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Abstract

1. Species response traits mediate environmental effects on species distribution. Traits are used in Joint and

Multi Species Distribution Models (JSDMs and MSDMs) to enable community-wide shared parameters10

that characterise niche filtering along environmental gradients. Multi-species machine learning SDMs how-

ever, do not use traits as their inclusion requires an additional taxonomic dimension that is incompatible

with their usual tabular inputs. This has confined trait mediation in SDMs to hierarchical Bayesian mod-

els. Here we provide a novel artificial neural network (ANN) architecture that solves this dimensionality

problem.15

2. Our ANN includes species traits (via a time distributed layer) and is therefore able to identify not only

species-specific responses to the environment, but also shared responses across the community that are

mediated by species traits. Model performance evaluated at the species level not only quantifies the

reliability of species predictions, but also their departure from an average response dictated by traits only.

3. We apply our model to two unique long-term spatio-temporal of butterfly and moth data sets collected20

across the United Kingdom between 1990 and 2019. In addition to species traits, predictors include

numerous metrics derived from weather, land-cover and topology data. For butterflies and moths we
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show convincing model performance for classifying species occupancy. We use SHAP (Shapley Additive

exPlanations) to explain the ANN and show how trait-mediated and species-specific responses can be

approximated, hence yielding ecological insights on the key drivers of species distribution. We highlight a25

range of drivers of change that determine occupancy, including wind, temperature as well as habitat type.

4. We demonstrate that a trait-based approach can be encoded as an ANN by using a time distributed layer.

This brings ANNs unmatched predictive capabilities to the field of MSDMs, at the same time of lifting

their reputed drawback of poor explainability.

Keywords: Traits, MSDM, ANN, SHAP, Lepidoptera30

Introduction

The geographic distribution of species defines local community compositions that result from complex assembly

processes. These compositions are shaped by biotic and abiotic filters that can leave predictable signals on species

distributions patterns (Münkemüller et al., 2020). Building on those signals, we can investigate the driving forces

affecting species distribution along environmental gradients, paving the way to further understanding of global35

change impacts on observed biodiversity shifts. In this regard, quantifying effects of e.g. intensified land use,

climate change, pollution, or novel pests and pathogens constitute significant steps towards the preservation of

ecosystem services and conservation in general.

The underlying mechanisms of species distribution are ideally explored through mechanistic models, yielding

causal understanding of the rules and trends in biodiversity (see e.g. Kempel et al., 2015). The interactive nature40

of those mechanisms however, calls for holistic modelling approaches which conflict with the need for keeping

parameters identifiable by limiting model complexity and colinear inputs. Although they are data hungry,

high-throughput correlative methods are less affected by this limit. They can search through data, filtering for

patterns prior to any attempt at deciphering the system mechanistically, and as such have been advocated as

powerful tools enabling the subsequent investigation of causal links (Baker et al., 2018).45

The huge number of parameters involved in putative community assembly processes is also troublesome for

statistical models. Yet, thanks to hierarchical structures, Bayesian approaches that build on Markov Chain

Monte Carlo (MCMC) methods are able to deal with this complexity and to explain community compositions

(Tikhonov et al., 2020; Ovaskainen and Abrego, 2020; Bystrova et al., 2021). Still, a significant prior filtering

of environmental inputs may be necessary for the MCMC to converge with reasonable computing resources. In50
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regard of the increasing availability of remote sensing environmental data, such prior filtering is not necessarily

detrimental as it protects the user against overfitting, yet it demands knowledge for selecting what information

to include or not.

Key elements in linking environment and species distribution are species traits. Traits are discrete or

continuous descriptors of species. Response traits mediate niche filtering along environmental gradients, which55

drives groups of species into community compositions. Joint and Multi species distribution models (JSDMs and

MSDMs) can explicitly include these species-level, community-wide response traits to predict species occurrence

(or abundance) and elucidate functional insights (Pollock et al., 2012; Ovaskainen et al., 2017). These insights

take the form of an interaction coefficient between an environmental covariate and a species traits, e.g. a

negative relationship between an insect’s body size and altitude would suggest that larger species are less suited60

for mountains. Highlighting trait-environment relationships with such a correlative approach can give cues on

underlying mechanisms and serve in the making of competing mechanistic models to investigate causal links

of species distribution. It can also help achieving better predictions in poorly recorded species, providing their

traits are known.

