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Abstract 19 

Amaranthus retroflexus L. and Chenopodium album L. (Amaranthaceae) are weedy plants that 20 

cause severe ecological and economic damage. In this study, we collected DNA from three 21 

different countries and assessed genetic diversity using inter-simple sequence repeat (ISSR) 22 

markers. Our analysis shows both weed species have low genetic diversity within a population 23 

and high genetic diversity among populations, as well as a low value of gene flow among the 24 

populations. UPGMA clustering and principal coordinate analysis indicate four distinct groups 25 

for A. retroflexus L. and C. album L. exist. We detected significant isolation-by-distance for A. 26 

retroflexus L. and no significant correlation for C. album L. These conclusions are based data 27 

from 13 ISSR primers where the average percentage of polymorphism produced was 98.46 % 28 

for A. L C. album74.81% for L. and  retroflexus .  . These data suggest that each population was 29 

independently introduced to the location from which it was sampled and these noxious weeds 30 

come armed with considerable genetic variability giving them the opportunity to manifest 31 

myriad traits that could be used to avoid management practices. Our results, albeit not 32 

definitive about this issue, do not support the native status of C. album L. in Iran. 33 
  34 
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1 Introduction 35 

Evolutionary genetics tools are valuable for revealing the genetic diversity within and between 36 

populations. Within the field of Weed Science, these tools have been applied to understanding 37 

the traits or genes that facilitate successful establishment by weedy species (Sakai et al., 2001; 38 

Lee, 2002, Majd et al., 2020). Factors that facilitate rapid and efficient colonization of new 39 

habitats include: wide environmental tolerance, phenotypic flexibility, inbreeding coefficient 40 

or ability to undergo asexual reproduction, efficient dispersal abilities, high relative growth 41 

rate, and high ability to compete (te Beest et al., 2012). The Amaranthaceae weeds redroot 42 

pigweed (Amaranthus retroflexus L.) and lamb's quarters (Chenopodium album L.) are 43 

problematic cosmopolitan weeds that inhabit a wide variety of habitats across the globe (CABI, 44 

2020; Horak and Loghin, 2000; Khan et al., 2022; Tang et al., 2022). Even when grown in 45 

common garden conditions they exhibit significant morphological and biochemical diversity 46 

in reproductive and metabolic traits that are important for successful establishment and survival 47 

in new locations (Alebrahim et al., 2012; Hamidzadeh Moghadam et al., 2021). They are 48 

predominantly self-pollinating (Kulakow and Hauptli, 1994; Eslami and Ward, 2021) and have 49 

vigorous and highly adapted reproductive traits which maximize their ability to generate and 50 

maintain seed banks (Toole and Brown, 1946; Maurya and Ambasht, 1973; Holm et al., 1977; 51 

Knezevic and Horak,1998; Telewski and Zeevaart, 2002; CABI, 2020). Moreover, these fast-52 

growing and highly competitive annual plants cause large yield losses across much of the 53 

world’s agricultural areas (Horak and Loghin, 2000; CABI, 2020). These two weeds are 54 

therefore highly successful bioinvaders that need to be understood and managed.  55 

These two weeds are also good systems for investigating the genetic fingerprints of 56 

weediness and weedy traits. Although it is autogamous, C. album is highly polymorphic, even 57 

compared to other species within the Chenopodium genus. Previous studies explored this 58 

taxonomic complexity through cytology (Mukherjee, 1986), karyotypic analysis (Kolano et al., 59 

2008), flavonoid profiling (Rahiminejad and Gornall, 2004) random amplified polymorphic 60 

DNA profiles (Rana et al., 2010), ISSR marker analysis (Rana et al., 2012) and cpDNA regions 61 

sequencing (Mandák et al., 2018; Krak et al., 2019). A. retroflexus is partly autogamous and a 62 

study of the genetic composition of Central European A. retroflexus using isoenzyme analysis 63 

showed moderate levels of genetic diversity and strong evidence for inbreeding within 64 

populations compared to other herbaceous plants (Mandák et al., 2011). Therefore, there is a 65 

precedence for using A. retroflexus and C. album for evolutionary genetic studies. Despite this 66 

is known about the genetic diversity of these species within and between little , precedence67 

es successfully they havepopulations in places where ta weedsas  blished . 68 

The objective of this study was to characterize the genetic diversity of Iranian, French and 69 

Spanish A. retroflexus L. and C. album L. populations that are known to exhibit diversity in 70 

several important morphological and biochemical traits (Alebrahim et al., 2012; Hamidzadeh 71 

Moghadam et al., 2021). Regarding these populations, we hypothesized that (1) individuals 72 

from multiple different founder sources gave rise to the Iranian, French and Spanish 73 

populations of A. retroflexus L. and C. album L. that can be found at the sample locations, and 74 

(2) geographic distance and resistance of gene flow to altitudinal differences drive population 75 

genetic differentiation, i.e. isolation-by-distance (IBD), both of which would manifest as higher 76 

levels of genetic diversity when grown in common garden.  77 

2 Materials and Methods 78 

2.1 Plant Materials 79 
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Seeds of 16 A. retroflexus and 17 C. album populations were collected in 2016 and 2017 from 80 

different provinces of Iran, Spain, and France (Table 1 and Supplemental Figures 1A and 81 

1B). Further details regarding how these specific samples were collected as well as detailed 82 

characterisation and analysis of morphological and biochemical traits can be found at 83 

Hamidzadeh Moghadam et al. (2021). The seeds provided by Research Institute of Forests and 84 

Rangelands (RIFR) and UMR Agroecology (INRA Dijon) were cultivated at the experimental 85 

field of the agriculture research of University of Mohaghegh Ardabili (38˚ 19N 48˚ 20E). Three 86 

weeks after sowing, five plants per population were selected and planted outdoors at the 87 

experimental field of the agriculture research of University of Mohaghegh Ardabili during the 88 

summer of 2018. Three replicated plots with five seedlings per replicate were planted in each 89 

plot. Seedlings were planted at a distance of 20 cm in row and 30 cm between rows 90 

(Hamidzadeh Moghadam et al., 2021). For DNA extraction fresh leaves were taken from 91 

individual plants of each genotype of two weeks old seedlings. The leaf samples were preserved 92 

at − 80 °C until the DNA extraction was executed. 93 

2.2 DNA Extraction and ISSR Analysis 94 

To test hypotheses, we used inter simple sequence repeat (ISSR) markers. ISSR markers are 95 

highly reproducible and accurate tools that generate highly reproducible banding patterns from 96 

a single polymerase chain reaction (PCR) amplification (Raut et al., 2014; Stefunova et al., 97 

