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ABSTRACT The microbiota populating the rhizosphere, the interface between roots
and soil, can modulate plant growth, development, and health. These microbial com-
munities are not stochastically assembled from the surrounding soil, but their com-
position and putative function are controlled, at least partially, by the host plant.
Here, we use the staple cereal barley as a model to gain novel insights into the
impact of differential applications of nitrogen, a rate-limiting step for global crop
production, on the host genetic control of the rhizosphere microbiota. Using a high-
throughput amplicon sequencing survey, we determined that nitrogen availability
for plant uptake is a factor promoting the selective enrichment of individual taxa in
the rhizosphere of wild and domesticated barley genotypes. Shotgun sequencing
and metagenome-assembled genomes revealed that this taxonomic diversification is
mirrored by a functional specialization, manifested by the differential enrichment of
multiple Gene Ontology terms, of the microbiota of plants exposed to nitrogen con-
ditions limiting barley growth. Finally, a plant soil feedback experiment revealed that
host control of the barley microbiota underpins the assembly of a phylogenetically
diverse group of bacteria putatively required to sustain plant performance under nitro-
gen-limiting supplies. Taken together, our observations indicate that under nitrogen
conditions limiting plant growth, host-microbe and microbe-microbe interactions fine-
tune the host genetic selection of the barley microbiota at both taxonomic and func-
tional levels. The disruption of these recruitment cues negatively impacts plant growth.

IMPORTANCE The microbiota inhabiting the rhizosphere, the thin layer of soil sur-
rounding plant roots, can promote the growth, development, and health of their
host plants. Previous research indicated that differences in the genetic composition
of the host plant coincide with variations in the composition of the rhizosphere micro-
biota. This is particularly evident when looking at the microbiota associated with input-
demanding modern cultivated varieties and their wild relatives, which have evolved
under marginal conditions. However, the functional significance of these differences
remains to be fully elucidated. We investigated the rhizosphere microbiota of wild and
cultivated genotypes of the global crop barley and determined that nutrient conditions
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limiting plant growth amplify the host control on microbes at the root-soil interface.
This is reflected in a plant- and genotype-dependent functional specialization of the
rhizosphere microbiota, which appears to be required for optimal plant growth. These
findings provide novel insights into the significance of the rhizosphere microbiota for
plant growth and sustainable agriculture.

KEYWORDS barley, metagenomics, nitrogen, rhizosphere-inhabiting microbes

To sustainably enhance global food security, innovative strategies to increase crop
production while preserving natural resources are required (1–3). Capitalizing on

the microbial communities thriving in association with plants, collectively referred to
as the plant microbiota (4, 5), has been identified as one of these innovative strategies
(6). For instance, members of the microbiota populating the rhizosphere, the interface
between roots and soil, can provide their plant host with access to mineral nutrients
and protection against abiotic and biotic stresses (7). Thus, applications of the plant
microbiota have the potential to integrate and progressively replace nonrenewable
inputs in crop production (8).

This potential is of particular interest for alternatives to nitrogen (N) applications to
staple crops, such as cereals, as approximately 50% of applied fertilizers are lost either
to the atmosphere or in groundwater (9, 10), largely as a consequence of microbial
denitrification and nitrification processes. Soil microbes can contribute to the release
of nitrogen from soil organic matter (SOM) for plant uptake (11). These mineralization
processes are estimated to contribute more than 50% of crop nitrogen (12), even in
intensively fertilized systems, and are the fundamental basis of sustained plant produc-
tivity in uncultivated soils, as typically more than 90% of soil N is present in organic
forms (13). The importance of the plant in influencing these microbial mineralization
processes has been highlighted by the phenomenon of rhizosphere priming effects
(14), where root release of organic compounds impacts rates of SOM decomposition
and nitrogen mobilization (15). Therefore, elucidating the relationships between rhizo-
sphere microbiota composition and nitrogen availability for plant uptake can be a key
toward sustainable crop production (16).

The composition of the rhizosphere microbiota is driven, at least in part, by the
genetics of its host plants (4, 17). In turn, the processes of domestication and breeding
selection, which progressively differentiated wild ancestors from modern, “elite” culti-
vated varieties (18), modulated the plant’s capacity of shaping the microbiota thriving
at the root-soil interface (19, 20). As crop wild relatives have evolved in marginal soils
(i.e., not exposed to synthetic fertilizers), their microbiota may be equipped with bene-
ficial functions for sustainable agriculture (7, 21). Despite that the impact of plant
domestication on the rhizosphere microbiota has been studied in multiple plant spe-
cies (22–27), the significance of microbial diversification between wild and cultivated
plant genotypes of the same species remains to be fully elucidated (21, 28).

Barley (Hordeum vulgare), the fourth most cultivated cereal worldwide (29), repre-
sents an attractive model to investigate host genetic control of the rhizosphere micro-
biota within a framework of plant domestication. For instance, we previously demon-
strated that domesticated (H. vulgare subsp. vulgare) and wild (H. vulgare subsp.
spontaneum) barley genotypes host microbiotas of contrasting composition (30, 31).
More recently, we gathered novel insights into the genetic basis of this host-mediated
microbiota diversification (32–34). In parallel, investigations targeting specific microbial
genes indicated that barley plants may exert a control on microbes underpinning the
nitrogen biogeochemical cycle (35) and that this effect is dependent on community
composition (36). However, it is unclear how genetic differences between wild and
domesticated genotypes may impact the composition and function of the rhizosphere
microbiota of plants exposed to contrasting nitrogen supplies, in particular the ones
limiting plant growth.

To address this knowledge gap, in this investigation, we used barley as an experi-
mental model and state-of-the art sequencing approaches to test three interconnected
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hypotheses. First, we hypothesized that the host control on rhizosphere bacteria is
modulated by, and responds to, nitrogen availability for plant uptake. Specifically, we
anticipated that differences in microbiota composition among barley genotypes are
maximal under limiting nitrogen supplies, when plants rely on their microbiota for N-
cycling processes to support optimal growth. We further hypothesized that, under con-
ditions limiting barley growth, the plant’s reliance on the rhizosphere microbes will be
manifested by a functional diversification mediated, at least partially, by the host geno-
type. Finally, we hypothesized that that these distinct structural and functional config-
urations of the microbiota contributed to differential plant growth responses.

RESULTS
Nitrogen conditions limiting plant growth amplify the host effect on the barley

rhizosphere microbiota. To gain insights into the role played by nitrogen availability
for plant uptake on the composition of the barley bacterial microbiota, we selected
one reference barley cultivar, Morex (here “Elite”) and two wild genotypes from the
B1K collection (37), B1K-12 and B1K-31 (here “Desert” and “North”, respectively). The ra-
tionale for this choice was two pronged. First, we previously characterized these geno-
types for their capacity to recruit distinct microbiotas and genetic relatedness (30, 31).
Second, the wild genotypes are representative of the two main barley ecotypes identi-
fied in the Southern Levant as drivers of plant adaptation to the environment (38, 39).
Consequently, and despite the limited number, these genotypes may capture the
“extremes” of the evolutionary pressure on the host recruitment cues of the barley
microbiota. Plants were grown under glasshouse conditions in an agricultural soil pre-
viously used for microbiota investigations and designated “Quarryfield” (31, 33, 34, 40).
Pots containing the individual genotypes and unplanted soil controls (here “Bulk”)
were supplemented with three modified Hoagland’s solution preparations (41) con-
taining all essential macronutrients and micronutrients and three levels of mineral
nitrogen (Table S1 in the supplemental material), the optimum required for barley
growth (N100%), a quarter dose (N25%), or no nitrogen (N0%). At early stem elonga-
tion (Fig. S1), which represents the onset of maximum nitrogen uptake for small grain
cereals (42), plants were harvested, and total DNA preparations were obtained from
rhizosphere and unplanted soil specimens. In parallel, we determined aboveground
plant biomass, plant nitrogen content in leaves, and concentrations of ammonium
(NH4

1) and nitrate (NO3
–) in rhizosphere and unplanted soil samples.

