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Abstract
BACKGROUND: The evolution of non-target site resistance (NTSR) to herbicides leads to a significant reduction in herbicide control of agricultural weed species. Detecting NTSR in weed populations prior to herbicide treatment would provide valuable information for effective weed control. While not all NTSR mechanisms have been fully identified, enhanced metabolic resistance (EMR) is one of the better studied, conferring tolerance through increased herbicide detoxification. Confirming EMR towards specific herbicides conventionally involves detecting metabolites of the active herbicide molecule in planta, but this approach is time consuming and requires access to well-equipped laboratories.
RESULTS: In this study, we explore the potential of using molecular biomarkers to detect EMR before herbicide treatment in black-grass (Alopecurus myosuroides).  We test the reliability of selected biomarkers to predict EMR, and survival after herbicide treatments in both reference and 27 field-derived black-grass populations collected from sites across the UK. The combined analysis of the constitutive expression of biomarkers, and metabolism studies confirmed three proteins namely, AmGSTF1, AmGSTU2 and AmOPR1, as differential biomarkers of EMR toward the herbicides fenoxaprop-ethyl and mesosulfuron in black-grass. 
CONCLUSION: Our findings demonstrate that there is potential to use molecular biomarkers to detect EMR toward specific herbicides in black-grass without reference to metabolism analysis. However, biomarker development must include testing at both transcript and protein levels in order to be reliable indicators of resistance. This work is a first step towards more robust resistance biomarker development, which could be expanded into other herbicide chemistries, for on-farm testing and monitoring EMR in uncharacterised black-grass populations. 
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1. Introduction
The evolution of non-target site resistance (NTSR) is one of the major causes of cross-resistance to multiple herbicides with differing modes-of-action (MoA) in grass weeds. The widespread evolution of NTSR in wild grass species including black-grass (Alopecurus myosuroides), rigid ryegrass (Lolium rigidum), Italian ryegrass (Lolium multiflorum), wild oat (Avena fatua) and Brome species (Anisantha sp.), results in a significant reduction in herbicidal weed control in agricultural fields1–4. In the UK, widespread herbicide resistance to several ALS-inhibitors (HRAC Group 2) and ACCase-inhibitors (HRAC Group 1) in black-grass populations has been shown to result in considerable economic and yield losses5.  While rotations and mixtures of different herbicide chemistries have been implemented to constrain the selection of mutations in herbicide target genes, target-site resistance (TSR), this approach may exert an increased selective pressure on black-grass to evolve more ‘generalist’ NTSR mechanisms, capable of conferring resistance to multiple MoAs1. Recent evidence for reduced glyphosate sensitivity in UK black-grass populations with NTSR to other herbicide modes-of-action is a further cause of major concern for the prospective total loss of herbicide control in this species6. The ability to rapidly detect NTSR, and adapt management strategies accordingly, is therefore now needed to help mitigate against further increased losses from NTSR multiple resistance in this species. 
Based on current understanding, NTSR is typically a multigenic trait conferred by diverse biological processes that protect weeds from herbicide toxicity7–9. Among these processes, enhanced detoxification of herbicides is one of the predominant mechanisms, commonly referred to as enhanced metabolic resistance (EMR)10. NTSR and EMR in grass weeds are typically detected through dose response experiments in glasshouses, followed by analysis of herbicide detoxification via metabolism studies conducted using liquid chromatography and mass spectrometry in laboratories11,12.  While these approaches allow for the accurate detection of NTSR and EMR, major drawbacks include (1) long processing times, and (2) the necessity for well-equipped glasshouses and laboratories. To begin to address these drawbacks, the concept of molecular biomarkers of NTSR/ EMR has been proposed, which could be developed into field diagnostic kits. 
Molecular biomarkers (DNA, RNA, and protein) are commonly used in health care and clinical research to detect multidrug resistance in cancer cells. This information facilitates physicians to develop specific mitigating treatments for patients13–15. The main benefits of biomarker applications are the quick turnaround time, low cost, and versatility to detect biomarkers from blood and tissue samples. There is now interest in the potential for adopting molecular biomarkers as the point-to-care (POC) diagnosis of NTSR and EMR in grass weeds on-farm or close to the farm. The POC concept is designed to provide information for advisors and farmers on the potential of resistance development and assist in the decision to test samples in the laboratory and greenhouse. These will help to reduce the cost of testing and may allow farmers to develop specific weed management strategies for each field on a farm to both reduce the risk of resistance evolution and continued use of ineffective herbicide chemistries. For the past decade, many genes/proteins have been identified by transcriptome and proteome in multiple NTSR/EMR black-grass populations16,17. The consistent increased expression of these genes/proteins in NTSR/EMR black-grass suggest that these genes/proteins have a potential to be biomarkers.    
Several studies have reported that a glutathione transferase phi (F) class 1 (AmGSTF1) protein is good candidate biomarker for NTSR in black-grass1,16–18. However, while a significant elevation at the constitutive level of AmGSTF1 protein is a reliable biomarker for NTSR, this protein alone is not sufficient to pinpoint specific resistance to individual herbicide groups17,18.  In cases of multidrug resistance, a specific combination of biomarkers is commonly used to detect particular resistance mechanisms directed to specific drugs13. Therefore, we rationalised that this approach could also be used to identify transcript and protein biomarkers of NTSR to specific herbicides. 
	In order to develop functional and reliable biomarkers for resistance it is necessary to (i) characterise key in-plant targets which are significantly associated with a resistance phenotype, (ii) confirm their applicability across and within a broad range of populations, and (iii) identify the most reliable physiological level at which they should be measured (i.e., DNA sequence, transcript expression, protein abundance). Based on accumulated information from various weed species, seven enzyme families including cytochrome P450 monooxygenases (CYP450s), glutathione transferases (GSTs), UDP-glucuronosyltransferases (UGTs), malonyl transferases (MaT), ATP-binding cassette (ABC) transporters, and Multidrug And Toxic Compound Extrusion (MATE) transporters are major contributors to EMR9,19, and could potentially be exploited for biomarker discovery. Several genes within these families have now been implicated in the black-grass NTSR mechanism through transcriptomic analysis of multiple populations16,20 . Nevertheless, variability in these previously reported markers has been observed across and within NTSR populations from different origins16, and their relationship with the metabolism of specific herbicides with differing MoAs remains to be determined. Similarly, while transcriptomic analysis has been the predominant means to study NTSR-related genes, there is growing evidence of pre- and post-transcriptional regulation that influences the utility of such biomarkers when determined at the plant protein level21.
	This study explores the suitability of molecular biomarkers to detect EMR in black-grass. The detoxification-related genes identified in a previous study16 were used to test this concept. Enhanced metabolism towards an aryloxyphenoxypropionate (fenoxaprop-ethyl; HRAC Group 1) and a sulfonylurea (mesosulfuron-methyl; HRAC Group 2) was used to test associations between potential EMR biomarkers and detoxification as determined in planta of these two herbicides which differed in their MoA.  Additionally, the predictive ability of candidate biomarkers for EMR was assessed at both the level of the gene transcript, and in-plant protein concentration. The outcomes of this study provide important information to support the development of molecular biomarkers for EMR detection and diagnosis in NTSR black-grass. 

