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Abstract
Faced with the biodiversity extinction crisis and climate change, alternative approaches to food production are urgently needed. Dec-
ades of chemical-based weed control have resulted in a dramatic decline in weed diversity, with negative repercussions for agroeco-
system biodiversity. The simplification of cropping systems and the evolution of herbicide resistance have led to the dominance of a 
small number of competitive weed species, calling for a more sustainable approach that considers not only weed abundance but also 
community diversity and composition. Agroecological weed management involves harnessing ecological processes to minimize the 
negative impacts of weeds on productivity and maximize biodiversity. However, the current research effort on agroecological weed 
management is largely rooted in agronomy and field-scale farming practices. In contrast, the contributions of landscape-scale interven-
tions on agroecological weed management are largely unexplored (e.g., interventions to promote pollinators and natural enemies or 
carbon sequestration). Here, we review current knowledge of landscape effects on weed community properties (abundance, diversity, 
and composition) and seed predation (a key factor in agroecological weed management). Furthermore, we discuss the ecological 
processes underlying landscape effects, their interaction with in-field approaches, and the implications of landscape-scale change for 
agroecological weed management. Notably, we found that (1) landscape context rarely affects total weed abundance; (2) configurational 
more than compositional heterogeneity of landscapes is associated with higher alpha, beta, and gamma weed diversity; (3) evidence for 
landscape effects on weed seed predation is currently limited; and (4) plant spillover from neighboring habitats is the most common 
interpretation of landscape effects on weed community properties, whereas many other ecological processes are overlooked. Strikingly, 
the drivers of weed community properties and biological regulation at the landscape scale remain poorly understood. We recommend 
addressing these issues to better integrate agroecological weed management into landscape-scale management, which could inform 
the movement towards managing farms at wider spatiotemporal scales than single fields in a single season.
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1 Introduction

Through the Green Deal and the Farm to Fork Strategy, 
the European Union has set the ambitious goal to develop 
sustainable food systems and halve pesticide use by 2030 
(although the pesticide reduction law is currently being nego-
tiated). Achieving these goals requires rethinking current 
weed management methods. Modern crop breeding coupled 
with high inputs of agrochemicals currently facilitates the 
large-scale production of a small number of crops in increas-
ingly homogenous landscapes. Today, around three million 
tons of herbicides are used each year worldwide to eliminate 
weed species (FAO 2021). Over-reliance on pesticides for 
crop protection, reduction of crop diversity, and landscape 
simplification have caused a dramatic loss of weed diversity 
and abundance (Fried et al. 2009; Kempel et al. 2020; Meyer 
et al. 2013; Richner et al. 2015; Storkey et al. 2012) with 
negative impacts on the entire food chain (Albrecht 2003; 
Marshall et al. 2003; Stoate et al. 2001). The intensive use 
of agrochemicals (herbicides and chemical fertilizers) has 
led to the depletion of soil seedbanks, evolution of herbicide 
resistance in weeds, and selection of competitive species 
that are increasingly difficult to control (Neve et al. 2009; 
Rotchés‐Ribalta et al. 2020). Genetically modified crops and 
their unintentional hybridization with weedy or wild rela-
tives is resulting in the emergence of “super-weeds,” with 
improved resistance to herbicides, insect pests, and viruses, 
higher tolerance to drought, or higher growth rate (Vercel-
lino et al. 2022). In addition, the chemical-based strategy 
threatens human health (Baudron and Liégeois 2020; Ben-
ton and Bailey 2019; Nicolopoulou-Stamati et al. 2016) and 
may increase agroecosystem vulnerability to climate change 
(Lin et al. 2008; Storkey et al. 2021). Weed management 
must therefore take another path that reduces the reliance 
on agrochemicals. One way is to make more use of non-
chemical approaches to weed control, including stale seed-
beds, mechanical weeding, and intercropping, in so-called 
integrated weed management (IWM) systems (Riemens 
et al. 2022). Both chemical-based weed control and IWM 
are largely predicated on the aim of drastically reducing weed 
abundance with the assumption that this is the way to protect 
crop yield. However, there is also an important need to rede-
sign cropping systems to increase their resilience to weeds 
(reducing the need for direct control), through ecological 
processes that reduce the dominance of competitive species 
but also increase weed diversity. This would also contribute 
to meeting the major challenge of biodiversity conservation 
given that humans use roughly half of the ice-free land area 
of Earth for agriculture (Fritz et al. 2015), often in the form 
of large and high input monocultures, with major impacts on 
a wide range of taxa (Etard et al. 2022; Jaureguiberry et al. 
2022; Rigal et al. 2023; Sánchez-Bayo and Wyckhuys 2019).

Agroecological weed management (AWM) addresses this 
challenge by presenting a paradigm shift from aiming to 
eradicate weeds to managing agronomically and environ-
mentally sustainable weed communities (MacLaren et al. 
2020). A primary focus of AWM is manipulating abiotic and 
biotic interactions in the agroecosystems to manage oppor-
tunities for weed colonization, establishment, and growth 
in a way that reduces the negative impact on crops while 
maximizing biodiversity benefits by preserving weed diver-
sity (Smith and Mortensen 2017). The focus of AWM is, 
therefore, less on overall abundance and more on weed com-
munity composition and diversity as important metrics of 
sustainable crop protection (Storkey and Neve 2018). There 
is indeed growing recognition that only a small proportion 
of dominant weed species in a field causes significant yield 
loss (Adeux et al. 2019; Albrecht 2003; Ferrero et al. 2017; 
Marshall et al. 2003; Pollnac et al. 2009; Storkey and Neve 
2018), whereas many weed species support biodiversity and 
contribute to important ecological functions such as polli-
nation, pest control, and soil fertility (Balfour and Ratnieks 
2022; Blaix et al. 2018; Hu et al. 2023; Nicholls and Alt-
ieri 2013; Smith et al. 2020). By implication, for a constant 
weed abundance, a more diverse and even weed community 
would be expected to be less competitive and have greater 
environmental benefits—being agronomically and ecologi-
cally more sustainable. Recent studies have shown that weed 
diversity is positively associated with the overall sustain-
ability and multifunctionality of agroecosystems (Gaba et al. 
2020; Liebman et al. 2021).

Empirical studies providing the evidence base for AWM 
have generally focused on solutions at the field scale, for 
example, complex crop rotations, polycultures, cover 
crops, crop-livestock systems, and preservation of biologi-
cal control agents (MacLaren et al. 2020). This is because 
it is generally assumed that weed community assembly is 
so strongly driven by local farming practices that process 
operating at larger spatiotemporal scales are not important 
for modelling variation in local weed abundance and diver-
sity (but see Alignier et al. 2013; Petit et al. 2013). Such an 
assumption has led agronomists and agroecologists to focus 
their research on small-scale processes, such as weed-crop 
competition, while disregarding other important processes 
such as weed dispersal (Ghersa and Roush 1993). This is 
in contrast to studies on the population dynamics of other 
farmland taxa, such as pollinators, natural enemies, inverte-
brate pests, and diseases, that are acknowledged to respond 
to larger scale processes, and for which our understanding of 
landscape effects has considerably increased in recent years 
(Haan et al. 2020; Jeanneret et al. 2021; Martin et al. 2019). 
However, as emphasized by Petit et al. (2013), the recurrent 
success of invasive weed species, the spread of herbicide 
resistance, and the turnover observed in weed communi-
ties over decades provide evidence that weed dispersal is an 
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important process occurring over large spatial scales. Aside 
from long-distance dispersal events that may be relatively 
rare (but not without consequences), stepwise and secondary 
dispersal can also enable weeds with short dispersal ranges 
to move relatively large distances over time (Mayer et al. 
2002; Ricci et al. 2013; Steinmann and Klingebiel 2004). 
The characteristics of the landscape surrounding a field 
(habitat diversity and configuration) are therefore expected 
to affect in-field weed communities through moderating the 
size of the regional species pool (Smart et al. 2006b) and 
determining the likelihood of dispersal of those species into 
the field.

