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The spatial structure of a host population has a profound effect on the dynamics of 
infectious diseases. The basic reproduction number, a central quantity in the study of 
epidemic dynamics, is affected by host clustering as well as host density. Several authors 
have developed methods to quantify the basic reproduction number in a spatially struc-
tured host population. The methods used and the expressions derived are however dif-
ficult to apply to real life spatial host structures. In this paper we introduce an explicit 
expression for the basic reproduction number using the O-ring statistic, developed in 
spatial statistics, that quantifies the host density as a function of the distance from a 
randomly selected host individual. The O-ring statistic is frequently used in the study 
of the ecology of spatially structured plant populations, being a convenient summary 
of the properties of a landscape by way of a single function. The connection we develop 
between spatial statistics and epidemic dynamics can be used to study the effect of 
host spatial pattern on the basic reproduction number of infectious diseases. As well as 
showing how explicit expressions for the basic reproduction number can be derived for 
landscapes with standard structures, our expression for the basic reproduction number 
is tested against a simulation model. The model structure in our simulation is motivated 
by the spread of a plant disease epidemic, although it is applicable more broadly. The 
agreement between our analytic expression for the basic reproduction number and the 
corresponding numeric quantity extracted from simulations is close to perfect across a 
wide range of landscape structures and model parameterisations, and including cases in 
which more than one species of host is at risk of infection.

Keywords: host clustering, moment closure techniques, Neyman–Scott process, 
O-ring statistic, pathogen dispersal function

Introduction

The effects of host spatial structure on the dynamics of infectious diseases is increas-
ingly recognised. For example, several authors, using epidemiological models, have 
found that in a spatially clustered host population epidemic incidence increases faster 
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at the start of the epidemic than in host populations with a 
random spatial distribution (Bolker 1999, Brown and Bolker 
2003, Bauch 2005). This finding has been experimentally 
verified by Burdon and Chilvers (1976) in a controlled envi-
ronment experiment using the pathogen Pythium irregulare 
infecting garden cress Lepidium sativu. Bolker (1999), Brown 
and Bolker (2003) and Bauch (2005) also found that the crit-
ical transmission rate above which an epidemic will spread 
depends on both the host distribution and the shape of the 
dispersal distribution of infectious units around a host. 

These results relate to one of the key concepts in 
epidemiology, the existence of a threshold for epidemic 
development. This threshold, called the basic reproduction 
number, R0, is defined as the average number of secondary 
cases produced by one infected individual introduced into 
a population of susceptible individuals. When R0 > 1 the 
number of infected individuals is expected to increase over 
time, resulting in an epidemic. When R0 < 1 the disease will 
not cause an epidemic and the pathogen eventually disappears 
from the host population.

Expressions for the basic reproduction number, in terms of 
the underlying host and pathogen population dynamics and 
epidemiological parameters, have been derived in a wide range 
of cases. These include vector transmitted diseases, the effect of 
age structure, host behavioural heterogeneity and genetic het-
erogeneity (Keeling and Grenfell 2000, Madden et al. 2000). 
The most generic method for the derivation of basic reproduc-
tion number in terms of the pathogen and host parameters 
was developed by Diekmann et al. (1990) and popularised as 
the next generation method some years later (Diekmann et al. 
2009). However, virtually all models leading to an explicit 
expression for R0 make the underlying assumption of mass 
action, the assumption that any infectious individual in the 
population has an equal chance of infecting any susceptible 
individual, thereby lacking spatial heterogeneity.

Epidemiological models, formulated as computer simula-
tion programmes, where the host population has an explicit 
spatial structure and pathogen dispersal is modelled by a con-
tact distribution (dispersal distribution), have been developed 
for a wide range of purposes. Bolker (1999) introduced a 
spatially explicit epidemiological modelling framework that 
allows a detailed specification of the spatial arrangement of 
the host. Each host individual is treated as an individual unit 
located in continuous space (a point pattern). The transmis-
sion of the pathogen is governed by an infectious unit’s disper-
sal distribution defined as the probability of an infectious unit 
produced by a host located at coordinates (x1, x2) infecting a 
susceptible host located at (y1, y2). In most models developed 
so far, the dispersal distribution is rotationally symmetric. This 
modelling methodology, either in its deterministic or stochas-
tic form, has been widely adopted by theoretical epidemiolo-
gists (Bolker 1999, Tildesley et al. 2006, Meentemeyer et al. 
2011, te Beest et al. 2011, Cunniffe 2015, 2016). 