2014). Although newer technique are available, ISRR makers have historically (Wolfe et al., 98 

1998) and recently (Alotaibi and Abd-Elgawad; 2022; Flihi et al., 2022; Ghanbari et al., 2022; 99 

Haq et al., 2022; Kwiecińska-Poppe et al., 2020; Liu et al., 2021; Tang and Ma, 2020; Yan et 100 

al, 2019) been used successfully for diversity studies and structuring of natural populations.  101 

Genomic DNA was isolated from the young leaves of plants according to the 102 

cetyltrimethylammonium bromide (CTAB) method described by Saghai-Maroof et al (1984). 103 

The DNA concentration and purity were determined with a ThermoTM Scientific NanoDrop™ 104 

spectrophotometer and visually verified via 0.8% (w/v) agarose gel electrophoresis. 52 ISSR 105 

primers (synthesized by CinnaGen Co., Teheran, Iran) from the University of British 106 

Columbia’s UBC set no. 9 (Vancouver, British Columbia, Canada) were screened for PCR 107 

amplification and thirteen primers that produced clear, reproducible banding patterns were 108 

chosen (Table 2). We compensated for potential pitfalls in the use of ISRR markers (such as 109 

sensitivity to the quality and concentration of template DNA, concentrations of PCR 110 

components, PCR cycling conditions as well as electrophoretic conditions). 111 

Bio-Rad T100™ thermal cycler (Bio-Rad Laboratories, Inc. Hercules, CA, USA) started 112 

with 4 min at 94°C, and 40 cycles of 1 min at 94 °C, 75 s at each primer’s annealing temperature 113 

(Table 2) and 2 min at 72°C ended by an extension for 10 min at 72°C. The PCR products 114 

were separated on 2% agarose gel in 1X TBE buffer then ran at 90 voltage for 1 hours, stained 115 

with DNA-safe stain (CinnaGen, Iran) and photographed with a digital imaging system (UV 116 

tech, Germany). Molecular weights were estimated using 50 bp DNA Ladder (CinnaGen, Iran). 117 

An example of the banding pattern observed in shown in Supplemental Figure 2 118 

2.3 Data Analysis 119 

Among the 52 primers tested, 13 produced clearly and reproducibly amplified ISSR fragments. 120 

These were scored based on a binary matrix for presence (1) or absence (0) of bands. 121 

Discriminatory power of the primers was evaluated by means of resolving power (Rp), mass 122 

resolving power (MRP), polymorphic information content (PIC), marker index (MI). Rp of 123 
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each primer which is the ability of each primer to detect level of variation between individuals 124 

was calculated according to (Prevost and Wilkinson, 1999): 125 

Rp = ∑ bI                                [1] 126 

where bI (band informativeness) takes the values of: 1–[2|0.5–p|], where p is the proportion of 127 

individuals containing the band. Further, mean resolving power (MRP) for each primer was 128 

calculated via 129 

MRP =  
1

n 
 ∑ bI                           [2] 130 

following (Milbourne et al., 1997). PIC value was calculated according to (Roldán-Ruiz et al., 131 

2000): 132 

PIC = 2fi(1 − fi)                        [3] 133 

where fi is the frequency of fragments present in that locus and (1−fi) is the frequency of the 134 

null allele. MI, a measure of overall utility of a molecular marker technique, for each primer 135 

was calculated as a product of two functions, the polymorphic information content and 136 

effective multiplex ratio (EMR) (Milbourne et al., 1997), i.e.,  137 

MI = PIC × EMR                       [4] 138 

The effective multiple ratio (EMR = npβ) is the product of the number of polymorphic loci 139 

(np) in the population analyzed and the fraction of markers that were polymorphic (β) (Powell 140 

et al., 1996).  141 

The binary data matrix was analyzed using POPGENE version 1.32 (Yeh and Boyle, 1997) 142 

to examine different genetic diversity parameters including number of polymorphic loci (PL), 143 

percentage of polymorphic loci (PPL), Observed number of alleles (Na), Effective number of 144 

alleles (Ne), Nei’s gene diversity (H), Shannon’s information index (I(. At the species wide 145 

level, total genetic diversity (Ht), genetic diversity within populations (Hs) and Nei’s (1973) 146 

coefficient of genetic differentiation among populations calculated via 147 

Gst = (Ht − Hs)/Ht                    [5] 148 

Corresponding estimates of gene flow (Nm), i.e. the average per generation number of 149 

migrants exchanged among populations, was calculated based on (McDermott and McDonald, 150 

1993): 151 

Nm = 0.5(1 − GST)/GST            [6] 152 

To examine the genetic relationship among populations, unbiased genetic distance and 153 

genetic identity (Nei, 1978) were also calculated by POPGENE and a dendrogram was 154 

constructed from Nei’s genetic distance with the unweighted pair-group method of averages 155 

(UPGMA) using NTSYSpc 1.02 software (Rohlf, 2000). To determine the quality of clustering 156 

(Saracli et al., 2013), Bootstrapped cluster analysis (UPGMA) was used to measure cophentic 157 

correlation coefficient (r) based on (Rohlf and Sokal, 1981). Principle coordinate analysis 158 

(PCoA) to assess genetic diversity were also calculated (Mohammadi and Prasanna, 2003). To 159 

evaluate genetic variance, analysis of molecular variance (AMOVA) (Excoffier et al., 1992) 160 

was carried out using GenAlEx version 6.4. From AMOVA, the fixation index (Fst) were 161 

obtained (Peakall and Smouse, 2006). To determine whether weedy population genetic 162 

structure followed a pattern of isolation by distance, genetic distance matrices were correlated 163 

with geographical distance matrices using a Mantel test in GenAlEx. 164 

3 Results  165 
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3.1 Statistics of DNA Marker Used in Genetic Diversity Assessment  166 

Table 2 indicates that the ISSR primers used herein accurately and sufficiently measure the 167 

degree of polymorphism present in the populations and are sufficiently powerful to 168 

differentiate between populations; therefore, they were suitable for assessing genetic diversity 169 

of these populations. The level of polymorphism revealed by the ISSR approach was very high 170 

and reached 98.46  %for A. retroflexus L. and 74.81% for C. album L. within analysed 171 

materials. These differentiating loci are therefore suitable for evaluating the genetic variability 172 

of these populations. Moreover based on PIC values, it can be concluded that the capacity of 173 

the marker system to detect polymorphic loci in a single amplification was very efficient; the 174 

average value of this coefficient amounted 0.78 for A. retroflexus L. and 0.71 for C. album L.. 175 

These results demonstrate this technique can be conveniently used for the genetic 176 

characterization of these populations of A. retroflexus L. and C. album L.. Use of ISSR markers 177 

are also recently reported as a functional markers elsewhere (Ghanbari and Salehi , 2022; 178 