Importantly, the population structure of weeds that may 
have intrinsic limited dispersal ability will also be deter-
mined by interactions with more mobile taxa such as pollina-
tors, herbivores, seed predators, and dispersers (zoochory) 
that inhabit the surrounding landscape (Ehrlén and Eriksson 
2003). More mobile taxa can affect the growth, reproduction, 
and recruitment of weeds. In particular, weed seed predation 
is a key regulating service for sustainable weed management 
(Petit et al. 2018; Sarabi 2019). For example, Davis et al. 
(2011) estimated that annual seed removal due to inverte-
brates averaged 40% of the total number of seeds produced 
by weeds. These authors also showed that weed seed preda-
tion can vary widely (from 8 to 70%) depending on the weed 
species and the agronomic context. Seed predation can not 
only reduce weed pressure but also impact weed commu-
nity assembly and thus determine the relative abundance of 

weed species farmers must deal with (Agrawal and Maron 
2022; Hulme 1998). Landscape context is likely an impor-
tant factor in this variation in seed predation, as invertebrate 
and vertebrate seed predators (e.g., carabids, ants, crickets, 
small rodents, and birds) need a diversity of habitats notably 
for overwintering, feeding, and reproduction (Barbaro et al. 
2021; Fischer et al. 2018; Iuliano and Gratton 2020).

Given the potential impacts of landscape on weeds and 
the balance between their negative and positive functions 
(competition vs biodiversity support), any AWM strategy 
should consider the landscape-scale processes that drive 
weed community assembly (Fig. 1). It may be that changes 
to landscape context (e.g., establishment of agri-environ-
mental schemes) are directed primarily at other outcomes 
than weed management, including the support of farmland 
birds, pollinators and natural enemies, or carbon sequestra-
tion. But, this does not negate the need to better understand 
the impacts of these landscape changes on weed species 
pools and community assembly, especially given that field-
scale solutions are not always sufficient to promote weed 
diversity (Adeux et al. 2022). Finally, it is necessary to bet-
ter understand how landscape-scale processes interact with 
field-scale management, either creating antagonisms or 
synergies for the natural regulation of the most competitive 
weed species and the preservation of weed diversity. Such 
knowledge should help propose more robust and efficient 
solutions to reconcile agricultural production and biodiver-
sity conservation.

Fig. 1  Arable fields are not 
closed systems. Beyond 
management at the field scale, 
agroecological weed manage-
ment (AWM) would benefit 
from considering landscape-
scale effects on arable weed 
communities (abundance, diver-
sity, and composition of weed 
species). A better understanding 
of the ecological processes 
underlying landscape effects, as 
well as their interactions with 
field-scale processes, would 
provide additional insights into 
the sustainable management of 
weeds.
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In this review, we provide an overview of current knowl-
edge of landscape effects on weed community properties 
(abundance, diversity, and composition), separating the 
effects of landscape compositional heterogeneity (the num-
ber and proportions of different habitat types) from those of 
landscape configurational heterogeneity (the spatial arrange-
ment of habitat types) (Fahrig et al. 2011) (Section 2). We 
also apply this approach to the regulating ecosystem service 
of weed seed predation (Section 3). Then, we assess how 
landscape effects on weed community properties and seed 
predation interact with field-scale parameters, including the 
distance from adjacent field margin and management inten-
sity (Section 4), and describe the spatial scales of landscape 
effects (Section 5). Finally, we discuss the ecological pro-
cesses that likely underlie landscape effects on weed com-
munity properties (Section 6) and the potential benefits and 
challenges of landscape-scale change for AWM (Section 7). 
To meet these objectives, we gathered all the empirical stud-
ies we could find (excluding studies using landscape models 
and simulations) using the following search string in Web of 
Science last updated on August 27, 2023:

Topic: (“landscape ecology” OR “landscape effect*” OR 
“landscape context*” OR “landscape structure*” OR “land-
scape feature*” OR “landscape complexity” OR “landscape 
composition” OR “landscape configuration” OR “compo-
sitional heterogeneity” OR “configurational heterogeneity” 
OR “landscape heterogeneity” OR “landscape diversity” OR 
“landscape simplification” OR “landscape intensification” 
OR “land-use intensity” OR “landscape homogenization” 
OR “landscape homogenization” OR “habitat connectiv-
ity” OR “landscape connectivity” OR “habitat fragmenta-
tion” OR “landscape fragmentation” OR “habitat loss” OR 
“habitat amount” OR “habitat isolation” OR “land-use man-
agement” OR “landscape management” OR “land sharing” 
OR “land sparing” OR “land-sharing” OR “land-sparing” 
OR “landsharing” OR “landsparing” OR “crop mosaic” 
OR “edge density” OR “ecological corridor*” OR “field 
size” OR “landscape change*” OR “landscape history” OR 
“land-use history”) AND: (weed* OR “weeds” OR “plant” 
OR “plants” OR flora OR vegetation) AND: (“agricultural 
landscape*” OR “rural landscape*” OR farmland OR “crop 
field*” OR “arable field*” OR agroecosystem*).

Then, we scanned the resulting 2460 studies to select 
those assessing landscape effects on weed community 
properties (abundance, diversity, and composition) and 
weed seed predation in arable fields. We excluded studies 
on grasslands, which contrast with arable crops, vineyards, 
and orchards in terms of management type and intensity and 
functional attributes of spontaneous vegetation (Bourgeois 
et al. 2019). In total, we selected 58 studies on weed com-
munity properties and 19 studies on weed seed predation. 
These studies were conducted in a variety of crops, predomi-
nantly annual crops including cereals, maize, oilseed rape, 

sunflower, beet, soybean, and rice (n = 55), but also peren-
nial crops including vineyards and olive groves (n = 5). Most 
studies were from European countries (n = 69), although we 
found some studies in Canada (n = 4), South America (n = 
4), Asia (n = 1), and the USA (n = 1).

2  Landscape effects on weed communities

To date, existing studies have assessed the effects of many 
landscape metrics on a variety of weed response vari-
ables: abundance, diversity, composition, or even seed rain, 
resource provision, and spatial distribution (Figs. 2 and 3). 
Most studies have focused on species alpha diversity (i.e., 
the number of species within weed communities at plot 
scale), and to a lesser extent on weed abundance (Fig. 2). 
Knowledge of landscape effects on weed seedbanks remains 
very limited compared to aboveground vegetation (n = 7 vs 
n = 57 studies, respectively) (Fig. 2). Functional diversity 
(quantifying weed communities at the level of functional 
traits) is also much less studied than taxonomic diversity 
(Fig. 2). We found that most studies assessed the effects of 
landscape composition as opposed to landscape configura-
tion (Fig. 3). Because of the lack of seedbank data, we focus 
on aboveground weed communities hereafter.

2.1  Weed abundance

A total of 18 studies assessed weed abundance based on 
aboveground vegetation, generally quantified as the total 
number of individuals or percent cover in sampling points 
(most often replicates of 1  m2 to 4  m2 plots). Among 
these, very few studies found significant effects of land-
scape variables on weed abundance (Fig. 4a), confirming 
the view that weed abundance is affected more by field-
scale management practices than landscape context (Petit 
et al. 2016). Even among studies that found significant 
landscape effects on weed abundance, results were con-
trasting. Indeed, studies found mixed effects of landscape 
compositional heterogeneity (estimated by total cropland 
cover or habitat diversity) on weed abundance, either 
null (Dainese et al. 2017; Ekroos et al. 2010; Flohre et al. 
2011b; Lüscher et al. 2014; Uroy et al. 2022), negative 
(Lüscher et al. 2014; Winqvist et al. 2011), or positive 
(Alignier et al. 2017; Carpio et al. 2020; Hall et al. 2020). 
Some studies found that higher landscape configurational 
heterogeneity (estimated by edge density or mean field 
size) was associated with higher weed abundance (Carpio 
et al. 2020; Marshall et al. 2006). In contrast, other studies 
found lower weed abundance in landscapes with higher 
configurational heterogeneity (estimated by connectivity 
provided by grasslands or focal field size) (Alignier et al. 
2017; Uroy et al. 2022). It is likely that specific contrasts 
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Fig. 2  Number of studies (n 
= 58) assessing landscape 
effects on a variety of weed 
community variables, using 
a taxonomic and b functional 
approaches, based on above-
ground vegetation (in green) 
or weed seedbank (in brown). 
Resources gather studies assess-
ing landscape effects on the 
diversity and/or abundance of 
weed resource provision (seeds 
and flowers). The ecological 
group refers to a variety of 
broad classifications, includ-
ing, for example, growth form 
(grasses vs forbs), Raunkiaer’s 
life forms, Grime’s strategies, 
origin, or rarity.