2. Materials and methods
2.1 Plant materials and growth conditions
Two widely studied black-grass reference populations were used throughout these analyses to provide individuals with a known herbicide sensitive (Rothamsted), and broad-ranging non-target site resistance (NTSR, Peldon) phenotype16. A further reference population ‘Notts’ which exhibits ACCase target-site resistance but not NTSR, was used as a secondary herbicide sensitive standard for biomarker verification. Additionally, 27 field collected black-grass seed populations were used for wider testing of biomarkers. These populations were collected as seeds from winter wheat fields across the UK arable cropping area between July and August 2014 as detailed by1.
In all cases, to generate seedlings for herbicide screening and tissue sampling, initial propagation involved germination in Petri dishes lined with filter paper (Whatman N°1) soaked with 2 g L-1 KNO3, placed within an incubator (MLR-350, Sanyo, Tokyo, Japan) fitted with fluorescent bulbs (MASTER TL-D 90 De Luxe 36W/965 1SL/10; (Philips, Eindhoven, The Netherlands)) for seven days on a 17°C 14h day, 11°C 10h night cycle. For herbicide phenotyping, germinated seedlings were transplanted into 9cm pots filled with a Kettering loam soil supplemented with 2 kg m2 Osmocote fertilizer, with six seedlings per pot. Pots were maintained in a glasshouse at 18°C/12°C for 14h/10h day/night with supplementary lighting if ambient light levels were low (230W LED; Kroptek, London, U.K.). A single pot was used as one biological replicate and three biological replicates (three pots) were used for each herbicide or control treatment. Pots were arranged in a randomised block design and plants were grown until they reached BBCH 11 growth stage (first true leaf)22 before herbicide treatment.  