We observed that plant performance was affected by the N application; above-
ground biomass and plant nitrogen content were significantly lower at N0% than at
N100%, with N25% yielding intermediate values (Kruskal-Wallis test followed by Dunn
post hoc test, individual P values of ,0.05, false-discovery rate [FDR] corrected; Fig. 1),
compatible with a nitrogen deficiency status for barley growth. Likewise, the residual
nitrogen in the rhizosphere at the completion of the experiments, measured as a con-
centration of ammonium and nitrate, respectively, displayed a significant decrease in the
values recorded for N100% to N25% and from the latter to N0%. (Kruskal-Wallis test fol-
lowed by Dunn post hoc test, individual P values of,0.05, FDR corrected; Fig. 1).

In parallel, we generated a 16S rRNA gene amplicon sequencing library from the
obtained rhizosphere and unplanted soil controls and identified 26,411 individual
amplicon sequencing variants (ASVs) accruing from 6,097,808 sequencing reads. After
pruning in silico ASVs representing either host (i.e., plastid- or mitochondrial-derived
sequences) or environmental contaminations and low-count ASVs, 5,035,790 reads
were retained, representing over 82% of the initial data set. Canonical analysis of prin-
cipal coordinates (CAP) differentiated bulk soil from rhizosphere profiles, as evidenced
by a segregation of either class of samples along the axis accounting for the largest
source of variation (Fig. 2A). Furthermore, we observed a “gradient” along the axis
accounting for the second source of variation aligned with the treatment effect, in par-
ticular for rhizosphere samples (Fig. 2A). The sample effect (i.e., either bulk soils or the
rhizosphere of the individual genotypes) exerted the primary impact on the bacterial
communities thriving at the root-soil interface (permutational multivariate analysis of
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variance [PERMANOVA], R2 = 0.418, P = 0.0002, 5,000 permutations; Fig. 2A) followed
by the nitrogen treatment effect (PERMANOVA, R2 = 0.105, P = 0.0004, 5,000 permuta-
tions; Fig. 2A) and their interaction term (PERMANOVA, R2 = 0.098, P = 0.0380, 5,000
permutations; Fig. 2A).

To further examine the impact of treatment on the abundance of individual pro-
karyotic ASVs underpinning host-mediated diversification, we performed a set of pair-
wise comparisons between barley genotypes at the different N levels. We observed
that N0% was associated with the largest number of differentially recruited ASVs, while
higher N levels progressively obliterated recruitment differences among genotypes
(Wald test, individual P values of,0.05, FDR corrected; Fig. 2B). Of note, and congruent
with previous experiments conducted in the same soil (31), the pair Elite-Desert
yielded the highest number of differentially recruited ASVs (Fig. 2B).

Taken together, these observations indicate that nitrogen availability for plant
uptake is a factor in (i) modulating the microhabitat- and genotype-dependent recruit-
ment cues of the barley bacterial microbiota by (ii) promoting the selective enrichment
of individual taxa in the rhizosphere and (iii) whose magnitude is maximized when no
nitrogen is applied to the system.

The metabolic potential of the rhizosphere microbiota exposed to nitrogen
conditions limiting barley growth. We generated over 412 million paired-end meta-
genomic reads from 12 additional samples to gain insights into the functional signifi-
cance of microbiota diversification in plants exposed to nitrogen conditions limiting
barley growth. These represented three biological replicates each of Bulk soil and the
rhizospheres of Elite, North, and Desert exposed to the N0% treatment. Upon in silico
removal of low-quality sequences and sequences matching the barley genome, likely
representing “host contaminations” (Fig. S2), taxonomic classification of the sequenc-
ing reads at kingdom level revealed that Bacteria outnumbered Fungi by 2 orders of
magnitude, regardless of the sample investigated (Fig. 3A). Closer inspection of the
data classified within the kingdom Fungi revealed no significant differences among
samples for sequences assigned to the class Glomeromycetes, which we used as a proxy

FIG 1 Nitrogen content of Quarryfield soil limits barley growth. Cumulative data gathered at early
stem elongation in the tested barley genotypes subjected to three nitrogen fertilization treatments
(N0%, N25%, and N100%), as indicated on the x axis. Individual dots depict individual biological
replicates. (A) Aboveground biomass of the tested plants. (B) Nitrogen content in the aboveground
tissues of the tested plants. (C and D) Residual concentration of ammonium (C) and nitrate (D)
retrieved from rhizospheric soil at the time of sampling. Lowercase letters denote significant
differences at a P value of ,0.05 in a Kruskal-Wallis nonparametric analysis of variance followed by a
Dunn’s post hoc test.
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for the extraradical mycelium of arbuscular mycorrhizal fungi (AMF; Wald test, individ-
ual P values of .0.05, FDR corrected; Fig. 3B). Although the separation between repli-
cates of the same genotype, in particular the Elite-Desert pair, was manifested exclu-
sively when looking at bacteria, we identified a comparable effect of the sample type
on composition of both bacterial and fungal communities. For instance, the R2 value
computed for normalized relative abundances returned values between 0.66 and 0.68
for the bacterial and fungal component, respectively (PERMANOVA, 5,000 permuta-
tions, individual P values of ,0.01; Fig. 3C and D).

Next, we mined the metagenomic data set for sequencing reads associated with
known genes underpinning the nitrogen biogeochemical cycle. We were able to iden-
tify genes implicated in processes as diverse as nitrification, denitrification, and nitrate
reduction and synthesis and degradation of nitrogen-containing organic compounds,

FIG 2 Nitrogen availability modulates the host genetic control of the rhizosphere bacterial
microbiota. (A) Canonical analysis of principal coordinates computed on a Bray-Curtis dissimilarity
matrix. Individual shapes in the plot denote individual biological replicates whose color and shape
depict sample type and nitrogen treatment, respectively, as indicated in the bottom part of the
figure. Numbers in the plots depict the proportion of variance (R2) explained by the factors “Sample,”
“Treatment,” and their interactions, respectively. Asterisks associated with the R2 value denote its
significance; Sample, P = 0.0002; Treatment, P = 0.0004; Sample * Treatment, P = 0.0380; Adonis test,
5,000 permutations. (B) Horizontal blue bars denote the number of ASVs differentially enriched (Wald
test, individual P values of ,0.05, FDR corrected) between the Elite and two wild barley genotypes at
different nitrogen treatments as recapitulated by the shape and color scheme. Vertical bars depict
the number of differentially enriched ASVs unique for or shared among two or more pairwise
comparisons highlighted by the interconnected dots underneath the vertical bars.
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although the abundances of genes associated with the individual process did not dis-
criminate between barley genotypes (Wald test, individual P values of .0.05, FDR cor-
rected; Fig. S3). This suggests that, under the tested conditions, host control of the
nitrogen biogeochemical cycle does not represent the main driver of the functional
diversification of the barley rhizosphere microbiota.