Fig. 3  Number of studies (n = 
58) assessing landscape effects 
on weed community properties 
(abundance, diversity, and com-
position). For simplicity, edge 
density gathers studies assessing 
the effects of edges between dif-
ferent habitat types (e.g., overall 
edge density, crop/semi-natural 
borders, or perimeter-area 
ratio). Landscape complexity 
gathers studies that sampled 
weed communities in broad 
landscape contexts (simple vs 
complex) and studies that used 
principal axes of multivariate 
analyses based on a diversity 
of landscape variables (e.g., 
mean-field size, total cover of 
cropland or semi-natural habi-
tats, and habitat diversity). % 
Identical crop refers to the total 
cover of arable fields cultivated 
with the same crop as the sam-
pled fields. On the other hand, 
% different crop gathers studies 
assessing the effects of total 
cover of various crop types dif-
ferent from the sampled crops. 
SNH, semi-natural habitats; 
CF, conventional farming; OF, 
organic farming.
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between habitats—captured by different landscape met-
rics in different contexts—explain the discrepancy in these 
results. For example, we can expect greater colonization 
by weedy species in crop fields adjoining other open and 
disturbed habitats as opposed to semi-natural grasslands 
or woody habitats (Metcalfe et al. 2019; Ricci et al. 2018).

2.2  Weed diversity

A total of 45 studies measured the species alpha diver-
sity of aboveground weed vegetation. In contrast to weed 

abundance, many studies found significant effects of land-
scape variables on species alpha diversity (Fig. 4b). The fact 
that landscape context seems to affect weed diversity more 
than weed abundance is a promising result for AWM. Indeed, 
this result suggests that some landscape contexts can support 
higher weed diversity without necessarily increasing weed 
pressure in arable fields, although we note only 18 studies 
(out of 45) considered simultaneously weed abundance and 
diversity in their analyses. Among these 18 studies, there 
were more increases in weed diversity independent of weed 
abundance (n = 15 relationships) than mutual increases in 

Fig. 4  Overview of landscape effects on the two most studied 
response variables, a weed abundance and b species alpha diver-
sity, that is the number of species within weed communities at the 
plot scale. The number of studies is given to the right of the bars. 
For simplicity, edge density gathers studies assessing the effects of 
edges between different habitat types (e.g., overall edge density, crop/
semi-natural borders, or perimeter-area ratio). Landscape complexity 
gathers studies that sampled weed communities in broad landscape 
contexts (simple vs complex) and studies that used principal axes 
of multivariate analyses based on a diversity of landscape variables 
(e.g., mean-field size, total cover of cropland or semi-natural habitats, 

and habitat diversity). % Identical crop refers to the total cover of 
arable fields cultivated with the same crop as the sampled fields. On 
the other hand, % Different crop gathers studies assessing the effects 
of total cover of various crop types different from the sampled crops. 
SNH, semi-natural habitats; CF, conventional farming; OF, organic 
farming. Note that the main objective of this review is to take stock 
of current knowledge and identify promising avenues for research on 
agroecological weed management, but conclusions based on vote-
counting should be interpreted with care as such method does not 
account for the magnitude and uncertainty of effects (Koricheva and 
Gurevitch 2014).
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weed abundance and diversity (n = 4 relationships). Regard-
ing landscape composition, many studies did not detect a 
significant effect of total cover of cropland or semi-natural 
habitats on weed diversity (Alignier et al. 2017; Armengot 
et al. 2011; Concepción et al. 2012b; Ekroos et al. 2010; 
Fahrig et al. 2015; Flohre et al. 2011b; Gabriel et al. 2006; 
Hall et al. 2020; Lüscher et al. 2014; Martínez et al. 2015; 
Pallavicini et al. 2020; Uroy et al. 2022). However, higher 
compositional heterogeneity did tend to promote weed 
diversity, but mostly in field edges, possibly through plant 
spillover from a diversity of neighboring habitats (Alignier 
et al. 2020; José-María et al. 2010; José-María and Sans 
2011; Kovács-Hostyánszki et al. 2011; Solé-Senan et al. 
2014). On the other hand, more extensive farming practices 
at the landscape scale are associated with higher weed alpha 
diversity. For instance, higher total cover of organic farming 
fields and crop diversity in the landscape are generally asso-
ciated with higher weed diversity at the field scale, without 
affecting weed abundance (Bourgeois et al. 2020; Henckel 
et al. 2015; Martin et al. 2020; Petit et al. 2016; Sirami et al. 
2019). There is also strong evidence that higher landscape 
configurational heterogeneity (estimated by hedgerow and 
edge density or reduced focal and mean field size) helps 
preserve weed diversity (Baessler and Klotz 2006; Carpio 
et al. 2020; Concepción et al. 2012b; Fahrig et al. 2015; 
Gaba et al. 2010; Gabriel et al. 2005; Guerrero et al. 2010; 
Hall et al. 2020; Lüscher et al. 2014; Martin et al. 2020; 
Petit et al. 2016; Poggio et al. 2010; Sirami et al. 2019). This 
result is in line with a recent global meta-analysis on a wide 
range of taxa (Estrada-Carmona et al. 2022), showing that 
landscape configuration more than the composition affects 
weed diversity—although this meta-analysis is based on a 
subset (n = 10) of the 45 studies we reviewed regarding 
alpha diversity.

Beyond alpha diversity (the number of species at the plot 
scale), a few studies assessed the effects of landscape on 
beta diversity (the change in species composition between 
plots, fields, or farms), and gamma diversity (the total num-
ber of species at field, farm, or region scale) (Fig. S1). It 
is important to consider these facets of diversity, as stud-
ies have found important differences between the drivers of 
alpha, beta, and gamma diversity (Boinot and Alignier 2023; 
Jones et al. 2022; Kessler et al. 2009; Smart et al. 2006a). 
Biotic homogenization (or decrease in beta diversity) that 
results from major anthropogenic disturbances is threatening 
biodiversity conservation and ecosystem functioning (Olden 
et al. 2004; van der Plas et al. 2016; Wang et al. 2021). 
From an agronomic point of view, an increase in weed beta 
and gamma diversity is likely indicative of more diverse 
environmental conditions at the landscape scale (and greater 
differentiation of weed ecological niches), reducing the risk 
of colonization by the most competitive weed species (from 
one field to another). Greater weed beta and gamma diversity 

should also provide a higher diversity of trophic and habitat 
resources across space and time for biodiversity, including 
ecosystem service providers (pollinators, natural enemies 
of crop pests, and decomposers of organic matter). Dif-
ferent studies have found contrasting effects of landscape 
compositional heterogeneity (estimated by the total cover 
of semi-natural habitats or cropland) on weed beta diversity 
(Fig. S1), either null (Alignier et al. 2020; Concepción et al. 
2012b; Ekroos et al. 2010; Fahrig et al. 2015; Flohre et al. 
2011a), negative (Gabriel et al. 2006), or positive (Con-
cepción et al. 2012b; Roschewitz et al. 2005). On the other 
hand, higher configurational heterogeneity seems to be a 
key driver of increasing beta diversity, either through higher 
edge density (Alignier et al. 2020; Concepción et al. 2012b; 
Poggio et al. 2010), reduced mean field size (Fahrig et al. 
2015), or increased proximity of semi-natural habitats and 
grassland fragmentation (Dormann et al. 2007). We observe 
very similar results for gamma diversity (Fig. S1).

The positive association between configurational hetero-
geneity and weed diversity could be due to various agro-
nomic and ecological processes. First, higher configurational 
heterogeneity typically results in landscapes with more 
fields, and probably with more diversified weed manage-
ment strategies, providing a wider range of environmental 
conditions for weeds at landscape scale and increasing beta 
and gamma diversity. Second, higher configurational hetero-
geneity probably promotes plant spillover and in-field envi-
ronmental heterogeneity resulting from neighboring arable 
or semi-natural habitats and increased connectivity in the 
landscape. We discuss the importance of plant spillover and 
environmental heterogeneity in determining weed commu-
nity assembly in Section 6.

2.3  Weed species composition

Strikingly, few studies (n = 12) have assessed the effects of 
landscape on weed species composition, compared to weed 
diversity or abundance. Most studies gathered in this review 
focused on biodiversity conservation in agricultural land-
scapes, not on agronomic aspects. This reflects the current 
emphasis of weed control on farming practices at the field 
scale (e.g., crop rotation, tillage, pesticide treatment, and ferti-
lization). Landscape effects on weed species composition, that 
is, how landscape composition and configuration determine 
the identity of weed species farmers must deal with, remain 
poorly understood. Yet, given only a small proportion of 
weed species causes significant yield loss (Adeux et al. 2019; 
Marshall et al. 2003), an important agronomic objective is 
to determine which landscape management practices (if any) 
effectively prevent dominance by these few highly competitive 
species, particularly those with evolved herbicide resistance 
(Dixon et al. 2021). Simulation studies concluded that con-
trolling competitive weeds does require a landscape strategy 
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(Dauer et al. 2009; González-Díaz et al. 2012). Empirical 
studies gathered in this review show that both landscape com-
positional and configurational heterogeneity can significantly 
affect species composition (Fried et al. 2008; José-María et al. 
2010; La Fuente et al. 2010; Marshall 2009; Martínez et al. 
2015; Nascimbene et al. 2016; Solé-Senan et al. 2014) (Fig. 
S2). Functional approaches, discussed below, should help 
interpret the importance of such results for biodiversity con-
servation and agricultural production.

