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Summary

The lifecycle of Zymospetoria tritici requires a carefully regulated asymptomatic
phase within the wheat leaf following penetration of the mesophyll via stomata. Here
we compare the roles in this process of two key fungal signalling pathways, mutants
of which were identified through forward genetics due to their avirulence on wheat.
Whole genome resequencing of avirulent Z. tritici T-DNA transformants identified
disruptive mutations in ZtBCK1 from the kinase cascade of the cell wall integrity
(CWI) pathway, and the adenylate cyclase gene ZtCYR1. Targeted deletion of these
genes abolished pathogenicity of the fungus and led to similar in vitro phenotypes to
those associated with disruption of putative downstream kinases, both supporting
previous studies and confirming the importance of these pathways in virulence.
RNA-sequencing was used to investigate the effect of ZtBCK1 and ZtCYRL1 deletion
on gene expression in both the pathogen and host during infection. ZtBCK1 was
found to be required for the adaptation to the host environment, controlling
expression of infection-associated secreted proteins including known virulence
factors. Meanwhile, ZtCYR1 is implicated in controlling the switch to necrotrophy,
regulating expression of effectors associated with this transition. This represents the
first study to compare the influence of CWI and cAMP signalling on in planta
transcription of a fungal plant pathogen, providing insights into their differential

regulation of candidate effectors during invasive growth.
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1 Introduction

Signalling cascades are integral for the ability of cells to adapt to their environment,
enabling them to couple the recognition of external cues at the surface with
appropriate intracellular processes, such as regulation of gene expression and
protein activity. For fungal pathogens of plants, this involves regulating crucial
changes in morphology and expression of virulence factors in response to the host
environment. This is essential for controlling developmental transitions during
infection, involving host surface recognition and penetration, invasive growth, and
differentiation of reproductive structures. It is also important for responding to the
stresses imposed by the host environment, such as nutrient deprivation and the plant

immune response.

The cell wall integrity (CWI) pathway is a conserved fungal signalling cascade that
regulates remodelling of the cell wall (Levin, 2011). This pathway transduces cell
wall perturbation signals recognised by mechanosensors at the cell surface to the
conserved mitogen-activated protein kinases (MAPK) Sit2. Modulation of cell wall
composition is required for fungal growth and morphological transitions (Cabib and
Arroyo, 2013; Riquelme et al., 2018), as well as responses to various stresses,
including those encountered in the host environment (Geoghegan et al., 2017,
Hopke et al., 2018). Furthermore, fungal pathogens adapt their cell wall composition
to avoid host detection, as both chitin and 3-1,3-glucan are recognised as pathogen-
associated molecular patterns (PAMPS) by host immune systems (Ballou et al.,

2016; Fujikawa et al., 2012; el Gueddari et al., 2002).

The CWI pathway has been found to play a crucial role in the virulence of plant

fungal pathogens (Turra et al., 2014), with functions in host penetration (Kojima et



68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

al., 2002; Rui and Hahn, 2007; Xu et al., 1998) and invasive growth (Joubert et al.,
2011; Mehrabi et al., 2006; Mey et al., 2002; Rui and Hahn, 2007). The latter
function has been attributed to the role of the CWI pathway in withstanding host
defences, as Slt2 deletion was shown to increase sensitivity to hydrolytic enzymes
(Mey et al., 2002; Rui and Hahn, 2007; Xu et al., 1998), as well as plant-derived

antimicrobial compounds (Joubert et al., 2011; Ramamoorthy et al., 2007).

Another signalling cascade which has emerged as crucial for the virulence of fungal
plant pathogens is the cyclic adenosine monophosphate (CAMP)-dependant protein
kinase A (PKA) pathway (Turra et al., 2014). In S. cerevisiae, CAMP generated by
the adenylate cyclase enzyme binds to the regulatory subunits (encoded by BCY1)
of the PKA complex, allowing the catalytic subunits (encoded by TPK1-3) to
dissociate and phosphorylate downstream targets. This pathway functions in nutrient
sensing in yeast to regulate carbohydrate metabolism, the cell cycle, growth and
development (Zaman et al., 2008). However, the cAMP-PKA pathway is known to
regulate an extremely diverse range of fungal processes, including morphological
transitions (D’Souza and Heitman, 2001), sexual reproduction (Hu et al., 2014),
secondary metabolism (Studt et al., 2013) and responses to diverse nutritional
signals (Caza and Kronstad, 2019). cAMP-PKA signalling is required for
development of host penetration structures in many plant pathogenic fungi, including
M. oryzae (Choi and Dean, 1997; Xu et al., 1997) and F. graminearum (Bormann et
al., 2014). Furthermore, there is also evidence for the role of this pathway in post-
penetration invasive growth, with strains lacking cAMP-PKA components unable to
cause disease following inoculation into experimental wounded leaf tissue (Li et al.,

2017; Yamauchi et al., 2004).
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The ascomycete pathogen Zymoseptoria tritici causes the most economically
important disease of wheat in Europe (Jgrgensen et al., 2014). Colonisation of wheat
by Z. tritici involves complex regulation of morphological development and the
molecular interaction with the host, requiring dramatic shifts in gene expression
across different infection stages (Rudd et al., 2015). Initial colonisation involves
hyphal germination on the leaf surface and invasion of the host stomata (Kema et al.,
1996). Z. tritici then grows asymptomatically in the apoplast whilst supressing the
host immune response through expression of secreted effectors, including essential
repression of chitin recognition by the LysM effectors (Marshall et al., 2011; Rudd et
al., 2015). Finally, Z. tritici switches to necrotrophic growth, instigating host
programmed cell death through upregulation of a distinct set of effectors, and
acquiring nutrients from dying host tissue through expression of secreted enzymes

and membrane transporters (Rudd et al., 2015).

The CWI pathway has been proposed to control Z. tritici resistance to apoplastic
wheat defence compounds during asymptomatic invasion, as Amgsl/t2 mutants were
unable to colonise the mesophyll tissue following stomatal penetration, and showed
increased sensitivity to cell wall degrading enzymes (Mehrabi et al., 2006).
Furthermore, deletion of the PKA catalytic subunit MgTpk2 led to delayed symptom
development and abolished pycnidia formation, despite successful host penetration
and invasive growth, suggesting its involvement in triggering the switch to
necrotrophy and asexual development (Mehrabi and Kema, 2006). However, despite
these investigations, links between these regulatory pathways and the transcription

of genes involved in host manipulation by Z. tritici remain to be elucidated.
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In this study, forward genetic investigation of avirulent T-DNA insertion transformants
identified disruptions to Z. tritici genes encoding adenylate cyclase and the CWI
MAPK cascade enzyme BCKL1. Targeted deletion of these genes was used to
confirm that loss of their functions led to abolishment of pathogenicity. Despite
showing defects during in vitro vegetative growth, deletion strains were able to
penetrate host stomata, supporting previous evidence for the role of the CWI and
cAMP-PKA pathways during infection post-penetration. Finally, RNA sequencing
was used to characterise transcription in both Z. tritici and wheat during infection by
these strains, to investigate the enigmatic in planta functions of these pathways. This
revealed different suites of candidate effectors involved in invasive growth regulated
by these two pathways and provided insight into how this differential regulation

impacts the host defence response.

