral nitrogen application on UK grassland was 54
kg ha−1 in 2019 (DEFRA 2021). Hence, the results from plot 16, and to a
lesser extent 14.2, provide the closest approximation for the impacts of cli-
mate change on grassland productivity, at least for southern England. Mean
productivity declines of around 20-30% by 2060 are predicted for both cli-
mate scenarios, increasing to nearly 50% under RCP 8.5 (Table 3). Such
a decline would be expected to have a substantial impact on the livestock
sector in the region, requiring farmers to reduce stocking levels, import addi-
tional feed from elsewhere, or switch from grass to other forage silages (e.g.,
forage maize, Zea mays L.). The continued retreat of intensive milk pro-
duction from the region, as intensive grassland productivity declines (Plot
14.2, Figure 3), to wetter and cooler regions of the UK may be a consequence.
Hence the results from plot 16, and to a lesser extent 14.2, provide the closest
approximation for the impacts of climate change on grassland productivity
for southern England in terms of current agronomy; but such comparisons
will be affected by variation in soils across the region.

Productivity declines in grassland also have implications for ecosystem ser-
vice provision. The amount of carbon sequestered in the soil is dependent
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on productivity (Jones & Donnelly 2004), and the role of grasslands in flood
risk reduction are to some extent dependent on their soil carbon content and
associated capacity of the soil to absorb water (Feger & Hawtree 2013). In
regard to biodiversity support, the consequences of reduced productivity are
more complicated. Plant species diversity typically has a unimodal relation-
ship with productivity; in unproductive systems, both species diversity and
productivity tend to be low due to low resource availability or high stress,
while in highly productive systems, diversity also tends to be low because low
stress and high resource availability favour a few highly productive species
that outcompete others (Silvertown et al. 1994, Brun et al. 2019). There-
fore, the productivity declines forecast in this paper could be associated with
either an increase or decrease in diversity: if climate change reduces pro-
ductivity via suppressing dominant species, then grassland plant diversity
may increase, whereas if climate change reduces productivity via increas-
ing stress for all plant species, or species that are already less prolific, then
diversity may decline. Future research looking at how community composi-
tion responds to warmer winter temperatures would help to clarify whether
climate change is likely to increase or decrease grassland plant diversity. De-
clines in productivity, with or without changes in plant diversity, will also
impact arthropod communities (Prather & Kaspari 2019, Fernández-Tizón
et al. 2020) and other taxa (Marriott et al. 2009). Our study of above-ground
production provides no information on what is happening beneath the soil
surface. Some species within the sward may divert biomass to the roots when
plants are under stress. Hence the direct implications of the current results
for ecosystem service provision deserve further study, as do the indirect im-
plications of, for example, changes in land use from grassland to other crops.

This study forecasts greater declines of grassland productivity than have
been previously predicted for the UK (Thornley & Cannell 1997, Qi et al.
2018). To some extent this is likely to be due to the different scales of stud-
ies; our forecasts are for a single site on a single soil type, albeit with a
wide range of fertiliser inputs and soil pH (Johnston et al. 1986), while Qi
et al. (2018) estimated productivity across the whole of the UK. Weather
patterns predicted under future climate scenarios vary spatially across the
UK, and different grasslands may respond in different ways. There are also
other differences in our models; both Thornley & Cannell (1997) and Qi
et al. (2018) included an effect of CO2 fertilisation, based on observed in-
creases in perennial ryegrass (Lolium perenne L.) productivity under higher
CO2. However, we did not include an effect of CO2 fertilisation due to the
monotonic increase in CO2 from 1902. Grasslands are composed of many
more species than ryegrass that may all respond differently, and there is no
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evidence that rising atmospheric CO2 has increased Park Grass hay yields
so far (Jenkinson et al. 1994). It has also been concluded that grassland
from Park Grass achieved saturation of atmospheric carbon more than one
century ago (Baca Cabrera et al. 2021). Furthermore, CO2 fertilisation ef-
fects tend to be negated by increasing temperatures (Ainsworth et al. 2020).
It is likely therefore that assuming an effect of CO2 fertilisation would over-
estimate grassland productivity under future projections of climate scenarios.