2.4  Functional approaches

Very few studies used a functional approach that quantifies 
weed community responses to the landscape at the level of 
functional traits, although many studies measured the abun-
dance or diversity of ecological groups (e.g., growth form, 
origin, and rarity; Fig. 2). Yet, functional approaches allow 
a better understanding of the mechanisms driving the com-
position of weed communities and their impacts on agroeco-
system functioning (Gaba et al. 2017; Navas 2012). When 
taxonomic approaches yield conflicting results, functional 
approaches can help elucidate more general taxa responses 
to landscape management practices and provide insights into 
the underlying mechanisms (e.g., Gámez-Virués et al. 2015; 
Tamburini et al. 2020). From a conservation point of view, it 
is also important to measure the impact of land-use intensi-
fication on functional diversity, which may be more affected 
than species diversity (Flynn et al. 2009).

The few studies (n = 5) that measured multi-trait diver-
sity (using functional richness or Rao’s quadratic entropy) 
revealed a positive association between landscape com-
plexity and weed functional diversity (Carmona et  al. 
2020; Otto et al. 2012; Tarifa et al. 2021). Other studies 
found no effect of the total cover of cropland or semi-nat-
ural habitats and habitat diversity on the functional diver-
sity of weeds in arable fields (Hall et al. 2020; Pallavicini 
et al. 2020), but the authors assumed that semi-natural 
habitats were not very diverse in the study area, or that 
landscape complexity gradient was too short. Focusing on 
individual traits included in the leaf-height-seed scheme of 
Westoby (1998), Boinot et al. (2022) found a higher vari-
ance of plant height, specific leaf area, and seed mass in 
dense and complex bocage landscapes. Tarifa et al. (2021) 
also found increased variance of plant height and specific 
leaf area, but not seed mass, in more complex landscapes. 
However, Guerrero et al. (2014) did not detect any effect 
of landscape complexity on the variance of plant height, 
specific leaf area, or seed mass, which was explained by 
an overriding effect of field-scale management intensity.

Unlike functional diversity, community-weighted means 
of functional traits seem less affected by landscape context. 
Most studies did not find significant effects of landscape 

composition or configuration on the community-weighted 
mean of various functional traits, including, for example, 
plant height, specific leaf area, leaf-dry matter content, seed 
mass, flowering onset, and other floral traits (Boinot et al. 
2022; Carmona et al. 2020; Guerrero et al. 2014; Hall et al. 
2020; Pallavicini et al. 2020; Szitár et al. 2022; Uroy et al. 
2022). These results suggest that landscape context has a 
limited impact on the abundance of the most dominant weed 
species established in arable fields. Nonetheless, Carmona 
et al. (2020) found that decreasing landscape complexity is 
associated with lower mean seed mass, probably because 
(1) species with poor dispersal abilities (high seed mass) 
are selected against in very intensified landscapes, and (2) 
species producing numerous small seeds have a persistent 
seedbank that helps recover from agricultural disturbances. 
Similarly, Uroy et al. (2022) found that higher connectivity 
provided by grasslands favors species producing fewer but 
larger seeds. Furthermore, Boinot et al. (2022) found that the 
mean plant height tends to decrease in denser and more com-
plex bocage landscapes, probably because higher environ-
mental heterogeneity promotes the coexistence of life strat-
egies in such landscapes, thereby reducing the dominance 
of most competitive, taller species. Beyond the response of 
individual traits, it is worth noting that landscape effects on 
functional trait syndromes are rarely investigated.

For now, most knowledge on the functional composi-
tion of weed communities comes from studies measuring 
the abundance or diversity of ecological groups (Fig. 2). 
Most studies assessed the effects of landscape composition 
more than landscape configuration. Notably, there is recur-
ring evidence that rare and declining arable weed species 
benefit from lower cropland cover (or higher semi-natural 
habitat cover), although they are generally confined to the 
edges of arable fields with lower management intensity 
(José-María et al. 2010; Kovács-Hostyánszki et al. 2011; 
Roschewitz et al. 2005; Rotchés-Ribalta et al. 2015; Solé-
Senan et al. 2014). Dry-grassland specialists (based on 
reference literature) and non-nitrophilous species (based 
on Ellenberg’s indicator value) benefit from higher semi-
natural habitat cover as well (Kovács-Hostyánszki et al. 
2011; Nascimbene et al. 2016). In addition to their high 
conservation value, the preservation of such species is 
very interesting for AWM as they are less competitive 
and potentially provide important resources for pollinators 
and natural enemies of crop pests (Albrecht et al. 2016; 
MacLaren et al. 2020).

3  Landscape effects on weed seed predation

All the studies we reviewed focused on post-dispersal 
weed seed predation, where seed predators feed on the 
ground after seed dispersal from the mother plant. On the 
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other hand, pre-dispersal seed predation, where insect 
larvae (mainly Diptera, Lepidoptera, Coleoptera, and 
Hymenoptera) and granivorous birds (e.g., goldfinches and 
greenfinches) feed on immature and mature seeds before 
shed from the mother plant, is largely overlooked in the lit-
erature. Pre-dispersal seed predation has been reported in 
some competitive weed species such as Cirsium arvense, 
Chenopodium album, and Amaranthus retroflexus and 
contributes—along with post-dispersal seed predation—to 
the natural regulation of weed populations (DeSousa et al. 
2003; Forsyth and Watson 1985; Nurse et al. 2003). Most 
studies we reviewed measured post-dispersal weed seed 
predation on two occasions between May and July, during 
the main vegetation period but rarely in early spring or 
after crop harvest. The following most studied weed spe-
cies were in decreasing order Viola arvensis (n = 10 stud-
ies), Capsella bursa-pastoris (n = 5), Chenopodium album 
and Galium aparine (n = 4), Alopecurus myosuroides and 
Poa trivialis (n = 2), and other species in single studies: 
Amaranthus retroflexus, Cirsium arvense, Crepis biennis, 
Taraxacum officinale, Stellaria media, Galeopsis tetrahit, 
Abutilon theophrasti, Plantago lanceolata, Apera spica-
venti, Digitaria sanguinalis, Poa annua, Poa pratensis, 
and Setaria faberii. Of the 19 studies on weed seed preda-
tion, 11 measured total predation (invertebrates and ver-
tebrates), eight measured predation by invertebrates only, 
and one measured predation by vertebrates only. Five 
studies have compared invertebrate and vertebrate preda-
tion rates, with some finding greater contribution from 
vertebrates (Fischer et al. 2011a; Tschumi et al. 2018) or 
invertebrates (Carbonne et al. 2023; Menalled et al. 2000) 
to total seed predation. Among the 11 studies that meas-
ured total predation, the mean of seed removal rates varied 
from 13 to 72% and averaged 41%, which highlights the 
potential but also the variability of post-dispersal weed 
seed predation (variability resulting from both ecological 
and methodological differences).

Like the studies on weed community properties (i.e., 
abundance, diversity, and composition), most studies on 
weed seed predation focused on the effects of landscape 
composition more than landscape configuration (Fig. 5), 
although there is strong evidence that lower field size 
and higher edge density promote within-field biodiver-
sity including natural enemies of crop pests (Fahrig et al. 
2015; Martin et al. 2019; Šálek et al. 2018). Surprisingly, 
no study found a positive effect of the total cover of semi-
natural habitats on weed seed predation (Daouti et  al. 
2022; McHugh et al. 2020; Muneret et al. 2019; Ricci et al. 
2019; Rusch et al. 2016; Tortosa et al. 2022), despite their 
importance in supporting natural enemies of crop pests 
(Chaplin-Kramer et al. 2011; Holland et al. 2016). We 
found contrasting effects of total cropland cover on weed 
seed predation, either null (Daouti et al. 2022; Trichard 

et al. 2013), positive (Jonason et al. 2013), or depend-
ing on farming systems (Fischer et al. 2011a; Petit et al. 
2017). Even when distinguishing between habitat types 
(grassland, woodland, hedgerows, crop types, or organic 
fields), evidence for landscape effects remains limited so 
far (Diekötter et al. 2010; McHugh et al. 2020; Ricci et al. 
2019; Tortosa et al. 2022; Tortosa et al. 2023; Trichard 
et al. 2013; Tschumi et al. 2018, but see Badenhausser 
et al. 2020; Muneret et al. 2019; Perrot et al. 2021). We 