Here we describe an artificial neural network (ANN) architecture able to tackle the problem of species as-65

sembly into communities by building on trait mediation and Multispecies Distribution Modelling. Building on

TensorFlow and being trained through backpropagation instead of MCMC, it is less affected by the computa-

tional limits exhibited in other trait-based approaches (e.g. Hmsc). It is therefore particularly suited for an

agnostic approach in which inputs (species traits and environmental covariates) may be numerous. Previous

machine learning (ML) approaches have first addressed community composition through stacked single-output70

(i.e. species-specific) SDMs (Williams et al., 2009; Guisan and Rahbek, 2011; Calabrese et al., 2014). Recent ML

developments have for example targeted more explicit spatial predictions with convolutional layers (Deneu et al.,

2021), or the learning and prediction of joint distributions (as in JSDMs) that account for species interactions

(i.e. biotic filtering, Harris, 2015; Pichler and Hartig, 2021). The novelty in our approach is the identification

of trait-mediated shared responses. Those are responses to environmental gradients that are mediated by one75

or more traits, and hence apply to all species as a function of their trait value. In practice, our approach builds

on two components: the first component learns the shared responses through parameters that are common

across species, while the second component is trained to learn species-specific responses and allow for further

flexibility. Then, using SHAP (SHappley Additive exPlanation, Lundberg and Lee, 2017), we go beyond the

usual ”black box” and quantify the role of the different inputs (species traits and environmental covariates) in80

the model predictions. The environment filtering is rendered in a way that makes ecological sense: through a
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matrix of trait-mediated shared responses (i.e. the fourth corner matrix Dolédec et al., 1996; Legendre et al.,

1997), and a matrix of species-specific niches. As a case study, our developments are applied to butterfly and

moth occurrence data recorded across the UK between 1990 and 2019.

Material and Methods85

Data

Community We explore two sets of insect community data. The first is a data set from the UK Buterffly

Monitoring Scheme (UKBMS) consisting of 59 butterfly species collected across the UK between 1990 and 2019

(Brereton et al., 2020). Its measurements take the form of yearly site indices (n=25000) quantifying the local

abundance of a species for a given year (Dennis et al., 2016). The second data set comprises yearly counts of90

461 species (selected for having at least 20 detection events) of macromoths (n=2300) from the Rothamsted

Insect Survey light trap network (Storkey et al., 2016; Fox et al., 2020; Bell et al., 2020), collected across

Great Britain between 1990 and 2018. By their dimensions (59 × 25000 and 461 × 2300), the two data sets

constitute contrasting challenges to learning (although they aggregate about the same amount of information).

The following developments apply on a binarised version of those data sets, as we focus on the prediction of95

species occupancy (aka presence/absence).

Environment The environment data comes from several sources. First, the BIOCLIM19 set of climatic

variables are derived from monthly temperature averages, minima and maxima, as well as monthly rainfall

(sourced from the Had UK 1 km x 1 km grid Hollis et al., 2019). BIOCLIM19 variables capture trends,

seasonality and extrema that potentially affect the organisms of interest, and are therefore common inputs in100

SDM (see e.g. Hill et al., 2017). Secondly, the UK CEH Land-cover map (1990, 2000, 2007, 2015, 2017, 2018

and 2019 editions Morton et al., 2020) defines 10 aggregated land-cover types across the UK at a 25 m x 25

m resolution. We aggregate those to our working 1 km x 1 km resolution, deriving composition and diversity

metrics to capture landscape complexity. The remaining variables are static: these are the river network density

(from UKCEH and DAERA), terrain (elevation, slope and aspect from AWS terrain tiles) and distance to sea.105

See Table A1 in appendix for the details of the environmental covariates.

Traits The butterfly’s traits come from two trait databases (Middleton-Welling et al., 2020; Cook et al., 2021)

from which were selected traits that were fully informed for the 59 species of butterflies encountered in the UK.

In total 7 traits were retained: wing index, wing index variation, voltinism, overwintering stage, number of host
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plants, host plant types and number of habitat types. From the moth trait database (Cook et al., 2021), 6 traits110

similar to the butterfly ones were also fully informed: forewing length, forewing variation coefficient, voltinism,

overwintering stage, number of host plants and number of habitats. Additionally, for each community, the

taxonomic tree of the composing species were vectorised and added as a supplementary trait to possibly capture

a phylogenetic signal (as in Ovaskainen and Abrego, 2020).