This motivated us to further discern the metabolic capacity of barley-associated
communities by assembling metagenomic reads and predicting their encoded proteins
(Table 1). Predicted proteins were clustered, resulting in 10,554,104 representative
sequences. The representative protein sequences were subjected to functional enrich-
ment analysis to identify Gene Ontology (GO) categories differentially enriched in the
barley rhizosphere. We observed a consistent “rhizosphere effect” in the functional
potential of the barley microbiota manifested by a spatial separation of plant-associ-
ated communities from Bulk soil in an ordination (Fig. 4A) sustained by a differential
enrichment of multiple GO categories (Fig. 4B). Closer inspection of these categories
revealed a significant enrichment of multiple GO terms in each of the tested genotypes

TABLE 1Metagenomic assembly statistics

Characteristic Statistic
Assembly length 12,841,009,562 bp
No. contigs 21,005,959
Longest contig 579,848 bp
N50 627 bp
L50 5,320,588 bp
Predicted protein sequences 26,740,734
Protein sequence clusters 10,554,104

FIG 3 Bacteria dominate the metagenome of barley plants exposed to limiting nitrogen supplies. (A
and B) Dots depict sequencing reads assigned to bacteria and fungi (A) or proportion of fungal
sequencing reads classified as Glomeromycetes in the individual replicated of the metagenomic survey
in the indicated samples (B). In C and D, cluster dendrograms constructed using Bray-Curtis
dissimilarity matrices of the metagenomic sequencing reads (counts per million) assigned to the
family level in bacteria and fungi, respectively. Individual shapes denote individual biological
replicates whose color depicts sample type as indicated in the bottom part of the figure. Numbers
associated with each dendrogram depict the proportion of variance (R2) explained by the factor
“Sample” in bacteria or fungi, respectively. Asterisks associated with the R2 value denote its
significance; Sample bacteria, P = 0.0012; Sample fungi, P = 0.0004; Adonis test, 5,000 permutations.
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and the Bulk soil alike (Wald test, individual P values of ,0.05, FDR corrected; Table 2).
In particular, the microbiota associated with Desert, North, and Elite genotypes was
enriched for GO terms implicated in carbohydrate metabolic processing, cell adhesion,
pathogenesis, response to abiotic stimulus, responses to chemical, protein-containing
complex assembly, and bacterial-type flagellum-dependent cell motility. These enrich-
ments appear congruent with the adaptation of polymicrobial communities to a host
capable of providing substrates for microbial growth. Conversely, Bulk soil specimens
were enriched predominantly for functions implicated in photosynthesis and sporula-
tion, which are congruent with microbial adaptation to a lack of organic resources,
such as the case in unplanted soils.

To gain a finer view of the functional diversification of the Bulk and rhizosphere
microbiotas, we performed a cluster analysis of individual GO terms on the top 10 clusters
differentiating between samples (Fig. S4). For each cluster, we determined the significance
of individual terms in pairwise comparisons between Bulk soil and rhizosphere samples
and, within the latter, between genotypes (Wald test, individual P values of ,0.05, FDR
corrected, Data Set S1 at https://doi.org/10.5281/zenodo.7119900). This allowed us to im-
plicate nitrate transporters with functions putatively underpinning multitrophic interac-
tions, such as response to reactive oxygen species and the type VI secretion system. These
two functions were also significantly enriched in and differentiated between Elite and
Desert communities (Wald test, individual P values of,0.05, FDR corrected, Data Set S1 at
https://doi.org/10.5281/zenodo.7119900, cluster 6). Conversely, ammonium transporters
were identified as a depleted function in rhizosphere communities (Wald test, individual P
values of ,0.05, FDR corrected, Data Set S1 at https://doi.org/10.5281/zenodo.7119900,
clusters 5 and 8) as were functions implicated in phosphate metabolism, including “cellular

FIG 4 The microhabitat and the host genotype fine-tune the functional potential of the barley microbiota. (A)
Principal component analysis computed on annotated reads mapped to the terms of Gene Ontology Slim
database. Individual shapes in the plot denote individual biological replicates whose colors depict sample type
as indicated on the bottom. The largest shape of each sample type indicates the centroid; Dim, dimension. (B)
PCA loadings representing the GO Slim terms sustaining the ordination. The top 20 GO Slim terms were filtered
for those with a log2 fold change of greater than 60.2 in at least one comparison (Wald test, individual P
values of ,0.05, FDR corrected). Arrows point at the direction of influence of a given term in the various
samples, their length and color being proportional to the weight they contribute to each PC, as indicated in
the key underneath the plot.
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phosphate homeostasis”, “negative regulation of phosphate metabolic process,” and
“phosphate ion transmembrane transport” (Wald test, individual P values of ,0.05, FDR
corrected, Data Set S1 at https://doi.org/10.5281/zenodo.7119900, clusters 5 and 8). The
overarching picture emerging in this investigation was that, at the metagenomic resolu-
tion we obtained, the major effect on the functional potential of the microbiota is exerted
by the microhabitat (i.e., Bulk versus rhizosphere). Conversely, the effect of the host geno-
type appears confined to a limited number of individual GO terms and, congruent with
the 16S rRNA gene survey, manifested predominantly in the comparison between Elite
and Desert genotypes.

Genome reconstruction of the bacteria populating the barley root-soil inter-
face. As a first step toward linking structural and functional diversification of the barley
microbiota, we attempted to reconstruct genomes of individual bacteria proliferating
at the root-soil interface. We assembled the generated metagenomic reads and com-
bined contigs with similar nucleotide composition and differential abundance across
samples. This resulted in the reconstruction of 67 metagenome-assembled genomes
(MAGs) with a completion of .50% according to the presence of a minimal set of
essential genes and a proportion of contamination less than 10% (Methods). These
MAGs were taxonomically affiliated with 14 different bacterial classes, and their
genomes were systematically mined for the top 10 GO terms significantly enriched in
the rhizosphere samples compared to Bulk soil controls (Wald test, individual P
values of ,0.05, FDR corrected; Fig. 5). Next, we determined co-occurrence patterns
between these terms and identified two clusters. One of those linking genomes coding
for “photosynthesis,” “carbohydrate metabolic process,” and “iron-sulfur cluster assem-
bly,” with another one linking “cellular component organization or biogenesis,”
“response to chemical,” “bacterial-type flagellum-dependent cell motility,” and “pro-
tein-containing complex assembly” (Pearson correlation, individual P value of ,0.05;
Fig. 6). When we interpolated the results of these two analyses, we observed that this
second cluster is predominantly represented by MAGs classified as Proteobacteria,
while the “carbohydrate metabolic process” defining the first cluster was preferentially
associated with MAGs classified as Bacteroidia. For 11 of the 15 MAGs assigned to this
class, the presence of “carbohydrate metabolic process” predicted a significant enrich-
ment of given MAGs in the microbiota of the Elite variety (Fig. S5, Wald test, individual
P value of,0.05, FDR corrected). Conversely, among Proteobacteria MAGs, the selected
GO terms failed to predict enrichment patterns in a given plant genotype (Fig. S5,
Wald test, individual P value of,0.05, FDR corrected).