Our study also presents a more robust estimate of the relationship between
hay yields and weather variation than previous studies, given our long-term
dataset (114 years), our inclusion of an auto-regressive function for hay yields,
and our novel approach to modelling the heteroskedasticity of Park Grass hay
yields. The autoregressive function reinforces the effect of warming in reduc-
ing hay yield because a decline in yield from warming in year t − 1 also
reduces hay yield in year t. Traditional modelling approaches were shown
to be restricted by the functional relationship of the mean-variance relation-
ship. Although a non-parametric function may have been used to model the
mean-variance relationship of a Normal distribution (Muller & Stadtmuller
1987, Rice & Silverman 1991) we concluded that the functional variance of
Park Grass hay yields may be successfully modelled using a three-parameter
log-logistic function of the Gamma distribution for non-negative data. How-
ever, the variance in yield for the no input (plots 2.2 and 3) and minerals only
(plot 7) treatments seem to have low variance around the 1970s. This sug-
gests time-specific variation, but investigation of such a model is beyond the
scope of this study. The posterior predictive distribution of Park Grass hay
yields and forecasted yields was greatly improved when the mean-variance
relationship of a Gamma likelihood function was replaced, which gave similar
predictive accuracy to a Gamma model with individual shape parameters for
each plot.

Overall, the dramatic grassland productivity declines estimated by this study
are a cause for serious concern, emphasising the need to mitigate climate
change to sustain grassland farming in the region. Declines in grassland
productivity by 2080 of up to 27% under RCP 4.5 and 50% under RCP
8.5 would substantially undermine livestock production in southern England
and may also reduce the contributions of grassland to carbon sequestration,
flood mitigation, and biodiversity support. It may be possible to monitor
future grassland productivity at high spatial-temporal resolution from satel-
lites. However, such monitoring may only be limited to early-21st images
and not the 20th comparisons made in this study. To understand whether
the predicted declines on the Park Grass Experiment are representative of
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grasslands across the UK more widely, future research should explore the
response of different grasslands to climate change using models that appro-
priately account for heteroskedastic variance and autoregressive yields.
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Tables

Table 1: Description of each model fitted to hay yields (t ha−1 at 100% dry
matter) from Park Grass plots 2.2, 3, 12, 14.2, 16 and 7 from 1902 to 2016
to assess the predictive distribution of the data.

Model Summary
Model 1 Normal model with constant variance. No method of dealing

with heteroskedasticity.
Model 2 Normal model with constant variance on the square-root scale

of the data. Inferences conducted on the square-root scale of
the data.

Model 3 Gamma model with constant shape term.
Model 4 Individual Gamma model for each plot (2.2, 3, 12, 14.2, 16

and 7), with separate shape terms.
Model 5 Gamma model where the variance has been modelled as a

log-logistic function of the mean estimate (Equation 1).
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Table 2: Parameter estimates, standard deviations, and 89% credible interval
of the Park Grass weather varying intercept model using variance model given
in Equation 1 and Model 5 from Table 1. This model quantifies the response
from 1902 to 2016 of spring (first cut) hay yield (t dm ha-1) in six plots (2.2,
3, 12, 14.2, 16, 7) under different fertilizer regimes to seasonal temperature
(MTAut, MTWin, MTSpr) and rainfall (TRAut, TRWin, TRSpr). Terms 1

and 2 refer to first and second order terms of a quadratic relationship. All
β coefficients refer to Park Grass hay yields via the log-link function. See
Supplementary Figures 4-9 for the visual summary of the covariates from the
Park Grass weather varying intercept model.

Parameter Coefficient SD 5.5% CI 94.5% CI
β2.2 0.472 0.037 0.415 0.534
β3 0.362 0.039 0.300 0.423
β12 0.512 0.038 0.451 0.574
β14.2 1.532 0.036 1.472 1.588
β16 1.331 0.033 1.279 1.384
β7 1.087 0.033 1.035 1.140
βρ 0.304 0.019 0.273 0.334

βTRAut (mm) 1.772×10−6 1.111×10−4 -1.815×10−4 1.753×10−4

βTRWin (mm) 1.285×10−5 1.267×10−4 -1.882×10−4 2.114×10−4

βTRSpr1(mm) 0.451 0.171 0.175 0.719
βTRSpr2(mm2) -2.475 0.214 -2.824 -2.135

βMTAut (deg C) -0.045 0.004 -0.051 -0.039
βMTWin (deg C) -0.013 0.006 -0.022 -0.004
βMTSpr1(deg C) 0.187 0.188 -0.119 0.474
βMTSpr2(deg C2) -0.673 0.181 -0.949 -0.375