Model architecture115

The model is composed of two components: one learning the community’s shared responses to the environ-

ment, and one learning the species-specific responses. Both components produce, for every sample (i.e. every

site×year), a tabular output composed of the probability of occurrence of the numerous species of interest (i.e.

a table with dimension n samples × q species). Such a multi-output approach implies shared capacity within

the hidden layers that are common to all species. This allows shared representation to be learnt prior to the120

output layer, hence enabling species to build on one another during training and achieve greater performance.

The two components take different inputs:

1. Shared responses. For a given sample, the only information relevant to all species are the environmental

covariates. Hence to input the traits’ values we build on a Kronecker product of the traits and the

environmental covariates (i.e. every trait is multiplied to every covariate). The traits being informed125

for every species, that input has 3 dimensions: n samples × m covariates · (p traits + 1 intercept) × q

species. Note that the intercept allows for the identification of a non-mediated but still shared response

of the community as a whole to environmental drivers. In practice, this expands the input row into a

matrix of the product values for every species. The use for the Kronecker product may be questioned in

the light of the universal approximation theorem (Hornik et al., 1989), as we should expect the relevant130

trait-environment interactions to be learnt during training, in theory. In practice however, we found the

product to help performance-wise and, more importantly, to enable the explanation of the interactions

(see Appendix A for details).

2. Species-specific responses. To account for the species-specific direct effect of the environmental co-

variates, the second input is a much more conventional 2D table with the covariate values at each sample135

point (with dimension n samples × m covariates).

The time distributed layer The first branch has a 2D input for every sample. It could be processed as such

but most inputs are then irrelevant to a given species, only the interactions with its own trait values matters.
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To maintain a multi-output configuration (with the aforementioned benefits), while ensuring that only relevant

inputs make their way across the branch towards a species prediction, a time distributed (TD) layer can be140

used. This construction is sometimes called a wrapper as it encapsulates layers, in our case simple dense layers.

TD layers are used in recurrent ANNs to apply the same weights and biases to every time step of a sequence.

In our case, the ”time” dimension is the taxonomic dimension, i.e. the different species. Here the encapsulated

layers will be fitted the same weights and biases, but because the input changes from species to species as a

result of changing trait values, the outputs remain species-specific. This effectively enforces trait mediation to145

be learnt.

Merging the two components The shared and species-specific responses can come together either as two

branches of a multi-branch model, or as two models of an ensemble. These are distinct approaches that implies

different training processes. In the multi-branch model, the two branches are train sequentially. The shared-

response branch is trained first and then the species-specific branch is unfrozen (while the former one is frozen,150

i.e. weights are fixed) to learn species-specific responses which allows further flexibility. In this approach the

species-specific responses are trained on the residuals of the shared responses and are therefore conditional to

them. Alternatively, in the ensemble approach, both models are trained simultaneously before seeing their

outputs averaged. This approach is more flexible as the species-specific responses are not conditional to the

shared responses. Fig. 1 illustrates the network architecture and dimensions. We advocate here for both options155

and refer the reader to Appendix A for further details.

Model training

As often in biology, special care is to be given to class imbalance (Saito and Rehmsmeier, 2015). Some rare

species can be easily overlooked by a lazy classifier whose trivial predictions of e.g. predicting only absences

disregarding the input would score high in accuracy metrics by default. The same reasoning applies to near-160

ubiquitous species. Therefore, species-specific square root class weights are included into the binary cross-

entropy loss function. The weights give more importance to subsamples (i.e. species·sample level weights) that

includes rarer cases (i.e. absence of a common species, or presence of a rare one).

