Rothamsted Research
\D Harpenden, Herts, AL5 2JQ

ROTHAMSTED  Telephone: +44 (0)1582 763133
RESEARCH Web: http://www.rothamsted.ac.uk/

Rothamsted Repository Download

A - Papers appearing in refereed journals

Bourhis, Y., Bell, J. R., Shortall, C. R., Kunin, W. and Milne, A. E. 2023.
Explainable neural networks for trait-based multispecies distribution
modelling—A case study with butterflies and moths. Methods in ecology
and evolution. pp. 1-12. https://doi.org/10.1111/2041-210X.14097

The publisher's version can be accessed at:

e https://doi.org/10.1111/2041-210X.14097
» https://onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.14097

The output can be accessed at:
https://repository.rothamsted.ac.uk/item/98w5y/explainable-neural-networks-for-trait-

based-multispecies-distribution-modelling-a-case-study-with-butterflies-and-moths.

© 20 April 2023, Please contact library@rothamsted.ac.uk for copyright queries.

27/04/2023 12:56 repository.rothamsted.ac.uk library@rothamsted.ac.uk

Rothamsted Research is a Company Limited by Guarantee
Registered Office: as above. Registered in England No. 2393175.
Registered Charity No. 802038. VAT No. 197 4201 51.

Founded in 1843 by John Bennet Lawes.


https://doi.org/10.1111/2041-210X.14097
https://onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.14097
https://repository.rothamsted.ac.uk/item/98w5y/explainable-neural-networks-for-trait-based-multispecies-distribution-modelling-a-case-study-with-butterflies-and-moths
https://repository.rothamsted.ac.uk/item/98w5y/explainable-neural-networks-for-trait-based-multispecies-distribution-modelling-a-case-study-with-butterflies-and-moths
repository.rothamsted.ac.uk
mailto:library@rothamsted.ac.uk

Explainable neural networks for trait-based multi-species distribution
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Abstract

1. Species response traits mediate environmental effects on species distribution. Traits are used in Joint and

10 Multi Species Distribution Models (JSDMs and MSDMs) to enable community-wide shared parameters
that characterise niche filtering along environmental gradients. Multi-species machine learning SDMs how-

ever, do not use traits as their inclusion requires an additional taxonomic dimension that is incompatible

with their usual tabular inputs. This has confined trait mediation in SDMs to hierarchical Bayesian mod-

els. Here we provide a novel artificial neural network (ANN) architecture that solves this dimensionality

15 problem.

2. Our ANN includes species traits (via a time distributed layer) and is therefore able to identify not only
species-specific responses to the environment, but also shared responses across the community that are
mediated by species traits. Model performance evaluated at the species level not only quantifies the

reliability of species predictions, but also their departure from an average response dictated by traits only.

2 3. We apply our model to two unique long-term spatio-temporal of butterfly and moth data sets collected
across the United Kingdom between 1990 and 2019. In addition to species traits, predictors include

numerous metrics derived from weather, land-cover and topology data. For butterflies and moths we
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show convincing model performance for classifying species occupancy. We use SHAP (Shapley Additive
exPlanations) to explain the ANN and show how trait-mediated and species-specific responses can be
approximated, hence yielding ecological insights on the key drivers of species distribution. We highlight a

range of drivers of change that determine occupancy, including wind, temperature as well as habitat type.

4. We demonstrate that a trait-based approach can be encoded as an ANN by using a time distributed layer.
This brings ANNs unmatched predictive capabilities to the field of MSDMs, at the same time of lifting

their reputed drawback of poor explainability.

Keywords: Traits, MSDM, ANN, SHAP, Lepidoptera

Introduction

The geographic distribution of species defines local community compositions that result from complex assembly
processes. These compositions are shaped by biotic and abiotic filters that can leave predictable signals on species
distributions patterns (Miinkemiiller et al., 2020). Building on those signals, we can investigate the driving forces
affecting species distribution along environmental gradients, paving the way to further understanding of global
change impacts on observed biodiversity shifts. In this regard, quantifying effects of e.g. intensified land use,
climate change, pollution, or novel pests and pathogens constitute significant steps towards the preservation of
ecosystem services and conservation in general.