2 Results

2.1 Nonsynonymous SNP identified in ZtCYR1 gene of avirulent T-DNA

insertion strains

Two transformants with severely reduced pathogenicity, designated L2 and C5, were
identified during in planta phenotyping of targeted deletion mutants which aimed to
inactivate the genes ZtrittiPO323 04910737 (Mycgr3G43288) and
ZtritiPO323_049g13543 (Mycgr3G18212), encoding putative secreted lipase (ZtL2)
and cutinase (ZtCUT5) proteins respectively. L2 and C5 did not cause necrosis or
develop pycnidia, although patches of mild chlorosis were observed after 21 dpi (Fig.
Sla). This phenotype was contrary to two PCR-validated independent deletion
mutants in these target genes, which displayed wild type virulence (Fig. S1a). Whole

genome resequencing of C5 and L2 found no evidence for ectopic insertion of



139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

transformed T-DNA (Fig. S2a-b), suggesting that avirulence in these strains was
caused by random mutation(s). Variant calling found these strains to share 15
polymorphisms compared to the isogenic IPO323 strain (Table S2), suggesting that
they originate from the same genotype in the background population. These included
two within the coding regions of genes; a three base pair deletion was identified in
the first exon of ZtAGOL1 (ZtritiIPO323_04g08085/Mycgr3G38035), causing a P76del
deletion, and a nonsynonymous SNP in the second exon of the Z. tritici homolog of
adenylate cyclase enzyme MgCYR1 (ZtritiPO323_049g11209/Mycgr3G86659),
hereafter ZtCYRL1 (Table S2). The latter substitution causes a missense mutation of
E1663K at a predicted nucleotidyl binding site in the cyclase domain (IPR001054) of
ZtCYR1 (Fig. S2c). Previous studies have found ZtAGOL1 to have a mild or no
contribution to virulence (Habig et al., 2021; Kettles et al., 2019), while other
components of the cAMP-PKA pathway are known to contribute to the virulence of Z.
tritici (Mehrabi et al., 2009; Mehrabi and Kema, 2006). Considering this, disruption of
ZtCYR1 was hypothesised to cause the loss of virulence in the strains C5 and L2,

prompting further functional characterisation of this gene.

2.2 Ectopic T-DNA insertion causes disruption of ZtBCK1 gene and

promotor region

A third avirulent T-DNA insertion mutant, referred to as T21, was identified during
screening of transformants generated for targeted deletion of ZtritiIPO323 04907737
(Mycgr3G108617), encoding a triacylglycerol lipase (ZtTGL1). T21 was identified as
having a defect in melanisation during subculturing. Unlike three independent Azttgll
mutants, which displayed wild type virulence, T21 was avirulent (Fig. S1b). Whole

genome resequencing confirmed the absence of T-DNA insertion at the ZtTGL1
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locus, but identified insertion of the full T-DNA sequence at a locus on chromosome
11 (Fig. S3). The ectopic insertion site lies 133 bp upstream of the gene
ZtritiPO323_049g03043 (Fig. S3), hereafter ZtBCK1, encoding the Z. tritici homolog
yeast MAP kinase kinase kinase regulating Slt2 in the CWI pathway (Lee et al.,
1992). Furthermore, variant calling identified a 12bp deletion (chr11:240,721-
240,732) in the coding sequence of ZtBCK1, causing a four amino acid deletion
G6_R9del (Table S2; Fig. S3) outside any predicted conserved domains. Variant
calling also identified a nonsynonymous SNP in the second exon of

ZtritiPO323 04111145 (Mycgr3G60318), encoding a putative major facilitator
superfamily (MFS) transporter (Table S2). However, considering the previous
evidence for the virulence-related function of the CWI pathway in Z. tritici (Mehrabi et
al., 2006), the disruption of ZtBCK1 was chosen for further investigation into the

cause of avirulence in T21.

2.3 Targeted deletion of ZtBCK1 and ZtCYR1 abolishes virulence in Z.

tritici

To investigate the function of ZtBCK1 and ZtCYRL1 in Z. tritici development and
virulence, three independently constructed null mutants were generated for both
genes (Fig. S4a-b), and these were shown to display comparable phenotypes both in
vitro and in planta. The resulting Aztcyr1 and Aztbck1 strains showed equivalent
attenuation of virulence to that displayed by strains L2/C5 and T21, with all deletion
strains unable to induce necrosis or develop pycnidia after 21 dpi (Fig. 1a). Although
the mild chlorosis caused by L2 and C5 was not observed on Aztcyr1 infected leaves
at 21 dpi, continuation of infection to 35 dpi led to the appearance of chlorosis on

these leaves (Fig. 1a). Chlorosis was not observed on mock inoculated or Aztbck1



187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

infected leaves, confirming that this was not the result of environmental conditions or
senescence (Fig. 1a). These findings provide supporting evidence that the
avirulence of L2/C5 and T21 is likely caused by disruption of ZtCYR1 and ZtBCK1,

respectively.

Microscopic observations revealed no difference in stomatal interactions between
both Aztcyr1 and Aztbck1 strains and wild type IPO323 (Fig. 1b). Spores of both
mutants germinated on the leaf surface to produce epiphytic hyphae, and humerous
stomatal interactions were observed for all strains after 3 dpi (Fig. 1b). These
findings establish that avirulence in these strains is not caused by disruption of the
morphological switch to hyphal growth, sensory perception of the host surface or
recognition of stomatal apertures. Instead, this suggests that signalling via ZtCYR1

and ZtBCK1 is required during infection stages after host penetration.

2.4 Deletion of ZtBCK1 impacts vegetative growth and the cell wall

stress response

Considering previous reports of the CWI pathway influencing both yeast-like and
hyphal growth of Z. tritici (Mehrabi et al., 2006), the vegetative growth characteristics
of Aztbck1 strains were investigated. While the growth rate by blastosporulation on
YPD agar was consistent between Aztbck1 strains and IPO323, a defect in
melanisation was seen in Aztbck1 mutants after a prolonged growth period (Fig. 2a).
Furthermore, swollen cells were observed regularly in the blastospores of Aztbckl
strains after 6 days of growth on YPD, which were absent in IPO323 cells under the
same conditions (Fig. 2b). Although germination efficiency and early colony
formation on water agar (WA) was unchanged in Aztbck1 strains, their growth rate

was reduced over time as radial growth continued, resulting in smaller colonies than
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the wild type after 14 days (Fig. 2c). In addition, while the wild type developed
abundant aerial hyphae at 28°C on PDA, Aztbck1 strains displayed equivalent
growth by blastosporulation at 19°C and 28°C (Fig. 2c). These findings suggest that
the Z. tritici CWI pathway is involved in regulating the morphological switch to hyphal
growth in response to heat stress, as well as in prolonged hyphal growth under
starvation. Finally, the in vitro phenotypes of Aztbck1 were entirely consistent with
those of T21, providing further evidence for ZtBCK1 disruption being the sole genetic

cause of the phenotypes of this strain.