For both butterflies and moths, half the samples were reserved as testing data to assess the models’ per-

formances. Among the remaining half, the training data set, a third was used as validation data to track the165

learning curve and halt training as soon as overfitting was detected (i.e. after 5 successive epochs without im-

provement on the validation data set). For its known robustness to class imbalance, the Matthews correlation
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Figure 1: Schemata of the ANN architecture. In blue are the tabular inputs (X) and outputs (Y), in orange and red are the inner layers

of the network, the square brackets represent the time distributed layer. The network conforms to the following dimensions: q species, n

samples, m covariates and p traits.

coefficient (MCC) was used as a metric in model selection (Saito and Rehmsmeier, 2015; Lever et al., 2016;

Chicco and Jurman, 2020). The MCC is a measure of association of two binary variables, which here are the

observed occupancy and the binarised predicted probability of presence. Other relevant metrics are commonly170

found in the literature, e.g. the Area Under the Curve of the Receiver Operating Characteristic (AUC ROC)

or Precision-Recall (PR) curve (Fernández, 2018), but we argue that they are over-optimistic metrics in our

case, the former because of strong class imbalance in our data and the later because that imbalance sometimes

results of a positive class majority (although being suited for rare species, i.e. a negative class majority, PR

and F1 fail to sanction the poor predictions of near-ubiquitous species).175

Model explanation: SHAP

SHAP (Lundberg and Lee, 2017) quantifies the contribution of each feature (or input) to a specific output.

It works at the sample scale and therefore builds local explanations whose aggregation to a sufficiently large

number of samples can provide model-wide insights. Here, our features are of two types: (1) the products of the

trait values with the environmental covariates and (2) the environmental covariates. The procedure calculates180

a SHAP value for each feature, its contribution, whose averaging over many samples gives to the feature a
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measure of variable importance to the model outputs (Molnar, 2021). That measure can be positive or negative

depending on how the output is affected positively or negatively by the focal feature value, in comparison to

a baseline in which the feature is ”deactivated” (i.e. has its sample value replaced with random background

values).185

Because the procedure builds a collection of explanations made at the sample scale, for every feature we

have a collection of SHAP values to linearly regress against a collection of feature values. Hence, the sign of

that regression coefficient summarises the effect of the focal feature on the species probability of occurrence (our

output).

Here we suggest simplifying the SHAP explanation to a collection of regression coefficients and aggregating190

them into two figures. First, the effects of the 3D input (i.e. input of the trait-mediated branch), being the

same for every species (thanks to the TD layer), it can be reshaped as a m covariates × (p traits + 1 intercept)

matrix, known as fourth corner matrix in ecology (Legendre et al., 1997). Secondly, the effects of the 2D input

(i.e. input of the species-specific branch) are collated into a matrix of species-specific effects with shape q species

× m covariates.195

Results

Training

The learning curves in the top row of Fig. 2 illustrates the sequential training of our multi-branch model. The

majority of the learning appears to occur in the first phase, in which trait-mediated shared responses are learnt.

Then, after a plateau, as the second branch is unfrozen (i.e. allowed to train weights and biases) and the first200

one is frozen, further learning occurs. Both training phases are terminated as soon as overfitting is detected. On

the other hand, the ensemble having its two models trained simultaneously, its learning curves (not shown) do

not feature phases like the multi-branch model. However, the ensemble’s performance being marginally better

(see Appendix A), the results shown hereafter are derived from it.

Performance wise, according to the AUC ROC that scales from 0 to 1, our models score 0.95 for the butterflies205

and 0.89 for the moths (all reported metrics are computed on the test data set). The PR scores are 0.86 and

0.73 (also scaled from 0 to 1). The MCC scales from -1 to 1, with 0 marking the random predictions of a no-skill

classifier. According to this metric, our classifiers score 0.49 and 0.40, but substantial variations are observed

from species to species (Fig. 2, bottom row). Even if some moth species are predicted no better than at random

(especially some of the very rare species), the vast majority of them constitute skilled predictions, as is the case210
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for all butterfly species.

The bottom row of Fig. 2 also illustrates the performance yielded by each of the two training phases. As

expected, most species are better predicted once allowed species-specific responses, still significant performances

are already reached after learning only the trait-mediated shared responses. This is especially the case for

butterflies in which the trait-mediated shared responses constitute the core learning (short segments with high215

origins). However for the moths, species-specific responses are more important to prediction performance (long

segments with low origins).