Fig. 5  Overview of landscape effects on post-dispersal weed seed 
predation. The number of studies is given to the right of the bars. 
Note that there may be more than one relationship assessed per study 
when a multi-scale approach was used. Landscape complexity gathers 
studies that sampled weed communities in broad landscape contexts 
(simple vs complex) and studies that used principal axes of multivari-
ate analyses based on a diversity of landscape variables (e.g., mean-
field size, total cover of cropland or semi-natural habitats, and habitat 
diversity). % Identical crop refers to the total cover of arable fields 
cultivated with the same crop as the sampled fields. On the other 
hand, % different crops gather studies assessing the effects of total 
cover of various crop types different from the sampled crops. ED, 
edge density; SNH, semi-natural habitats; CF, conventional farming; 
OF, organic farming.
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list some methodological biases and ecological hypotheses 
that might explain the low influence of landscape or con-
flicting results, which require further investigation:

• Landscape gradients are not large enough, or there are 
non-linear relationships and threshold effects (Tscharn-
tke et al. 2012; van der Hoek et al. 2015)

• The spatial scale considered is not the most relevant to 
the underlying ecological processes (see Section 5)

• Use of overly simplistic metrics (need for a finer char-
acterization of semi-natural habitats; e.g., Bartual et al. 
2019; Tobisch et al. 2023)

• Bias due to the sentinel prey method, which involves 
sticking prey on a card that is then placed in the field 
to quantify the prey removal rate during an exposure 
period. Some major predators might not consume seeds 
stuck on cards, and a low number of weed species have 
been tested so far (very often Viola arvensis), not nec-
essarily those that are dominant in the surveyed fields 
(Ali and Willenborg 2021; Saska et al. 2014; Zou et al. 
2017). Using a diversity of weed species should bet-
ter reflect the activity of the seed predator community. 
In addition, plastic roofs to protect seeds from rainfall 
(used in five studies in our review) can affect animal 
behavior and limit access to seed patches for birds (Fis-
cher et al. 2011a; Saska et al. 2014)

• Insufficient sampling effort in space and time, given 
the large spatial and temporal variability of weed seed 
predation (as evidenced by Marino et al. 1997; Trichard 
et al. 2014)

• Weed seed predation service is potentially provided by 
a small number of common and agrobiont species that 
are less affected by the landscape context (Daouti et al. 
2022; Muneret et al. 2019)

• Landscape effects on beneficial invertebrates are likely 
species-specific (Jowett et al. 2019), and the resulting 
feeding guilds will determine weed seed predation 
intensity

• No consideration of key covariates (and interaction 
effects) such as field-scale management intensity and 
resource availability, which drive predators’ survival, 
movement, and foraging time in arable fields (Carbonne 
et al. 2022; Corbett and Plant 1993; Dunning et al. 
1992) (see Section 4.2)

• Retention effects (i.e., semi-natural habitats are more 
attractive than arable fields under chemical-based agri-
culture) (Boinot et al. 2020)

• Diversification and dilution of resources in complex 
landscapes (i.e., reduced predation in focal fields but 
enhanced predation at landscape scale)

• Increased predation between natural enemies (intra-guild 
predation) in more complex landscapes due to increased 

abundance and diversity of natural enemies (but see 
Ortiz-Martínez et al. 2020)

4  Interaction of field‑ and landscape‑scale 
factors

4.1  Interaction with distance from field margins

Beneficial landscape effects on weed communities are par-
ticularly interesting for AWM when they impact a large 
area of crop fields, rather than being restricted to field 
edges. Based on available information, weed communi-
ties were sampled between 5 and 50 m from field margins 
across all studies (Fig. S3). In total, only 26% of studies 
(n = 15) assessed whether landscape effects vary with the 
distance from field margins. We can distinguish three types 
of landscape effects in decreasing order of importance for 
AWM: (1) independent effect: no interaction with the dis-
tance from field margins, (2) core effect: stronger landscape 
effects (negative or positive) in field cores, and (3) edge 
effect: stronger landscape effects (negative or positive) in 
field edges. Among studies that found significant landscape 
effects on species alpha diversity, there were more edge 
effects (n = 5; Alignier et al. 2020; Concepción et al. 2012b; 
José-María et al. 2010; Kovács-Hostyánszki et al. 2011; 
Solé-Senan et al. 2014) than core effects (n = 1; Alignier 
et al. 2020) and independent effects (n = 2; Concepción 
et al. 2012b; Poggio et al. 2013). The most common inter-
pretations for edge effects are short-distance spillover from 
adjoining habitats and/or reduced agricultural disturbances 
in field edges, whereas strong filtering occurs in field cores. 
Conversely, Alignier et al. (2020) found a positive effect of 
configurational crop heterogeneity in field cores, but not in 
field edges. The authors assumed that the landscape effect 
is limited where plant diversity is already high (that is in 
field edges that are generally more diverse than field cores, 
at least under conventional farming).

Regarding weed seed predation, only 21% of studies (n = 
4) assessed whether landscape effects vary with the distance 
from field margins. Among studies that found significant 
landscape effects, there were only independent effects (n = 
2; Badenhausser et al. 2020; Fischer et al. 2011a), suggest-
ing that natural enemies benefiting from higher landscape 
complexity or hedgerow density were efficiently colonizing 
arable fields—at least if spillover from semi-natural habitats 
is indeed the major process involved.

4.2  Interaction with field‑scale management 
intensity

Many agroecological studies revealed that landscape 
effects on a wide range of taxa (and associated ecological 
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functions) depend on field-scale management intensity 
(e.g., Concepción et al. 2012a; Fusser et al. 2018; Mar-
tínez‐Núñez et al. 2019; Ricci et al. 2019). We can dis-
tinguish three types of landscape effects: (1) independent 
effect: no interaction with field-scale management inten-
sity, (2) antagonistic effects: local management intensity 
hampers the benefits of landscape heterogeneity/complex-
ity, and (3) compensation effects: landscape heterogeneity/
complexity has more impact on fields where biodiversity is 
most severely affected, and thus compensates for the nega-
tive impacts of intense local management. In this review, 
77% of studies (n = 44) measured field-scale management 
intensity, defined as the intensity of agrochemical and/or 
tillage disturbances or comparing different farming sys-
tems (conventional vs organic). Among these, 29 studies 
assessed whether landscape effects vary with field-scale 
management intensity. Among studies that found signifi-
cant landscape effects on weed species alpha diversity, 
there were far more independent effects (n = 14, Boinot 
et al. 2022; Carbonne et al. 2022; Carmona et al. 2020; 
Concepción et al. 2012b; Flohre et al. 2011a; Henckel 
et al. 2015; José-María et al. 2010; Kovács-Hostyánszki 
et al. 2011; Lüscher et al. 2014; Martin et al. 2020; Petit 
et al. 2016; Rey et al. 2019; Tarifa et al. 2021; Winqvist 
et al. 2011) than antagonistic (n = 3; Berquer et al. 2021; 
Flohre et al. 2011b; Fried et al. 2022) and compensa-
tion effects (n = 2; Berquer et al. 2021; Roschewitz et al. 
2005). We argue that if plant spillover was the key process 
at play, we should expect more antagonistic effects as tran-
sient weed species adapted to semi-natural habitats will 
be removed at a greater rate by more intense and frequent 
agronomic filters (soil tillage and agrochemical inputs). 
These species do rely on regular dispersal from surround-
ing habitats to persist in intensively managed fields, where 
they are generally confined to field edges (Metcalfe et al. 
2019). We discuss other ecological processes that might 
explain these results in Section 6.

Regarding weed seed predation, 63% of studies (n = 12) 
measured field-scale management intensity, and 11 studies 
assessed whether landscape effects vary with field-scale 
management intensity. Among studies that found significant 
landscape effects, there were more independent effects (n 
= 3; Jonason et al. 2013; Muneret et al. 2019; Ricci et al. 
2019) than antagonistic effects (n = 1; Fischer et al. 2011a). 
These results show that in some cases, natural enemies 
benefiting from certain landscape contexts can efficiently 
colonize arable fields, even the most intensively managed 
ones. Nonetheless, in other cases, it seems both field- and 
landscape-scale extensification are needed to promote bio-
logical control of weeds. This most likely depends on the 
life strategies of weed seed predators involved (e.g., Boinot 
et al. 2020; Martin et al. 2019).