The sensitivity of wild type and Aztbck1 strains to cell wall stress was assessed by
exposure to enzyme mixtures possessing -1,3-glucanase activity. The wild type
was able to maintain viability after exposure to a higher concentration of lyticase
enzymes than Aztbck1, providing evidence that deletion of ZtBCK1 leads to
enhanced sensitivity to cell wall stress (Fig. 2d). To investigate whether this effect
was specific to disruption of B-1,3-glucan, the sensitivity of Aztbck1 to calcofluor
white, which disrupts chitin synthesis, and caspofungin, which inhibits 3-1,3-glucan
synthesis, was assessed. While Aztbck1 strains displayed no change in sensitivity to
calcofluor white, they were found to have elevated sensitivity to caspofungin (Fig.
S5a). Together, these results suggest that the ZtBCK1 is specifically involved in
regulation of the Z. tritici response to perturbation of $-1,3-glucan integrity.
Furthermore, Aztcyr1 strains, but not strain C5, also displayed increased sensitivity
to caspofungin (Fig. S5a), suggesting that cAMP signalling may also play a role in

this response.
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2.5 Deletion of ZtCYR1 impairs melanisation and increases

osmosensitivity

Vegetative growth phenotypes of Azfcyr1 strains were also investigated for
comparison with previously characterised of other components of the PKA signalling
pathway (Mehrabi et al., 2009; Mehrabi and Kema, 2006). The growth rate by
blastosporulation on YPD was indistinguishable from the wild type (Fig. 2a).
However, melanisation was impaired in Aztcyr1 when grown on YPD and PDA at
19°C in the dark (Fig. 2a; Fig. 2c). Similarly, melanisation of aerial hyphae was not
observed in Aztcyr1 strains when grown on PDA at 28°C. Furthermore, while the
germination efficiency of Aztcyr1 strains on water agar was unchanged from the wild
type, subsequent hyphal growth proceeded at a much slower rate in these mutants
(Fig. 2c¢). Interestingly, the disruption of melanisation and hyphal growth rate was not
observed in the C5 strain. Finally, sensitivity to high osmolarity of the growth media
was increased in the C5 and Aztcyr1 strains, which displayed a reduced growth rate
compared to the wild type on PDA amended with 1.5M sorbitol (Fig. S5b). These
findings suggest that ZtCYRL1 is involved in the regulation of melanisation, hyphal
growth and the osmotic stress responses, but that the phenotype potentially caused
by the point mutation in ZtCYR1 in the C5 strain is distinct from that resulting from

deletion of the whole coding sequence.

2.6 Deletion of ZtBCK1 and ZtCYR1 impacts in planta growth and gene

transcription

Considering the observation of successful epiphytic growth and stomatal interactions
during infection by Aztcyr1 and Aztbck1 strains, we hypothesised that avirulence in

these strains was caused by defective regulation of genes and processes required
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for intercellular colonisation of the leaf tissue. To investigate this, transcriptome
profiling of both Z. tritici and wheat during infection by the wild type IPO323, Aztcyr1
and Aztbck1 was carried out by RNA sequencing. Infected leaf samples were taken
at 6 dpi to assess differences in gene expression during the late symptomless phase
of wild type infection, when stomatal penetration by most epiphytic hyphae has
occurred and invasive growth is being established in the mesophyll. Samples were
also taken at 9 dpi at the start of the transition to necrotrophic growth by the wild type
IPO323, which has been shown previously to coincide with dramatic transcriptional
changes in both the pathogen and host (Rudd et al., 2015). It must be noted that leaf
samples infected by all Z. tritici strains remained asymptomatic at 9 dpi, before the

wild type began to induce chlorosis between 10 and 12 dpi.

The progress of leaf colonisation by each strain between the sampled time points
was assessed quantitatively through the relative abundance of Z. tritici reads as a
measure of fungal biomass. No significant difference in the proportion of Z. tritici
transcripts was identified between the strains at 6dpi, suggesting that fungal growth
rate up to this point of infection was largely equivalent (Fig. 3a). IPO323 displayed
significant increases in the proportion of reads mapped to the Z. tritici genome at
9dpi (Fig. 3a). This is consistent with previous reports of measurable increases in
fungal biomass as Z. tritici transitions to necrotrophy, changes which are difficult to
detect during early symptomless growth (Keon et al., 2007; Palma-Guerrero et al.,
2016; Rudd et al., 2015). This provides evidence that the infection time points where

samples were taken effectively encompass this transition in infection stage.

In contrast to the wild type, no significant increase in the percentage of reads

mapped to the Z. tritici genome was identified between 6dpi and 9dpi for the Aztbck1
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samples, indicating that there was no significant increase in the relative biomass of
this strain in infected leaf tissue (Fig 3a). This suggests that colonisation of the wheat
leaf by Aztbck1 is inhibited during the symptomless phase of infection. Furthermore,
while Aztcyr1 samples did display an increase in Z. tritici mapped reads between
6dpi and 9dpi (Fig. 3a), the magnitude of this increase was significantly greater in
IPO323 than in Aztcyr1 infected leaves (Fig. 3b). This suggests that the increase in
fungal biomass between these time points was less pronounced for the Aztcyr1

strain.