Figure 2: Training curves (top row) shows multi-branch models 2-step training dynamic and performance following a weighted binary

cross-entropy loss function. On the bottom row are the species classifier (ensemble) performances according to the MCC, with the

black dot marking the full model performance (shared + species-specific), and the other side of every segment marking the performance

of the trait-mediated shared-response only. Most species performances are improved after allowing the additional flexibility of learning

species-specific responses.
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Prediction

For memory usage concerns, the grid of environmental covariates of the UK for year 2020 must undergo the

Kronecker product and the subsequent model predictions iteratively. It is nonetheless a very inexpensive process220

from which high resolution maps can be rendered within seconds. Fig. 3 shows the butterfly models predictions

for year 2020 across the UK. There is strong qualitative agreement with known distribution of the 59 butter-

fly species (https://www.ukbutterflies.co.uk/distributions.php). The predicted distributions are highly diverse

across species. They mirror no single covariate base layer, making use of the non-linearities and interactions

offered by the model architecture. The MCC score for each species is listed by the species name as a measure225

of the prediction reliability. The predictions for the 59 most common species of moths are shown in Fig. 10 of

Appendix C.

Looking at the butterflies, we note that high-performing species include habitat-restricted species such as

the rare High Brown Fritillary (A. adippe, MCC=0.73) and Swallowtail (P. machaeon, MCC=0.82) and the

more common Gatekeeper (P. tithonus, MCC=0.74) and Marbled White (M. galathea, MCC=0.64), suggesting230

that the model captures the drivers that define habitat type well enough to predict the occurrence of specialist

butterflies. Conversely, poorly-performing species (MCC¡0.2) include the Large Blue (M. arion, MCC=0.18)

and the White-letter Hairstreak (S. w-album, MCC=0.12). Both species have suffered major declines in the

20th century through the loss of habitat and host plant (Elm, Ulmus procera) respectively. The Large Blue was

reintroduced to the UK in 1983 at certain selected sites that may not correspond to the predicted distribution.235

The White-letter Hairstreak has recovered from the loss of its host through the Dutch Elm Disease (Ophiostoma

spp.) which drove declines of the 1970s into areas where Elm suckers and Wych Elm (Ulmus glabra) thrive

(Thomas and Lewington, 2019); these plant species distributions may not be well captured by the environmental

drivers selected here.

Explanation240

Fig. 4 illustrates the butterflies shared responses to the environmental covariates, either mediated by a trait,

or unmediated (row intercept) but common to all species of interest. Fig. 5 summarises the butterflies species

niches, that are derived by summing a species trait-mediated shared and species-specific responses for all envi-

ronmental covariates. Similarly, Fig. 6 shows the moths’ fourth corner matrix (see Fig. 11 in Appendix B for

their resulting niches).245

In those matrices, the cell colours illustrates the slope of the regression of an input’s SHAP value (i.e.
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Figure 3: Predicted probability of occurrence of the 59 species of butterfly for the year 2020.

11



importance) to the input value itself. The 1%, 5% and 10% most important inputs, i.e. with highest absolute

value of feature importance, are highlighted to simplify the interpretation of the matrices. Note that some

inputs may be important but still not effectively captured by a simple linear slope (i.e. appearing framed with

white background in Figs. 4, 5, 6 and 11).250

A strong highlight, for example, is the effect of wind, mediated by most butterfly and moth traits. The same

observation can be made about the proportion of broadleaf woodlands. Examining the intercept shared effects

that describe unmediated effects that are nonetheless common to most species, we note the negative effect of

wind and positive effect of broadleaf woodlands for both moths and butterflies. For the moth niches (Fig. 11 in

Appendix D) we observe largely negative impacts of urban area and positive impacts of broadleaf woodlands.255

Beyond explaining the model, variable importance also offers a principled way to simplify it by dropping

unnecessary inputs. We refer the reader to Appendix A to see how reducing the inputs to the highlighted traits

and covariates (in Figs. 4 and 6) can affect the models. But to summarise it, we show that our ANNs are barely

affected by a drastic reduction of input size, demonstrating how reliable SHAP is for selecting key inputs.

Figure 4: Butterflies’ trait-mediated shared responses to the environmental covariates. The 1%, 5% and 10% most important inputs

are highlighted with darker borders and shades. See covariates meanings in Appendix E.

Discussion260

We demonstrate the use of a time distributed layer as a simple yet solid solution to account for traits in an

ANN. This feature brings ANNs unmatched learning abilities to MSDMs, enabling non-linear and interactive

behaviours in a field otherwise dominated by generalised linear models. The TD layer allows for the identification
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Figure 5: Butterflies’ species-specific direct responses to the environmental covariates. The 1%, 5% and 10% most important inputs

are highlighted with darker borders and shades. See covariates meanings in Appendix E.

a community’s trait-mediated shared responses to environmental covariates. By identifying such functional

responses at the community level, species with poor distribution signals (i.e. rare and near-ubiquitous species)265

can ”borrow strength” (Pollock et al., 2012) from species with stronger definitions, hence producing improved

predictions that can then be explained by SHAP. For example, in our case study, wind-trait interactions had

near global importance in determining the probability of occurrence for UK butterflies and, to a lesser extent,

moths.