Although these models allow for a full specification of the 
host spatial pattern and realistic pathogen dispersal, the main 
drawback is that they are far less analytically tractable than 
models of well mixed host populations. In particular, although 

the basic reproduction number can be estimated from simu-
lation outputs, there is as yet no simple, biologically intuitive, 
analytical expression for the basic reproduction number for 
spatial host distributions other than random distribution. For 
spatially random host distributions Suprunenko et al. (2021) 
and Wadkin  et  al. (2024) derive expressions for R0. They 
include other aspects such as host depletion (Wadkin et al. 
2024) and the effect of disease control (Suprunenko  et  al. 
2021). An expression for R0 in non-random host distribu-
tions would make it easier, compared to simulation runs, to 
understand the effects of pathogen life-cycle parameters and 
host spatial structure characteristics on the basic reproduc-
tion number. Ideally, such an expression would not need a 
full specification of the host landscape (as simulations need) 
but instead would enable the calculation of R0 on the basis of 
some simplified landscape characteristics.

In spatial statistics a range of measures have been 
developed to characterise spatial point patterns (Cressie 
1991, Diggle 2003, Baddeley  et  al. 2015). Ecologists have 
used these measures to study the ecology of plant populations 
(Law et al. 2009, Ben-Said 2021). One of the most commonly 
used measures is Ripley’s K(r) function (Ripley 1976, 1977). 
Ripley’s K(r) is defined as the expected density of individuals 
in a circle with radius r around a randomly chosen plant 
individual.

K r E

r

( ) {� ���� the number of individuals within a

distance of a randomlly chosen individual},
	  (1)

where λ is the plant density (number per unit area). Another 
well known statistic is the pair correlation function g(r) which 
is defined as the probability of finding a host at distance r 
from a randomly chosen host (given that there is a host). The 
pair correlation function is related to Ripley’s K-statistic as 

g r
r

dK r
dr

� � � � �1
2�

. 	  (2)

For our purpose a more useful statistic, derived from the 
above statistics, was introduced by Wiegand and Moloney 
(2004) as the O-ring statistic, O(r). The O-ring statistic is 
defined as the expected density of individuals at a distance 
r from a randomly chosen individual and is related to the 
pair correlation function by O(r) = λg(r). So, 2πrO(r) dr is 
the expected number of individuals in a ring of width dr and 
radius r from a random individual.

The O(r) statistic is a convenient and concise summary of 
the entire structure of a landscape, and describes how many 
potential hosts an infectious unit encounters as a function of 
distance. This leads us to suggest that the dispersal density, 
D(r), defined as the probability that an infectious unit is 
deposited at a distance r from the infectious host and the 
O-ring statistic, O(r), are the key ingredients of the basic 
reproduction number of infectious diseases in spatially 
structured host populations.
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We derive the expression for the basic reproduction 
number of an infectious disease in a spatially structured host 
population and test the expression using a spatially explicit 
stochastic epidemiological model. Both pathogens with a 
single host species and pathogens with multiple host species 
will be discussed.

The expression for R0

In this section we derive the expression for the net-
reproductive number R0. To introduce the use of the O-ring 
statistic in calculating R0 we first describe the one host species 
case, before generalising to the multiple host case.