Principle component analysis (PCA) using global normalised gene expression data
revealed that the Z. tritici transcriptome of each sample could be most easily
distinguished by the strain used for infection (Fig. 3c). The first principle component
(PC1) encompasses most of the variation in gene expression between Aztbck1 and
both Aztcyr1 and IPO323, explaining 76% of the variation in the dataset (Fig. 3c).
Meanwhile the second principal component (PC2), which explains 16% of the
variation in gene expression, appears to comprise the majority of variation between
Aztcyr1 and IPO323, which is accentuated by the progression of infection to 9 dpi
(Fig. 3c). Although global gene expression in Aztcyr1 does appear to change
between the time points, with clear grouping of Aztcyr1 6 dpi and 9 dpi samples, this
change is not as dramatic as the wild type (Fig. 3c). These results suggest that
divergence in global gene expression between IPO323 and Azitcyr1 increases as the
wild type transitions to necrotrophic growth. This led to the hypothesis that disruption
of CAMP signalling impairs the ability of Z. tritici to undergo this necrotrophic switch.
Furthermore, Aztbck1 shows no variation between the sampled time points (Fig. 3c),
which supports the hypothesis that colonisation by Aztbck1 does not progress

beyond the initial invasion of the wheat leaf.
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2.7 ZtBCK1 and ZtCYR1 regulate distinct sets of putative secreted

proteins and candidate effectors in planta

Differential expression analysis led to the identification of 682 DE genes in Aztbck1
at 6 dpi, which increased to 1652 DE genes at 9 dpi compared to the expression
profile in IPO323 (Fig. 4a; Table S3). Furthermore, only three genes were found to
be DE between the sampling time points in Aztbck1, compared to 198 DE genes
identified between 6 and 9 dpi in IPO323 (Fig. 4b; Table S3). These results suggest
that not only is gene expression in the Aztbck1 mutant significantly different to the
wild type during early infection, but that it also displays none of the transcriptional

changes associated with the transition to necrotrophy.

Contrastingly, differential expression analysis found there to be 84 DE genes
between Aztcyr1 and IPO323 at 6 dpi, which increased to 346 DE genes at 9 dpi
(Fig. 4a; Table S3). Furthermore, a set of 182 genes was found to be DE between 6
and 9 dpi in Aztcyr1 (Fig. 4b; Table S3). Although this set showed some similarity to
the genes found to be DE between the time points in IPO323, the majority (66%)
were distinct (Fig. 4c). These results support those from PCA analysis in suggesting
that while global transcription is similar between Aztcyr1 and IPO323 at 6 dpi, the
progression of infection to 9 dpi leads to divergence in gene expression between

these strains.

Given the importance of secreted proteins in the molecular interaction between Z.
tritici and wheat, the differential expression of genes within the recently updated Z.
tritici secretome was investigated (King et al., 2017). The secretome was defined as
those genes within the Rothamsted genome annotation that contain a predicted

signal peptide and do not contain a predicted transmembrane domain. Aztbck1
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displayed widespread downregulation of genes within the secretome compared to
IPO323 at both timepoints during infection (Fig. 4a; Fig. 5a; Table S3). Secretome
genes were significantly enriched in the downregulated genes identified in Aztbck1 at
both 6 and 9 dpi, making up 38.6% and 27.7% in these sets, respectively (Fig. 4a).
Functional annotation based on InterPro domains revealed that these downregulated
secreted proteins include many with enzymatic activities that have been shown to be
induced during wild type Z. tritici infection (Palma-Guerrero et al., 2016; Rudd et al.,
2015). This includes a host of secreted proteases, plant cell wall degrading
enzymes, peroxidases and superoxide dismutases (Fig. 5b-d; Table S3). Overall,
these results suggest that Aztbck1 is unable to induce the transcription of a broad
range of infection-related secreted proteins in response to colonisation of the host

environment.

Furthermore, Aztbck1 displayed widespread downregulation of genes encoding
effector proteins (Fig. 4a; Fig. 6a), predicted from the secretome using EffectorP v2.0
(Sperschneider et al., 2018). This includes the necrosis- and ethylene-inducing
protein 1 (Nepl)-like protein MgNLP (Fig. 6b), which is known to be highly
upregulated during the late symptomless phase but is dispensable for virulence
(Motteram et al., 2009). Crucially, all three LysM-domain containing effectors, which
are known to be Z. tritici virulence factors (Tian et al., 2021), are strongly
downregulated in Aztbck1 at both 6 and 9 dpi (Fig. 6b). This finding suggests that
host colonisation by Aztbck1 is inhibited by the inability of this strain to supress the

host defence response.

The sets of up- and downregulated genes in Aztcyr1 compared to IPO323 from both

time points were also significantly enriched with secretome genes (Fig. 4a), the
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majority of which were functionally uncharacterised. All sets of Aztcyr1 DE genes
were significantly enriched for predicted effectors, the number of which increased
between 6 and 9 dpi (Figure 4a). However, compared to their widespread
downregulation in Aztbck1 strains, the number of DE candidate effector genes was
relatively few, indicating regulation a of more specific infection-related gene set by
the cAMP-PKA pathway. Nineteen of the 27 effectors downregulated in Aztcyr1 at
9dpi were upregulated between 6 and 9 dpi in IPO323 (Fig. 6a; Figure S6a; Table
S3), suggesting that they function in the onset of necrotrophy. To support this, it was
found that all of the effectors in this set of 27 displayed peak expression at the
transition to, or during, the necrotrophic phase in a previous study (Rudd et al.,
2015). As well as protein effectors, two polyketide synthase (PKS) genes and the
hybrid PKS ribosomal peptide synthase HSP1 (Rudd et al., 2015), which could
function in biosynthesis of secondary metabolite effectors, were downregulated in
Aztcyr1 at 9 dpi (Fig. S6b). These results indicate that the expression of effectors is
diverging between Aztcyr1 and the wild type as infection moves towards the

necrotrophic phase.

Another striking difference in expression between Aztcyr1 and IPO323 during
infection was the upregulation of secreted proteases in the mutant (Fig. 5b), which
increased from 5 to 16 between 6 and 9 dpi (Table S3). All of these secreted
proteases were found previously to show peak expression at the transition to
necrotrophy during IPO323 infection, which was proposed to represent a switch to
the use of host proteins as a carbon source (Rudd et al., 2015). Also heavily
represented in the DE genes in Aztcyr1 were the major facilitator superfamily (MFS)
transporters, 18 and 6 of which were down- and upregulated, respectively, at 9dpi in

this strain (Table S2). Of these, 13 were annotated as sugar transporters (Fig. S6c).



379  Also downregulated at 9dpi were three predicted amino acid transporters (Table S3).
380 Together, these results suggest that genes potentially involved in acquisition of

381 nutrients from the host are differentially regulated in Aztcyr1 as infection progresses.

382 As well as showing DE of infection-related secreted proteins, genes involved in cell
383  wall biosynthesis were also found to be differentially regulated in Aztbck1 during

384 infection (Fig. S7). A Z. tritici homolog of the A. fumigatus (3-1-3

385 glucanosyltransferase ZtGel2, involved in the formation of B-1,3-glucan branches,
386 and an a-1,3 glucan synthase were both downregulated in Aztbck1 compared to

387 IPO323 at both time points (Fig. S7a). Along with the sensitivity of Aztbck1 to

388 caspofungin and glucanase enzymes, this suggests that the Z. tritici CWI pathway is
389 responsible for responding to $-1,3-glucan perturbation. Conversely, four chitin

390 synthase genes were found to show significantly higher expression in Aztbck1 during
391 infection (Fig. S7b). Enhanced expression of chitin synthases in Aztbck1 could occur
392 inresponse to cell wall damage caused by the unsuppressed host defence

393 response, regulated by signalling mechanisms other than the CWI pathway.