2.2 Biomarker selection
The RNA biomarkers used in this study were identified from a wider set derived from RNA sequencing of the herbicide sensitive and NTSR black-grass populations16. From this set, 24 RNA contigs encoding genes involved in herbicide detoxification were selected (Table 1), and the relative expression of each biomarker was quantified using quantitative real-time PCR (RT-qPCR), see supplementary information for method. Briefly, herbicide sensitive and NTSR reference populations were grown to BBCH 13-15 before harvesting. Tissue samples were immediately frozen in liquid Nitrogen and stored at -80°C until analysis. 15 individual plants were pooled together to make 1 biological replicate and 3 biological replicates were used for total RNA isolation and RT-qPCR analysis.  All 24 contigs were confirmed to have significantly increased (>2- fold) expression in the NTSR population compared to the herbicide sensitive population.
To narrow this down further, five genes from amongst this set were chosen based on (i) gene family, (ii) relative expression between herbicide sensitive and NTSR, and (iii) prior information on their association with NTSR. The chosen genes were a CYP450, two GSTs, a UGT and an ABC transporter (Table 2). In addition, a transcript encoding an oxidoreductase similar to 12-oxophytodienonate reductase-1 (OPR1), was identified. Even though the function of OPR1 in herbicide detoxification is unclear, its significantly increased expression was recently reported in NTSR black-grass20. Therefore, we included AmOPR1 as a further sixth molecular biomarker for EMR. These six genes were used as putative biomarkers throughout the remainder of this study (Table 1). 
2.3 Herbicide phenotyping of black-grass populations
To provide population-level herbicide resistance phenotypes for analysis, a glasshouse whole-plant resistance assay was used. Black-grass plants (BBCH  11) were sprayed with either 68.75 g ai ha-1 of the aryloxyphenoxypropionate herbicide, fenoxaprop-p-ethyl (applied as the commercial formulation ‘Polecat’), or 10.8 g ai ha-1 of the sulfonylurea herbicide mesosulfuron (applied as the commercial formulation ‘Atlantis’ which also contains iodosulfuron), this treatment is referred to from this point as ‘mesosulfuron’. The fenoxaprop dose represents the UK field-rate, while the mesosulfuron dose is 75% of the UK field rate. The slightly reduced dose of mesosulfuron was used due to increased herbicide efficacy when spraying this active in laboratory conditions compared to the field. Plants were sprayed using a laboratory track sprayer fitted with a Teejet 110015VK ceramic nozzle. Plants were maintained for 3-weeks after spraying before assessing survival. The number of surviving plants from each pot were counted and the average survival rate from three biological replicates (3 pots with 6 plants per pot) was used for calculating percentage survival of each black-grass population. 
2.4 Herbicide metabolism of field-collected populations (HPLC)
To provide an assessment of herbicide metabolism across the 27 populations, the quantification of radiolabelled herbicides and their metabolites was assessed using radio-HPLC. Plants were grown to BBCH11, and samples comprising a shoot and leaf taken from 16 unsprayed plants per population, per herbicide tested. Samples were placed in a 96-deep-well plate filled with 600 µL water solution containing 400 000 dpm 14C-radiolabelled fenoxaprop (specific activity 4.02MBq mg−1) or 14C-radiolabelled mesosulfuron (specific activity 4.02MBq mg−1). Samples were incubated for 16 h at 28 °C under illumination. After 16 h, samples were removed from plates and washed with purified water for mesosulfuron-treated samples, or with 80% (v/v) acetone for fenoxaprop-treated samples. All the following steps were then performed in 96-well plates. Leaf samples were extracted twice with 600 μL methanol and once with 90% (v/v) acetonitrile using a tissue-lyser system (Qiagen, NL). After each extraction, plates were centrifuged at 6000 x g for 10 minutes. The supernatants from each extraction were collected and combined. The extracts were evaporated to dryness using a vacuum evaporator (Biotage, TurboVap) and each resuspended in 200 μL of 90% (v/v) acetonitrile prior to filtration using a MultiScreen Solvinert 96 Well Filter Plate (Merck, Germany). The filtrate was analysed to determine the relative quantities of herbicide and related metabolites after their separation using a JASCO XL-C 3158 AS fitted with a Phenomenex Kinetex (2.6 μm C18 100A) column. 80 µL samples were injected and metabolites resolved using a gradient of 0.05% (v/v) formic acid (FA) + H2O (Solvent A) and acetonitrile (ACN) + 0.05% (v/v) FA (Solvent B). Further details of the gradient settings for fenoxaprop and mesosulfuron analysis are described in Supplementary Tables S2 and S3. The radioactivity was measured using a Raytest Miranda detector. In each case total metabolism was calculated by determining the proportion of parent herbicide remaining (peak area). Examples of the chromatograms for fenoxaprop-ethyl and mesosulfuron metabolism are shown in Supplementary Figures S1 and S2.
2.5 Transcript expression of putative biomarkers
Expression of the six chosen putative biomarkers was assessed from all field and reference populations at the gene transcript level. Plant tissue comprising 2 cm leaf tips from unsprayed plants at BBCH11 were harvested into aluminium foil and flash-frozen in liquid nitrogen, then stored at -80°C before further processing. Samples were taken from three biological replicates (three pots with ten plants per pot) per population.  The plant tissue was then ground in liquid nitrogen before transferring 100 mg to a chilled 1 ml microcentrifuge tube; any remaining tissue was stored at -80°C in a second microcentrifuge tube. Total RNA was extracted using the Qiagen RNeasy Plant Mini Kit (Qiagen, NL) following the manufacturer’s guidelines. The extracted RNA was then stored at -80°C. cDNA was synthesized from 0.5 μg total RNA using Invitrogen superscript IV (Invitrogen, USA) with an Oligo d(T)20 primer according to the manufacturer’s guidelines.  cDNA samples were then stored at -20°C. 