One host species
The basic reproduction number, R0, quantifies the growth of 
a population according to a discrete process mapping from 
one generation to the next. If the number of infected hosts 
in generation t is given by It, the dynamics of the infected 
population is given by

I R It t� �1 0 . 	  (3)

We assume one infected host produces on average θ infectious 
units (such as spores or vectors carrying the pathogen) per 
time unit, the probability per time unit for the infected host to 
be removed (e.g. die or reach the end of the infectious period) 
is μ. The mean total number of infectious units produced by 
a host during the infectious period is thus θ/μ. The dispersal 
density, D(r), is the probability density that an infectious unit 
is deposited at distance r from the host. At distance r from 
the host, in an otherwise uninfected population, the density 
of susceptible hosts equals O(r). The probability density 
that an infectious unit is deposited on a susceptible host at 
distance r is thus given by O(r)D(r). Therefore, the density 
of hosts receiving an infectious unit at a distance r from a 
randomly chosen infectious host equals 2πrO(r)D(r), and the 
total number of hosts receiving an infectious unit may be 
calculated by integrating over r. An infectious unit deposited 
on a susceptible host infects the host with probability β, the 
infection efficiency. The basic reproduction number then is 
given by

R rO r D r dr0

0

2� � � � �
�

��
�
� � . 	  (4)

In the standard non-spatial SIR model, the basic reproductive 
number would be given by

R0 �
�
�
��. 	  (5)

Later on (Eq. 18) we will show that this is also the expression 
for R0 in a randomly distributed host population.

Multiple host species
The approach is easily generalised to multiple host species. 
The multi-variate Ripley’s K-function for hosts of type j 
around a host of type i is defined as: K r Eij j( ) � �� 1 {number 
of individuals host type i within distance r of a randomly 
chosen host of type j}.

This characterises the density of the population of species i 
around hosts of species j. Next, the O-ring statistic for species 
i around a host of type j is 

O r
r

dK r
drij j
ij� � � � �

�
�
1

2
. 	  (6)

We assume that the dispersal distribution around an infected 
host i and host j are the same, D(r), although this is eas-
ily generalised. The number of infectious units produced per 
time unit by one host of type i is θi, the probability per time 
unit for the host to die is μi, and the probability that an infec-
tious unit causes an infection on host i is βi.

Next, we define the bi-variate basic reproduction number 
as the average number of secondary cases in species i produced 
by one infected individual of species j introduced into a 
population of susceptible individuals, Rij,

R rO r D r drij
j

j
i ij� � � � �
�

��
�
� �2

0

. 	  (7)

The dynamics of the number of infected hosts of all host 
types, Ii,t, (i is 1 to K) in pathogen generation t + 1 then is 
described by

I Ii t i tA
, ,

.� �
1

	  (8)

where

Ii t t t t K t
TI I I I, , , , ,, , ,� � �1 2 3  	  (9)

and

A
R R

R R

K

K KK

�

�

�

�
�
�

�

�

�
�
�

11 1

1

L

M O M

L

. 	  (10)

Matrix A is called the next-generation matrix. The pathogen’s 
basic reproduction number then is calculated as the largest 
eigenvalue of the matrix A (Diekman et al. 1990, 2009, van 
den Bosch et al. 2008).

A numerical test

In this section we compare values of R0 calculated using the 
expression derived above with numerical simulations of the 
epidemic process. The calculations use the Neymann–Scott 
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process for which the equations are given in the section ‘A 
closer analysis of the R0 in the example case’.

The landscape
We consider cases with one host species and two host species. 
The host landscape is generated using a Neyman–Scott 
process (Neyman and Scott 1958, see also the section ‘A 
closer analysis of R0 in the example case’). 

Number of hosts and number of clusters
For host type 1 and host type 2 the total number of hosts 
are fixed numbers (n1 = 800, n2 = 1200). For each landscape 
the number of clusters (ρ1, ρ2) is drawn from a uniform 
distribution on the interval [2, 10]. For each landscape 
generated the clusters are distributed randomly through 
space. 

Landscape and dispersal scaling
The scale of the landscape is to some extent interchangeable 
with the scale of the pathogen dispersal. A landscape where we 
increase the distance between hosts by a factor of 2, but also 
increase the pathogen dispersal distances by a factor of 2, are 
dynamically the same landscapes. It therefore suffices to keep 
one of these fixed and vary the other. For simplicity in the 
programme we chose to keep the dispersal scale of the patho-
gen fixed and vary the scale of the landscape. To this end a 
landscape scaling factor, s, is introduced. All distances of hosts 
in the landscape are scaled with s. For each landscape the value 
of s is drawn from the interval [0.1, 5]. To ensure that half 
the landscapes are small and half the landscapes are large we 
selected half of the landscapes to have s > 1, and the other half 
to have s ≤ 1, with uniform distributions used within each 
range (i.e. with [0.1,1] and (1,5]). For each cluster separately 
its width is drawn from a uniform distribution on the interval 
[0.025s, 0.2s], resulting in different cluster widths. 