394 2.8 Transcriptome profiling of wheat reveals different defence response

395 to infection by Aztcyr1 and Aztbck1

396  Analysis of RNA sequencing reads aligned to the wheat genome was used to

397 investigate whether the host response to Aztcyr1 and Aztbck1 infection was altered
398 compared to colonisation by the wild type. Clustering of samples based on global
399 wheat gene expression data was investigated by multi-dimensional scaling (MDS)
400 analysis (Fig. 7a). This revealed that 40% of the variance between the samples can
401  be summarised by the first dimension, which broadly segregates the samples by

402  time point during infection at which they were taken (Fig. 7a). When comparing
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wheat infected with each strain, a total of 3,432 genes were differentially regulated
between 6 and 9 dpi in the same direction (Fig. 7b). TaMPKS3, which is known to be
involved in responses to various abiotic stresses in wheat (Goyal et al., 2018; Zhan
et al., 2017), was significantly downregulated between 6 and 9 dpi in leaves infected
with all the strains (Fig. S8a). Furthermore, many RLK genes showed significant
downregulation between 6 and 9 dpi in all infection experiments (Fig. S8b; Table
S4), expression of which is also known to respond to diverse abiotic stresses (Lehti-
Shiu et al., 2009; Shumayla et al., 2016a; Shumayla et al., 2016b). These findings
suggest that all plants were under environmental stress at 6 dpi, which could have
caused the large proportion of shared variation in global wheat gene expression

observed between the time points in all experiments.

Despite this, samples did cluster depending on the inoculated Z. tritici strain; leaf
samples infected with IPO323 and Aztbck1 clustered separately from Aztcyr1 at 6
dpi, before samples infected by IPO323 diverged further from Aztcyr1 and Aztbck1 at
9dpi (Fig. 7b). Despite the apparent difference in global transcription between
samples infected by Aztcyr1 and IPO323 at 6 dpi from MDS analysis, no statistically
significant DE genes were identified between any strains at this time point (Fig. 7c¢).
However, a set of 396 DE genes were identified between Aztbck1 and IPO323
infected samples at 9 dpi (Fig. 7c; Table S4). Furthermore, 2192 DE genes were

identified between Aztcyr1 and IPO323 infected samples at 9dpi (Fig. 7c; Table S4).

Further analysis of these DE gene sets focused on wheat genes with predicted
functions in defence responses against pathogens. Four genes characterised as
responding to Z. tritici infection in a previous study (Ray et al., 2003) were

significantly downregulated in Aztcyr1 at 9dpi (Fig. 8a). This included the
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pathogenesis-related (PR) proteins the PR1 protein PR-1-4
(TraesCS7D02G161200), the beta-1,3-glucanase PR2 (TraesCS7D02G551400) and
the thaumatin-like protein PR5 (TraesCS7D02G551400), as well as the protein
disulphide isomerase PDI2 (TraesCS4B02G101800). In addition to these genes, 2
other PR1 proteins, 12 other beta-1,3-glucanases (PR2), 10 chitinases (PR3) and 5
other thaumatin-like proteins (PR5) were found to be downregulated in Aztcyr1
infected samples at 9 dpi (Fig. 8b). A subset of these was also downregulated in

Aztbck1 infected samples at 9dpi (Fig. 8b).

Other protein annotations that were highly represented in the downregulated genes
in Aztcyr1 were proteases, including Cys- (Fig. 8b), metallo- and subtilisin-like
families, ubiquitination proteins and drug resistance ABC transporters (Table S3)
Also highly represented in the DE genes within Aztcyr1 infected leaves at 9dpi were
receptor-like kinases (RLKS), including many from the wall-associated, leucine-rich
repeat, cysteine-rich and lectin kinase families (Table S4). These protease and RLK
families were previously characterised as transcriptionally associated with the
transition to necrotrophy (Rudd et al., 2015). Furthermore, three LysM domain GPI-
anchored proteins of the chitin elicitor binding protein (CEBIP), which have been
characterised in chitin-induced defence responses to Z. tritici (Lee et al., 2014), were
also downregulated at 9 dpi in Aztcyr1 (Table S4). TaMPKS3, a plant stress-
responsive mitogen activated protein kinase, which is induced by Z. tritici at the
switch to necrotrophy (Rudd et al., 2008), was also significantly downregulated in
Aztcyr1 compared to IPO323 infected leaves at 9 dpi. These findings strongly
suggest that Aztcyr1 is unable to induce the wheat defence response seen during

wild type infection, despite continuing to grow in the host environment.
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Regarding the host transcriptional response to Aztbck1, many of the aforementioned
defence-related genes were found amongst those downregulated between 6 and 9
dpi specifically in Aztbck1 samples, and not in IPO323 or Aztcyr1 infected leaves
(Table S4). This suggests that the host defence response was induced in Aztbck1
infected leaves at 6 dpi, and subsequently declined at 9 dpi. This is supported by the
fact that many of these defence-related genes then become significantly
downregulated in Aztbck1 infected leaves compared to IPO323 infected samples at
9 dpi (Fig. 8b; Table S4), as the wild type progresses towards the necrotrophic
phase and induction of the hypersensitive host response. Along with the finding that
Aztbck1 fungal biomass does not increase between the time points, this suggests
that Aztbck1 colonisation is inhibited early on by the host defence response, which

starts to subside as less fungal penetration events occur.

3 Discussion

The hyphal growth rate of Aztbck1 was found to be reduced during prolonged growth
on water agar, similar to the previously characterised Amgslt2 mutant (Mehrabi et al.,
2006). This indicates that disruption of the CWI pathway may have a negative impact
on Z. tritici polarised growth, through de-regulation of proteins involved in cell wall
biosynthesis at the hyphal apex. However, despite causing defects in vegetative
growth in vitro, deletion of ZtBCK1 did not influence the ability of Z. tritici spores to
germinate on the leaf surface and grow to the stomatal aperture. Furthermore, no
evidence was found for the growth of Aztbck1 mutants beyond the symptomless
phase, with no increase in fungal biomass detected after 6 dpi. These findings are
consistent with the phenotypes identified in Amgs/t2 mutants, which were unable to

colonise the mesophyll after entering the substomatal cavities (Mehrabi et al., 2006),
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and point towards the role of the CWI pathway in regulating adaptation to the host

environment.

Transcriptome profiling revealed that Aztbck1 was severely inhibited in the
expression of predicted secreted proteins during infection. This included the three Z.
tritici LysM effectors, which are known to have partially redundant functions in the
evasion and tolerance of the chitin-induced wheat defence response, and together
are essential for full Z. tritici virulence (Marshall et al., 2011; Tian et al., 2021).
Furthermore, wheat expression analysis revealed the high expression of numerous
defence-related genes in response to infection by Aztbck1, including many bona fide
PR proteins. Together, these findings suggest that the CWI pathway is involved in
regulation of virulence-associated secreted proteins in response to the host apoplast,
and that this is required for suppression of the host immune response to enable

mesophyll colonisation.