Normalised expression of the six putative biomarker genes (Table 2) was quantified using an Applied Biosystems 7500 Fast Real-Time PCR System in 96-well semi-skirted plates (STARLAB, UK). Reaction mixes were prepared using Takyon Low Rox SYBR MasterMix dTTP Blue. 2.5μl of cDNA template (1:25 dilution) was added to 10μl Takyon MasterMix, 2μl 100nM forward primer, 2μl 100nM reverse primer and 3.5μl nuclease-free water. qPCR primer sequences and cycling condition are listed in Supplementary Tables S4 and S5. Relative normalized gene expression was calculated using the standard curve method.  Briefly, a four-point dilution series of the cDNA produced from the Rothamsted (herbicide sensitive) population was used to quantify the efficiency of each primer pair, subsequently the raw threshold cycle (Ct) values were adjusted to account for primer amplification efficiency. The two reference genes used were ubiquitin (AmUBQ) and glyceraldehyde 3-phosphate dehydrogenase (AmGAPDH)23.
2.6 Protein immunoblots (Western Blot)
~100 mg of pulverized above ground tissue of black-grass (BBCH 13-15) were extracted in 1 mL extraction buffer (100mM Tris-HCl, 150nM NaCl, 5mM EDTA, 5% glycerol, 2% PVPP, 10mM DTT, and pH 7.5) as described1. Approximately 75 µg protein was then resolved by electrophoresis on a 12% SDS-polyacrylamide gel, with polypeptides then transferred onto a polyvinylidene difluoride (PVDF) membrane using a dry blotting system (iBlot system, ThermoFisher Scientific, UK). The PVDF membrane was then processed as previously described,4 using antisera raised to AmGSTF1, AmGTSU2 and AmOPR1 as the primary antibody and anti-rabbit IG was used as secondary antibody. The protein signal was developed using BCIP/NBT premixed solution (Sigma Aldrich) and visualised with Chemidoc system (BioRad). 
2.7 Protein concentration of putative biomarkers (ELISA)
Following transcript analysis (Section 2.6), the three most promising candidate biomarkers; AmGSTF1, AmGSTU2 and AmOPR1, were then assessed across all populations at the level of leaf protein concentration. Total protein from foliar tissues were extracted as above. For AmGSTF1, the assays were performed as per Comont et al1. For AmGSTU2 and AmOPR1, indirect ELISA was used. 50 µg mL-1 antigens (total protein extracted from foliar tissue) were diluted in carbonate bicarbonate buffer (Sigma Aldrich). 100 µL of antigen per well were added to a Microwell-96 well plate (NUNC, Thermofisher) and incubated at 4°C overnight. Plates were washed with PBS-Tween (0.05% v/v) buffer using a microplate washer system (ThermoFisher Scientific). After four washes, plates were blocked in 1%BSA in PBS buffer for 1h at 37°C. After four washes with PBS-Tween buffer, 100 µL of AmGSTU2 or AmOPR1 antisera (1 µg mL-1) were added to each well and plates were incubated for 1h at 37°C. After four washes, 100 µL of the secondary antibody, anti- rabbit HPR, was added before incubating for 1h at 37°C. After four washes, 200 µL of SIGMAFAST OPD substrate (Sigma Aldrich) was added to each well, and plates were incubated in the dark at room temperature for 30 minutes. The signal was read at an optical density of 450nm (OD450) using a HIDEX-sense microplate reader (Hidex). A standard curve for the AmGSTU2 recombinant protein (four-parameter logistic regression) was made using Prism software (Version 10.1.1, Graphpad). AmGSTU2 protein concentration in plant samples was calculated from the standard curve. The semi-quantitative approach to compare the relative level AmOPR1 protein among the samples were conducted by determining OD450 signal in a similar concentration of total protein (50µg) from each sample.  
2.8 Pyrosequencing of SNPs
SNPs in the ALS and ACCase genes known to confer TSR were quantified using pyrosequencing24. 24 plants per population were sequenced (n = 720) at two loci in the ALS gene and five loci in the ACCase gene. The PCR amplification and pyrosequencing method was as described in Comont et al. 1, sequences and cycling conditions are shown in Supplementary Table S6.
2.9 Statistical analysis
 The relationship between enhanced metabolism and transcript expression was analysed with linear regression. The measure of enhanced metabolism used for these models was the proportion of parent herbicide remaining (peak area), detected by HPLC following incubation with 14C labelled fenoxaprop or mesosulfuron. Enhanced fenoxaprop metabolism and enhanced mesosulfuron metabolism were regressed in separate models against the transcript expression of each of the six biomarkers (AmGSTF1, AmGSTU2, AmCYP450, AmOPR1, AmUGT, and AmABC). Models were fitted in R version 4.2.1.
The relationship between resistance phenotype (proportion of plants surviving herbicides applied at field rate) and transcript expression or protein abundance was analysed with generalised linear regression (GLM) with a logit link function. As the resistance phenotype of a population is likely to result from a combination of TSR and NTSR mechanisms, ACCase TSR frequency was included in the fenoxaprop resistance models and ALS TSR frequency was included in the mesosulfuron resistance models. TSR frequency is defined as the proportion of plants with one or more single nucleotide polymorphisms (SNPs) in the specified gene. Fenoxaprop resistance phenotype was regressed against the transcript expression of each of the six biomarkers (AmGSTF1, AmGSTU2, AmCYP450, AmOPR1, AmUGT, and AmABC), combined with ACCase TSR frequency, and against the protein abundance of the three most promising biomarkers (AmGSTF1, AmGSTU2, and AmOPR1) also in combination with ACCase TSR frequency. Mesosulfuron resistance phenotype was regressed against the transcript expression of each of the six biomarkers (AmGSTF1, AmGSTU2, AmCYP450, AmOPR1, AmUGT, and AmABC), combined with ALS TSR frequency, and against the protein abundance of the three most promising biomarkers (AmGSTF1, AmGSTU2, and AmOPR1) also in combination with ALS TSR frequency. All GLM models were fitted in R version 4.2.1 with the ‘lme4’ package25.
 