Alotaibi and Abd-Elgawad; 2022; Flihi et al, 2022; Haq et al, 2022; Kwiecińska-Poppe et al, 179 

2020; Sivaprakash et al., 2004; Yan et al, 2019). 180 

A. retroflexus: Against our A. retroflexus L. DNA, the 13 ISSR primers produced a total of 59 181 

bands, of which 58 were polymorphic. The number of polymorphic bands ranged from 3 182 

(UBC822, UBC829, UBC819, UBC833 and UBC817) to 13 (UBC810). The ISSR pattern 183 

obtained with UBC810 primer is demonstrated in Supplemental Figure 2A. The Al2 primer 184 

generated the minimum polymorphism of 80% and primers AL1, UBC839, UBC810, UBC834, 185 

UBC829, UBC818, UBC822, UBC811, UBC819, UBC815, UC833 and UC817 showed 100% 186 

polymorphism. While the highest Rp and MRP value was recorded at 7.87 and 102.31 187 

(UBC810), the lowest was at 1.87 and 5.61 (UBC822), respectively. The EMR was the highest 188 

for UBC810 (13) and lowest for UBC822, UBC829, UBC819, UBC833 and UBC817 (3). 189 

Similarly, marker index (MI) value was highest for UBC810 (5.21) and lowest for AL2 primer 190 

with 1.1. The observed number of alleles (Na) was recorded low for the primer AL2 (1.8). The 191 

effective number of allele (Ne) was invariably less than Na values showing a variation in the 192 

range of 1.44 (AL2) to 1.97 (UBC833). The Shannon index (I) estimates were low, ranging 193 

from 0.49 (AL2) to 0.68 (UBC833), as well as the estimates of Nei’s genetic diversity (H), 194 

ranging from 0.34 (AL2) to 0.49 (UBC833) (Table 2A). 195 

C. album: These 13 selected primers generated 49 ISSR bands in the 17 C. album populations, 196 

3 to 8 bands per primer, of which 37 were polymorphic. The number of polymorphic bands 197 

varied from 1 in Al2 and UBC811 to 7 in UBC810. The ISSR pattern obtained with UBC810 198 

primer is demonstrated in Supplemental Figure 2B. Al2 and UBC811 also provided the 199 

minimum polymorphism of 33.33% and primers UBC839, UBC829, UBC818, UBC815 and 200 

UBC817 showed 100% polymorphism. The highest Rp and MRP value was in UBC810 primer 201 

(4.59 and 32.13 respectively), and the lowest one in AL2 (0.35 and 0.35 respectively). The 202 

EMR was the highest for UBC810 (6.12) and lowest for UBC839, UBC829, UBC818 and 203 

UBC817 (3). Similarly, marker index (MI) value was highest for UBC810 (1.86) and lowest 204 

for AL2 and UBBC811 primers with 0.053. AL2 and UBC811 have the lowest (1.3) observed 205 

number of alleles (Na) and UBC839, UBC829, UBC818, UBC815 and UBC817 (2) having the 206 

highest. The effective number of allele (Ne) was invariably less than Na values showing a 207 

variation in the range of 1.13 (AL2) to 1.89 (UBC839). The Shannon index (I) ranging from 208 

0.15 (AL2) to 0.66 (UBC839), as well as the estimates of Nei’s genetic diversity (H), ranging 209 

from 0.09 (AL2) to 0.46 (UBC839 and UBC815) (Table 2B).  210 

The PIC values ranged from 0.345 to 0.549 with the highest being for primer UBC834 and 211 

the lowest for primer AL2 for A. retroflexus L. (Table 2A). Furthermore, UBC834 primer with 212 
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0.09 and UBC817 primer with 0.48 showed the lowest and greatest PIC value among all 213 

primers for C. album populations, respectively (Table 2B). Our results showed that the PIC 214 

values gave an average PIC value of 0.44 for A. retroflexus L and 0.29 for C. album population, 215 

suggesting that all the markers fell within the moderately informative category defined by 216 

Botstein et al (1980) for A. retroflexus L and moderately or low informative category for C. 217 

album. 218 

3.2 Genetic Diversity and Population Structure of A. retroflexus L. and C. album L.: 219 

Genetic variability represents vital information about historic bottleneck effects and 220 

diversification since establishment and understanding a population’s history informs choices 221 

about which innovative weed control options would be most suitable (Goolsby et al., 2006; 222 

Slotta, 2008). Knowing what level of genetic variation exists within and between populations 223 

is therefore essential for developing strategic and effective weed control practices as different 224 

responses to chemical or biological control methods will be underpinned by differences in the 225 

weed genomes (Arias et al., 2011).  226 

A. retroflexus: The UPGMA clustering algorithm from ISSR analysis grouped the 16 A. 227 

retroflexus L. populations into four distinct clusters at a similarity index value of 0.46 (Figure 228 

1A). The correlation cophenetic value (r) calculated by Mantel test (0.78) indicates a high 229 

grouping efficiency. However, these groups do not cluster based on geographic proximity, e.g. 230 

the Spanish populations fall across two separate groups and the Iranian populations are not 231 

clustered according to geographical distance. The first cluster consists of Rasht, Spain2, 232 

Ardabil and Moghan. The second group includes Rudsar, Sari and Hamedan populations. The 233 

third cluster is a representation of the populations from Shahre-e-Rey, Ilam, France, Gorgan, 234 

Spain1 and Spain3. The fourth group was formed of Yazd, Zarand and Bojnurd. Analysis of 235 

molecular variance confirmed the cutoff point of clustering (phipt=0.21) (Table 3A). 236 

Confirming the results of the UPGMA clustering, Principal Coordinates Analysis (PCoA) also 237 

showed four main clusters (Figure 2A). 238 

AMOVA (Table 3A) demonstrated strongly significant genetic differentiation among 239 

populations and within populations (P < 0.001); 81.0% of the total variation was due to 240 

differences among populations, while the remaining 19.0% was attributed to within-population 241 

differences. The measurements of genetic diversity are summarized in Table 4A. The number 242 

of observed alleles and number of effective alleles ranged between 1.152-1.254 (Ilam or Yazd 243 

to Ardabil) and 1.092–1.144 (Ilam or Yazd to Ardabil), respectively. The value of Nei’s gene 244 

diversity ranged from 0.055 to 0.089 with the highest for Ardabil population and the lowest for 245 

Ilam and Yazd population among the 16 populations. The average of Shannon’s Information 246 