In S. cerevisiae, the CWI pathway is required for controlling cell wall homeostasis in
response to stress caused by hydrolytic enzymes and cell wall perturbing agents, as
well as heat, osmotic and pH stress (Garcia et al., 2009; Kamada et al., 1995;
Reinoso-Martin et al., 2003). Here, Aztbck1 mutants were found to have increased
sensitivity to beta-1,3-glucanase enzymes and the beta-1,3-glucan synthesis-
inhibiting echinocandin fungicide caspofungin, but not to chitin disruption by
calcofluor white. This corroborates previous findings that deletion of MgSLT2
increases sensitivity to glucanase by not chitinase enzymes (Mehrabi et al., 2006).
Furthermore, genes involved in biosynthesis of beta-1,3-glucan and alpha-1,3-glucan
were found to be downregulated in Aztbck1 during infection, while chitin synthases

were upregulated in this strain. Increased chitin synthase expression in Aztbck1



499  could occur in response to the cell wall perturbation caused by the enhanced host
500 defence response to this strain, without the protective influence of LysM effectors
501 against host chitinases (Marshall et al., 2011). These findings suggest that the Z.
502 tritici CWI signalling specifically regulates responses to glucan perturbation, while
503 responses to chitin disruption are regulated by a separate pathway, such as the

504 HOG1 MAPK and calcineurin pathways (Bruder Nascimento et al., 2016; Fortwendel

505 etal., 2010; Munro et al., 2007).

506  Considering this, we hypothesise that the CWI pathway in Z. tritici has adapted to co-
507 regulate secreted proteins involved in cell wall remodelling and virulence-related

508 functions, explaining the downregulation of these genes in Aztbckl during infection.
509 These findings raise the possibility that ZtBCK1 regulates secreted protein

510 expression during infection following cell wall perturbation by host beta-1,3-

511 glucanases in the apoplast. Alternatively, this could occur upon recognition of other
512  environmental stimuli in the apoplast, such as the acidic pH, response to which is

513 known to be controlled by the CWI pathway in yeast (Claret et al., 2005).

514  Unlike Aztbck1 mutants, Aztcyr1 strains continued to grow within the host late into
515 the symptomless phase. This is consistent with the phenotypes of deletion mutants
516 in the catalytic and regulatory PKA subunit genes, which were able to extensively
517  colonise the mesophyll tissue (Mehrabi and Kema, 2006). This suggests that the

518 function of ZtCYRL in Z. tritici infection is distinct from the role of CAMP-PKA

519  signalling in host penetration by appressorium-forming M. oryzae and Colletotrichum
520 sp. (Choi and Dean, 1997; Yamauchi et al., 2004), and even fungal phytopathogens
521  which don’t develop true appressoria such as F. graminearum (Bormann et al.,

522 2014).
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While the Aztcyr1 mutants have completely abolished virulence, previously
characterised deletion strains in the Z. tritici PKA subunit MgTPK2 are still able to
cause delayed necrosis, but do not develop pycnidia (Mehrabi and Kema, 2006).
Furthermore, the sensitivity to high osmolarity and defective melanisation of Aztcyr1
is more similar to those previously observed in Z. tritici mutants lacking the PKA
regulatory subunit (MgBCY1), than the catalytic subunit MgTPK2 (Mehrabi and
Kema, 2006). This suggests that MgTPK2 has redundant function with the second
PKA catalytic subunit gene in Z. tritici MgTPK1 (ZtrittPO323_04g08063), as in other
ascomycete pathogens (Fuller et al., 2011; Hu et al., 2014, Li et al., 2017). Similar
phenotypes of regulatory PKA subunit and adenylate cyclase mutants may be
surprising, such as those observed here and in M. oryzae (Selvaraj et al., 2017), as
BCY1 inhibits the activity of PKA catalytic subunits, while CYR1 activates this
pathway. However, BCY1 is known to control the nuclear localisation of PKA in S.
cerevisiae and C. albicans (Cassola et al., 2004; Griffioen et al., 2001). Combined,
these results suggest that MgBCY1 has additional roles in regulating the PKA

pathway beyond its inhibitory effect, which are required for correct PKA function.

The Aztcyr1 strains were also found to display increased sensitivity to caspofungin
and osmotic stress. Although PKA signalling is inhibited during cell wall stress in S.
cerevisiae (Garcia et al., 2017; Garcia et al., 2019), positive regulation of the cell
wall stress response through crosstalk between the CWI and PKA pathways was
identified in Cryptococcus neoformans (Donlin et al., 2014). Furthermore, PKA has
been shown to facilitate cell wall remodelling in response to cell wall and osmotic
stress in A. fumigatus, through its involvement in carbohydrate mobilisation in

conjunction with the high osmolarity glycerol (HOG) pathway (de Assis et al., 2018;
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Shwab et al., 2017). This provides a potential mechanism by which PKA signalling

may contribute to the response to cell wall and osmotic stress in Z. tritici.

Along with the previously characterised role of PKA in Z. tritici asexual development
(Mehrabi and Kema, 2006), results presented here suggest that cAMP signalling is
required for the induction of necrosis during infection. A similar function of the cAMP-
PKA pathway in controlling invasive growth has been identified in M. oryzae, in
which AcpkaAcpk1 mutants were unable to cause necrosis when injected into the
rice leaf (Li et al., 2017). Transcriptome analysis found that gene expression in
Aztcyr1 was similar to IPO323 during the symptomless phase at 6 dpi, but diverged
as infection moved towards the transition to necrotrophy. This divergence in
expression was particularly noticeable in predicted effector genes, including many
which display peak expression around the necrotrophic switch (Rudd et al., 2015).
Furthermore, analysis of wheat gene expression revealed that Aztcyr1 infected
leaves show widespread downregulation of defence-related genes compared to wild
type infected leaves at 9 dpi. This strongly suggests that Aztcyr1 is unable to induce
the immune response required for the onset of necrosis. Those effector genes which
are strongly downregulated in Aztcyr1 at 9 dpi may therefore be involved in inducing

the host hypersensitive response, warranting further functional characterisation.