3. Results
3.1 Validation of molecular biomarkers to predict EMR in reference black-grass populations
All 24 putative NTSR	associated contigs corresponding to the selected biomarker genes were confirmed to have significantly increased (>2- fold) expression in the reference NTSR population compared to the reference herbicide sensitive population (Table 1). Additionally, in a recent study, enhanced constitutive expression of these potential biomarker genes corresponded with the increased metabolism in the NTSR (Peldon) population of fenoxaprop and chlortoluron, which are known to be detoxified by glutathione transferases (GSTs) and cytochrome P450s respectively26. From the 24 DNA-contigs identified as biomarker candidates (Table 1), six corresponding genes were prioritised as potential biomarkers (Table 2) in this study based upon previous research and their relative expression in herbicide sensitive and NTSR samples. These six potential biomarker genes included representatives of the GST and CYP450 families, as well as a UGT, an ABC transporter and 12-oxophytodienonate reductase-1 (OPR1). 
3.2 Validation of transcriptional biomarkers for detecting EMR in black-grass field populations 
To examine the broader reliability of potential EMR biomarkers in field-collected black-grass populations, we assessed the basal expression of the six biomarkers in 27 field-collected populations of black-grass (Figure 1) displaying herbicide resistance to two classes of herbicide (Figure 2)1 as well as three reference populations namely Rothamsted (herbicide sensitive), Peldon (NTSR), and Notts (a point mutation acetyl -CoA carboxylase, TSR). Of the six biomarkers, AmGSFT1, AmGSTU2, and AmOPR1 displayed the greatest variation in basal expression across these 30 populations. These expression patterns corresponded to the broad range of herbicide resistance profiles observed in these black-grass populations. 
To link the transcript expression of these potential biomarkers with the metabolism of specific herbicides, we analysed the detoxification of fenoxaprop and mesosulfuron in the 30 black-grass populations. For fenoxaprop, the basal of expression of the three most promising biomarkers identified above (AmGSFT1, AmGSTU2, AmOPR1) showed significant linear relationships with the relative degree of fenoxaprop metabolism observed (Figure 3, Supplementary Table S7; AmGSTF1 (F =16.67, p < 0.001), AmGSTU2 (F = 6.24, p < 0.001) and AmOPR1 (F = 11.24, p = 0.002)).  However, despite positive correlations amongst the six biomarkers, the basal expression of AmUGT, AmCYP450, and AmABC, had no significant linear relationships to the relative degree of fenoxaprop metabolism (Supplementary Table S7).  In contrast to fenoxaprop, only two biomarkers namely AmGSTU2 and AmOPR1 showed significant linear relationships with mesosulfuron metabolism (Figure 3, Supplementary Table S8, AmGSTU2 (F = 7.64, p = 0.010) and AmOPR1 (F = 15.79, p < 0.001)). The other four biomarkers including AmGSTF1 showed no significant relationship with mesosulfuron metabolism at the level of the gene transcript (Supplementary Table S8). Our results therefore demonstrated that of the most promising six biomarkers, only three genes (AmGSTU2, AmOPR1 and AmGSTF1) had the potential to accurately predict EMR towards fenoxaprop or mesosulfuron.  
3.3 AmGSTF1, AmGSTU2 and AmOPR1 proteins as biomarkers of EMR 
As the metabolism of herbicides is affected by enzymes and transporters rather than the respective transcripts, the selected biomarkers were further quantified and analysed at the protein level to determine their relationships to NTSR traits in the black-grass populations. Specific antibodies were raised in rabbits toward AmGSTF1, AmGSTU2 and AmOPR1 and their specificity tested in total protein extracted from reference herbicide sensitive and NTSR black-grass populations. The antibodies for AmGSTF1 and AmGSTU2 proteins detected polypeptides of the typical molecular mass of GST subunits, namely AmGSTF1; MW 24.9 kDa and AmGSTU2; MW 24.4 kDa in both herbicide sensitive and NTSR black-grass. The abundance of the immuno-recognized protein bands was clearly greater in the NTSR population in both cases (Figure 4A, 4B). For AmOPR1, although the expression of this transcript was detected in both herbicide sensitive and NTSR black-grass, no specific band for the AmOPR1 protein (approximated MW 40.0 kDa) was detectable in herbicide sensitive black-grass (Figure 4C). These results confirm the specificity and sensitivity of antibodies that can detect enhanced expression of these three protein biomarkers in black-grass plants. Therefore, we used these antibodies to quantify the basal expression of the corresponding biomarker proteins in field populations, and then examine the link between the respective abundance of the polypeptides and herbicide metabolism. 
Across the wider 30 populations, the relative abundance of both AmGSTF1 and AmGSTU2 polypeptides were significant predictors of both fenoxaprop metabolism (AmGSTF1; F = 10.53, p = 0.003), (AmGSTU2; F = 17.15, p < 0.001) and mesosulfuron metabolism (AmGSTF1; F = 11.96, p = 0.002), (AmGSTU2; F = 14.31, p < 0.001) (Figure 5, Supplementary Table S9, S10). In contrast, the basal level of AmOPR1 protein was a significant predictor for the enhanced metabolism of fenoxaprop alone (Figure 5, Supplementary Table S9, S10) AmOPR1fenoxaprop (F = 5.67, p = 0.02), AmOPR1mesosulfuron (F = 0.02, p = 0.89).  These results highlight the potential to detect EMR toward fenoxaprop and mesosulfuron in black-grass populations through protein biomarkers. 
3.4 Predicting black-grass survival from herbicide treatments through combined analysis of mutation frequency and basal expression of biomarkers
Finally, as both NTSR and TSR mechanisms are known factors that to determine plant survival from herbicides treatments, we tested the capacity of using the expression of AmGSTF1, AmGSTU2, and AmOPR1 transcript or protein, and TSR mutation frequency as explanatory (predictor) variable to predict survival to fenoxaprop and mesosulfuron. Additionally, we tested the accuracy of using TSR frequency as a sole predictor variable. In the 30 test populations, the transcript and protein expression of AmGSTF1 and AmGSTU2 in combination with TSR frequency were significantly predictors of survival to fenoxaprop and mesosulfuron (Tables 3 - 7). Importantly, the combination of TSR frequency and biomarkers improved the survival prediction compared to the model that used TSR frequency alone (Table 3-7).  While incorporating AmGSTF1 protein in the models resulting in improved prediction of mesosulfuron survival, an incorporation of AmGSTF1 transcript expression, was not a significantly improved prediction of mesosulfuron survival (Table 3-7). In contrast to AmGSTF1 and AmGSTU2, the prediction of mesosulfuron and fenoxaprop survival was significantly improved when AmOPR1 transcript expression and TSR frequency were used as predictors compared to when TSR frequency was used solely (Tables 3-7). However, AmOPR1 protein expression combine with TSR frequency was not significant predictor for mesosulfuron and fenoxaprop survival. 
4. Discussion
The evolution of herbicide resistance in agricultural weed species causes significant losses in herbicide control, leading to subsequent yield losses5.  Although laboratory and glasshouse methods accurately identify resistance to specific herbicides, these conventional methods are time-consuming and require expertise in molecular biology and analytical chemistry. Importantly, because these methods require seed or seedling collection and take some time to perform, current resistance diagnostics tests have a limited ability to inform weed control strategies in real time within the crop production season. This may lead to the ineffectual use of post-emergence herbicides and sub-optimal weed control.  Recently, we have developed a first-generation rapid diagnostic test for NTSR in black-grass and other wild grasses. This test uses low-cost and rapid lateral flow immunodetection, based on the relative quantification of the NTSR biomarker AmGSTF118. While this diagnostic is an important first step in real-time herbicide resistance diagnostics, it has a limited capacity to influence the usage of specific herbicides to restore control as it is unable to categorise the type of EMR present in wild grass populations.  To establish a functioning in-field diagnostic, several factors need to be considered. Those factors are (1) the capability of pinpoint EMR to multiple MOAs, (2) an understanding of the weed population structure in-field, (3) a sampling regime that ensures good coverage of that population, (4) knowledge of the molecular biomarkers of EMR, (5) an effective methodology for extracting and analysing molecular biomarkers in-field, and (6) in order to estimate a given population’s likelihood to survive herbicide applications, an estimate of TSR frequency.  In this study, we begin to address the fourth factor by assessing the links between molecular biomarkers (RNA and proteins), and EMR in a set of black-grass (Alopecurus myosuroides) populations. 