The underlying mechanisms of species distribution are ideally explored through mechanistic models, yielding
causal understanding of the rules and trends in biodiversity (see e.g. Kempel et al., 2015). The interactive nature
of those mechanisms however, calls for holistic modelling approaches which conflict with the need for keeping
parameters identifiable by limiting model complexity and colinear inputs. Although they are data hungry,
high-throughput correlative methods are less affected by this limit. They can search through data, filtering for
patterns prior to any attempt at deciphering the system mechanistically, and as such have been advocated as
powerful tools enabling the subsequent investigation of causal links (Baker et al., 2018).

The huge number of parameters involved in putative community assembly processes is also troublesome for
statistical models. Yet, thanks to hierarchical structures, Bayesian approaches that build on Markov Chain
Monte Carlo (MCMC) methods are able to deal with this complexity and to explain community compositions
(Tikhonov et al., 2020; Ovaskainen and Abrego, 2020; Bystrova et al., 2021). Still, a significant prior filtering

of environmental inputs may be necessary for the MCMC to converge with reasonable computing resources. In
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regard of the increasing availability of remote sensing environmental data, such prior filtering is not necessarily
detrimental as it protects the user against overfitting, yet it demands knowledge for selecting what information
to include or not.

Key elements in linking environment and species distribution are species traits. Traits are discrete or
continuous descriptors of species. Response traits mediate niche filtering along environmental gradients, which
drives groups of species into community compositions. Joint and Multi species distribution models (JSDMs and
MSDMs) can explicitly include these species-level, community-wide response traits to predict species occurrence
(or abundance) and elucidate functional insights (Pollock et al., 2012; Ovaskainen et al., 2017). These insights
take the form of an interaction coefficient between an environmental covariate and a species traits, e.g. a
negative relationship between an insect’s body size and altitude would suggest that larger species are less suited
for mountains. Highlighting trait-environment relationships with such a correlative approach can give cues on
underlying mechanisms and serve in the making of competing mechanistic models to investigate causal links
of species distribution. It can also help achieving better predictions in poorly recorded species, providing their
traits are known.

Here we describe an artificial neural network (ANN) architecture able to tackle the problem of species as-
sembly into communities by building on trait mediation and Multispecies Distribution Modelling. Building on
TensorFlow and being trained through backpropagation instead of MCMC, it is less affected by the computa-
tional limits exhibited in other trait-based approaches (e.g. Hmsc). It is therefore particularly suited for an
agnostic approach in which inputs (species traits and environmental covariates) may be numerous. Previous
machine learning (ML) approaches have first addressed community composition through stacked single-output
(i.e. species-specific) SDMs (Williams et al., 2009; Guisan and Rahbek, 2011; Calabrese et al., 2014). Recent ML
developments have for example targeted more explicit spatial predictions with convolutional layers (Deneu et al.,
2021), or the learning and prediction of joint distributions (as in JSDMs) that account for species interactions
(i.e. biotic filtering, Harris, 2015; Pichler and Hartig, 2021). The novelty in our approach is the identification
of trait-mediated shared responses. Those are responses to environmental gradients that are mediated by one
or more traits, and hence apply to all species as a function of their trait value. In practice, our approach builds
on two components: the first component learns the shared responses through parameters that are common
across species, while the second component is trained to learn species-specific responses and allow for further
flexibility. Then, using SHAP (SHappley Additive exPlanation, Lundberg and Lee, 2017), we go beyond the
usual "black box” and quantify the role of the different inputs (species traits and environmental covariates) in

the model predictions. The environment filtering is rendered in a way that makes ecological sense: through a
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matrix of trait-mediated shared responses (i.e. the fourth corner matrix Dolédec et al., 1996; Legendre et al.,
1997), and a matrix of species-specific niches. As a case study, our developments are applied to butterfly and

moth occurrence data recorded across the UK between 1990 and 2019.

Material and Methods

Data

Community We explore two sets of insect community data. The first is a data set from the UK Buterflly
Monitoring Scheme ( ) consisting of 59 butterfly species collected across the UK between 1990 and 2019
(Brereton et al., 2020). Its measurements take the form of yearly site indices (n=25000) quantifying the local
abundance of a species for a given year (Dennis et al., 2016). The second data set comprises yearly counts of
461 species (selected for having at least 20 detection events) of macromoths (n=2300) from the Rothamsted
Insect Survey light trap network (Storkey et al., 2016; Fox et al., 2020; Bell et al., 2020), collected across
Great Britain between 1990 and 2018. By their dimensions (59 x 25000 and 461 x 2300), the two data sets
constitute contrasting challenges to learning (although they aggregate about the same amount of information).
The following developments apply on a binarised version of those data sets, as we focus on the prediction of

species occupancy (aka presence/absence).