Index for the 16 populations is 0.11 which again the maximum and the minimum are 247 

respectively belonging to Ardail, Ilam or Yazd populations. The highest number of 248 

polymorphic loci (PL) and percentage of polymorphic loci (PPL) both belong to Ardail while 249 

the lowest, belongs to Ilam and Yazd. The values for total species diversity for among 250 

population (HT), within population diversity (Hs) and mean coefficient of gene differentiation 251 

(GST) were 0.429, 0.073 and 0.829, respectively. The highest genetic identity is between Yazd 252 

and Zarand (0.79) which exhibit the lowest genetic distance (0.22). The maximum genetic 253 

distance is between Rasht and Zarand, moreover between Rasht and Yazd (1.08), which show 254 

the minimum genetic identity of 0.33 (Table 5A).Furthermore, the level of gene flow (Nm) 255 

was estimated to be 0.102 individual per generation between populations, suggesting that 256 

genetic exchange between populations was low.  257 

C. album: The UPGMA dendrogram from ISSR analysis at a similarity index value of 0.62 is 258 

shown in Figure 1B. Cophenetic coefficient (r) of 0.71 indicates high grouping efficiency. The 259 
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populations were separated into four distinct clusters, which again mix proximal populations. 260 

Analysis of molecular variance confirmed the cut-off point of clustering (phipt=0.31) (Table 261 

3B). The first cluster consists of Rudsar and Rasht. The second cluster groups Boyer-Ahmad, 262 

Rudan, Tehran, Dehloran, Hamedan and Kivi. The third cluster  is Mashhad, Spain1, Spain2 263 

and France1, while the fourth cluster is a representation of the populations from Moghan, 264 

Ardabil, Yazdabad, Shahr-e-Rey and France2. Like before , the PCoA analysis showed four 265 

main clusters confirming the results of the UPGMA clustering (Figure 2B).  266 

AMOVA (Table 3B) was carried out considering the 17 populations studied, calculating the 267 

molecular variation attributable to differentiation among and within the populations (P < 268 

0.001). The highest percentage of variation was found among the populations (78.0%) and in 269 

lower proportion, between populations (22.0%). The measurements of genetic diversity are 270 

summarized in Table 4B. The number of observed alleles and number of observed effective 271 

alleles ranged between 1.122-1.183 (Spain1 to Kivi, Ardail, Yazdabad, Shahre-Ray and 272 

Tehran) and 1.093–1.153 (Rudsar or Rudan to Yazdabad), respectively. The value of Nei’s 273 

gene diversity ranged from 0.052 to 0.82 with the highest for Yazdabad population and the 274 

lowest for Spain1 population among the 17 populations. The average of Shannon’s Information 275 

Index for the 17 populations is 0.094 which the maximum and the minimum are respectively 276 

belonging to Yazdabad- Spain1 populations. The highest number of polymorphic loci (PL) and 277 

percentage of polymorphic loci (PPL) both belong to Kivi, Ardail, Yazdabad, Shahre-Ray and 278 

Tehran while the lowest, belongs to Spain 1. The values for total species diversity for among 279 

population (HT), within population diversity (Hs) and mean coefficient of gene differentiation 280 

(GST) were 0.36, 0.064 and 0.82, respectively. Furthermore, the level of gene flow (Nm) was 281 

estimated to be 0.109 individuals per generation between populations, suggesting that gene 282 

exchange between populations was low. Hamedan and Dehloran populations showed the 283 

highest genetic identity (0.91) with having the lowest genetic distance (0.08). The maximum 284 

genetic distance (0.71) and the minimum genetic identity (0.48) are between Ardabil and 285 

Rudsar along with Ardabil and Rasht populations (Table 5B).  286 

 287 

To determine if there were spatial patterns of genetic variation, we used a Mantel test (Diniz-288 

Filho et al., 2013) to estimate the degree of correlation between the genetic data we obtained 289 

from the ISSR markers and geographical distances between the sampling locations.  290 

A. retroflexus: Unlike the UPGMA clustering algorithm (Figures 1 and 2), which did not 291 

cluster groups based on geographic proximity, a significant correlation was detected between 292 

geographical distances and genetic distance for the 16 populations (r = 0.139, P (rxy-rand > = 293 

rxy-data) = 0.02) (Figure 3A), moreover, we observed a significant correlation for 12 Iranian 294 

populations (r = 0.537, P (rxy-rand > = rxy-data) = 0.01) (Figure 3C). The correlation plot for 295 

the 12 Iranian populations suggests a positive linear association between genetic and 296 

geographic distance, but the R2 value is very low. These analyses indicate that nearby 297 

populations tend to be genetically more similar to each other than expected by chance and there 298 

is a linear increase in genetic differences with geographic distances.  299 

C. album: Similar to the UPGMA clustering (Figures 1 and 2), the Mantel test indicated no 300 

significant isolation-by-distance (IBD) pattern among 17 populations (r = -0.035, P (rxy-rand 301 

> = rxy-data) = 0.32) (Figure 3B) and among 13 Iranian populations (r = 0.097, P (rxy-rand > 302 

= rxy-data) = 0.06) (Figure 3D). Similarly, the R2 values for the correlation plots of 303 

geographical and genetic distances do not support the hypothesis that these two factors are 304 

correlated.  305 

4 Discussion 306 
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The genetic structure analysis we show in Figures 1 and 2 revealed that the sampled 307 

populations of both A. retroflexus and C. album exhibit a high degree of genetic diversity 308 

between the different populations. This conclusion holds true regardless of whether they the 309 

analysis only considered the populations sampled from Iran or when geographically isolated 310 

populations from Spain or France are included. Analysis of molecular variance results indicate 311 

that most of the genetic variation (FST = 0.71 in A. retroflexus L. and 0.7 in C. album L.) was 312 

found among populations. Additionally, our data indicate that there is little genetic diversity 313 

within a given population of A. retroflexus or C. album. Theory predicts that colonization of 314 

new areas will be associated with population bottlenecks that reduce within population genetic 315 

diversity and increase genetic differentiation among populations. This should be especially true 316 

for weedy A. retroflexus and C. album (Amsellem et al, 2000). We see a high number of unique 317 

alleles in nearly all of the sampled populations (Table 2). Together these data are consistent 318 

with independent introductions of predominantly inbreeding populations which therefore have 319 

naturally low gene flow between the populations. This agrees with previous studies that 320 

reported a high genetic diversity among Amaranthus populations using RAPD markers 321 