Enhanced metabolic resistance (EMR) is a primary mechanism underlying cross-resistance to multiple herbicide chemistries9,19 and is the predominant non-target-site resistance mechanism in black-grass. As such, EMR in black-grass is now known to involve the enhanced detoxification of herbicides catalysed by the concerted action of CYPs, bioconjugating enzymes and active transporters9,27–29. As each herbicide chemistry is metabolised by different routes involving differing combinations of CYPs, GSTs and UGTs, we rationalised that an increased expression of specific detoxification enzymes could potentially be used as a set of biomarkers for EMR that linked to a single class of herbicide. Overall, our results confirm that several transcript and protein markers associated with detoxification are good EMR biomarker candidates. We observed significant positive relationships between the basal expression of three biomarkers (AmGSTF1, AmGSTU2 and AmOPR1) and the increased metabolism of the herbicides fenoxaprop and mesosulfuron in black-grass populations collected from the fields across the UK. While these results demonstrate the benefits of targeting detoxification genes for biomarker screening, only 3 genes from the 6 candidates were robust potential biomarkers of EMR. These results do not confirm the activity of the three positive biomarkers in EMR, or conversely that the other markers tested in the panel are not biologically active in herbicide detoxification, rather they highlight the need to screen several candidates at both the transcript and protein levels in order to identify reliable biomarkers. This selection is particularly important based on the size of the gene families encoding proteins involved in detoxification, notably the respective multiplicity of the CYPs, GSTs, UGTs and transporters being discovered in black-grass and other wild grasses as their respective transcriptomes and genomes are sequenced.  
The discrepancy between transcript and protein level in biomarker utility observed here, highlights the need to understand the relationships between molecular components (transcript and protein) and EMR to specific herbicides according to the functional ‘level’ at which they are measured. While molecular mechanisms of EMR are commonly studied at the transcript expression level, the translation of these transcripts into functional proteins is poorly understood. The different effectiveness of transcript and protein levels (AmOPR1 and AmGSTF1) to predict EMR highlight the need to explore the relationships between translational control and transcript expression of genes involving in herbicide resistance.  Additionally, the effectiveness of antibodies to detect protein biomarkers might be another contributing factor on the outcome discrepancy.  The optimisation of antibody specificity is a complex process. The detection specificity of AmGSTF1 and AmOPR1 antibodies used in this study was confirmed by western blot (Figure 4). Nevertheless, the epitope mapping of these antibodies should be done in future to ensure the high specificity of these antibodies.  It is noteworthy that AmOPR1 protein level was semi-quantified due to the lack of recombinant protein while AmGSTF1 and AmGSTU2 levels were quantified based on the concentration of respective recombinant proteins. This might affect the quantification of AmOPR1 protein level. The generation of AmOPR1 recombinant protein and re-quantified AmOPR1 should be done in the future to address this problem.   
Considering that AmOPR1 was a significant predictor of metabolism and survival toward mesosulfuron and fenoxaprop at the transcript level, little is known about the function of this gene in black-grass. It is noteworthy that the expression of OPR1 (AtOPR1) and various GST genes in Arabidopsis were significantly induced after exposure to the herbicides acetochlor, metolachlor and triazine30,31. While AtGSTs can directly catalyse the detoxification of these herbicides, the role of AtOPR1 in the metabolism of these herbicides remains unknown30. The information from Arabidopsis leads to the hypothesis that although AmOPR1 might not function directly in fenoxaprop or mesosulfuron detoxification, this protein might function in the regulatory networks of EMR or NTSR.  Therefore, additional experiments to functionally characterise are required to explain the role of AmOPR1 in NTSR and EMR. 
AmGSTF1 was also an effective biomarker of EMR to both fenoxaprop and mesosulfuron at the protein level, but only to fenoxaprop at the transcript level. It is interesting that in a previous study AmGSTF1 had no activity towards fenoxaprop and has low glutathione conjugating activity toward other herbicides31. However, the accumulated information strongly suggests important roles of AmGSTF1 in NTSR linked to detoxification, and redox homeostasis which help protect plants against multiple herbicides17. Therefore, the significant relationship between black-grass survival to herbicide (fenoxaprop and mesosulfuron) spraying and AmGSTF1 expression might derive from the role of this protein as a regulator of NTSR.  
In contrast to AmGSTF1, AmGSTU2 was an effective biomarker of both mesosulfuron and fenoxaprop at the transcript and protein level. Based on available information, GSTs are the main enzyme in fenoxaprop detoxification, while CYP450s are required for mesosulfuron metabolism32,33. In previous assessments AmGSTU2 has been proven to metabolise fenoxaprop31. Therefore, this could explain the significant linear relationship between AmGSTU2 and fenoxaprop EMR. The future assessment of AmGSTU2 activity towards mesosulfuron is required to establish the link with mesosulfuron detoxification. However, regardless of AmGSTU2’s detoxifying activity, we have shown it to be an effective biomarker of both mesosulfuron and fenoxaprop EMR. 
The prospect of detecting EMR through basal expression of biomarkers without glasshouse experiments provides an alternative approach to detect resistance to specific herbicides in uncharacterised black-grass populations.  It is possible that this method, combining two or three molecular assays, could be implemented as the first line predictor for the survival of uncharacterised black-grass populations before spraying herbicides. Furthermore, the biomarker detection could be used in stewardship programmes to monitor the extent of herbicide resistance in black-grass populations. As an important caveat, we have observed a discrepancy between transcript and protein expression of biomarkers in predicting EMR and plant survival which might derived from the translational control. As such, future biomarkers will need to be identified and validated at both the RNA transcript and protein expression levels.
5. Conclusion
The significant reduction in herbicide control of agricultural weeds creates negative impacts on crop production and farm economy. The ability to predict the effectiveness of herbicides prior to application in fields is a desirable step towards improving weed control, and minimising losses in crop production and the farming economy. We demonstrate in this study an improved understanding of molecular biomarkers of enhanced metabolic resistance, and their relationship with black-grass survival to fenoxaprop and mesosulfuron herbicides. This is a critical step in developing a point-to-care protocol for herbicide resistance that will provide reliable first line screening results which will assist the decision for further tests in the greenhouse or laboratory setup.  Future work includes identification of additional markers for a greater range of herbicides, and highly specific detection methods such as epitope mapping of antibodies, as well as studies of biomarker suitability in other weed species. In this initial proof of concept we demonstrate the potential to incorporate diagnostic biomarkers into weed management programmes as a screening test prior to herbicide applications as well as  resistance monitoring programmes. 
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 Table 1 The average of relative transcript expression of 24-DNA contigs identified by RNA-sequences in herbicide sensitive (HS), and NTSR (Peldon) black-grass populations. The relative expressions were quantified in leaf tissues by quantitative real-time PCR (RT-qPCR). The sequence of each contig was identified by comparison with the DNA sequence in public database (NCBI; https://www.ncbi.nlm.nih.gov) The average basal expression (mean± SD, n=3) of each contig were reported
	Contig
	ID
	HS
	NTSR