Environment The environment data comes from several sources. First, the set of climatic
variables are derived from monthly temperature averages, minima and maxima, as well as monthly rainfall
(sourced from the Had UK 1 km x 1 km grid Hollis et al., 2019). BIOCLIM19 variables capture trends,
seasonality and extrema that potentially affect the organisms of interest, and are therefore common inputs in
SDM (see e.g. Hill et al., 2017). Secondly, the UK CEH Land-cover map (1990, 2000, 2007, 2015, 2017, 2018
and 2019 editions Morton et al., 2020) defines 10 aggregated land-cover types across the UK at a 25 m x 25
m resolution. We aggregate those to our working 1 km x 1 km resolution, deriving composition and diversity
metrics to capture landscape complexity. The remaining variables are static: these are the river network density
(from and ), terrain (elevation, slope and aspect from ) and distance to sea.

See Table A1l in appendix for the details of the environmental covariates.

Traits The butterfly’s traits come from two trait databases (Middleton-Welling et al., 2020; Cook et al., 2021)
from which were selected traits that were fully informed for the 59 species of butterflies encountered in the UK.

In total 7 traits were retained: wing index, wing index variation, voltinism, overwintering stage, number of host
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plants, host plant types and number of habitat types. From the moth trait database (Cook et al., 2021), 6 traits
similar to the butterfly ones were also fully informed: forewing length, forewing variation coefficient, voltinism,
overwintering stage, number of host plants and number of habitats. Additionally, for each community, the
taxonomic tree of the composing species were vectorised and added as a supplementary trait to possibly capture

a phylogenetic signal (as in Ovaskainen and Abrego, 2020).

Model architecture

The model is composed of two components: one learning the community’s shared responses to the environ-
ment, and one learning the species-specific responses. Both components produce, for every sample (i.e. every
sitexyear), a tabular output composed of the probability of occurrence of the numerous species of interest (i.e.
a table with dimension n samples X ¢ species). Such a multi-output approach implies shared capacity within
the hidden layers that are common to all species. This allows shared representation to be learnt prior to the
output layer, hence enabling species to build on one another during training and achieve greater performance.

The two components take different inputs:

1. Shared responses. For a given sample, the only information relevant to all species are the environmental
covariates. Hence to input the traits’ values we build on a Kronecker product of the traits and the
environmental covariates (i.e. every trait is multiplied to every covariate). The traits being informed
for every species, that input has 3 dimensions: n samples x m covariates - (p traits + 1 intercept) X ¢
species. Note that the intercept allows for the identification of a non-mediated but still shared response
of the community as a whole to environmental drivers. In practice, this expands the input row into a
matrix of the product values for every species. The use for the Kronecker product may be questioned in
the light of the universal approximation theorem (Hornik et al., 1989), as we should expect the relevant
trait-environment interactions to be learnt during training, in theory. In practice however, we found the
product to help performance-wise and, more importantly, to enable the explanation of the interactions

(see Appendix A for details).

2. Species-specific responses. To account for the species-specific direct effect of the environmental co-
variates, the second input is a much more conventional 2D table with the covariate values at each sample

point (with dimension n samples X m covariates).

The time distributed layer The first branch has a 2D input for every sample. It could be processed as such

but most inputs are then irrelevant to a given species, only the interactions with its own trait values matters.
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To maintain a multi-output configuration (with the aforementioned benefits), while ensuring that only relevant
inputs make their way across the branch towards a species prediction, a time distributed (TD) layer can be
used. This construction is sometimes called a wrapper as it encapsulates layers, in our case simple dense layers.
TD layers are used in recurrent ANNs to apply the same weights and biases to every time step of a sequence.
In our case, the "time” dimension is the taxonomic dimension, i.e. the different species. Here the encapsulated
layers will be fitted the same weights and biases, but because the input changes from species to species as a
result of changing trait values, the outputs remain species-specific. This effectively enforces trait mediation to

be learnt.