Given sufficient width and depth (i.e. neurons and layers), ANNs can compute any function; they are270
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Figure 6: Moths’ trait-mediated shared responses to the environmental covariates. The 1%, 5% and 10% most important inputs are

highlighted with darker borders and shades. See covariates meanings in Appendix E.

universal approximators (Hornik et al., 1989; Nielsen, 2015). Ecological complexity is no exception, and here

our function of computing species distribution from traits and environmental inputs should be within the reach

of any sufficiently complex ANN. However, this ability is conditioned on the relevant predictors being among

the set of model inputs, which in ecology is a major issue considering the richness of possible inputs. It is

also conditioned on the learning algorithm finding the optimal parameters, which is made more difficult as the275

number of inputs is increased. Here is therefore a dilemma which, if we persist in using numerous unfiltered

inputs to pursue an agnostic modelling approach, can be a major obstacle to learning. In this perspective, a

trait-based approach is not only an ecologically meaningful depiction of environmental filtering, it is a solution

to the aforementioned dilemma that pools parameters across species and drastically reduces the parameter

space. Here, the time distributed layer is the mathematical support of this pooling.280

Our models are binary classifiers whose performances are best evaluated with the MCC, a metric avoiding

the over-optimism caused by unbalanced classes. According to this metric, butterflies and moths models differ

substantially. By comparing the performances reached with the shared-response only to the performances of the

full model, we can assess how good is the set of traits at explaining the community’s occupancy. We see that

the butterfly model is only marginally improved by the learning of species-specific responses, therefore we can285

say that the set of traits used here is of great use to the capture of the shared responses. On the other hand,

the opposite is observed for the moth model in which the added flexibility of the species-specific responses is

essential to its performance. A possible explanation to this can be found in Fig. 9 in Appendix B, which shows

how well the butterfly species scatter in the plane of their traits principal components, showing how well the
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traits can discriminate between butterfly species. We also see that moth species are not so well discriminated290

by the selected traits, suggesting that there are few options to shape non-overlapping niches for those species

with the current set of traits.

In SDMs that build on linear models, every parameter carries an ecological meaning, therefore explaining

the model is straightforward: the sign of a significant parameter characterises a directed effect of a variable on

a species presence or abundance (Dray et al., 2014; Pollock et al., 2012). With ANNs, the parameters are the295

weights and biases of the successive layers, and none of them per se carry any ecological meaning. The directed

effects are not encoded as readily accessible parameters but they are emerging constructs of the network. This

strength of ANNs, allowing the capture of non-linear and interacting behaviours, is also a weakness when it

comes to model explanation. As we have seen, the black box can nonetheless be resolved using the SHAP

method. By evaluating variable importance at the sample scale, the input’s effects on the outputs (i.e. the300

Shapley values) can be regressed against the input values (i.e. the feature values), and hence characterised

at the model scale. We used linear regression for this purpose, and aggregated the slope coefficients into two

matrices. In contrast to usual fourth corner matrices which aggregates a linear models’ real parameters, ours is

only a linear approximation of an ANN’s behaviours. Still, it is enough to identify the key drivers of a models

predictions.305

Indeed, both moth and butterfly communities have been shown to be explorable using our approach. Provid-

ing that sufficient inputs (traits and covariates) can be mobilised, good predictive performance is likely observed

and explained. For both communities, a dominating effect of wind speed was highlighted which, although not

surprising for winged insects, is rarely used as a predictor in prior similar studies (Roy et al., 2001; Ovaskainen

et al., 2016; Palmer et al., 2017; Bell et al., 2020). It is possible that wind only becomes a strong predictor310

through trait mediation and non-linearity, in which case, studies building on linear models would necessarily not

capture that relationship. The other decisive predictors—namely the proportions of broadleaf woodland, arable

land and improved grassland—are common drivers of studies on insect declines (see e.g. Ovaskainen et al., 2016;