	R00041432
	CYP450s
	1.14±0.12
	4.02±0.26

	R00030509
	CYP450s
	1.09±0.08
	3.01±0.19

	R00027925
	CYP450s
	1.04±0.08
	3.43±0.08

	R000277289
	Isoflavone hydroxylase
	1.06±0.05
	2.29±0.12

	R002332027
	OPR1
	0.97±0.04
	51.49±2.01

	R00052495
	OPR1
	1.30±0.35
	71.09±7.36

	Rm00002116
	OPR1
	1.15±0.14
	50.90±2.02

	R00029421
	Carboxyl esterase
	1.00±0.18
	4.41±0.48

	R00029215
	Zeatin UGT
	1.21±0.19
	14.38±1.51

	R00007921
	GSTU6-like
	1.04±0.04
	5.31±0.49

	R00030700
	GSTU6-like
	1.01±0.09
	18.40±0.11

	R00005793
	GSTU6-like
	1.15±0.14
	24.30±0.90

	R00096975
	GSTU6-like
	1.00±0.08
	27.77±1.14

	R00029476
	GSTF1
	1.00±0.08
	8.30±0.39

	R00010869
	Aminotransferase
	1.03±0.03
	27.94±5.93

	R00029959
	Cellulose synthase
	1.39±0.34
	6.03±0.95

	Rm00043661
	ABC transporter
	1.08±0.15
	1.71±0.10

	R00030815
	MATE transporter
	1.31±0.13
	4.16±0.25

	R0000345
	Thiol methyl transferase
	0.93±0.08
	18.06±0.28

	Rm00016513
	Thiol methyl transferase
	0.84±0.14
	18.30±0.67

	Rm00004119
	Thiol methyl transferase
	1.06±0.09
	14.91±0.56

	R00029303
	Pathogenesis related protein
	0.98±0.04
	1.22±0.15

	R00003857
	Pathogenesis related protein
	0.97±0.05
	16.58±0.31

	R00004163
	Gag-pol retrotransposon
	0.85±0.17
	4.32±0.27





[bookmark: _Ref127206406]Table 2 The assembled DNA contigs identified by RNA-sequencing of HS and NTSR black-grass. The contigs were assembled as described17. The gene annotations and accession number obtained from compared assembled sequences to database (NCBI; https://www.ncbi.nlm.nih.gov). (N.B. full sequences for AmCYP450, AmUGT, and AmABC were not available, therefore no accession numbers are listed for these genes)
	Gene ID
	Annotation
	Accession number

	[bookmark: _Hlk153373977]AmCYP450
	Cytochrome P450 family 72A1
	

	AmOPR1
	Alopecurus myosuroides mRNA for 12-oxophytodienoate reductase 1
	KY172653.1

	AmUGT
	Cis-zeatin
O-glucosyltransferase 2
	

	AmGSTF1
	Alopecurus myosuroides mRNA for glutathione transferase 2c
	AJ010453

	AmGSTU2
	Alopecurus myosuroides mRNA for glutathione s-transferase U2
	KY172655

	AmABC
	Possible ABCI7
A. tauschii
	





[bookmark: _Ref127206449]Table 3 Survival to fenoxaprop predicted by transcript expression and ACCase mutation frequency. Output from quasibinomial generalised linear regression (GLM). The normalised basal expression of each biomarker and ACCase mutation frequency were used as independent variables to predict survival to spraying with fenoxaprop. ** significant differences
	Model
	Response variable
	Explanatory variable
	d.f.
	Deviance difference
	Res. d.f.
	Residual deviance 
	P-value

	1
	Fenoxaprop survival
	AmGSTF1
ACCase 
	1
1
	67.17
54.57
	28
27
	148.36
93.97
	<0.001**
<0.001**

	2
	Fenoxaprop survival
	AmGSTU2
ACCase 
	1
1
	68.93
54.57
	28
27
	146.60
122.21
	<0.001**
0.013*

	3
	Fenoxaprop survival
	AmOPR1
ACCase 
	1
1
	45.24
54.57
	28
27
	167.23
139.26
	<0.001**
<0.001**




[bookmark: _Ref127206528]Table 4 Survival to mesosulfuron predicted by transcript expression and ALS mutation frequency. Output from quasibinomial generalised linear regression (GLM). The normalised basal expression of each biomarker and ALS mutation frequency were used as independent variables to predict survival to spraying with mesosulfuron. ** significant differences
	Model
	Response variable
	Explanatory variable
	d.f.
	Deviance difference
	Res. d.f.
	Residual deviance 
	P-value

	1
	Mesosulfuron
survival
	AmGSTF1
ALS 
	1
1
	43.48
233.96
	28
27
	492.24
258,28
	0.04*
<0.001**

	2
	Mesosulfuron
survival
	AmGSTU2
ALS
	1
1
	186.66
141.91
	28
27
	349.06
207.15
	<0.001**
0.013*

	3
	Mesosulfuron
survival
	AmOPR1
ALS
	1
1
	181.60
131.60
	28
27
	354.12
222.51
	<0.001**
<0.001**





[bookmark: _Ref127207245]Table 5 Survival to fenoxaprop predicted by protein expression and ACCase mutation frequency. Output from quasibinomial generalised linear regression (GLM). The normalised basal expression of each biomarker and ACCase mutation frequency were used as independent variables to predict survival to spraying with fenoxaprop. ** significant differences
	Model
	Response variable
	Explanatory variable
	d.f.
	Deviance difference
	Res. d.f.
	Residual deviance 
	P-value