5  Spatial scale of landscape effects

Overall, only 25% of studies on weed community proper-
ties (n = 14) used a multiscale approach. Similarly, only 
29% of the studies (n = 5) on weed seed predation used a 
multiscale approach. When studies are designed at a single 
spatial scale, landscape effects may be missed or underesti-
mated because the chosen spatial scale is not relevant to the 
important biological processes at play. Across all the stud-
ies on weed community properties gathered in this review, 
selected buffer radii varied from 17 m to 2500 m (Fig. S4). 
Buffer radii most commonly used were by far 500 m (n = 
22 studies) and 1000 m (n = 17) for both weed abundance 
and species alpha diversity. Similarly, almost all studies on 
weed seed predation used buffer radii of 500 m or 1000 m. It 
is often stated that weed communities respond to landscape 
context at a low buffer scale (that is less than 1000 m radius 
around focal fields). However, the results of the few studies 
(n = 5) that have used larger spatial scales suggest that weed 
diversity is also influenced by landscape context within radii 
of 1500 m to 2500 m (Fried et al. 2022; Gabriel et al. 2005; 
La Fuente et al. 2010; Rey et al. 2019; Tarifa et al. 2021). 
We also note that long-term weed surveys and studies on 
landscape history, trajectory, and temporal variability are 
missing in the literature, which is a common issue in land-
scape (agro)ecology (Marrec et al. 2022). In the following 
section, we explain that there might be many overlooked 
ecological processes underlying landscape effects on weed 
communities, and these processes most likely occur at dif-
ferent spatial and temporal scales.

6  Ecological processes explaining landscape 
effects

A better knowledge of ecological processes underlying 
landscape effects is required to (1) understand the mecha-
nisms driving weed community assembly, (2) elucidate the 
contrasting associations observed between landscape and 
weed community properties, (3) provide relevant landscape-
scale management strategies/guidelines at the appropriate 
spatiotemporal scales to optimize the balance between the 
negative and positive functions of weed communities (see 
Section 7).

6.1  Plant spillover and source‑sink dynamics

In the articles we reviewed, plant spillover is by far the 
most common interpretation of landscape effects on weed 
communities (Fig. 6). The “plant spillover” hypothesis 
assumes that (1) more heterogeneous landscapes provide a 
diversity of habitats for ruderal plant species, and (2) plant 
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spillover from surrounding habitats directly increases weed 
abundance or diversity in arable fields (Boinot et al. 2022; 
Metcalfe et al. 2019; Shmida and Wilson 1985). However, 
plant spillover is rarely measured directly as it is very chal-
lenging to track plant dispersal in situ, especially over time. 

Edge-biased distribution—the increase in weed abundance 
and diversity in field edges—does not necessarily provide 
evidence for the “plant spillover” hypothesis, as it could also 
be due to reduced agricultural disturbances in field edges, 
or increased environmental heterogeneity. Distinguishing 

Fig. 6  A framework for future research on landscape-scale ecologi-
cal processes and their contribution to AWM. Plant spillover is by 
far the most common interpretation of landscape effects. It is gener-
ally assumed that increased weed abundance or diversity (or changes 
in community composition) in arable fields is due to the dispersal of 
plant species from a diversity of neighboring habitats (direct effect 
represented by the dashed blue line). We point out that there are other 
overlooked ecological processes operating from local to regional 
scales and not necessarily related to plant spillover. Landscape con-
text can affect both environmental means and environmental hetero-
geneity in crop fields and beyond. Environmental means should affect 
the composition more than the diversity of weeds, except at extreme 
values of environmental gradients where strong filtering occurs. On 

the other hand, environmental heterogeneity is a key driver of diver-
sity favoring species coexistence and niche differentiation. Environ-
mental means and heterogeneity can affect not only plant spillover 
but also many other parameters that determine weed life cycles, plant-
pant interactions, and weed community properties. Note that this 
framework is largely based on traditional community assembly theory 
(Booth and Swanton 2002). We did not represent feedback between 
weeds and their environment (modern coexistence and feedback theo-
ries: HilleRisLambers et al. 2012; Zobel et al. 2022), which can con-
tribute to the maintenance (or loss) of weed diversity. For example, 
weeds can affect pollinators, natural enemies, and microorganism 
communities, as well as farmers’ perceptions and decisions.
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“resident” species that can cope with strong agricultural 
disturbances and have persistent seedbank (ruderal strat-
egy), from “transient” species that rely on regular dispersal 
from neighboring habitats (stress-tolerant or competitive 
strategies), can help assess the “plant spillover” hypothesis. 
Metcalfe et al. (2019) measured the fidelity of weed commu-
nities to crop habitats to quantify the relative proportion of 
resident and transient species. The authors showed that edge-
biased distribution was associated with a decrease in fidelity 
to crop habitats and a higher proportion of competitive spe-
cies in field edges, providing strong support for the “plant 
spillover” hypothesis. Beyond regular short-distance dis-
persal in field edges, there are probably rarer long-distance 
dispersal events (by wind, animals, or farming machinery) 
and temporal dispersal (generation-to-generation) facilitated 
by dormancy, which are more difficult to observe (Petit et al. 
2013).

There is much evidence for plant spillover from semi-nat-
ural habitats to arable fields, and the prevailing agronomic 
view is that semi-natural habitats are sources of weeds. On 
the other hand, dispersal from arable fields to semi-natural 
habitats, and the role of semi-natural habitats as barriers to 
weed dispersal, have rarely been investigated (but see Cord-
eau et al. 2012; Devlaeminck et al. 2005; Ricci et al. 2018; 
Wilkerson 2014). Well-established perennial vegetation and 
litter in semi-natural habitats can act as seed traps (Bullock 
and Moy 2004; Doisy et al. 2014; Gabay et al. 2012; Rupre-
cht and Szabó 2012). Interestingly, José-María et al. (2011) 
found a lower abundance of wind-dispersed weed species in 
landscapes with a higher proportion of semi-natural habitats, 
including woodlands and shrublands. Wooded habitats can 
also reduce wind speed and affect pollen transfer (Forman 
and Baudry 1984; Matthias et al. 2015), which determines 
seed production and establishment (Auffret et al. 2017) but 
also the transfer of herbicide resistance genes (Loureiro 
et al. 2016). Furthermore, fragmentation of crop fields—
interspersed with semi-natural habitats—also implies that 
the dispersal of weed seeds and vegetative plant frag-
ments by agricultural operations such as tillage or harvest 
(Blanco-Moreno et al. 2004; Håkansson 2003; Steinmann 
and Klingebiel 2004) is restricted to smaller areas. This 
potentially prevents the expansion of weed patches in the 
landscape, at least if dispersal between fields by machinery 
is not the dominant process (Petit et al. 2013).

Whether or not landscape features promote or impede 
weed dispersal and population growth in crop fields will 
depend on the suitability of landscape habitats for ruderal 
plants. Later, successional semi-natural habitats generally 
present unfavorable or sub-optimal abiotic conditions for 
the growth and establishment of arable weed species, which 
have a high affinity for disturbed, nutrient-rich, sunny, and 
dry environments (Bourgeois et al. 2019). However, certain 
open semi-natural habitats, such as disturbed grasslands 

(Munoz et al. 2020), can provide alternative habitats for 
ruderal plant species, supporting a wider regional species 
pool (Smart et al. 2006b) and promoting spillover into crop 
fields. Similarly, among the wide variety of field margin 
types, herbaceous, narrow, and disturbed margins are the 
most likely to provide habitat for weedy species (Aavik 
and Liira 2010; Boinot and Alignier 2023; Cirujeda et al. 
2019; Fried et al. 2018). Resolving the uncertainties around 
the relative contribution of semi-natural habitats either as 
sources of weeds or potential barriers to dispersal (source-
sink dynamics; Dunning et al. 1992) can only be addressed 
by a more detailed study of landscape impact on weed com-
munity composition—currently an understudied topic as dis-
cussed above. This understanding has important agronomic 
implications and could underpin landscape management 
recommendations. For example, habitats that support plant 
species unlikely to become highly-competitive weeds could 
be integrated between or within crop fields, which may make 
a positive contribution to ecosystem functioning by support-
ing seed predators (e.g., beetle banks) and other functional 
groups (see Section 7).