Structure of a cluster
For each cluster the number of hosts is drawn from a Poisson 
distribution with mean Ni/ρi, where ρi is the number of 
clusters for host type i, and where for the last cluster the size 
is determined by the fixed number of hosts of that type in the 
landscape minus the total number in all the clusters drawn up 
to the last cluster (landscapes which already had more than 
Ni hosts in the first ρI − 1 clusters due to stochastic effects 
were simply discarded). Individual hosts have displacement 
(Δx, Δy) from the centre. The displacements are drawn from a 
Normal distribution (with zero mean and standard deviation 
given by the cluster width). 

Figure 1A shows one realisation of this process. For this 
landscape the bi-variate O-ring statistics, calculated in R 
using the ‘spatstat’ package ver. 3.0-6 (Baddeley et al. 2015) 
are shown in Fig. 1C.

The pathogen dynamics

Each host can be in one of three states, uninfected/susceptible, 
S, infected and infectious, I, or removed and no longer 

infectious, R. Infected hosts are removed at a constant rate μ. 
A host i that is susceptible becomes infected and infectious 
with a probability per time unit, φi, given by

� �i i ij

I

D r
j

� � ��
all

. 	  (11)

where D(rij) is the probability that an infectious unit 
produced by an infected and infectious host j is deposited at 
a distance rij between host j and host i, and βj is the infection 
efficiency. So, the rate at which a susceptible becomes infected 
depends on the sum of the rates at which infectious units are 
transferred from infected hosts j to the susceptible host i.

As a description of the dispersal density, we use the power-
exponential density (Rieux et al. 2014, Fabre et al. 2021)

D r ce

c

r c

� � �
�
�
�

�
�
�

��
�
�

�
�
��

��2 22�
. 	  (12)

This flexible density, parameterised by a scale parameter, α, and 
shape parameter, c, can describe both thin tailed and fat tailed 
dispersal densities, depending on the value of c. For a value of 
c = 2, the dispersal density is a Normal density, for a value c = 1 
it is an exponential density and for a value c < 1 the density is 
fat tailed (meaning the tail decreases slower than exponentially 
with r for large values of r). Figure 1B shows the shape of the 
dispersal distribution for three values of c.

Simulating the epidemics

After the landscape has been generated, and the number of 
infectious units produced per unit time per host, θ, the host 
death rate, μI, and the infection efficiency, β, as well as the 
dispersal density parameters, c and α, have been defined, the 
simulated epidemic is started. Each run starts with seeding 
a small number of infectious hosts into the host landscape, 
Fig. 1D. The state and generation of each host individual is 
recorded through time, Fig. 1D–E.

Estimating the basic reproduction number
The method to estimate R0 from the simulated data is based 
on the idea of fitting a non-spatial branching process type 
model to estimate directly the individual elements of the next 
generation matrix.