(Mandal and Das, 2002; Transue et al. 1994) and other values of genetic differentiation (Ueno 322 

et al., 2015; Aguayo et al., 2013) including the average value of FST for autogamous species 323 

using molecular markers which is 0.70 (Nybom and Bartish 2000). In principle, a high level of 324 

genetic diversity provides a varied genetic toolbox that enables adaptation to an extensive range 325 

of ecosystems (Dekker, 1997) while self-fertilization can enhanced fitness of weedy 326 

populations if the benefits of local adaptation outweigh potential cost of inbreeding (Verhoeven 327 

et al., 2011). 328 

The presence of private alleles is important because it may indicate disparate evolutionary 329 

paths were taken by the different populations (Yang et al., 2013). Although the presence of 330 

these private alleles may be attributed to high mutation rates (Kronholm et al., 2010), it is more 331 

likely that as others have concluded (Ueno et al., 2015, Wyman et al., 2019) that the populations 332 

faced unique selection pressures after introduction and that they were relatively recently and 333 

independently introduced into the locations from which they were sampled. These species each 334 

have excellent dispersal abilities (Maurya and Ambasht, 1973; Knezevic and Horak, 1998; ) 335 

and highly diverse morphologies and biochemistries (Hamidzadeh Moghadam et al., 2021) 336 

which we know contributes to a plant’s potential to rapidly and efficiently colonize new 337 

habitats. Plant morphology, phenology and breeding system significantly influences genetic 338 

diversity where in general, long-lived and outcrossing species have higher levels of genetic 339 

diversity than selfing and/or clonal plants (Hamrick and Godt, 1996). Therefore, low genetic 340 

diversity within populations is what is expected from these mainly autogamous weedy species 341 

(Barrett et al., 2008), since self-fertilization reduces the proportion of heterozygous loci in 342 

individuals, causing fixation of homozygous loci (Hamilton, 2009).  343 

The Mantel tests we conducted show isolation-by-distance (IBD) and therefore positive 344 

correlations between genetic distances and geographic distances among A. retroflexus 345 

populations (Figure 3). However, the clustering analysis (Figures 1 and 2) did not show 346 

grouping based on proximity and there was little evidence for gene flow between the 347 

populations. We also see persistence of unique alleles among populations. Indeed, other studies 348 

have reported similar genetic patterns for plants with self-reproduction (Atwater et al., 2018), 349 

clonal growth (Li and Dong, 2009), fast-growth (Barluenga et al., 2011) and high-density 350 

populations (Vekemans and Hardy, 2004). This was not the case with the C. album populations 351 

where the Mantel test suggested that the distribution of genetic diversity among C. album 352 

populations is not explained by geographical distances as we found no evidence of isolation by 353 

distance among the locations sampled. Although our small sample could influence our ability 354 

to accurately conclude a relationship between geographic and genetic distances, Guggisberg et 355 
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al. (2012) similarly concluded that colonization of Canada thistle (Cirsium arvense) was the 356 

result of independent and multiple introductions because of data showing their populations 357 

exhibited different genetic fingerprints and lacked a correlation between genetic and 358 

geographic distances. C. album populations are most commonly found on disturbed areas 359 

(CABI, 2020), and therefore dispersal driven by human activity is likely in these species (Krak 360 

et al., 2019). As a result, our lack of correlation between genetic and geographic distances of  361 

populations implies that seed dispersal mechanisms and colonization history have influenced 362 

the spatial distribution and genetic diversity we observed, similarly to other species (Heywood 363 

et al., 2007). 364 

Although it is well accepted that European A. retroflexus is a neophyte (Axmanova et al., 365 

2021), neither the precise origin nor the first report of C. album L.  are precisely known (CABI, 366 

2020). Linnaeus described the species in 1753 (Rickett & Stearn 1958, Flora Europaea: C. 367 

album), as inhabiting most of Europe. Plants thought to be native to Eastern Asia are included 368 

under C. album, but often differ from European specimens (Zhu et al, 2003). In extent at the 369 

beginning of the period, C. album is domesticated in the Himalayan region where it is grown 370 

as a grain crop. There is archaeological evidence to suggest it was cultivated as a pseudo-cereal 371 

in Europe in prehistory (Stokes and Rowley-Conwy, 2002). Historical range aside, these 372 

references showed that C. album cannot be considered native to Iran (Kazi et al, 2007; 373 

Ghorbani et al, 2010; Hassannejad et al, 2014). Accoding to A. Pahlevni (pers.comm.), there 374 

is  no evidence of historical gatherings of this weed from Iran. Further details of the native 375 

ranges and known history of global distribution patterns for these two species are given in 376 

Hamidzadeh Moghadam et al. (2021). 377 

Quantitative data about the spatial distribution of genetic diversity is essential to better 378 

understand the relationships between life-history traits, stochastic effects, gene flow, selection 379 

pressures and environmental factors (Escudero et al., 2003). The genetic diversity analyses we 380 

have conducted here using ISSR molecular markers revealed that the studied populations of 381 

weedy A. retroflexus L. and C. album L. have low intra-population genetic diversity and are 382 

divergent among each other. Combining genetic variation, gene flow, population genetic 383 

structure and IBD analysis, suggest that the existing genetic variation and spatial genetic 384 

structure of populations were caused by distinct introduction events of these species to these 385 

locations. Self-fertilization, drift events, colonization by few individuals, different selection 386 

pressures acting even within small geographic areas may have influenced the genetic diversity 387 

of these populations. Although these results are limited to selected populations from Iran with 388 

French and Spanish outgroups, it is useful for understanding the weediness of A. retroflexus 389 

and C. album into Iran and can be extended to further noxious populations covering a wider 390 

geographic distribution.  391 

5 Conclusion 392 

Analysis of ISSR markers in this set of A. retroflexus L. and C. album L. populations allowed 393 

us to assess the effects of geographic distance on population structure as it was extremely 394 

unlikely that genetic exchange would have occurred naturally between Iranian and French or 395 

Spanish populations. UPGMA clustering of ISSR data support our hypotheses showing that (1) 396 

it is likely the Iranian, French and Spanish populations of A. retroflexus L. and C. album L. 397 

were established by individuals from multiple different sources and (2) isolation-by-distance 398 

(IBD) has occurred particularly in A. retroflexus L. where the likelihood of gene flow is 399 

inversely related to distance. However, we show no evidence of isolation by distance among 400 

the C. album L. populations, indicating geographic distance or geographic barriers may not be 401 

the only factor affecting gene flow. Our results show genetic diversity between populations of 402 
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A. retroflexus L. and C. album L., which may help explain their diverse phenotypic and 403 

biochemical traits and help to explain their success as noxious weeds. Our data supports the 404 

theory that in both species, the populations we have sampled have been genetically isolated 405 

and multiple introduction events occurred giving rise to these weedy populations.  406 

Knowledge about genetic relatedness within and between populations is crucial for 407 

understanding how the populations came to be established as well as for designing successful 408 

weed management schemes to deal with them. Herein we evaluate the genetic diversity of 409 