Merging the two components The shared and species-specific responses can come together either as two
branches of a multi-branch model, or as two models of an ensemble. These are distinct approaches that implies
different training processes. In the multi-branch model, the two branches are train sequentially. The shared-
response branch is trained first and then the species-specific branch is unfrozen (while the former one is frozen,
i.e. weights are fixed) to learn species-specific responses which allows further flexibility. In this approach the
species-specific responses are trained on the residuals of the shared responses and are therefore conditional to
them. Alternatively, in the ensemble approach, both models are trained simultaneously before seeing their
outputs averaged. This approach is more flexible as the species-specific responses are not conditional to the
shared responses. Fig. 1 illustrates the network architecture and dimensions. We advocate here for both options

and refer the reader to Appendix A for further details.

Model training

As often in biology, special care is to be given to class imbalance (Saito and Rehmsmeier, 2015). Some rare
species can be easily overlooked by a lazy classifier whose trivial predictions of e.g. predicting only absences
disregarding the input would score high in accuracy metrics by default. The same reasoning applies to near-
ubiquitous species. Therefore, species-specific square root class weights are included into the binary cross-
entropy loss function. The weights give more importance to subsamples (i.e. species-sample level weights) that
includes rarer cases (i.e. absence of a common species, or presence of a rare one).

For both butterflies and moths, half the samples were reserved as testing data to assess the models’ per-
formances. Among the remaining half, the training data set, a third was used as validation data to track the
learning curve and halt training as soon as overfitting was detected (i.e. after 5 successive epochs without im-

provement on the validation data set). For its known robustness to class imbalance, the Matthews correlation
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Figure 1: Schemata of the ANN architecture. In blue are the tabular inputs (X) and outputs (Y), in orange and red are the inner layers
of the network, the square brackets represent the time distributed layer. The network conforms to the following dimensions: g species, n

samples, m covariates and p traits.

coefficient (MCC) was used as a metric in model selection (Saito and Rehmsmeier, 2015; Lever et al., 2016;
Chicco and Jurman, 2020). The MCC is a measure of association of two binary variables, which here are the
observed occupancy and the binarised predicted probability of presence. Other relevant metrics are commonly
found in the literature, e.g. the Area Under the Curve of the Receiver Operating Characteristic (AUC ROC)
or Precision-Recall (PR) curve (Ferndndez, 2018), but we argue that they are over-optimistic metrics in our
case, the former because of strong class imbalance in our data and the later because that imbalance sometimes
results of a positive class majority (although being suited for rare species, i.e. a negative class majority, PR

and F1 fail to sanction the poor predictions of near-ubiquitous species).

Model explanation: SHAP

SHAP (Lundberg and Lee, 2017) quantifies the contribution of each feature (or input) to a specific output.
It works at the sample scale and therefore builds local explanations whose aggregation to a sufficiently large
number of samples can provide model-wide insights. Here, our features are of two types: (1) the products of the
trait values with the environmental covariates and (2) the environmental covariates. The procedure calculates

a SHAP value for each feature, its contribution, whose averaging over many samples gives to the feature a
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measure of variable importance to the model outputs (Molnar, 2021). That measure can be positive or negative
depending on how the output is affected positively or negatively by the focal feature value, in comparison to
a baseline in which the feature is ”deactivated” (i.e. has its sample value replaced with random background
values).

Because the procedure builds a collection of explanations made at the sample scale, for every feature we
have a collection of SHAP values to linearly regress against a collection of feature values. Hence, the sign of
that regression coefficient summarises the effect of the focal feature on the species probability of occurrence (our
output).

Here we suggest simplifying the SHAP explanation to a collection of regression coefficients and aggregating
them into two figures. First, the effects of the 3D input (i.e. input of the trait-mediated branch), being the
same for every species (thanks to the TD layer), it can be reshaped as a m covariates x (p traits + 1 intercept)
matrix, known as fourth corner matrix in ecology (Legendre et al., 1997). Secondly, the effects of the 2D input
(i.e. input of the species-specific branch) are collated into a matrix of species-specific effects with shape ¢ species

X m covariates.

Results

Training

The learning curves in the top row of Fig. 2 illustrates the sequential training of our multi-branch model. The
majority of the learning appears to occur in the first phase, in which trait-mediated shared responses are learnt.
Then, after a plateau, as the second branch is unfrozen (i.e. allowed to train weights and biases) and the first
one is frozen, further learning occurs. Both training phases are terminated as soon as overfitting is detected. On
the other hand, the ensemble having its two models trained simultaneously, its learning curves (not shown) do
not feature phases like the multi-branch model. However, the ensemble’s performance being marginally better
(see Appendix A), the results shown hereafter are derived from it.