A distinct bacterial consortium is associated with optimum barley growth
under nitrogen-limiting supply. To establish a causal relationship between structural
and functional configurations of the rhizosphere microbiota and plant growth, we per-
formed a plant-soil feedback experiment by growing the Elite variety in soils previously
used for the growth of either domesticated or wild genotypes amended with an N0%
solution (here “conditioned soil”). For this analysis, we focused on the pair Elite-Desert,
as these genotypes displayed the most contrasting microbiota (Fig. 2 and 3). The con-
ditioned soils were used either in their “native” form or subjected to a heat treatment,
which we hypothesized would lead to a disruption of the taxonomic and functional
configurations of the microbiota (Fig. 7A).

Plants grown in the “heat-treated” soil displayed a growth deficit compared to their
native counterpart, although these differences were significant only for the Desert-con-
ditioned soil (one-way analysis of variance [ANOVA] followed by a Tukey honestly sig-
nificant difference [HSD] test, individual P values of ,0.05; Fig. 7B). Closer inspection of
19 chemical and physical parameters characterizing the conditioned soils failed to sin-
gle out a Desert-specific parameter. Rather, a limited number of properties explained
most of the variance among samples and differentiated between native soil and their
heat-treated counterparts, irrespective of the initial genotype used (statistical values
for the individual properties: P value of ,0.001, R2 . 0.8, 5,000 permutations; Fig. S6).
Conversely, quantitative real-time PCR (qPCR) analyses of 16S rRNA gene and internal
transcribed spacer (ITS) copy numbers performed at the end of the cultivation revealed
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FIG 5 Partitioning of the functional potential of the rhizosphere microbiota among its individual members. (A) Core gene-based phylogenetic tree of the
67 MAGs identified in this study. Branch labels represent bootstrap values (100 bootstrap iterations). (B) Taxonomic affiliation of the individual MAGs
obtained using GTDB-Tk; highlighting colors denote class affiliation as indicated at the left side of the figure. (C) Distribution of sequences mapping to the
top 10 GO Slim categories significantly enriched in the rhizosphere samples compared to Bulk soil controls (Wald test, individual P values of ,0.05, FDR
corrected). The size of the dots denotes the relative abundance of each annotated term in a given genome.

Barley Microbiota and Soil Nitrogen mSystems

Month YYYY Volume XX Issue XX 10.1128/msystems.00934-22 10

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 1

6 
D

ec
em

be
r 

20
22

 b
y 

14
9.

15
5.

30
.9

2.

https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00934-22


FIG 6 Co-occurrence of individual GO terms in the barley rhizosphere metagenome. A pairwise correlation among the abundances of individual GO terms
identified in the MAGs is shown. Individual numbers in the plot depict Pearson r correlation coefficients. This coefficient is reported for only pairwise
correlations displaying individual P values of ,0.05.
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a Desert-mediated impact on the bacterial but not the fungal communities populating
the conditioned soils (Kruskal-Wallis test followed by a Dunn post hoc test, P = 0.039,
FDR corrected; Fig. S7).

This observation motivated us to gain insights into the taxonomic composition of
the bacterial communities inhabiting the conditioned soil. A 16S rRNA gene amplicon
library constructed from the samples subjected to the feedback experiments

FIG 7 A phylogenetically diverse bacterial consortium is associated with optimum barley growth in
plants exposed to nitrogen-limiting conditions. (A) Schematic representation of the implemented
plant-soil feedback experiments. (B) Aboveground biomass of Elite barley plants sampled at early
stem elongation in conditioned soil in either native or heat-treated form as indicated by color coding
at the bottom of the figure. Shapes depict individual biological replicates, and letters denote
significant differences at P values of ,0.05 in an one-way analysis of variance followed by a Tukey’s
post hoc test. (C) Canonical analysis of principal coordinates computed on a Bray-Curtis dissimilarity
matrix. Individual shapes in the plot denote individual biological replicates whose colors depict
sample type and treatment (i.e., native or heat treated), as indicated in the bottom of the figure. The
number in the plot depicts the proportion of variance (R2) explained by the factor “Treatment,” while
the asterisks define its significance; Treatment, P = 0.0002; Adonis test, 5,000 permutations. (D)
Cumulative abundances, expressed as number of sequencing reads, assigned to each of the bacteria
significantly enriched in and discriminating between rhizospheres of plants grown in native,
conditioned soil versus both Bulk and heat-treated conditioned soils (Wald test, individual P values of
,0.05, FDR corrected). Each vertical bar corresponds to an individual biological replicate of a sample,
and treatment is depicted underneath the graph. Each segment in the vertical bar depicts the
sequencing reads assigned to an individual bacterial ASV color coded according to its affiliation at
class level.
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generated 6,770,434 sequencing reads, which revealed a marked effect of the heat
treatment on both the richness and evenness of the rhizosphere communities profiled
at the end of cultivation (Kruskal-Wallis followed by a post hoc Dunn’s test, individual P
values of ,0.05; Fig. S8). Likewise, we observed a compositional shift between heat-
treated and native samples (PERMANOVA, R2Treatment = 0.289, P = 0.0002, 5,000 permu-
tations; Fig. 7C). At the end of cultivation, Bulk soil communities could be separated
along the axis accounting for the second source of variation, while the taxonomic com-
position of rhizosphere samples appeared “to converge” to common profiles.
Congruently, when we inspected the individual bacteria underpinning this diversifica-
tion, we identified a phylogenetically diverse group of 10 ASVs, whose enrichment in
native samples, accounting for ;7% of the sequencing reads, discriminated between
their microbiotas and both unplanted soil and heat-treated samples (Wald test, P value
of,0.05, FDR corrected; Fig. 7D).

Taken together, our data suggest that the heat treatment of the soil substrate led
to a scenario comparable to a dysbiosis (43) of the rhizosphere microbiota, defined by
a low-diversity community composition associated with reduced growth of the plant
host. As the median aboveground dry weight recorded in the feedback experiment is
comparable to that recorded for barley plants grown for the first time in Quarryfield
soil (compare data of Fig. 7B with the data of Fig. 1), the heat treatment appears to dis-
rupt the capacity of Elite varieties to assemble a taxonomically diverse bacterial consor-
tium associated with optimum barley growth.

DISCUSSION

Our investigation revealed that nitrogen availability for plant uptake impacts the
magnitude of the host “genotype effect” on the barley rhizosphere, measured as num-
ber of ASVs differentially recruited between genotypes. This effect was maximal at
N0%, when measurements of residual N in the rhizosphere were 0 mg kg21, while it
was minimal at N100%, with ;200 mg kg21 residual NO3 in the rhizosphere. This is
reminiscent of the observation that in Medicago truncatula, a model legume, the host
controls the microbiota in a nitrogen- and genotype-dependent manner (44).
Although the modulation of the rhizosphere microbiota in legumes has been associ-
ated with plant genes implicated in the establishment of symbiosis with nitrogen-fix-
ing bacteria rather than nitrogen nutritional status per se (45, 46), it is conceivable that
this latter aspect impacts, at least in part, host-microbe interactions in the barley rhizo-
sphere. This would be congruent with observations gathered from rice, a cereal phylo-
genetically related to barley, in which the nitrate transporter NRT1.1B emerged as a
critical regulator of both nitrogen use efficiency and microbiota recruitment (47).
Likewise, a regulator of lateral root development, designated LRT1, emerged as a de-
terminant of microbiota recruitment in maize plants exposed to limiting nitrogen
supplies (48). Rhizodeposition (i.e., the plant-mediated release of organic compounds
in the rhizosphere) may represent the nexus between plant adaptation to limiting
nitrogen supply and microbiota recruitment (16). Consistently, the availability of or-
ganic carbon in barley rhizodeposits is inversely correlated with the amount of ni-
trate concentration in shoots (49). As wild and domesticated barley plants display dif-
ferential responses to nitrogen fertilization (50) and a genotype-dependent control
of rhizodeposition (51), the characterization of primary and secondary metabolites
released in the barley rhizosphere may provide mechanistic insights into microbiota
diversification in barley. However, as recent investigations revealed that the host
genetic control of the rhizosphere microbiota in wild and domesticated barley dis-
play a quantitative inheritance (32, 34), additional experiments with dedicated
genetic material are required to untangle the molecular mechanisms linking nitrogen
availability with microbiota diversification.