Bell et al., 2020; Blumgart et al., 2022). Both moths and butterflies appear here significantly affected by those

predictors in ways that not necessarily involves trait mediation.315

One limit about the present study is that SDMs only concern environmental filtering, that builds on the

fundamental niche of a species but is only one cause of the species distributions patterns. Others are dispersal

and biotic interactions (e.g. competitive exclusion), which further shape the species distribution by defining

their realised niche (Kraft et al., 2015; Poggiato et al., 2021). Dispersal cannot explicitly be accounted for in a

network such as ours, with tabular inputs, in which no non-local effect is encoded. Yet, using distance buffers320
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(as in Hengl et al., 2018) as inputs in the species-specific branch, we hope that elements of the spatial structure

of a given species distribution, unexplained by the spatial structure of the other environmental features, can

be captured as proximity effects. Figs. 5 and 11 show that most species have strong responses to the distance

buffers inputs (column spatial), suggesting that significant residual spatial structure is identified. Its origin can

be either the spatial structure of missing important predictors, or signals of population redistribution processes.325

In the same way, residual species correlation (or association) can be a sign of biotic interactions (Pollock et al.,

2014), and are essential to JSDMs’ ability to make joint multivariate predictions (something our ANN does

not feature). However, even if facilitative effects among moths or butterflies exist, positive residual correlations

more likely suggest that the model misses significant environmental covariates (Poggiato et al., 2021), like the

presence of a common predator.330

Conclusion

We have demonstrated that a trait-based approach can be encoded as an ANN by using a time distributed layer.

This enables machine learning models to be used for identifying community-wide shared response, making them

suitable in practice for trait-based MSDMs, when they were previously limited to Stacked SDMs. In addition,

because explainability is key to any SDM application, we provide a means to visualise species-specific and shared335

responses to the environment. Our solution builds on the SHAP package to open the black box, hence lifting

another obstacle in using machine learning for SDMs. Our illustrative case studies show better performance

and tractability than existing methods, as well as highlighting decisive drivers of butterfly and moth community

composition. An immediate perspective of the present work is its application to more insect communities, with

the hope of gaining further understanding of biodiversity shifts and allowing more accurate forecasting of the340

impacts of the drivers of changes.
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édition edition.

Tikhonov, G., Opedal, y. H., Abrego, N., Lehikoinen, A., Jonge, M. M. J. d., Oksanen, J., and Ovaskainen,

O. (2020). Joint species distribution modelling with the r-package Hmsc. Methods in Ecology and Evolution,485

11(3):442–447.

Williams, J. N., Seo, C., Thorne, J., Nelson, J. K., Erwin, S., O’Brien, J. M., and Schwartz, M. W. (2009).

Using species distribution models to predict new occurrences for rare plants. Diversity and Distributions,

15(4):565–576. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1472-4642.2009.00567.x.

Zhang, C., Chen, Y., Xu, B., Xue, Y., and Ren, Y. (2020). Improving prediction of rare species’ distribution490

from community data. Scientific Reports, 10(1):12230.

22



Appendix

A Competing architectures

In the section we detail de predictive performances (Fig. 7) and computational requirements (Fig. 8) of 7

different ANN architectures at the species occupancy problem. We show those for two validation procedures:495

(i) a 50/50 train test split and a (ii) 5-fold cross validation retaining 3 out of 15 clusters at each iteration,

those are clusters of samples built with a kmeans approach on the scaled coordinates. This second approach is

called a block cross-validation. It prevents information leakage from train to test datasets, caused e.g by pairs

of samples that can be practically in the same local area but nonetheless distributed on both side of the split.

Additionally we present the performances for the full set of traits and environmental covariates, as well500

as for a reduced set. The reduced set consists of the traits and covariates highlighted by Figs. 4 and 6 for

the butterflies and the moths respectively. In other words, we restrict the inputs to the traits and covariates

underlying the 10% most important trait-environment interactions.

For reference we also show the performance of Hmsc, arguably the best existing approach to joint distribution

modelling (Zhang et al., 2020). Convergence was achieved in butterflies with the following hyper-parameters: 3505

chains, thinning of 10, 1000 (chain) samples, 1000 transient samples. Because of the computational requirements

of this method, no random effects were used, and only 10% of each data sets was used (before train/test splits).

For moths however, we had to reduce to 300 chain samples so that it could be computed in less than a week.