Performance wise, according to the AUC ROC that scales from 0 to 1, our models score 0.95 for the butterflies
and 0.89 for the moths (all reported metrics are computed on the test data set). The PR scores are 0.86 and
0.73 (also scaled from 0 to 1). The MCC scales from -1 to 1, with 0 marking the random predictions of a no-skill
classifier. According to this metric, our classifiers score 0.49 and 0.40, but substantial variations are observed
from species to species (Fig. 2, bottom row). Even if some moth species are predicted no better than at random

(especially some of the very rare species), the vast majority of them constitute skilled predictions, as is the case
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for all butterfly species.

The bottom row of Fig. 2 also illustrates the performance yielded by each of the two training phases. As
expected, most species are better predicted once allowed species-specific responses, still significant performances
are already reached after learning only the trait-mediated shared responses. This is especially the case for
butterflies in which the trait-mediated shared responses constitute the core learning (short segments with high
origins). However for the moths, species-specific responses are more important to prediction performance (long

segments with low origins).
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Figure 2: Training curves (top row) shows multi-branch models 2-step training dynamic and performance following a weighted binary
cross-entropy loss function. On the bottom row are the species classifier (ensemble) performances according to the MCC, with the
black dot marking the full model performance (shared + species-specific), and the other side of every segment marking the performance
of the trait-mediated shared-response only. Most species performances are improved after allowing the additional flexibility of learning

species-specific responses.
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Prediction

For memory usage concerns, the grid of environmental covariates of the UK for year 2020 must undergo the
Kronecker product and the subsequent model predictions iteratively. It is nonetheless a very inexpensive process
from which high resolution maps can be rendered within seconds. Fig. 3 shows the butterfly models predictions
for year 2020 across the UK. There is strong qualitative agreement with known distribution of the 59 butter-
fly species ( ). The predicted distributions are highly diverse
across species. They mirror no single covariate base layer, making use of the non-linearities and interactions
offered by the model architecture. The MCC score for each species is listed by the species name as a measure
of the prediction reliability. The predictions for the 59 most common species of moths are shown in Fig. 10 of
Appendix C.

Looking at the butterflies, we note that high-performing species include habitat-restricted species such as
the rare High Brown Fritillary (4. adippe, MCC=0.73) and Swallowtail (P. machaeon, MCC=0.82) and the
more common Gatekeeper (P. tithonus, MCC=0.74) and Marbled White (M. galathea, MCC=0.64), suggesting
that the model captures the drivers that define habitat type well enough to predict the occurrence of specialist
butterflies. Conversely, poorly-performing species (MCC;j0.2) include the Large Blue (M. arion, MCC=0.18)
and the White-letter Hairstreak (S. w-album, MCC=0.12). Both species have suffered major declines in the
20th century through the loss of habitat and host plant (Elm, Ulmus procera) respectively. The Large Blue was
reintroduced to the UK in 1983 at certain selected sites that may not correspond to the predicted distribution.
The White-letter Hairstreak has recovered from the loss of its host through the Dutch Elm Disease (Ophiostoma
spp.) which drove declines of the 1970s into areas where Elm suckers and Wych Elm (Ulmus glabra) thrive
(Thomas and Lewington, 2019); these plant species distributions may not be well captured by the environmental

drivers selected here.

Explanation

Fig. 4 illustrates the butterflies shared responses to the environmental covariates, either mediated by a trait,
or unmediated (row intercept) but common to all species of interest. Fig. 5 summarises the butterflies species
niches, that are derived by summing a species trait-mediated shared and species-specific responses for all envi-
ronmental covariates. Similarly, Fig. 6 shows the moths’ fourth corner matrix (see Fig. 11 in Appendix B for
their resulting niches).

In those matrices, the cell colours illustrates the slope of the regression of an input’s SHAP value (i.e.

10
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Figure 3: Predicted probability of occurrence of the 59 species of butterfly for the year 2020.
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importance) to the input value itself. The 1%, 5% and 10% most important inputs, i.e. with highest absolute
value of feature importance, are highlighted to simplify the interpretation of the matrices. Note that some
inputs may be important but still not effectively captured by a simple linear slope (i.e. appearing framed with
white background in Figs. 4, 5, 6 and 11).