	1
	Fenoxaprop survival
	AmGSTF1
ACCase 
	1
1
	39.22
51.1
	28
27
	176.3
125.2
	0.006**
0.002**

	2
	Fenoxaprop survival
	AmGSTU2
ACCase 
	1
1
	48.62
34.63
	28
27
	166.9
132.3
	0.001**
0.006**

	3
	Fenoxaprop survival
	AmOPR1
ACCase 
	1
1
	17.57
46.33
	28
27
	198
151.6
	0.056
0.002**





[bookmark: _Ref127207276]Table 6 Survival to mesosulfuron predicted by protein expression and ALS mutation frequency. Output from quasibinomial generalised linear regression (GLM). The normalised basal expression of each biomarker and ALS mutation frequency were used as independent variables to predict survival to spraying with mesosulfuron. ** significant differences
	Model
	Response variable
	Explanatory variable
	d.f.
	Deviance difference
	Res. d.f.
	Residual deviance 
	P-value

	1
	Mesosulfuron
survival
	AmGSTF1
ALS 
	1
1
	114.6
196.2
	28
27
	421.1
225
	<0.001***
<0.001***

	2
	Mesosulfuron
survival
	AmGSTU2
ALS
	1
1
	235.2
180.4
	28
27
	300.6
120.2
	<0.001***
<0.001***

	3
	Mesosulfuron
survival
	AmOPR1
ALS
	1
1
	13.28
251.5
	28
27
	522.4
270.9
	0.289
<0.001***





[bookmark: _Ref143691296]Table 7 Summary of biomarkers which significantly predict survival to Mesosulfuron or Fenoxaprop in linear models with ALS or ACCase TSR frequency respectively, and a comparison with the model of survival predicted by TSR frequency alone with p-values indicated by stars (*** p<0.001, ** p<0.01, * p<0.05)
	Biomarker type 
	Biomarker 
	Herbicide 
	Survival predicted by biomarker + TSR
	Better than TSR alone

	RNA
	AmGSTF1
	Mesosulfuron
	Yes
	No

	Protein
	AmGSTF1
	Mesosulfuron
	Yes
	Yes *

	RNA
	AmGSTF1
	Fenoxaprop
	Yes
	Yes ***

	Protein
	AmGSTF1
	Fenoxaprop
	Yes
	Yes **

	RNA
	AmGSTU2
	Mesosulfuron
	Yes
	Yes **

	Protein
	AmGSTU2
	Mesosulfuron
	Yes
	Yes ***

	RNA
	AmGSTU2
	Fenoxaprop
	Yes
	Yes ***

	Protein
	AmGSTU2
	Fenoxaprop
	Yes
	Yes **

	RNA
	AmOPR1
	Mesosulfuron
	Yes
	Yes *

	Protein
	AmOPR1
	Mesosulfuron
	No
	No

	RNA
	AmOPR1
	Fenoxaprop
	Yes
	Yes *

	Protein
	AmOPR1
	Fenoxaprop
	No
	No
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[bookmark: _Ref143696493]Figure 1 Relative expression of six RNA biomarkers across black-grass populations. The distributions of the basal transcript expression of AmGSTF1, AmGSTU2, AmCYP450, AmOPR1, AmUGT and AmABC from above ground tissues of BBCH 11 stage black-grass plants from 27 field populations, herbicide sensitive, non-target site resistance, and the target site resistance populations.
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[bookmark: _Ref143696502]Figure 2 Heatmaps representing: (Left) Proportion of mutations present at 7 loci measured using pyrosequencing for 30 populations with 24 plants sampled per population (n=720), each population is represented by a horizontal row across the heatmap. (Right) Proportion of plants surviving sprayed with 9 + 1.8 g ai ha −1 mesosulfuron-methyl + iodosulfuron-methyl-sodium (Atlantis) or 68.75 g ai ha −1 fenoxaprop-p-ethyl (Polecat). The top 27 rows on each heatmap represent the wild collected populations, and the bottom three rows represent the three reference populations.
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[bookmark: _Ref143695594][bookmark: _Toc127204401][bookmark: _Toc127204512][bookmark: _Ref127207494]Figure 3 The relationships between basal expression of biomarker genes and the level of radiolabelled (C14) fenoxaprop or mesosulfuron at 16 h after treatment in black-grass population.  Fitted linear regression of three models with fenoxaprop metabolism (left) or mesosulfuron metabolism (right) predicted by transcript expression of (A) AmGSTF1fenoxaprop (p<0.001), AmGSTF1mesosulfuron (p=0.17) (B) AmGSTU2fenoxaprop (p<0.001), AmGSTU2mesosulfuron (p<0.001) and (C) AmOPR1fenoxaprop (p<0.01), AmOPR1mesosulfuron (p<0.01), solid lines show the fitted model with shaded regions showing 95% confidence limits, solid points are the original data used to fit the model
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[bookmark: _Ref143696522][bookmark: _Toc127204402][bookmark: _Toc127204513][bookmark: _Ref127207511]Figure 4 AmGSTF1, AmGSTU2 and AmOPR1 antisera detected specific proteins in black-grass. The protein immunoblots (western blot) of (A) AmGSTF1, (B) AmGSTU2 and (C) AmOPR1 from total proteins extracted from 3-5 leaf herbicide sensitive (HS) and non-target site resistance (NTSR) plants. The molecular weight of each protein was calculated using online software (https://web.expasy.org/compute_pi/). The expected molecular weight (MW) of AmGSTF1 = 24.93 kDa, AmGSTU2 = 24.46 kDa, AmOPR1 = 40.03 kDa
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[bookmark: _Ref143696530][bookmark: _Toc127204403][bookmark: _Toc127204514][bookmark: _Ref127207529]Figure 5 Fitted linear regression of three models with fenoxaprop metabolism (left) or mesosulfuron metabolism (right) predicted by protein expression of (A) AmGSTF1fenoxaprop (p<0.01), AmGSTF1mesosulfuron (p<0.01) (B) AmGSTU2fenoxaprop (p<0.001), AmGSTU2mesosulfuron (p<0.001) and (C) AmOPR1fenoxaprop (p<0.05), AmOPR1mesosulfuron (p=0.89), solid lines show the fitted model with shaded regions showing 95% confidence limits, solid points are the original data used to fit the model.
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Figure 5 Protein immunoblots of black-grass specific antisera for AmGSTF1, AmGSTU2 and AmOPR1
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