The observation that the magnitude of host control on the microbiota was greater
when plants were exposed to a nitrogen supply limiting barley growth motivated us to
embark on a metagenomic survey of this condition. This approach revealed that the
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microbial communities proliferating at the barley root-soil interface are largely domi-
nated by bacteria; more than 98% of the annotated sequences at the phylum level
were classified as bacteria. This is strikingly similar to a previous investigation con-
ducted in a soil with different physical and chemical characteristics (30). The domi-
nance of bacterial sequences over other members of the microbiota is not unusual in
soil metagenomes (52), although both the protocol used for microbial DNA prepara-
tion and the databases used for sequencing annotation (53) can artificially inflate the
proportion of bacteria among the analyzed metagenomes. Despite this potential ca-
veat, we demonstrated with an independent quantification that bacterial gene copy
number exceeded that from fungal sources by several orders of magnitude, as previ-
ously reported (54, 55). It is however important to consider that PCR-based approaches
may fail to provide an accurate estimation of fungal biomass due to nuclear exchanges
on these filamentous microorganisms (56).

A closer inspection of the bacterial and fungal abundances revealed no significant
differences among samples for arbuscular mycorrhizal fungi (AMF) symbionts of barley.
This apparent discrepancy, in view that AMF can mobilize nitrogen for plant uptake
(57), is, however, congruent with a previous investigation conducted with field-grown
barley plants, where no genotype effect on AMF root colonization was observed
regardless of the nitrogen regimen (58). Furthermore, this observation is also consist-
ent with the fact that our N0% treatment was associated with a replete amount of
phosphorus for barley growth, a condition known to suppress AMF colonization (59).
Finally, it is important to mention that the microbiota inhabiting soils with a pH below
7, such as Quarryfield, is less conducive to AMF activity than the microbiota inhabiting
neutral to alkaline substrates (60).

For these reasons, we decided to focus on the functional characterization of the
bacterial component of the microbiota of plants exposed to limiting nitrogen supplies.
This allowed us to identify three main GO categories enriched in and differentiating
rhizosphere samples from Bulk soil, namely, “carbohydrate metabolic process,”
“response to chemical,” and “pathogenesis.” Of interest is the GO category “carbohy-
drate metabolic process,” whose enrichment emerged as both microhabitat and geno-
type dependent, which is congruent with previous observations that root-derived dis-
solved organic carbon and carbohydrate utilization by soil microbes display a host
genetic component in wild and domesticated barley genotypes (32, 51). Likewise,
“response to chemical” may mirror the adaptation of rhizosphere communities to plant
secondary metabolites, released through rhizodeposition, capable of selectively
impacting microbial proliferation, as observed in barley (33) and other cereals (61, 62).

Conversely, the GO category “pathogenesis” appears difficult to reconcile with the
fact that no obvious symptoms of disease were observed in our samples. However,
studies conducted with the model plant Arabidopsis thaliana revealed that compo-
nents of the host immune system are required for the establishment of a diverse and
functional microbiota at the root-soil interface (63); this suggests that the endogenous
barley microbiota has evolved the capacity of modulating host immune responses to
colonize the rhizosphere. This scenario appears further corroborated by the enrich-
ment of the GO category “bacterial-type flagellum-dependent cell motility”; despite
the fact that molecular components of this machinery have been considered a paradig-
matic epitope of the plant immune system (64), it is now emerging that their recogni-
tion by host plants contributes to signal modulation and microbiota establishment
(65). Similarly, enrichment of the GO category “response to reactive oxygen species” in
the microbiota of the Elite plants may further explain the role of this class of compounds
in modulating plant-associated bacterial communities (66). A prediction of these observa-
tions is that components of the barley immune system may act as a “checkpoint” for the
taxonomic and functional composition of the rhizosphere microbiota.

Substrate availability and interorganismal relationships appear to be determinants
also for the Bulk soil communities, as mirrored by the significant enrichment of the GO
terms “photosynthesis,” “antibiotic biosynthetic process,” and “sporulation.” The absence of
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a source of organic compounds such as rhizodeposition creates a niche for the proliferation
of CO2-fixing microorganisms, which are ubiquitous in the soil ecosystem (67). Likewise, the
enrichment of “antibiotic biosynthetic process” is congruent with what was observed for
agricultural soils in a cross-microbiome survey (68), while sporulation underpins microbial
adaptation to stressful soil conditions (69). Furthermore, unplanted soil communities display
a differential enrichment for function implicated in phosphorous homeostasis. As the rela-
tive abundances of carbon, nitrogen, and phosphorus can be considered constrained in mi-
crobial biomass (70), this observation suggests that, although phosphorous was applied
with the nutrient solution to all specimens, this element may act as a limiting factor pre-
dominantly for unplanted soil communities, where the lack of exudates reduces phospho-
rous solubility.

Taken together, these observations provide mechanistic insights into the multistep
selection process differentiating rhizosphere communities from Bulk soil communities
(4, 27), implicating the modulation of host immune responses as one of the require-
ments for bacterial establishment in the rhizosphere of plants exposed to limiting
nitrogen supply. However, as these experiments were performed in a single soil type,
caution is required in extrapolating the results as being indicative of general phenom-
ena applicable across all soils. Further metagenomics investigations with plants
exposed to replete nitrogen conditions, benefiting also from the latest development in
sequencing technologies (71), will be required to accurately gauge the impact of this
resource (or lack thereof) on the functional potential of the barley microbiota.

Despite the fact that the 67 MAGs generated in this work accounted for less than
10% of the metagenomic reads, these figures are aligned with what has been recently
observed for the rhizosphere of sorghum (72), a cereal phylogenetically related to barley.
This effort allowed us to identify genomes belonging to not only the dominant phyla of
the plant microbiota (i.e., Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria) but
also members of additional classes, such as an individual member of the metabolically
diverse and yet poorly characterized Zixibacteria phylum (73–75). Furthermore, mapping
reads associated with the GO terms differentially enriched between microhabitat and ge-
notype allowed us to gain novel insights into the relationships between taxonomic and
functional composition of the barley microbiota. For instance, we observed an associa-
tion between the GO category “carbohydrate metabolic process” and the enrichment of
members of the phylum Bacteroidetes in the Elite rhizosphere. As cell wall features
represent a recruitment cue for the plant microbiota (76), this enrichment may mirror
the capacity to degrade complex polysaccharides encoded by members of this phy-
lum (77, 78). The observed genotype-specific enrichment may be further explained
by polymorphisms of barley genes regulating carbohydrate composition in the cell
wall (79, 80).