A strong highlight, for example, is the effect of wind, mediated by most butterfly and moth traits. The same
observation can be made about the proportion of broadleaf woodlands. Examining the intercept shared effects
that describe unmediated effects that are nonetheless common to most species, we note the negative effect of
wind and positive effect of broadleaf woodlands for both moths and butterflies. For the moth niches (Fig. 11 in
Appendix D) we observe largely negative impacts of urban area and positive impacts of broadleaf woodlands.

Beyond explaining the model, variable importance also offers a principled way to simplify it by dropping
unnecessary inputs. We refer the reader to Appendix A to see how reducing the inputs to the highlighted traits
and covariates (in Figs. 4 and 6) can affect the models. But to summarise it, we show that our ANNs are barely

affected by a drastic reduction of input size, demonstrating how reliable SHAP is for selecting key inputs.
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Figure 4: Butterflies' trait-mediated shared responses to the environmental covariates. The 1%, 5% and 10% most important inputs

are highlighted with darker borders and shades. See covariates meanings in Appendix E.

Discussion

We demonstrate the use of a time distributed layer as a simple yet solid solution to account for traits in an
ANN. This feature brings ANNs unmatched learning abilities to MSDMSs, enabling non-linear and interactive

behaviours in a field otherwise dominated by generalised linear models. The TD layer allows for the identification
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a community’s trait-mediated shared responses to environmental covariates. By identifying such functional
responses at the community level, species with poor distribution signals (i.e. rare and near-ubiquitous species)
can "borrow strength” (Pollock et al., 2012) from species with stronger definitions, hence producing improved
predictions that can then be explained by SHAP. For example, in our case study, wind-trait interactions had
near global importance in determining the probability of occurrence for UK butterflies and, to a lesser extent,
moths.

Given sufficient width and depth (i.e. neurons and layers), ANNs can compute any function; they are
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Figure 6: Moths' trait-mediated shared responses to the environmental covariates. The 1%, 5% and 10% most important inputs are

highlighted with darker borders and shades. See covariates meanings in Appendix E.

universal approximators (Hornik et al., 1989; Nielsen, 2015). Ecological complexity is no exception, and here
our function of computing species distribution from traits and environmental inputs should be within the reach
of any sufficiently complex ANN. However, this ability is conditioned on the relevant predictors being among
the set of model inputs, which in ecology is a major issue considering the richness of possible inputs. It is
also conditioned on the learning algorithm finding the optimal parameters, which is made more difficult as the
number of inputs is increased. Here is therefore a dilemma which, if we persist in using numerous unfiltered
inputs to pursue an agnostic modelling approach, can be a major obstacle to learning. In this perspective, a
trait-based approach is not only an ecologically meaningful depiction of environmental filtering, it is a solution
to the aforementioned dilemma that pools parameters across species and drastically reduces the parameter
space. Here, the time distributed layer is the mathematical support of this pooling.

Our models are binary classifiers whose performances are best evaluated with the MCC, a metric avoiding
the over-optimism caused by unbalanced classes. According to this metric, butterflies and moths models differ
substantially. By comparing the performances reached with the shared-response only to the performances of the
full model, we can assess how good is the set of traits at explaining the community’s occupancy. We see that
the butterfly model is only marginally improved by the learning of species-specific responses, therefore we can
say that the set of traits used here is of great use to the capture of the shared responses. On the other hand,
the opposite is observed for the moth model in which the added flexibility of the species-specific responses is
essential to its performance. A possible explanation to this can be found in Fig. 9 in Appendix B, which shows

how well the butterfly species scatter in the plane of their traits principal components, showing how well the
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traits can discriminate between butterfly species. We also see that moth species are not so well discriminated
by the selected traits, suggesting that there are few options to shape non-overlapping niches for those species
with the current set of traits.

In SDMs that build on linear models, every parameter carries an ecological meaning, therefore explaining
the model is straightforward: the sign of a significant parameter characterises a directed effect of a variable on
a species presence or abundance (Dray et al., 2014; Pollock et al., 2012). With ANNs, the parameters are the
weights and biases of the successive layers, and none of them per se carry any ecological meaning. The directed
effects are not encoded as readily accessible parameters but they are emerging constructs of the network. This
strength of ANNSs, allowing the capture of non-linear and interacting behaviours, is also a weakness when it
comes to model explanation. As we have seen, the black box can nonetheless be resolved using the SHAP
method. By evaluating variable importance at the sample scale, the input’s effects on the outputs (i.e. the
Shapley values) can be regressed against the input values (i.e. the feature values), and hence characterised
at the model scale. We used linear regression for this purpose, and aggregated the slope coefficients into two
matrices. In contrast to usual fourth corner matrices which aggregates a linear models’ real parameters, ours is
only a linear approximation of an ANN’s behaviours. Still, it is enough to identify the key drivers of a models
predictions.