6.2  Environmental heterogeneity, coexistence, 
and niche differentiation

Landscape context can affect both abiotic factors (pedocli-
matic variables) and biotic factors (ecological interactions) 
in crop fields and beyond (Cao et al. 2020; Schroeder et al. 
2020) (Fig. 6). In addition, landscape effects can impact both 
the mean and variance of environmental conditions, referred 
to as environmental means and environmental heterogeneity 
(Stark et al. 2017). Changes in environmental means would 
affect the composition more than the diversity of weeds, 
except at extreme values of environmental gradients where 
strong filtering occurs. On the other hand, environmental 
heterogeneity is a key driver of diversity in a wide range of 
ecosystems (Stein et al. 2014). A diversity of environmental 
conditions (in space and time), and refuges from adverse 
environmental conditions, favors the coexistence and per-
sistence of a diversity of species with different ecological 
niches. Competing species with overlapping niches can also 
coexist through niche differentiation and resource partition-
ing (Adler et al. 2013; Silvertown 2004), where plant spe-
cies use the same resource in different places and at dif-
ferent times (e.g., through variations in root systems and 
phenology), or use different forms of the same resource (e.g., 
uptake of different chemical forms of nutrients).

Both environmental means and heterogeneity can affect 
plant spillover, for example, via the mean and variance of 
wind speed or the abundance and diversity of seed dispers-
ers. Nonetheless, aside from plant spillover, we found that 
very few studies discussed the importance of abiotic envi-
ronmental means and heterogeneity in weed community 
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assembly. Gabriel et al. (2006) found higher weed beta 
diversity in more complex landscapes and assumed that 
“local abiotic conditions within fields in complex land-
scapes are more variable than in simple landscapes with 
large, homogeneous fields, promoting heterogeneity in plant 
communities.” Similarly, Boinot et al. (2022) found higher 
weed diversity in landscapes that contain denser and more 
complex hedgerow networks. This increase in weed diver-
sity was associated with an increase in community-weighted 
variance of Ellenberg’s values for light, temperature, and soil 
moisture (a proxy for environmental heterogeneity), but not 
with an increase in community-weighted mean of fidelity to 
non-crop habitats (a proxy for plant spillover). The authors 
concluded that environmental heterogeneity—by increas-
ing the variability of in-field pedoclimatic conditions—was 
more likely the key driver of weed diversity in field cores as 
opposed to plant spillover.

The importance of biotic environmental means and 
heterogeneity, in terms of ecological interactions deter-
mining weed community assembly, is also generally over-
looked. Agroecological studies more often investigate the 
effects of weeds on biodiversity than vice-versa. However, 
to survive in arable fields, weed species not only have to 
cope with strong agricultural disturbances and find suit-
able abiotic conditions for germination and growth but 
they also have to (1) survive diseases, parasitism, preda-
tion, allelopathy, and competition with other plants; (2) 
associate with mutualistic or symbiotic organisms; (3) 
reproduce; and (4) disperse. Landscape context will affect 
all these steps of the weed life cycle, indirectly through 
its impacts on living organisms interacting with weeds 
(Schroeder et al. 2020). First, as discussed in Section 3, 
landscape context can affect the communities of natural 
enemies of weeds (herbivores and seed predators) in arable 
fields (e.g., Haan et al. 2020; Martin et al. 2019). Natural 
enemies not only reduce weed abundance but also promote 
weed diversity. Indeed, natural enemy partitioning, which 
occurs when plant species are attacked differently by dif-
ferent natural enemies, can facilitate the coexistence of 
different plant species (Agrawal and Maron 2022; Hulme 
1998). Density-dependent predation implies that weed spe-
cies producing more seeds are more likely to get predated, 
especially if seeds are aggregated (Marino et al. 2005), 
potentially leaving space for less competitive weed species 
(unless dominant weeds are buffered by too large seed-
bank). Second, landscape context is a major driver of pol-
linator abundance and diversity in arable fields (Kennedy 
et al. 2013; Ragué et al. 2022), and pollination by insects 
has a key role in maintaining diverse weed communities 
(Rollin et al. 2016). Some studies gathered in our review 
indeed found that forb or insect-pollinated weeds are dis-
proportionately promoted by higher habitat diversity or 
landscape complexity (Bohan and Haughton 2012; Gabriel 

et al. 2005; Roschewitz et al. 2005; Tarifa et al. 2021). 
Interestingly, Petit et al. (2013) found not only higher weed 
diversity but also a higher proportion of insect-pollinated 
weeds in a preserved bocage landscape as opposed to an 
adjacent bocage landscape that went through a reallot-
ment program in the early 1990s. Third, landscape con-
text affects the presence and movement of seed dispersers 
such as insects, birds, and mammals in arable fields (Bar-
baro et al. 2021; Fischer et al. 2011b; Rey et al. 2019). 
Plants need to disperse in order to persist in a changing 
environment; to limit predation, disease, and intraspecific 
competition (e.g., Janzen-Connell effects); or to avoid 
self-fertilization and inbreeding depression (Petermann 
et al. 2008). Ozinga et al. (2009) provided evidence that 
dispersal failure contributes to the loss of plant diversity 
across a wide range of habitats, suggesting that restoration 
measures to improve local habitat quality may not always 
be sufficient, especially when the soil seedbank has been 
depleted. Fourth, there is growing evidence that landscape 
context can affect microorganism community assembly as 
well (Mony et al. 2020), in turn affecting organic matter 
decomposition, soil fertility, nutrient acquisition by plants, 
and plant health.

We contend environmental heterogeneity is more likely 
a key driver of weed diversity in field cores, as opposed to 
plant spillover, especially when landscape effects do not 
depend on field-scale management intensity (Section 4.2). 
Environmental heterogeneity probably helps preserve a 
wider range of life strategies among the subset of weed 
species that survive local intensive practices. Seiferling 
et al. (2014) revealed that an increase in environmental 
heterogeneity is particularly beneficial for biodiversity in 
highly disturbed and homogenized ecosystems, such as 
agroecosystems. In arable fields, higher environmental 
heterogeneity would increase resource opportunities in 
a similar way (regardless of the field-scale management 
intensity). Understanding the balance between the pro-
cesses related to environmental heterogeneity and plant 
spillover along field- and landscape-scale management 
gradients should provide key insights for the successful 
implementation of AWM (see Section 7).

7  Implications of landscape‑scale change 
for agroecological weed management

7.1  From observation of landscape gradients 
in space to monitoring of landscape 
diversification in time

Our review is based on studies that compare weed commu-
nities in contrasted landscape contexts or along continu-
ous gradients of landscape heterogeneity. However, we are 
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unaware of any study that properly measured the effects of 
landscape diversification on weed communities, i.e., start-
ing from a simplified landscape and adding heterogeneity 
for example by planting/restoring semi-natural habitats or 
diversifying farming practices. Current knowledge is thus 
limited by the space-for-time substitution approach (Pick-
ett 1989), and it remains unknown whether a strategy of 
landscape diversification (e.g., increasing configurational 
heterogeneity over time) would yield equivalent results 
to the comparison between simple vs complex landscapes 
(spatial variation). Therefore, while our review provides 
evidence that weed diversity is often higher in landscapes 
with higher habitat diversity, edge density, crop diver-
sity, organic farming cover, or lower field size, it does not 
guarantee that landscape-scale change will increase weed 
diversity, nor does it provide information on the time scale 
needed to induce changes. Observed effects of landscape 
on weed communities could theoretically be due to con-
founding factors such as different past land use in each 
landscape affecting, for example, the size and composi-
tion of the regional species pool. Pickett (1989) concluded 
that space-for-time substitution is irrelevant where the past 
has had unsuspected effects and that analysis of the influ-
ence of past environments or prior system status is needed 
to justify this approach. This also raises the question of 
the resilience of weed communities to decades of agri-
cultural intensification; Are soil seedbanks depleted? Can 
landscape extensification, through natural pathways, help 
restore the weed flora and its ecological functions?

We identify two complementary approaches to over-
come the limitations of the space-for-time substitution 
approach. First, studies should be designed to quantify the 
relative importance of the different processes underlying 
landscape effects (see Section 6). This would ensure that 
our interpretations are correct, and that observed land-
scape effects are not solely due to unknown confound-
ing factors. Such knowledge should also help inform 
landscape-scale management strategies/guidelines at the 
appropriate spatiotemporal scales. Secondly, integrated 
landscape approaches are increasingly being promoted 
through science, policy, and the donor community (Reed 
et al. 2021). Integrated landscape approaches are promis-
ing pathways for reconciling agriculture, conservation, and 
other competing land uses, for example, water manage-
ment or climate change mitigation (Landis 2017; Sayer 
et al. 2013). These approaches consist of involving all 
relevant stakeholders, determining realistic strategies to 
promote sustainable management and multifunctionality of 
the landscape, and resolving conflicts between the various 
stakeholders and inhabitants of the landscape. Importantly, 
these approaches facilitate the mutual exchange of knowl-
edge between researchers and farmers and open the door 
to farmer-led solutions that could speed up innovation and 

implementation of agroecology (Bohan et al. 2022). The 
implications of these integrated landscape approaches for 
weed management are currently unexplored but could be 
better understood by monitoring the response of weed 
communities within these initiatives implemented at the 
landscape scale. While it may be that the regulation of 
weed communities is not the primary driver of landscape-
scale interventions, this new knowledge will complement 
examples of successful landscape-scale management of 
diseases, natural enemies of crop pests, or pollinators 
(Hannachi and Martinet 2019; Jeanneret et al. 2021; Petit 
et al. 2020) and allow the response of weed communities 
to further inform management plans.