The plant-soil feedback experiment we implemented suggested that a functional
rhizosphere microbiota is required for optimal barley growth under nutrient-limiting
conditions. Although not significantly different, mean values of aboveground biomass
of Elite plants recorded in the Desert-conditioned soil were higher than those recorded
from the soil conditioned with the same genotype. Despite that phylogenetic related-
ness between condition and focal species in plant-soil feedback experiments appears
unrelated to the strength of the feedback itself (81, 82), compositional shifts between
the conditioned and focal microbiota tend to be associated with enhanced plant
growth (83). However, significant differences in growth were observed when Elite
plants were exposed to heat-inactivated soils, which are associated with a reduction of
alpha diversity indices in the rhizosphere, a condition that has been previously linked
to stressful soil conditions (83). In turn, this effect could be due to the treatment on
the microbes per se, the release of mineral nutrients, and/or the disruption-liable car-
bon compounds released through exudates (84) by conditioning plants capable of
modulating individual members of the barley microbiota (33). Unlike recent observa-
tions gathered from plant-soil feedback experiments of maize plants exposed to limit-
ing nitrogen conditions (48), what emerged from our study is the control exerted by
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the recipient genotype on the resulting bacterial communities. This was manifested by
the microbiota of plants exposed to either Desert-conditioned or Elite-conditioned soil
“converging” toward a phylogenetically conserved bacterial consortium. This is in ac-
cordance with data gathered from rice, using both soil feedback experiments (85) and
synthetic communities (47), indicating the host genotype as a driver of a plant growth-
promoting microbiota. Likewise, a recently developed indexed bacterial collection of
the barley rhizosphere microbiota indicated a growth promotion potential for mem-
bers of the phyla differentially recruited in the feedback experiment (86, 87).

Taken together, this suggests that the enriched bacteria represent a consortium of
beneficial bacteria required for optimum barley growth whose recruitment is driven, at
least in part, by the host genotype.

Conclusions. Our results point to nitrogen availability for plant uptake as inversely
correlated with the magnitude of host genetic control on the taxonomic composition
of the barley rhizosphere microbiota. When nitrogen supply limits barley growth, wild
and domesticated genotypes retain specific functional signatures, which appear to be
encoded by distinct bacterial members of the microbiota. Although we found evidence
for nitrogen metabolism executed by these communities, adaptation to the plant
immune system emerged as an additional recruitment cue for the barley microbiota.
Plant-soil feedback experiments suggest that these distinct compositional and func-
tional configurations of the microbiota can be “rewired” by the host genotype, leading
to a recruitment of a consortium of bacteria putatively required for optimum plant
growth. Thanks to recent insights into barley genes shaping the rhizosphere micro-
biota (32, 34), these concepts can now be tested under laboratory and field conditions
to expedite the development of plant varieties profiting from improved yields with
reduced impacts of N fertilization on the environment.

MATERIALS ANDMETHODS
Experimental design. This investigation consists of three distinct but interconnected experiments.

For each experiment, plants were maintained under controlled conditions in the same soil type desig-
nated Quarryfield (see Soil below), and individual samples were arranged in a completely randomized
design. For the first experiment, we grew individual biological replicates (i.e., pots) Elite, Desert, and
North and Bulk soil controls exposed to three different nitrogen treatments, designated N0%, N25%,
and N100% (see Nitrogen treatments below), according to the following scheme and subjected all sam-
ples to 16S rRNA gene amplicon sequencing: N0%Desert = 5, N0%North = 3, N0%Elite = 4, N0%Bulk = 4,
N25%Desert = 5, N25%North = 3, N25%Elite = 4, N25%Bulk = 4, N100%Desert = 5, N100%North = 4, N100%Elite = 3,
and N100%Bulk = 4. Alongside these samples, we prepared two additional Bulk soil controls amended
with a plug of the agar substrate used for seed germination. The total number of sequenced
samples was 50. In the second experiment, we grew and subjected to shotgun metagenomic sequenc-
ing three individual biological replicates (i.e., individual plants in individual pots) of the genotypes Elite,
Desert, and North and three Bulk soil controls exposed to N0% treatment. The total number of
sequenced samples was 12. In the third and final experiment, we grew and subjected to 16S rRNA gene
amplicon sequencing individual biological replicates (i.e., individual plants in individual pots) of the Elite
genotype soil controls in Quarryfield soils that were previously conditioned (see Plant-soil feedback
experiment below) with either the Elite or Desert genotype in native form or after heat treatment. For
the former, we also contemplated Bulk soil control pots. After discarding pots with no detectable plant
growth, the numbers of rhizosphere samples exposed to Elite-conditioned soil retained for sequencing
were 11 for Elite-nativerhizosphere and 7 for Elite-nativeBulk, the numbers of rhizosphere samples exposed to
Desert-conditioned soil were 14 for Desert-nativerhizosphere and 9 for Desert-nativeBulk. The numbers of
sequenced rhizosphere samples exposed to heat-treated soil were 15 for Elite-treatedrhizosphere and 15 for
Desert-treatedrhizosphere. The total number of sequenced samples was 71.

Soil. Soil was sampled from the agricultural research fields of the James Hutton Institute,
Invergowrie, Scotland, UK, in the Quarryfield site (56°27'50N 3°4'290W). This is a sandy silt loam soil with
a pH of 6.2 and 5% organic matter content. The nitrogen content of this soil was 1.8 mg kg21 ammo-
nium and 13.5 mg kg21 nitrate. The site was left unplanted and unfertilized in the 3 years preceding the
investigations.

Plant material and growth conditions. Barley seeds of the domesticated (Hordeum vulgare subsp.
vulgare) and wild (Hordeum vulgare subsp. spontaneum) genotypes, the variety Morex (i.e., Elite), and the
accessions B1K-12 (i.e., Desert) and B1K-31 (i.e., North) were surface sterilized as previously reported (88)
and germinated on 0.5% agar plates at room temperature. Seedlings displaying comparable rootlet de-
velopment were sown individually in 12-cm diameter pots containing approximately 500 g of the
Quarryfield soil, from which stones and large debris were manually removed. Unplanted pots filled with
the same soil (i.e., Bulk soil controls) were maintained in the same glasshouse and subjected to the same
treatments as planted pots. One-week-old plantlets were transferred for 2 weeks to a growth room at
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4°C for vernalization. Following the vernalization period, plants were maintained in a randomized design
in a climatic-controlled glasshouse at a 18/14°C (day/night) temperature regimen with 16 h of daylight
that was supplemented with artificial lighting to maintain a minimum light intensity of 200 mmol quanta
m22 s21 until early stem elongation (Fig. S1 in the supplemental material). Watering was performed
weekly as indicated (see Nitrogen treatments below). Pots were rotated on a weekly basis to minimize
potential biases associated with given positions in the glasshouse.

Nitrogen treatments. The nutrient solutions described in this study (i.e., N100%, N25%, and N0%)
are reported in Table S1. Nutrient solutions were applied at a rate of 25 mL per kg of soil each week.
Applications started 2 days after planting, were interrupted during vernalization, and were reinstated
once the plants were transferred to the growing glasshouse and they reached early stem elongation.
Fourteen treatments were applied with a total of 312.5 mg of NO3

– and 81.4 mg of NH4
1 for the N100%

solution, 78.1 mg of NO3
– and 20.0 mg of NH4

1 for the N25% solution, and 0 mg of NO3
– and NH4

1 for
the N0% solution applied per pot.