4 Conclusions

This study provides evidence that the CWI pathway regulates the transcriptional
response to the host environment in Z. tritici, which goes beyond genes involved in
cell wall remodelling to activate expression of effector proteins. This includes
virulence factors known to be required for suppression of the chitin-triggered host

immune response. This points towards the possible co-regulation of the cell wall
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stress response with virulence-related genes in response to the host mesophyll
environmental. Furthermore, this study implicates the PKA pathway in controlling the
switch to necrotrophic growth in addition to its previously characterised function in
asexual development. The absence of ZtCYR1 influences the expression of putative
effectors and genes involved in accessing nutrients around the transition to
necrotrophy, which may disrupt the induction of host necrosis. These findings further
our understanding of how CWI and cAMP signalling contribute to Z. tritici
pathogenicity. Further study is required into the signals which activate both pathways

during infection, as well as the regulatory components that detect these signals.

5 Experimental Procedures

5.1 Strains and growth conditions

The wild type Z. tritici strain IPO323 was used in this study. Yeast-like Z. tritici cells
of were stored long-term in suspensions of 50% glycerol at -80°C and cultured on
yeast extract peptone dextrose (YPD; 1% yeast extract, 2% peptone, 2% glucose)
agar at 19°C under darkness for 5 days before use in transformations, infection

experiments and in vitro phenotypic assays.

5.2 Whole genome resequencing

To extract DNA, 100 mg of Z. tritici yeast-like cells was collected from YPD agar
cultures, snap frozen in liquid nitrogen, and ground in a pestle and mortar. DNA was
extracted using the illustra™ Nucleon Phytopure Genomic DNA Extraction Kit (GE
Healthcare, UK) following the manufacturers protocol, including the RNAse A
digestion step. Extracted DNA was then further purified using the DNeasy Plant Mini

Kit (Qiagen). Whole genome resequencing was carried out by BGI Tech Solutions
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Co., Ltd. (Hong Kong) using their BGISEQ-500 platform for paired-end 150 bp reads.
Bioinformatic analysis is described in detail in Supplementary Methods. In brief,
reads were trimmed using fastp (Chen et al., 2018) and aligned with the IPO323
genome with Bowtie 2 (Langmead and Salzberg, 2012), before variant calling using

FreeBayes (Garrison and Marth, 2012).

5.3 Construction of plasmid vectors

The plasmids pC-HYG-CYR1KO and pC-HYG-BCK1KO were constructed by
homologous recombination in yeast using the plasmid pC-HYG-YR, following the
previously described method (Sidhu et al., 2015). PCR amplification of left flank (LF)
and right flank (RF) regions from either side of the ZtBCK1 and ZtCYR1 coding
sequences was carried out using the primer pairs ZtCYR1-LF-F/R, ZtCYR1-RF-F/R,
ZtBCK1-LF-F/R and ZtBCK1-RF-F/R (Table S1). LF and RF amplicons were
transformed into S. cerevisiae alongside the pC-HYG-YR vector, which had been
linearised by restriction digestion with the enzymes EcoRI and Hindlll (New England
Biolabs, UK). The sequences of flanking regions were confirmed to be correct in the
completed vectors by Sanger sequencing. These vectors were transformed into Z.
tritici via AtMT following the protocol deposited on protocols.io (Child and
Helmstetter, 2022), which describes modifications to the original method (Zwiers and

de Waard, 2001).

5.4 Enzymatic spore lysis assays

The ability of Z. tritici strains to withstand disruption of cell wall integrity was
assessed using Lyticase from Arthrobacter luteus (Sigma-Aldrich, UK). Cells were
harvested from YPD agar cultures and suspended at a concentration of 5x10°

spores/ml in sterile water containing a range of concentrations of lyticase enzyme,
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following a two-fold dilution from 40 U/ml to 0.625 U/ml. Suspensions were incubated
at 25°C for 2 h with 120 rpm shaking, before cell suspensions were diluted 1:40 and
100 pl plated onto YPD agar plates. Viability of Z. tritici after lyticase treatment was
assessed by observing growth after 5 days at 19°C. The experiment was repeated 3

times.

5.5 Wheat infection assays

Wheat leaves (cultivar Riband) were infected with Z. tritici strains IPO323, Aztcyr1.4
and Aztbck1.4 at a concentration of 5x10° spores/ml following the previously
described method (Motteram et al., 2009). Leaf samples for RNA extractions were
harvested at 6 and 9 days post infection (dpi), with each technical replicate being
generated from 6 independent seedling (biological replicate) leaf sections (~6¢cm
each) infected with the same Z. tritici strain, and frozen immediately in liquid nitrogen
before storage at -80°C. Three technical replicates of each experiment was carried

out.

5.6 RNA sequencing

RNA was extracted from Z. tritici-infected wheat leaf tissue using TRIzol™ reagent
(Fisher Scientific, UK). Samples were ground in liquid nitrogen using a pestle and
mortar and RNA was extracted with TRIzol™ reagent, following the manufacturer’s
protocol apart from phase separation with 1-Bromo-3-chloropropane. RNA was
purified using the RNeasy Plant Mini Kit (Qiagen), following the “RNA Cleanup”
protocol including an on-column DNA digestion step using the RNase-Free DNase

Set (Qiagen).
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Libraries were prepared using the TruSeq HT stranded mRNA preparation kit
following the manufacturer’s protocol, and sequenced as paired-ends using an

lllumina Novaseq 6000 on an S4 flow cell at 2x150bp.

5.7 Alignments and differential expression analysis

Details of RNA sequencing analysis are given in Supplementary Methods. In brief,
reads were adapter- and quality-trimmed with fastp, before alignment to the Z. tritici
genome (indexed with gene annotations from Rothamsted Research; King et al.,
2017) and calculation of gene counts was carried out with STAR (Dobin et al., 2013),
Normalisation of gene counts and differential expression analysis was carried out
using DESeq?2 (Love et al., 2014), identifying differentially expressed (DE) genes
between each mutant strain and the wild type at each time point, and between 6 and
9 dpi for each strain. Wald test p-values were adjusted for multiple testing using the
Benjamin—Hochberg (BH) correction method, and genes were deemed as DE when

padj<0.01.

RSEM (with alignment using STAR) was chosen for wheat transcript quantification
as it factors in the high number of multi-mapped reads, which result from the
polyploidy of the wheat genome, using an expectation maximization (EM) algorithm
(Deschamps-Francoeur et al., 2020; Li and Dewey, 2011). Expected gene-level
counts were filtered and normalised using the trimmed mean of M-values (TMM)
method in EdgeR (Robinson et al., 2010; Robinson and Oshlack, 2010), before the
limma package was used for differential expression analysis (Ritchie et al., 2015).
Genes were identified as DE between treatments using the moderated t-test within
the topTable function, testing whether the log2-fold-change values for a particular

contrast differ from O at a BH-corrected padj-threshold of 0.01.
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Figure Legends

Figure 1. Targeted deletion of ZtBCK1 and ZtCYR1 leads to abolishment of Z.
tritici virulence. (a) Disease symptoms on wheat leaves after 21 and 35 days post
infection by Aztcyr1 and Aztbck1 strains compared to wild type IPO323, C5 and T21.
(b) Epiphytic Z. tritici hyphae stained with calcofluor white on the leaf surface 3 days
post inoculation. Magnified images detailing hypha-stomata interactions (arrows),

with guard cells indicated by dotted oval. Scale bars = 40 ym.