In addition to ensemble and multi-branch architectures defended in this paper, 5 architectures are tested.

We detail below their specificities, as well as the dimensions of their inputs (X) and outputs (Y):510

� sp-specific [X: n samples × m covariates → Y: n samples × q species] is the simplest MSDM form, it does

not use traits but only environmental covariates, it is multi-output but does not build on trait mediation;

� trait-mediated [X: n samples × (m covariates · (1 + p traits)) → Y: n samples × q species] is the time

distributed construct we advocate to support trait-mediation and explain it;

� ensemble [X: n samples × (m covariates · (1 + p traits)) → Y: n samples × q species] is the ensemble515

averaging of the two previous models;

� multi-branch [X: n samples × (m covariates · (1 + p traits)) → Y: n samples × q species] is the sequential

training of the trait-mediated and the sp-specific branches; conversely to the ensemble approach, sp-specific

branch is conditional on the trait-mediated branch as the former is trained on the residual of the later;
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� multi-branch concat [X: n samples × (m covariates · p traits) → Y: n samples × q species] is the same as520

the previous one, except that it does not build on a Kronecker product of the traits and covariates but

simply their concatenation; in the current form of SHAP, even if it builds on trait-mediation it cannot

explain it (interaction values are not available for deep explainers);

� long [X: (n samples · q species) × (m covariates · (1 + p traits)) → Y: n samples × 1] is a single output

model which build on a long tabular form in which each sample is a site.year.species rather than a site.year;525

the input for a sample is a Kronecker product of all the covariates of the site with all the traits of the

focal species;

� long concat [X: (n samples · q species) × (m covariates + p traits) → Y: n samples × 1] is the same as long

except it builds on a simple concatenation of traits and covariates rather than the Kronecker product.

Figure 7: Predictive performance of 8 competing models depending on the validation procedure and whether or not the inputs (traits

and covariates) have filtered first. The model ensemble and multi-branch are the two options defended in this paper as they allow for the

explanation of trait mediation.
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Figure 8: Computation times for the training of the 8 competing models depending on whether or not the inputs (traits and covariates)

have filtered first. The ANNs model use 50% of the data sets, while the Hmsc model only uses 10%.

Figure 9: Biplots from the principal component analysis of the traits of the two communities. The coloured dots represent the species,

while the segments show the traits’ contributions to the two principal components.
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Figure 10: Predicted probability of occurrence of the 59 most common species of moths for the year 2020.
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B Traits principal component analysis530

C Moth predictions

D Moth species-specific response

E Environmental covariates

Table 1: Environmental covariates used in the models. See BIOCLIM19 for further details.
Name Full name

temp avg Annual mean temperature
temp diu ran Mean diurnal range
isotherm Isothermality (temp ran dy/temp yr ran)

temp season Temp. seasonality (sd temp)
temp max Temp. of the warmest month
temp min Temp. of the coldest month

temp yr ran Temp. annual range (temp max-temp min)
temp wet qtr Temp. of the wettest quarter
temp dry qtr Temp. of the driest quarter
temp warm qtr Temp. of the warmest quarter
temp cold qtr Temp. of the coldest quarter

rain sum Annual precipitation
rain max Prec. of the wettest month
rain min Prec. of the driest month

rain season Prec. seasonality
rain wet qtr Prec. of the wettest quarter
rain dry qtr Prec. of the driest quarter
rain warm qtr Prec. of the warmest quarter
rain cold qtr Prec. of the coldest quarter
no frost days Number of frost days

wind avg Average wind speed
past temp temp of the previous year
past rain rain of the previous year
shdi lc Shannon diversity index of the land-covers

heterogeneity contiguity of identical land-cover pixels
%broadleaf Proportion of broadleaf woodlands
%conifer Prop. of coniferous woodlands
%arable Prop. of arable land

%imprv grsl Prop. of improved grassland
%seminat grsl Prop. of seminatural grassland
%mountain Prop. of mountain and bog terrain
%coast Prop. of coastal terrain
%urban Prop. of urban terrain

dist to sea Distance to the sea
elevation Average altitude

slope Average slope
aspect Orientation of the slope

river dens Density of the river network
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Figure 11: Moths’ species-specific direct responses to the environmental covariates. The 1%, 5% and 10% most important inputs are

highlighted with darker borders and shades. See covariates meanings in Appendix E.
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