7.2  From field‑scale to collective management

As modern agriculture developed, policymakers, agrono-
mists, and farmers focused largely on the cultivated areas 
of the farm and its productivity, without much regard for 
impacts on or from surrounding land uses. Consequently, 
individual fields have become the “traditional” management 
units, on which it is easier to implement AWM. Increas-
ingly, however, the uncropped areas of the farm are also 
being managed to promote biodiversity conservation and 
ecosystem service provision (Jones et al. 2016). This gener-
ally involves habitat creation for the support of target taxa 
(for example, farmland birds or pollinators) as part of sub-
sidized agri-environment schemes. Adapting these interven-
tions based on an understanding of the impacts on the crop 
production system (including the regulation of weed com-
munities) is currently a minor consideration when designing 
farm management plans. A better knowledge of the different 
ecological processes reviewed here would be beneficial in 
guiding decisions on the type and placement of habitat crea-
tion in the landscape to regulate weed communities in more 
natural ways (Fig. 7). For example, landscape planning and 
conservation efforts could pay special attention to habitats 
that promote abiotic and biotic environmental heterogeneity 
(e.g., hedgerows and woodlots) or establish open and mod-
erately-disturbed habitats (e.g., conservation headlands) as 
refuges for weed populations in regions with depleted weed 
species pools. From an agronomic perspective, the diversi-
fication of crops and associated farming practices (tillage, 
sowing date, and fertilization) at the landscape scale seems 
promising, as it could increase biotic environmental hetero-
geneity, reduce the dominance of most competitive weeds, 
and limit the risk of weed colonization between crop fields 
(Dornelas et al. 2009; Mahaut et al. 2019; Sirami et al. 2019; 
Vasseur et al. 2013).

Importantly, several authors have argued that expand-
ing in-field agroecological solutions at the farm or land-
scape scale, while a step forward, may not be sufficient 
to achieve expected results (sustainable agriculture, 
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biodiversity conservation, and associated ecological func-
tioning). Coordinated or even collaborative approaches 
across ownership boundaries are probably necessary 
(Cong et  al. 2016; Landis 2017; Marrec et  al. 2022; 
Prager 2015; Vialatte et al. 2019). This certainly holds for 
landscape-scale AWM and the potential levers highlighted 
in our review (based on the space-for-time substitution 
approach), as habitats and their functioning are inter-
connected (Fig. 7). For example, conversion to organic 

farming could be more challenging if the field under con-
version is embedded in an unfavorable landscape context 
that prevents the ecological intensification needed as an 
alternative to agrochemicals (Fusser et al. 2018). Diver-
sifying in-field crop rotation does not guarantee that crop 
rotations are desynchronized at the landscape scale, which 
would increase both spatial and temporal crop diversity, 
along with weed diversity (Fahrig et al. 2015; Martin 
et al. 2020; Sirami et al. 2019) and resource continuity for 

Fig. 7  An example of landscape-level thinking for agroecological 
weed management based on potential beneficial or detrimental func-
tions of habitats that compose the landscape. Coordination and col-
laboration between farmers and other stakeholders (highlighted in 
red) are likely necessary because habitats are interdependent; man-
agement practices in one habitat can affect ecological functioning 
in another habitat. Such representation can help identify potential 
synergies and trade-offs between the objectives of different stake-
holders (e.g., farmers, forest managers, local municipalities, and 
citizens). There are likely many points of congruence between agro-
ecological weed management and other related objectives, such as 
biodiversity conservation or more specifically the promotion of pol-

linators and natural enemies of agricultural pests ((1) Boinot et  al. 
2022; (2) Henckel et al. 2015; (3) Chamorro et al. 2016; (4) Boinot 
and Alignier 2022; (5) Diekötter et  al. 2016; (6) Fusser et  al. 2018; 
(7) Sirami et al. 2019; (8) Dornelas et al. 2009; (9) Raderschall et al. 
2022; (10) Fahrig et  al. 2015; (11) Metcalfe et  al. 2019; (12) Fried 
et  al. 2009; (13) Albrecht et  al. 2016; (14) Yvoz et  al. 2022; (15) 
Hertzog et al. 2021; (16) Lenoir et al. 2021; (17) Devlaeminck et al. 
2005; (18) Perrot et al. 2021; (19) MacLaren et al. 2019; (20) Smart 
et al. 2002; (21) Ricci et al. 2018; (22) Boinot et al. 2023; (23) Boi-
not and Alignier 2023; (24) Wilkerson 2014; (25) Graham et al. 2018; 
(26) Kirmer et al. 2018; (27) Fried et al. 2018; (28) Labruyere et al. 
2016).
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ecosystem-service providers (Iuliano and Gratton 2020; 
Raderschall et al. 2022). Finally, landscape-level think-
ing is required to establish/maintain connectivity between 
semi-natural habitats and promote their colonization by 
non-weedy plant species (Lenoir et al. 2021; Smart et al. 
2002).

It is beyond the scope of this review to identify all 
barriers to the implementation of coordinated or col-
laborative landscape-scale management, which would 
have an impact on weed diversity as one component of 
more sustainable systems. Nonetheless, we can mention 
that barriers are of various kinds; political, economic, 
scientific, sociological, and psychological. Notably, dec-
ades of research, development, and lobbying in favor of 
chemical-based and intensive agriculture have led to the 
dominance of the agrochemical paradigm, individual 
field-scale management, path dependence, and lock-in 
(Cowan and Gunby 1996; Magrini et al. 2019; Meynard 
et al. 2018). Current state regulatory tools hamper the 
innovative capacities of the farmers. Industrial supply 
chains are strongly organized around standards, and there 
is an insufficient market for niche crops. Difficulty in 
identifying or understanding collective interests, unequal 
gains from coordination between farms, along with uncer-
tainty, and lack of scientific knowledge and technical 
extension also hinder the implementation of agroecologi-
cal practices and landscape-scale management (Bareille 
et al. 2020; Hannachi and Martinet 2019; Labarthe 2009). 
Improved incentives from public authorities could help 
farmers who share a common agroecological objective, 
for example, non-individual incentives conditional on 
achieving a collective objective to increase group coor-
dination and eventually bring neighbors in (Villamayor-
Tomas et al. 2019). Agglomeration bonus (i.e., additional 
payment if parcels are contiguous) could also improve 
territorial integrity (Kuhfuss et al. 2022). Most impor-
tantly, researchers need to work with policymakers and 
funding agencies to develop programs that support long-
term and integrated landscape research, which is a prom-
ising approach to promote knowledge exchange between 
stakeholders, adaptation to specific contexts, and conflict 
resolution (Landis 2017; Petit et al. 2023).

8  Conclusion

As a result of agrarian individualism and the development of 
the agrochemical paradigm, weed management (even agro-
ecological) largely focuses on field-scale farming practices 
and their effects on weed abundance and weed-crop competi-
tion. However, with the emerging view that weed diversity 
and composition are key drivers of the sustainability and 
multifunctionality of agroecosystems, consideration of the 

landscape should gain importance. Our review shows that 
the landscape context can affect weed diversity and compo-
sition in many ways, but there is a knowledge gap about the 
ecological processes underlying landscape effects. Under-
standing the mechanisms driving weed community assem-
bly is necessary to elucidate the contrasting associations 
observed between landscape and weed community prop-
erties and provide relevant landscape-scale management 
guidelines. Moreover, research on weed-landscape ecology 
is still exclusively based on the space-for-time substitution 
approach. Landscape-scale weed management—based on 
landscape diversification—remains unexplored and would 
require coordination between farmers and other stakehold-
ers. In this respect, integrated landscape approaches should 
make it possible to test new and ambitious ways of sustain-
ably managing weeds, complementing innovations at the 
field scale. To conclude, most studies we found are from 
Europe, which likely reflects the greater policy emphasis 
on agri-environment schemes. There is a need to expand 
research on weed-landscape ecology worldwide to facili-
tate the production of knowledge and the implementation of 
more sustainable weed management practices.
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