Figure 2. Vegetative growth phenotypes of ZtBCK1 and ZtCYR1 deletion
strains. (a) Z. tritici grown for 10 days on YPD at 19°C, 5 ul droplets of a 10-fold
serial dilution starting at a concentration of 5x108 spores/ml. (b) Blastospores grown
on YPD for 6 days, with appearance of swollen cells (arrows) in Aztbck1. Scale bar =
20 um. (c) Growth on potato dextrose agar (PDA) at 28°C and 19°C for 7 days and
radial hyphal growth on water agar (WA) at 19°C for 14 days. (d) Z. tritici cell
suspensions exposed 20 U/ml of Lyticase enzyme from Arthrobacter luteus for 2 h at
25 °C before being cultured on YPD agar for 5 days at 19 °C, showing loss of

viability of Aztbck1 strains at lower enzyme concentrations than the wild type.

Figure 3. In planta growth and global gene transcription are impacted by
deletion of ZtBCK1 and ZtCYRL1. (a) Percentage of RNA sequencing reads
uniquely mapped to the Z. tritici genome across infection time points in each strain,

as an indication of in planta fungal biomass. Mean values across each repeated
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sample are plotted along with the standard error. Statistically significant differences
between percentages across time points in each strain from paired t-test are
indicated (*p<0.05). (b) Change in the percentage of uniquely mapped reads
between 6 and 9 dpi in each experimental repeat grouped by strain, as an indication
of growth between these time points. P-value from one-way ANOVA is given and
statistically significant differences from pairwise t-test comparison of mutants to
IPO323 are indicated (*p<0.05). (c) Principal component analysis of global

normalised gene expression data.

Figure 4. Aztbck1 shows widespread downregulation of secreted effectors and
Aztcyr1 gene expression diverges from IPO323 as infection progresses. MA
plots displaying differentially expressed genes (blue points) between (a) mutant
strains (Aztbck1 and Aztcyr1) and IPO323 at 6 dpi and 9 dpi, and (b) between 9 dpi
and 6 dpi in IPO323 (left), Aztbck1 (middle) and Aztcyr1 (right). The number of
differentially expressed genes in each comparison are detailed, as well as the
number of secretome and predicted effector genes in those differentially expressed
sets. Asterisks indicate significant enrichment of these gene categories amongst DE
gene sets determined using Fisher’s exact tests (p<0.01). (c) Comparison of genes

found to be differentially expressed between 6 and 9 dpi in IPO323 and Aztcyr1.

Figure 5. Differential expression of secreted proteins in Aztbck1 and Aztcyr1.
Heat maps displaying log-fold change in normalised expression values relative to the
mean normalised expression for differentially expressed (a) secretome genes (b)
proteases (c) peroxidase/superoxide dismutases and (d) plant cell wall degrading
enzymes (PCWDESs). Column labels (e.g. B6_2) indicate the sample strain
(B=Aztbck1, C=Aztcyr1, 1=1IPO323), time point (6 dpi and 9 dpi) and replicate (2, 3

and 4).
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Figure 6. Putative secreted effector genes show differential regulation in
Aztbck1 and Aztcyr1. (a) Heat map displaying log-fold change in normalised
expression values relative to the mean normalised expression for differentially
expressed effectors in each sample. Column labels (e.g. B6_2) indicate the sample
strain (B=Aztbck1, C=Aztcyr1, I=IPO323), time point (6 dpi and 9 dpi) and replicate
(2, 3 and 4). (b) Mean of the normalised count values for MgNLP
(ZtritiPO323_04904358), Mg3LysM (ZtritiPO323_049g03143), MglLysM
(ZtritiPO323_04912742) and MgXLysM (ZtritiPO323_04g12740) in each strain at 6

dpi and 9 dpi. Error bars represent standard error.

Figure 7. Global wheat gene expression analysis during infection. (a)
Multidimensional scaling (MDS) plot on global wheat gene expression data. (b)
Comparison of genes differentially expressed between 6 dpi and 9 dpi in leaves
infected with IPO323, Aztbckl and Aztcyrl. (c) MA plots displaying differentially
expressed genes between leaves infected with Aztbck1 at 6 dpi (top left) and 9 dpi
(bottom left) and Aztcyr1 at 6 dpi (top right) and 9 dpi (bottom right), using leaves

infected with IPO323 each time point as a reference.

Figure 8. Defence-related wheat genes show differential regulation in Aztbck1
and Aztcyr1 infected leaves. (a) The mean counts per million (CPM) of each gene
across samples infected with each strain at 6 dpi and 9dpi is plotted on a log scale,
with error bars representing the standard error. (b) Heat maps displaying log-CPM
values relative to the mean of each row, scaled so that the standard deviation is one
(z-score). Plots display genes of defence-related families that were differentially
expressed in Aztcyrl infected samples at 9dpi. Asterisks indicate differential
expression in Aztbck1 infected samples at 9 dpi. Column labels (e.g. B6_2) indicate

the sample strain (B=Aztbck1, C=Aztcyr1, I=IPO323), time point (6 dpi and 9 dpi).
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Supporting Information

Table S1. Primers used in this study

Supplementary Methods. Details of bioinformatics methods used in this study.

Figure S1. identification of avirulent Z. tritici T-DNA insertion strains.

Figure S2. Strains C5 and L2 contain T-DNA insertions at targeted loci and a

nonsynonymous point mutation in the ZtCYR1 gene.
Table S2. Polymorphisms identified in avirulent T-DNA insertion strains.

Figure S3. Identification of T-DNA insertion upstream of, and deletion within,

ZtBCK1 in the avirulent Z. tritici strain T21.
Figure S4. Diagrams showing strategy for deletion of ZtCYR1 and ZtBCK1.

Figure S5. In vitro phenotypes of Aztbckl and Aztcyrl under cell wall and

osmotic stress.

Table S3. Differentially expressed Z. tritici genes during infection by Aztbck1
and Aztcyr1 compared to IPO323 at 6 and 9 dpi, and between the time points

for each strain.

Figure S6. Differentially expressed effector, polyketide synthase and major

facilitator superfamily genes in Aztcyr1.

Figure S7. Cell wall biosynthesis enzymes are differentially expressed in

Aztbckl.

Figure S8. Receptor-like kinases and TaMPK3 expression is downregulated in

Aztbck1 and Aztcyr1 at 9dpi.



1070 Table S4. Differentially expressed wheat genes during infection by Aztbck1 and

1071  Aztcyr1 compared to IPO323 at 9 dpi, and between 6 and 9 dpi for each strain.
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