If the data in generation t are I It t t

T
� � �I1 2, ,,  then the 

number of infected hosts of type 1 in the next generation will 
be the sum of two random variables, A + B. Lloyd-Smith et al. 
(2005) shows how exponentially-distributed infectious peri-
ods in a continuous time model cause the number of infec-
tions due to single infected individual to be distributed as 
Geometric(p), where p = 1/(1 + R0). Because the sum of X 
identically independent Geometric(p) distributions follows 
a negative binomial distribution with parameters X and p 
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Figure 1. An overview of the processes in this paper. (A) An example of a two host species spatial pattern generated using the Neyman−Scott 
process. (B) The shape of the dispersal density, Eq. 12, for various values of the shape parameter c. The distributions are normalised such 
that all three go through (0,1). This is done for illustrative purposes in this figure only. (C) The O-ring statistics for the two species host 
distribution in figure A: note the values on the y-axis are multipled by 1000, and so range from 0 to about 1750. (D) The development of 
the first few generations of a single exemplar epidemic on the two host species distribution of (A). The hosts infected in each generation are 
shown by larger red (type 1) and blue (type 2) dots; black dots show post-infectious hosts infected in previous generations. (E) The dynamics 
of the number of infected hosts of type 1 and type 2 in a set of 250 simulations, on the two species host distribution in (A). The thick lines 
with filled dots show the results of fitting the non-spatial branching process model to the data from these 250 simulations: estimated 
parameters R11 = 1.240, R12 = 2.580, R21 = 0.486, R22 = 1.394 and so R0 = 2.440. The box plots summarise the values of all 250 replicate 
simulations. The dotted lines with open dots show the numbers of infected hosts of each type in the single simulation shown in (D). (F) 
The distribution of the simulated basic reproduction number, R0, for 1000 sets of 250 simulations (i.e. 1000 sets of ensembles of simulations 
exemplified by those shown in (E)). The vertical lines and symbols on the x-axis show the values of the mean basic reproduction number as 
estimated by averaging the values as found in each of 1000 sets of 250 simulations and as calculated from the integral expression and the 
O-ring statistic (average value of R0

fitted = 2.601 and R0
analytic = 2.566). Parameter values used: c = 1, θ1 = 0.1, θ2 = 0.1, ρ1 = 0.05, ρ2 = 0.1, 

μ1 = 2.0, μ2 = 4.0, α1 = 0.25, α2 = 1.0. Initial number of infected hosts of type 1 is 1, initial number of infected hosts of type 2 is 1.
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(Boswell and Patil 1970), and assuming there is no density 
dependence, the distributions of A and B are therefore 

A I R

B I R

t

t

�

�

NegBin

NegBin

1
11

2
12

1
1

1
1

,

,

,

,
.

�� �
�� �

	  (13)

This allows us to calculate the contribution to the likelihood 
from infected hosts of type 1 in generation t + 1, L1,t + 1, by 
convolution 

L P A i P B I it

i

I

t

t

1 1

0

1 1

1 1

, ,

,

,�

�

�� �� � � �� �
�

� 	  (14)

which takes the sum over all possible ways A + B could equal 
I1, t+1.

For a single simulation, the likelihood, L, calculated using 
data up to generation F is therefore 

L L Li i

i

F

�
�
� 1 2

1

, , , 	  (15)

which is a function of the Rij. Given data from M (= 250) 
done with the same parameter values and done on the same 
landscape simulations – where in each simulation a single 
individual of each type was infected initially – we can then 
calculate an overall likelihood function over the ensemble 
of simulations by multiplying M expressions of the form 
above (with F = 2). This allows us to estimate the best-fitting 
values of Rij using standard numerical techniques to maximise 
the log-likelihood and to use these estimates to estimate 
the overall value of R0 as the largest eigenvalue of the next 
generation matrix.

Comparing the simulated and analytically  
calculated R0

A first test of the expression for R0 was done using the land-
scape in Fig. 1A and the dispersal densities shown in Fig. 1B. 
One realisation with a seed of two randomly placed infected 
hosts – one infected host of each type – in Generation 0 of 
our epidemic simulation (written in the C programming 

language; available online at https://github.com/nikcun-
niffe/rZeroORing) is shown in Fig. 1D and the densities of 
the two infected host types in the first three generations in a 
single set of 250 replicated simulations are shown in Fig. 1E. 
Figure 1F shows the distribution of R0 values calculated with 
the method explained above, with initial condition of one 
infected host for each host type, over 1000 independent sets 
of 250 simulations. The mean value of the R0 calculated from 
the 1000 sets of 250 simulations (red dot) is very close to the 
R0 calculated from the analytical expression (blue triangle); 
numerical integration was done in R using the ‘sfsmisc’ pack-
age ver. 1.1-16 (Maechler 2023).

The results of sets of simulations for the three dispersal 
distributions (Normal, exponential and fat-tailed) are 
summarised in Table 1. There is a close correspondence 
between the simulated R0 and the R0 calculated from the 
analytic expression both in the case of one host and in the 
case of two host types.