Plant and soil nitrogen determination. To assess the N content of the plant, at the time of sam-
pling, a newly expanded leaf was sectioned from every plant, freeze-dried, ball milled, and measured for
N content in an Elemental Analyzer CE-440 (Exeter Analytical, Inc., UK). The soil from the pots was sieved
through a 2 mmmesh sieve and mixed. Five grams of soil was added to 25 mL of 1 M KCl, and the result-
ing solution was mixed in a tube roller for 1 h at ;150 rpm. Supernatant was transferred to 50 mL
Falcon tubes and centrifuged for 15 min at 5,000 rpm, then the supernatant was subjected to another
round of centrifugation. The supernatant was transferred to a Falcon tube and analyzed with a Discrete
Analyser Konelab Aqua 20 (Thermo Fisher, Waltham, USA) in the analytical services of The James Hutton
Institute (Aberdeen, UK). In parallel, ;10 g from the sieved soil was oven dried at 70°C for 48 h, and dry
weight was recorded to express the analytical results in NO3

– and NH4
1 in mg N kg21 of soil.

Bulk soil and rhizosphere DNA preparation. At early stem elongation, plants were excavated from
the soil, and the stems were separated from the roots. The uppermost 6 cm of the root system was
detached from the rest of the root corpus and processed for further analysis. The sampled aboveground
material was oven dried at 70°C for 48 h, and the dry weight was recorded. The roots were shaken man-
ually to remove loosely attached soil. For each barley plant, the seminal root system and the attached
soil layer was collected and placed in a sterile 50 mL Falcon tube containing 15 mL of phosphate-buf-
fered saline (PBS). The rhizosphere was operationally defined, for these experiments, as the soil attached
to this part of the roots and extracted through this procedure. The samples were then vortexed for 30 s
and transferred to a second 50 mL Falcon containing 15 mL of PBS and vortexed again to ensure the dis-
lodging and suspension of the rhizosphere. Then, the two Falcon tubes with the rhizosphere suspension
were combined and centrifuged at 1,500 � g for 20 min to precipitate the rhizosphere soil into a pellet,
flash-frozen with liquid nitrogen, and stored at 280°C until further analysis. In addition, we incubated
water agar plugs (;1 cm3) into two unplanted soil pots, and we maintained them as control samples
among the experimental pots to monitor the effect of this medium on the soil microbial communities.
DNA was extracted from unplanted soil and rhizosphere samples using a FastDNA spin kit for soil (MP
Biomedicals, Solon, USA) according to the manufacturer’s recommendations and stored at 220°C.

Preparation of 16S rRNA gene amplicon pools. The hypervariable V4 region of the small subunit
rRNA gene was the target of amplification using the PCR primer pair 515F (59-GTGCCAGCMGCCGCGGTAA-
39) and 806R (59-GGACTACHVGGGTWTCTAAT-39). The PCR primers had incorporated an Illumina flow cell
adapter at their 59 termini, and the reverse primers contained 12 bp of unique “barcode” for simultaneous
sequencing of several samples (89). PCRs were performed using 50 ng of metagenomic DNA per sample
using the Kapa HiFi HotStart PCR kit (Kapa Biosystems, Wilmington, USA). The individual PCRs were per-
formed in 20 mL final volume and contained 4 mL of 5� Kapa HiFi buffer, 10 mg of bovine serum albumin
(BSA; Roche, Mannheim, Germany), 0.6mL of a 10 mM Kapa dNTP solution, 0.6mL of 10mM solutions of the
515F and 806R PCR primers, and 0.25mL of Kapa HiFi polymerase. The reactions were performed using the
following program: 94°C (3 min), followed by 35 cycles of 98°C (30 s), 50°C (30 s), and 72°C (1 min), and a
final step of 72°C (10 min). For each primer combination, a no-template control (NTC) was included in the
reactions. To minimize amplification biases, PCRs were performed in triplicate, and at least two independent
master mixes per barcode were generated (i.e., 6 reactions/sample). PCRs were pooled in a barcode-de-
pendent manner, and an aliquot of each amplification product was inspected on a 1.5% agarose gel. Only
samples whose NTCs yielded an undetectable PCR amplification were retained for further analysis. PCR puri-
fication was performed using an Agencourt AMPure XP kit (Beckman Coulter, Brea, USA) with 0.7 mL of
AmPure XP beads per 1 mL of sample. Following purification, each sample was quantified using PicoGreen
(Thermo Fisher Scientific, Watham, USA), and individual barcode samples were pooled in an equimolar ratio
to generate amplicon libraries.

Illumina 16S rRNA gene amplicon sequencing. The pooled amplicon library was submitted to the
Genomics facility at The James Hutton Institute (Invergowrie, UK) for quality control (Bioanalyzer, Agilent
Technologies), processing, and sequencing. Amplicon libraries were supplemented with 15% PhiX con-
trol library (Illumina). The resulting high-quality libraries were run at 10 pM final concentration on an
Illumina MiSeq system with paired-end 2 � 150 bp reads (89) to generate sequencing FASTQ files.

Amplicon sequencing read processing. Sequence reads were subjected to quality assessment
using FastQC (90). ASVs were then generated using DADA2 version 1.10 (91) and R 3.5.1 (92) following
the basic methodology outlined in the DADA2 pipeline tutorial (93). Read filtering was performed using
the DADA2 paired FastqFilter method, trimming 10 bp of sequence from the 59 end of each read using a
truncQ parameter of 2 and maxEE of 2. The remainder of the reads was of high quality; consequently, no
39 trimming was deemed necessary. The dada2::learn_errors() method was run to determine the error
model with a MAX_CONSIST parameter of 20, following which the error model converged after 9 and 12
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rounds for the forward and reverse reads, respectively. The dada2::dada() method was then run with the
resulting error model to denoise the reads using sample pooling, followed by read merging and chimera
removal using the consensus method. Taxonomy assignment was performed using the Ribosomal
Database Project (RDP) naive Bayesian classifier through the dada2::assignTaxonomy() method with the
SILVA database (94) (version 138) using a minimum bootstrap confidence of 50. The DADA2 outputs
were finally converted to a Phyloseq object (version 1.26.1) (95).

The Phyloseq objects for both the nitrogen gradient and the plant-soil feedback experiments were
initially merged. Next, sequences classified as either “chloroplast” or “mitochondria” were pruned in silico
from the merged object. Likewise, ASVs matching a list of potential contaminants of the lab (96) were
removed as well as ASVs lacking a taxonomic classification at the phylum level (i.e., “NA”). We further
applied abundance filtering and retained ASVs occurring with at least 20 reads in 2% of the samples.
Finally, the Phyloseq objects were rarefied at 25,000 reads per sample, as recommended for groups with
large differences in library size (97), before downstream analyses.

Metagenome sequencing, annotation, and analysis. We generated a new set of 3 bulk soil and 3
rhizosphere DNA preparations from each of the three genotypes tested (i.e., Desert, North, and Elite)
from specimens maintained in Quarryfield soil under N0% conditions as described above. These 12 new
preparations were quantified and submitted to the LGC Genomics sequencing service (Berlin, Germany)
where they were used to generate DNA shotgun libraries using the Ovation Rapid DR multiplex system
1-96 NuGEN (Leek, The Netherlands) kit following the manufacturer’s recommendations. These libraries
were run simultaneously into an individual Illumina NextSeq500 run following the manufacturer’s rec-
ommendations with 2 � 150 bp chemistry and generated a total of 412,385,413 read pairs. After
sequencing, read pairs were demultiplexed according to the samples’ barcodes using the Illumina
bcl2fastq2.17.1.14 software.