τ1 1.256 0.075 1.377 1.137
τ2 0.464 0.054 0.379 0.552
τ3 0.731 0.041 0.668 0.798
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Figures

Figure 1: Rothamsted Meteorological Station’s harvest season (Autumn to
Summer) yearly summary of mean temperature (deg C) and total rainfall
(mm) from 1902 to 2016 (blue), with HadGEM2 RCP 4.5 (orange) and 8.5
(red) transient future climate projections from 2017 to 2080 with 89% credible
interval (shaded area)
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Figure 2: The Watanabe–Akaike Information Criterion (WAIC, •) for Models
1, 3-5 (Table 1) with Bootstrapped 89% credible intervals (shaded area)
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Figure 3: Hay yields (t dm ha−1) from Park Grass plots 2.2, 3, 12, 14.2,
16 and 7 from 1902 to 2016 (•) with forecasted hay yields from HadGEM2
RCP 4.5 (orange) and 8.5 (red) future climate scenarios. Fitted line is the
posterior predictive values from the varying intercept Park Grass weather
model given in Table 2 with 89% credible interval (shaded area)
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Figure 4: Fitted log-logistic mean variance relationship (Equation 1) of the
Park Grass hay yield model with 89% credible interval (shaded area), with
predictions of y (ŷ) on the x-axis
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Supplementary Figure 1: Rothamsted Meteorological Station’s harvest sea-
son (Autumn to Summer) yearly summary of mean temperature (deg C) and
total rainfall (mm) from 1902 to 2016 (blue), with GISS RCP 4.5 (orange)
and 8.5 (red) transient future climate projections from 2017 to 2080 with
89% credible interval (shaded area)
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Supplementary Figure 2: The model fit (solid line) and 89% credible intervals
(shaded area) of hay yields from Models 1-5 (see Table 1) of Park Grass
sections 2.2, 3, 12, 14.2, 16 and 7 (•) (left panel) with corresponding mean-
variance relationship (right panel)
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ŷ

va
r(

y)

31



Supplementary Figure 3: Hay yields (t ha−1 at 100% dry matter) from Park
Grass sections 2.2, 3, 12, 14.2, 16 and 7 from 1902 to 2016 (•) with forecasted
hay yields from GISS RCP 4.5 (orange) and 8.5 (red) future climate scenarios.
Fitted line is the posterior predictive values from the varying intercept Park
Grass weather model given in Table 2 with 89% credible interval (shaded
area)
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Supplementary Figure 4: The fitted relationship between hay yields (t ha−1

at 100% dry matter) from the varying intercept Park Grass weather model
given in Table 2 for all plots 2.2, 3, 12, 14.2, 16 and 7 and autumn total
rainfall (•), with 89% predictive intervals (shaded area).
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Supplementary Figure 5: The fitted relationship between hay yields (t ha−1

at 100% dry matter) from the varying intercept Park Grass weather model
given in Table 2 for all plots 2.2, 3, 12, 14.2, 16 and 7 and winter total rainfall
(•), with 89% predictive intervals (shaded area).
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Supplementary Figure 6: The fitted relationship between hay yields (t ha−1

at 100% dry matter) from the varying intercept Park Grass weather model
given in Table 2 for all plots 2.2, 3, 12, 14.2, 16 and 7 and spring total rainfall
(•), with 89% predictive intervals (shaded area).
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Supplementary Figure 7: The fitted relationship between hay yields (t ha−1

at 100% dry matter) from the varying intercept Park Grass weather model
given in Table 2 for all plots 2.2, 3, 12, 14.2, 16 and 7 and mean autumn
temperature (•), with 89% predictive intervals (shaded area).
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Supplementary Figure 8: The fitted relationship between hay yields (t ha−1

at 100% dry matter) from the varying intercept Park Grass weather model
given in Table 2 for all plots 2.2, 3, 12, 14.2, 16 and 7 and mean winter
temperature (•), with 89% predictive intervals (shaded area).
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Supplementary Figure 9: The fitted relationship between hay yields (t ha−1

at 100% dry matter) from the varying intercept Park Grass weather model
given in Table 2 for all plots 2.2, 3, 12, 14.2, 16 and 7 and mean spring
temperature (•), with 89% predictive intervals (shaded area).
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