Indeed, both moth and butterfly communities have been shown to be explorable using our approach. Provid-
ing that sufficient inputs (traits and covariates) can be mobilised, good predictive performance is likely observed
and explained. For both communities, a dominating effect of wind speed was highlighted which, although not
surprising for winged insects, is rarely used as a predictor in prior similar studies (Roy et al., 2001; Ovaskainen
et al., 2016; Palmer et al., 2017; Bell et al., 2020). It is possible that wind only becomes a strong predictor
through trait mediation and non-linearity, in which case, studies building on linear models would necessarily not
capture that relationship. The other decisive predictors—namely the proportions of broadleaf woodland, arable
land and improved grassland—are common drivers of studies on insect declines (see e.g. Ovaskainen et al., 2016;
Bell et al., 2020; Blumgart et al., 2022). Both moths and butterflies appear here significantly affected by those
predictors in ways that not necessarily involves trait mediation.

One limit about the present study is that SDMs only concern environmental filtering, that builds on the
fundamental niche of a species but is only one cause of the species distributions patterns. Others are dispersal
and biotic interactions (e.g. competitive exclusion), which further shape the species distribution by defining
their realised niche (Kraft et al., 2015; Poggiato et al., 2021). Dispersal cannot explicitly be accounted for in a

network such as ours, with tabular inputs, in which no non-local effect is encoded. Yet, using distance buffers
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(as in Hengl et al., 2018) as inputs in the species-specific branch, we hope that elements of the spatial structure
of a given species distribution, unexplained by the spatial structure of the other environmental features, can
be captured as proximity effects. Figs. 5 and 11 show that most species have strong responses to the distance
buffers inputs (column spatial), suggesting that significant residual spatial structure is identified. Its origin can
be either the spatial structure of missing important predictors, or signals of population redistribution processes.
In the same way, residual species correlation (or association) can be a sign of biotic interactions (Pollock et al.,
2014), and are essential to JSDMs’ ability to make joint multivariate predictions (something our ANN does
not feature). However, even if facilitative effects among moths or butterflies exist, positive residual correlations
more likely suggest that the model misses significant environmental covariates (Poggiato et al., 2021), like the

presence of a common predator.

Conclusion

We have demonstrated that a trait-based approach can be encoded as an ANN by using a time distributed layer.
This enables machine learning models to be used for identifying community-wide shared response, making them
suitable in practice for trait-based MSDMs, when they were previously limited to Stacked SDMs. In addition,
because explainability is key to any SDM application, we provide a means to visualise species-specific and shared
responses to the environment. Our solution builds on the SHAP package to open the black box, hence lifting
another obstacle in using machine learning for SDMs. Our illustrative case studies show better performance
and tractability than existing methods, as well as highlighting decisive drivers of butterfly and moth community
composition. An immediate perspective of the present work is its application to more insect communities, with
the hope of gaining further understanding of biodiversity shifts and allowing more accurate forecasting of the

impacts of the drivers of changes.
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Appendix

A Competing architectures

In the section we detail de predictive performances (Fig. 7) and computational requirements (Fig. 8) of 7
different ANN architectures at the species occupancy problem. We show those for two validation procedures:
(i) a 50/50 train test split and a (ii) 5-fold cross validation retaining 3 out of 15 clusters at each iteration,
those are clusters of samples built with a kmeans approach on the scaled coordinates. This second approach is
called a block cross-validation. It prevents information leakage from train to test datasets, caused e.g by pairs
of samples that can be practically in the same local area but nonetheless distributed on both side of the split.

Additionally we present the performances for the full set of traits and environmental covariates, as well
as for a reduced set. The reduced set consists of the traits and covariates highlighted by Figs. 4 and 6 for
the butterflies and the moths respectively. In other words, we restrict the inputs to the traits and covariates
underlying the 10% most important trait-environment interactions.

For reference we also show the performance of Hmsc, arguably the best existing approach to joint distribution
modelling (Zhang et al., 2020). Convergence was achieved in butterflies with the following hyper-parameters: 3
chains, thinning of 10, 1000 (chain) samples, 1000 transient samples. Because of the computational requirements
of this method, no random effects were used, and only 10% of each data sets was used (before train/test splits).
For moths however, we had to reduce to 300 chain samples so that it could be computed in less than a week.