Metagenome analysis was conducted according to the general approach of Hoyles et al. (98), using
updated tools where appropriate. Sequence reads were quality assessed using FastQC and quality/
adapter trimmed using TrimGalore (99), using a quality cutoff of 20, a minimum sequence length of
75 bp, and removing terminal N bases. Taxonomic classification of the sequence reads was performed
using Kraken 2.0.9 (100) with the Kraken PlusPFP database (101), which incorporates protozoa, fungi,
and plants in addition to the archaea, bacteria, and viruses present in the standard database. Host con-
tamination was removed by alignment against the Morex V2 barley genome sequence (102) using BWA
MEM (103), and nonaligning reads were extracted from the resulting BAM files using SAMtools (104).
Metagenome assembly was conducted using MegaHit version 1.2.9 (105) with the “meta-large” preset.
Predicted proteins were produced from all assemblies using Prodigal version 2.6.3 (106), which were
then clustered using MMseqs2 version 11.e1a1c (107) and the “easy_cluster” method. Abundance of pre-
dicted proteins in each sample was determined by alignment of sequence reads against the representa-
tive cDNA sequences of the clusters using the Burrows-Wheeler Aligner Maximal Exact Matches (BWA
MEM) and determining the read counts associated with each sequence using a custom PySAM (108)
script. Functional annotations of the protein sequences were performed using InterProScan 5-50-84.0
(109) and Interpro version 84.0. GO terms were enumerated using a custom Python script, which
assessed the number of occurrences of each term in each sample based on the previously determined
abundance of each annotated sequence. GO terms were mapped to the metagenomics GO slim subset
dated 2020 March 23 (110) using the Map2Slim function of OWLtools (111). Functional enrichment anal-
ysis was performed using DESeq2 (112) version 1.26.0.

Metagenome-assembled genomes (MAGs). MAGs were created using the MegaHit-assembled
contigs described above and MetaBat2 version 2.15 to create contig bins representing single genomes.
Contig bins were dereplicated using dRep version 3.2.0 followed by decontamination with Magpurify
version 2.1.2 (113). The resulting MAGs were assessed for completeness and contamination using
checkM (114). Annotation of the MAGs was performed with Prokka 1.14.6 (115) and InterProScan 5-50-
84.0 (109) before taxonomic classification was determined using the Genome Taxonomy Database
Toolkit (GTDB-Tk) version 1.4.0 (116) with data version r95.

Nitrogen cycle gene analysis. Abundance of nitrogen cycle genes was determined using the
NCycProfiler tool of NCycDB (117) with the diamond method. Pairwise t tests were performed between
the samples of each group within each gene to identify combinations with statistical differences
between samples (Benjamini-Hochberg corrected FDR of ,0.05).

Plant-soil feedback experiment.We grew the Desert and Elite genotypes in Quarryfield soil supple-
mented with a N0% nutrient solution under controlled conditions (see Plant growth conditions). We
selected these two genotypes because, in the tested soils, they host a taxonomic and functionally dis-
tinct microbiota. At early stem elongation, we removed the plants from the soil, and we harvested the
residual soil and kept it separated in a genotype-dependent manner. We reasoned that at the end of cul-
tivation, the soils would have been enriched, at least partially, for specific microbial taxa and functions
associated with either genotype. This residual soil, either in a “native form” (i.e., not further treated after
sampling) or after being exposed to a heat treatment (126°C for 1 h, repeated twice at an interval of
;12 h), was used as a substrate for subsequent cultivation of a recipient Elite barley genotype. These
plants were maintained under controlled conditions (see Plant growth conditions) and supplemented
with an N25% solution to compensate for the near-complete depletion of this mineral in the previous
cycle of cultivation (compare the NH4

1 and NO3
– concentrations of rhizosphere specimens at N0% and

N25% in Fig. 1). At early stem elongation, plants were harvested, and their aboveground biomass was
determined after drying stems and leaves at 70°C for 48 h. At the end of each replicated experiment, the
residual soil was collected and subjected to chemical and physical characterization (Yara United
Kingdom, Ltd., Grimsby, United Kingdom).
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A quantitative real-time PCR assay was used to quantify the bacterial and fungal DNA fractions in
samples from the conditioned soil experiment as follows. DNA samples were diluted to 10 ng/mL and
successively diluted in a serial manner to a final concentration of 0.01 ng/mL. This final dilution was used
for both the femto fungal DNA quantification kit and femto bacterial DNA quantification kit (Zymo
Research), and quantification was conducted according to the manufacturer’s protocol. Briefly, 2 mL of
the 0.01 ng/mL dilution of each sample was used together with 18 mL of the corresponding fungal or
bacterial master mix. Two microliters of the fungal or bacterial standards was also used to create the re-
spective quantification curves. DNA samples from the conditioned soil experiment were randomized in
the 96-well plates, using a minimum of 11 biological replicates per treatment. Quantification was per-
formed in a StepOne thermocycler (Applied Biosystems by Life Technologies) following the cycling pro-
tocols of each of the above-mentioned bacterial and fungal kits.

Statistical analyses on the univariate data set and amplicon sequencing. Data analysis was per-
formed in R software using a custom script with the following packages: Phyloseq (95) version 1.36.0 for
preprocessing and alpha- and beta-diversity analyses, ggplot2 version 3.3.4 (118) for data visualization,
vegan version 2.5–7 (119) for statistical analysis of beta-diversity, PMCMR version 4.3 (120) for nonpara-
metric analysis of variance. For any univariate data set used (e.g., aboveground biomass), the normality
of the data distribution was checked using a Shapiro-Wilk test. For data sets that were normally distrib-
uted, the significance of the imposed comparisons was assessed by an ANOVA test followed by a Tukey
post hoc test. Nonparametric analysis of variance tests were performed by using a Kruskal-Wallis rank
sum test followed by a Dunn’s post hoc test with the functions kruskal.test and the posthoc.kruskal.-
dunn.test, respectively, from the package PMCMR. We used Spearman’s rank correlation to determine
the similarity between unplanted soil profiles and Bulk soil samples amended with water agar plugs
(Table S2). Analysis of the differentially enriched ASVs was performed (i) between individual genotypes
and Bulk soil samples to assess the sample effect and (ii) between the rhizosphere samples to assess the
genotype effect. The genotype effect was further corrected for a microhabitat effect (i.e., for each geno-
type, only ASVs enriched against both unplanted soil and at least another barley genotype were
retained for further analysis). The analysis was performed using the DESeq2 package (112) version 1.32.0
consisting of a moderated shrinkage estimation for dispersions and fold changes as an input for a pair-
wise Wald test. This method identifies the number of ASVs significantly enriched in pairwise compari-
sons with an adjusted P value (false-discovery rate [FDR] of ,0.05). This method was selected because it
outperforms other hypothesis-testing approaches when data are not normally distributed and a limited
number of individual replicates per condition are available (97).

Data availability. The sequences generated in the 16S rRNA gene sequencing survey and the raw
metagenomics reads reported in this study are deposited in the European Nucleotide Archive (ENA)
under the accession number PRJEB54874. Individual metagenomes are retrievable on the metagenomic
RAST (MG-RAST) server under the IDs mgm4798244.3, mgm4798274.3, mgm4798349.3, mgm4798388.3,
mgm4798507.3, mgm4798563.3, mgm4798641.3, mgm4798894.3, mgm4799467.3, mgm4799972.3,
mgm4801514.3, and mgm4801719.3.

The scripts used to analyze the data and generate the figures of this study are available at https://
github.com/BulgarelliD-Lab/Barley-NT-2020.
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