Iranian, French and Spanish populations of A. retroflexus L. and C. album L. using ISSR 410 

primers. We were able to obtain an efficient and effective assessment of genetic diversity in A. 411 

retroflexus L. and C. album L. populations. While a large number of molecular markers 412 

(dominant and co-dominant) would have improved our analyses as would increased sample 413 

sizes or ranges, the amplification of many polymorphic loci indicated the set of ISSR primers 414 

we used was sufficient to assess the genetic diversity among the existing populations. Here, we 415 

demonstrate that ‘weedy’ traits, such as selfing and clonal growth may result in populations 416 

that have distinct phenotypic and genetic fingerprints depending on the selecting conditions. 417 

The low genetic variation within populations and maladapted gene flow among populations 418 

seen in our results indicates that every population is a unique, evolutionarily-significant unit 419 

and should be considered as an independent management unit for weed population control. 420 
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Table 1. The list of 16 A. retroflexus and 17 C. album populations evaluated in this study with their coordinate 

and origin names with their coordinate and origin names 

A. retroflexus 

Latitude (N)   Longitude (E) Origin Region name No. 

37°16'05 N        49°35'20 E Iran Rasht 1 

36°45'06 N        54°21'40 E Iran Gorgan 2 

37°08'16 N        50°17'10 E Iran Rudsar 3 

36°33'57 N        53°03'31 E Iran Sari 4 

35°34'37 N        51°27'44 E Iran Shahr-e-Rey 5 

33°38'05N         46°24'54 E Iran Ilam 6 

31°10'97 N        53°11'97 E Iran Yazd 7 

37°53'74 N        57°24'96 E Iran Bojnurd 8 

30°47'27 N        56°50'10 E Iran Zarand 9 

34°47'50 N        48°30'45 E Iran Hamedan 10 

38°14'54 N        48°17'03 E Iran Ardabil 11 

39°13' 00 N       47°33'53 E Iran Moghan 12 

47°19'20 N        5°2'28 E France  France 13 

37°53'18 N        4°46'38 W Spain Spain 1 14 

37° 53' 15 N      4° 46'35 W Spain Spain 2 15 

37° 53' 14 N      4° 46'45 W Spain Spain 3 16 

C. album 

37°08'13 N        50°16'52 E Iran Rudsar 1 

37°16'03 N        49°35'08 E Iran Rasht 2 

30°53'47 N        51°24'96 E Iran Boyer-Ahmad 3 

27°25'44 N        57°10'45 E Iran Rudan 4 

39°12'03 N        47°34'24 E Iran Moghan 5 

37'41'02 N         48°20'53 E Iran Kivi 6 

38°12'44 N        48°17'38 E Iran Ardabil 7 

32°39'41 N        51°41'21 E Iran Yazdabad 8 

35°34'22 N        51°27' 44 E Iran Shahr-e-Ray 9 

35°41'13 N        51°26'22 E Iran Tehran 10 

32°41'49 N        47°16'05 E Iran Dehloran 11 

34°49'46 N        48°19' 47 E Iran Hamadan 12 

36°16'24 N        59°38'16 E Iran Mashhad 13 

37° 53' 15 N      4° 46'35 W Spain Spain 1 14 

37° 53' 14 N      4° 46'45 W Spain Spain 2 15 

47°19'20 N        5°2'28 E France France 1 16 

47°19'29 N         5°2'22 E France France 2 17 

646 
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Table 2. Data of ISSR primers of 13 primers in A. retroflexus (A) and C. album (B) populations 

A) 

I H Ne Na MRP RP MI EMR PIC β PP NP NT Tm Primer seq 
Primer 

name 

0.55 0.4 1.63 2 19.5 3.25 2.26 6 0.378 1 100 6 6 43.7 (GA)6CC AL-1 

0.49 0.34 1.44 1.8 10.5 2.625 1.1 3.2 0.345 0.8 80 4 5 38 GA(GGA)2GGC AL-2 

0.63 0.44 1.81 2 12 3 1.79 4 0.449 1 100 4 4 53 (AC)8GA UBC839 

0.58 0.37 1.71 2 102.31 7.87 5.21 13 0.401 1 100 13 13 52 (GA)8T UBC810 

0.54 0.36 1.62 2 9 2.25 2.19 4 0.549 1 100 4 4 54 (AG)8YT UBC834 

0.63 0.44 1.81 2 6.375 2.125 1.335 3 0.445 1 100 3 3 49 (TG)8C UBC829 

0.63 0.44 1.82 2 12 3 1.796 4 0.449 1 100 4 4 42 (CA)8G UBC818 

0.57 0.39 1.73 2 5.61 1.87 1.203 3 0.401 1 100 3 3 49 (TC)8A UBC822 

0.57 0.39 1.68 2 10 2.5 1.58 4 0.395 1 100 4 4 52.4 (GA)8C UBC811 

0.65 0.46 1.87 2 7.11 2.37 1.398 3 0.466 1 100 3 3 52.4 (GT)8A UBC819 

0.65 0.45 1.86 2 12 3 1.86 4 0.465 1 100 4 4 52 (CT)8G UBC815 

0.68 0.49 1.97 2 8.25 2.75 1.485 3 0.495 1 100 3 3 54 (AT)8YG UBC833 

0.64 0.45 1.86 2 7.5 2.5 1.374 3 0.458 1 100 3 3 49 (CA)8A UBC817 

0.6 0.42 1.75 1.98 17.09 3.01 1.89 4.4 0.44 0.98 98.46 4.46 4.54 - - Mean 

B) 