In addition to ensemble and multi-branch architectures defended in this paper, 5 architectures are tested.

We detail below their specificities, as well as the dimensions of their inputs (X) and outputs (Y):

e sp-specific [X: n samples x m covariates — Y: n samples X ¢ species] is the simplest MSDM form, it does

not use traits but only environmental covariates, it is multi-output but does not build on trait mediation;

o trait-mediated [X: n samples x (m covariates - (1 4 p traits)) — Y: n samples X ¢ species| is the time

distributed construct we advocate to support trait-mediation and explain it;

e ensemble [X: n samples X (m covariates - (1 + p traits)) — Y: n samples X ¢ species] is the ensemble

averaging of the two previous models;

e multi-branch [X: n samples X (m covariates - (1 + p traits)) — Y: n samples X ¢ species] is the sequential
training of the trait-mediated and the sp-specific branches; conversely to the ensemble approach, sp-specific

branch is conditional on the trait-mediated branch as the former is trained on the residual of the later;
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e multi-branch concat [X: n samples x (m covariates - p traits) — Y: n samples X ¢ species] is the same as
the previous one, except that it does not build on a Kronecker product of the traits and covariates but
simply their concatenation; in the current form of SHAP, even if it builds on trait-mediation it cannot

explain it (interaction values are not available for deep explainers);

e long [X: (n samples - ¢ species) x (m covariates - (1 + p traits)) — Y: n samples x 1] is a single output
model which build on a long tabular form in which each sample is a site.year.species rather than a site.year;
the input for a sample is a Kronecker product of all the covariates of the site with all the traits of the

focal species;

e long concat [X: (n samples - ¢ species) x (m covariates + p traits) — Y: n samples x 1] is the same as long

except it builds on a simple concatenation of traits and covariates rather than the Kronecker product.
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Figure 7: Predictive performance of 8 competing models depending on the validation procedure and whether or not the inputs (traits
and covariates) have filtered first. The model ensemble and multi-branch are the two options defended in this paper as they allow for the

explanation of trait mediation.
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while the segments show the traits’ contributions to the two principal components.
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Figure 10: Predicted probability of occurrence of the 59 most common species of moths for the year 2020.
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Traits principal component analysis

Moth predictions

Moth species-specific response

Environmental covariates

Table 1: Environmental covariates used in the models. See

Name

Full name

temp_avg
temp_diu_ran
isotherm
temp_season
temp_max
temp_min
temp_yr_ran
temp_wet_gqtr
temp_dry_qtr
temp_warm_qtr
temp_cold_qtr
rain_sum
rain max
rain_min
rain_season
rain wet_qtr
rain_ dry_qtr
rain_warm_qtr
rain_cold_qgtr
no_frost_days
wind_avg
past_temp
past_rain
shdi_lc
heterogeneity
Jbroadleaf
%heconifer
%arable
himprv_grsl
%seminat_grsl
Jmountain
%coast
%urban
dist_to_sea
elevation
slope
aspect
river_dens

Annual mean temperature
Mean diurnal range
Isothermality (temp_ran_dy/temp_yr_ran)
Temp. seasonality (sd temp)
Temp. of the warmest month
Temp. of the coldest month
Temp. annual range (temp_max-temp min)
Temp. of the wettest quarter
Temp. of the driest quarter
Temp. of the warmest quarter
Temp. of the coldest quarter
Annual precipitation
Prec. of the wettest month
Prec. of the driest month
Prec. seasonality
Prec. of the wettest quarter
Prec. of the driest quarter
Prec. of the warmest quarter
Prec. of the coldest quarter
Number of frost days
Average wind speed
temp of the previous year
rain of the previous year
Shannon diversity index of the land-covers
contiguity of identical land-cover pixels
Proportion of broadleaf woodlands
Prop. of coniferous woodlands
Prop. of arable land
Prop. of improved grassland
Prop. of seminatural grassland
Prop. of mountain and bog terrain
Prop. of coastal terrain
Prop. of urban terrain
Distance to the sea
Average altitude
Average slope
Orientation of the slope
Density of the river network
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Moths' species-specific direct responses to the environmental covariates. The 1%, 5% and 10% most important inputs are
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highlighted with darker borders and shades. See covariates meanings in Appendix E.
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