I H Ne Na MRP RP MI EMR PIC β PP NP NT Tm Primer seq 
Primer 

name 

0.43 0.29 1.54 1.75 6 2 0.736 2.25 0.327 0.75 75 3 4 43.7 (GA)6CC AL-1 

0.15 0.09 1.13 1.33 0.35 0.35 0.053 0.33 0.162 0.33 33.33 1 3 38 GA(GGA)2GGC AL-2 

0.66 0.46 1.89 2 7.41 2.47 1.359 3 0.453 1 100 3 3 53 (AC)8GA UBC839 

0.52 0.35 1.64 1.87 32.13 4.59 1.860 6.12 0.304 0.87 87.5 7 8 52 (GA)8T UBC810 

0.25 0.156 1.21 1.6 2.82 0.94 0.162 1.8 0.09 0.6 60 3 5 54 (AG)8YT UBC834 

0.58 0.39 1.68 2 5.28 1.76 0.798 3 0.266 1 100 3 3 49 (TG)8C UBC829 

0.63 0.44 1.82 2 6.72 2.24 1.389 3 0.463 1 100 3 3 42 (CA)8G UBC818 

0.6 0.24 1.41 1.66 2.12 1.06 0.355 1.33 0.267 0.66 66.66 2 3 49 (TC)8A UBC822 

0.21 0.15 1.28 1.3 0.71 0.71 0.053 0.33 0.161 0.33 33.33 1 3 52.4 (GA)8C UBC811 

0.36 0.23 1.37 1.66 1.88 0.94 0.319 1.33 0.24 0.66 66.66 2 3 52.4 (GT)8A UBC819 

0.65 0.46 1.88 2 12.24 3.06 1.448 4 0.362 1 100 4 4 52 (CT)8G UBC815 

0.24 0.15 1.24 1.5 1.64 0.82 0.237 1 0.237 0.5 50 2 4 54 (AT)8YG UBC833 

0.61 0.42 1.77 2 6 2 1.443 3 0.481 1 100 3 3 49 (CA)8A UBC817 

0.45 0.29 1.53 1.74 6.56 1.76 0.79 2.35 0.29 0.75 74.81 2.85 3.77 - - Mean 

melting temperature (Tm), number of total bands (NT), number of polymorphic bands (NP), percentage of polymorphic fragment (PP), polymorphic information content (PIC), effective multiplex 

ratio (EMR), marker index (MI), resolving power (RP), mass resolving power (MRP), number of observed alleles (Na), number of effective alleles (Ne), Nei’s gene diversity (H), Shannon’s 

information index (I)  

 

In review



 

17 

 

Table 3. Analysis of Molecular Variance (AMOVA) for A. retroflexus (A) and C. album (B) populations 

A) 

PhiPT 
Percentage of 

variation 

Variance 

components 

Sum of 

squars 
df Source 

0.21** 81 35.967 35.967 1 Among populations 

- 19 11.435 160.095 14 Within populations 

- 100 - 196.063 15 Total 

 

B) 

PhiPT 
Percentage of 

variation 

Variance 

components 

Sum of 

squars 
df Source 

0.31** 78 27.769 27.769 1 Among populations 

- 22 6.564 98.467 15 Within populations 

- 100 - 126.235 16 Total 
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Table 4. Genetic diversity data of 16 A. retroflexus (A) and 17 C. album (B) populations  

 (A)  
Fst Nm Gst Hs Ht PPL PL I H Ne Na population  

     20.34 12 0.114 0.076 1.131 1.203 Rasht 

     18.64 11 0.099 0.065 1.106 1.186 Gorgan 

     20.34 12 0.11 0.073 1.122 1.203 Rudsar 

     22.03 13 0.122 0.082 1.138 1.22 Sari 

     16.95 10 0.094 0.063 1.108 1.169 Shahr-e-Rey 

     15.25 9 0.083 0.055 1.092 1.152 Ilam 

     15.25 9 0.083 0.055 1.092 1.152 Yazd 

     20.34 12 0.114 0.076 1.131 1.203 Bojnurd 

     18.64 11 0.109 0.075 1.133 1.186 Zarand 

     23.73 14 0.127 0.083 1.137 1.237 Hamedan 

     25.42 15 0.135 0.089 1.144 1.254 Ardabil 

     22.03 13 0.112 0.072 1.112 1.22 Moghan 

     20.34 12 0.107 0.07 1.113 1.203 France 

     20.34 12 0.114 0.076 1.113 1.203 Spain 1 

     22.03 13 0.122 0.082 1.138 1.22 Spain 2 

     20.34 12 0.107 0.07 1.113 1.203 Spain 3 

     - - 0.11 0.073 1.12 1.201 Mean 

0.71 0.102 0.829 0.073 0.429 100 59 0.616 0.429 1.784 2 Total 

 

 (B) 

Fst Nm Gst Hs Ht PPL PL I H Ne Na population  

     14.29 7 0.08 0.054 1.093 1.142 Rudsar 

     14.29 7 0.084 0.058 1.104 1.142 Rasht 

     16.33 8 0.098 0.068 1.123 1.163 Boyer-Ahmad 

     14.29 7 0.08 0.054 1.093 1.142 Rudan 

     16.33 8 0.098 0.068 1.123 1.163 Moghan 

     18.37 9 0.108 0.074 1.132 1.183 Kivi 

     18.37 9 0.108 0.074 1.132 1.183 Ardabil 

     18.37 9 0.116 0.082 1.153 1.183 Yazdabad 

     18.37 9 0.112 0.078 1.142 1.183 Shahr-e-Ray 

     18.37 9 0.1 0.066 1.11 1.183 Tehran 

     16.33 8 0.09 0.064 1.112 1.163 Dehloran 

     16.33 8 0.09 0.065 1.102 1.163 Hamadan 

     14.29 7 0.084 0.058 1.104 1.142 Mashhad 

     12.24 6 0.075 0.052 1.095 1.122 Spain 1 

     16.33 8 0.094 0.064 1.112 1.163 Spain 2 

     16.33 8 0.098 0.068 1.123 1.63 France 1 

     14.29 7 0.084 0.058 1.104 1.163 France 2 

     - - 0.094 0.065 1.115 1.189 Mean 

0.7 0.109 0.82 0.064 0.36 95.92 47 0.531 0.36 1.636 1.959 Total 

number of observed alleles (Na), number of effective alleles (Ne), Nei’s gene diversity (H), Shannon’s information index (I), 

number of polymorphic loci (PL), percentage of polymorphic loci (PPL), total population diversity for within population (Hs), 

among population diversity (Ht), coefficient of gene differentiation (Gst), gene flow (Nm), fixation index (Fst). 
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Table 5. Nei’s unbiased measures of genetic identity (above diagonal) and genetic distance (below diagonal) primers in A. retroflexus (A) and C.album (B) 

A) 
Spain 3 Spain 2 Spain 1 France Moghan Ardabil Hamedan Zarand Bojnurd Yazd Ilam Ray Sari Rudsar Gorgan Rasht pop 

0.59 0.59 0.47 0.47 0.55 0.71 0.59 0.33 0.47 0.33 0.49 0.5 0.64 0.71 0.72 1 Rasht 

0.62 0.62 0.47 0.54 0.52 0.67 0.52 0.44 0.5 0.37 0.42 0.61 0.61 0.71 1 0.31 Gorgan 

0.54 0.61 0.49 0.52 0.5 0.66 0.61 0.38 0.45 0.35 0.47 0.45 0.72 1 0.33 0.33 Rudsar 

0.61 0.54 0.49 0.55 0.61 0.66 0.67 0.38 0.49 0.42 0.61 0.45 1 0.31 0.49 0.44 Sari 

0.61 0.67 0.49 0.66 0.4 0.49 0.54 0.59 0.62 0.49 0.61 1 0.78 0.78 0.49 0.67 Rey 

0.62 0.55 0.5 0.54 0.62 0.57 0.62 0.5 0.5 0.47 1 0.49 0.49 0.74 0.85 0.71 Ilam 

0.5 0.47 0.52 0.52 0.5 0.38 0.47 0.79 0.76 1 0.74 0.71 0.85 1.03 0.98 1.08 Yazd 

0.61 0.61 0.62 0.66 0.5 0.52 0.61 0.72 1 0.27 0.67 0.46 0.71 0.78 0.67 0.74 Bojnurd 

0.5 0.47 0.45 0.52 0.44 0.35 0.37 1 0.31 0.22 0.67 0.52 0.94 0.94 0.81 1.08 Zarand 

0.59 0.55 0.54 0.61 0.62 0.64 1 0.98 0.49 0.74 0.46 0.61 0.38 0.49 0.64 0.52 Hamedan 

0.74 0.64 0.52 0.55 0.74 1 0.44 1.03 0.64 0.94 0.55 0.71 0.41 0.41 0.38 0.33 Ardabil 

0.59 0.49 0.5 0.47 1 0.29 0.46 0.81 0.67 0.67 0.46 0.89 0.49 0.67 0.64 0.58 Moghan 

0.67 0.67 0.55 1 0.74 0.58 0.49 0.64 0.41 0.64 0.61 0.41 0.58 0.64 0.61 0.74 France 

0.61 0.67 1 0.58 0.67 0.64 0.61 0.78 0.46 0.64 0.67 0.71 0.71 0.71 0.74 0.74 Spain 1 

0.76 1 0.38 0.38 0.71 0.44 0.58 0.74 0.49 0.74 0.58 0.38 0.61 0.49 0.46 0.52 Spain 2 

1 0.27 0.49 0.38 0.52 0.29 0.52 0.67 0.49 0.67 0.46 0.49 0.49 0.61 0.46 0.52 Spain 3 

 

B) 
France 2 France1 Spain 2 Spain 1 Mashhad Hamadan Dehloran Tehran Ray Yazdabad Ardabil Kivi Moghan Rudan Boyer Rasht Rudsar pop 

0.63 0.67 0.61 0.57 0.57 0.57 0.57 0.59 0.55 0.53 0.48 0.59 0.51 0.63 0.53 0.75 1 Rudsar 

0.63 0.79 0.77 0.69 0.65 0.61 0.65 0.63 0.55 0.57 0.48 0.55 0.51 0.67 0.61 1 0.28 Rasht 

0.65 0.69 0.71 0.67 0.75 0.79 0.79 0.77 0.65 0.75 0.59 0.65 0.65 0.85 1 0.49 0.63 Boyer 

0.55 0.63 0.69 0.61 0.65 0.77 0.73 0.79 0.59 0.65 0.53 0.67 0.63 1 0.15 0.39 0.45 Rudan 

0.75 0.59 0.61 0.61 0.61 0.53 0.53 0.55 0.75 0.77 0.85 0.59 1 0.45 0.42 0.67 0.67 Moghan 

0.55 0.67 0.61 0.65 0.65 0.69 0.69 0.75 0.55 0.53 0.61 1 0.52 0.39 0.42 0.59 0.52 Kivi 

0.77 0.61 0.63 0.71 0.63 0.55 0.55 0.57 0.77 0.79 1 0.49 0.15 0.63 0.52 0.71 0.71 Ardabil 

0.85 0.73 0.79 0.79 0.83 0.63 0.63 0.61 0.89 1 0.22 0.63 0.25 0.42 0.28 0.55 0.63 Yazdabad 

0.83 0.71 0.77 0.73 0.81 0.57 0.57 0.67 1 0.107 0.25 0.59 0.28 0.52 0.42 0.59 0.59 Ray 

0.55 0.67 0.65 0.69 0.69 0.85 0.81 1 0.39 0.49 0.55 0.28 0.59 0.22 0.25 0.45 0.52 Tehran 

0.61 0.73 0.67 0.83 0.75 0.91 1 0.2 0.55 0.45 0.59 0.36 0.63 0.3 0.22 0.42 0.55 Dehloran 

0.53 0.69 0.63 0.75 0.71 1 0.08 0.15 0.55 0.45 0.59 0.36 0.63 0.25 0.22 0.49 0.55 Hamadan 

0.77 0.81 0.87 0.83 1 0.33 0.28 0.36 0.2 0.17 0.45 0.42 0.49 0.42 0.28 0.42 0.55 Mashhad 

0.77 0.85 0.79 1 0.17 0.28 0.17 0.36 0.3 0.22 0.33 0.42 0.49 0.49 0.39 0.36 0.55 Spain 1 

0.77 0.85 1 0.22 0.13 0.45 0.39 0.42 0.25 0.22 0.45 0.49 0.49 0.36 0.33 0.25 0.49 Spain 2 

0.83 1 0.15 0.15 0.2 0.36 0.3 0.39 0.33 0.3 0.49 0.39 0.52 0.45 0.36 0.22 0.39 France 1 

1 0.17 0.25 0.25 0.25 0.63 0.49 0.59 0.17 0.15 0.25 0.59 0.28 0.59 0.42 0.45 0.45 France 2 
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Figure 1) UPGMA clustering of A. retroflexus (A) and C. album (B) populations based on Jaccard 

similarity coefficient calculated from ISSR markers 
Figure 2) Principal coordinates analysis of 16 A. retroflexus (A) and 17 C. album (B) populations based on 

the genetic variation revealed by ISSR   

Figure 3) Scatterplot of pairwise genetic distance versus geographical distances (km) of 16 A. retroflexus 

(A), 17 C. album (B), 12 iranian A. retroflexus (C) and 13 C. album (D) populations based on “Isolation by 

Distance” analyses 
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Supplemental Figure 1) Maps showing the sample collection locations for ecotypes of A. retroflexus (A, 

top map with pink pins) and C. album (B, bottom map with yellow pins). The samples were also 

described in Hamidzadeh Moghadam et al., 2021). The black bar in the Caspian Sea is showing 200 km. 

For A. retroflexus, the three collections from Spain all fall under the same pin location on this scale. 

Likewise, for C. album, the two Spanish and the two French ecotypes are represented by the same pins. 

Supplemental Figure 2) ISSR patterns generated by UBC810 primer on 16 A. retroflexus (A) and 17 C. 

album (B) populations DNA. The ladder is a 50 bp DNA Ladder (SinaClon). Lanes designate based on 

Table 1. 
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