To assess how far landscape structure affects the accuracy 
of the analytic R0 expression, 100 replicate landscapes were 
generated as described above. Each landscape is generated by 
drawing a value for s and ρ as well as drawing values for the 
cluster width. For each of these 100 different landscapes, 10 
replicate sets of 250 simulations were done using the baseline 
parameter values as in the caption of Table 1, and 10 values 
of R0 calculated. The value of the simulated R0 values and 
the R0 calculated from the expression are plotted in Fig. 2A, 
C. Clearly there is a nearly perfect agreement between the 
simulated and the calculated R0 value irrespective of the 
landscape and the dispersal density used.

To assess the effect of the pathogen lifecycle parameters 
(the number of infectious units θi, probability per time unit 
to die μi, probability that an infectious unit causes an infec-
tion βi, the shape parameter of the dispersal density c and the 
dispersal scale parameter α) 200 sets of parameter values were 
drawn. Initially values were drawn from homogeneous distri-
butions on the interval 20–200% of the baseline value of the 
parameter. Further parameter sets were generated by drawing 
only values for one of the parameters and retaining the other 
parameters at their baseline value. We restricted to c = 0.5, 
c = 1.0 and c = 2.0. Using the landscape of Fig. 1A and the 
three dispersal densities of Fig. 1B, 10 replicate sets of 250 
runs were done for each set of pathogen life-cycle parameters 
and 10 values of R0 calculated. Figure 2B and D show that 
there is a near perfect correspondence between the simulated 

Table 1. The basic reproduction number of the simulated epidemic and calculated from the analytic expression for the baseline parameter 
values. (θ1 = 0.1; θ2 = 0.1; β1 = 0.05; β2 = 0.1; μ1 = 2; μ2 = 4; α = 0.25). Numbers in the ‘fitted’ cells are the median values over an ensemble of 
1000 sets of 250 simulations; the values in brackets are the 5 and 95 percentiles.

Gaussian (c = 2) Exponential (c = 1) Fat tailed (c = 0.5)
Fitted Analytic Fitted Analytic Fitted Analytic

Species 1 only 1.322
(1.201–1.464)

1.286 1.365
(1.257–1.491)

1.349 1.542
(1.414–1.692)

1.551

Species 2 only 1.285
(1.150–1.401)

1.237 1.569
(1.450–1.719)

1.541 2.063
(1.926–2.193)

2.063

Both types 2.182
(1.999–2.361)

2.078 2.613
(2.439–2.807)

2.566 3.431
(3.241–3.648)

3.426
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R0 and the R0 calculated from the analytic expressions irre-
spective of the values of the pathogen life-cycle parameters.

A closer analysis of R0 in the example case

Complete spatial randomness

The homogeneous Poisson process can be used to generate a 
completely spatially random host distribution. The Ripley’s K 
function for this process has the form

K r r� � � � 2 . 	  (16)

This is intuitively clear as the number of hosts within a circle 
of radius r around any host is proportional to the area of the 
circle. The O-ring statistic takes the form

O r� � � �, 	  (17)

which indicates that at every distance from a randomly 
selected host the host density is the same as the mean host 
density. The basic reproduction number then becomes

R r D r dr R0 0

0

2� � � �
�

��
�
�� � �

�
�� : .�

�
	  (18)

As expected, the basic reproduction number is linearly 
dependent on host density and on the pathogen transmission 
rate. This holds for the R0 in standard SEIR models as well 
(Kermack and McKendrick 1927). When infectious units 
disperse further from their host, increasing α, the basic repro-
duction number stays the same in a spatially random host 
population. Also, the shape of the dispersal density, whether 
it has a fat tail, c < 1, or an exponentially bounded tail, c > 1, 
does not affect the value of the basic reproduction number in 
a spatially random host population.

Regular host distributions

There is a variety of point processes that generates host dis-
tributions more regular than the complete spatially random, 
CSR, distribution. The Strauss process generates host distribu-
tions where the density of hosts within a critical distance δ of 
each host is smaller than expected under CSR. These distribu-
tions are generated starting with a CSR distribution of hosts 

Figure 2. Comparison of the basic reproductive number calculated from simulations, R0
fitted, and calculated using the integral expression and 

the O-ring statistic, R0
analytic. (A) and (B) are for the single species case, (C) and (D) for the two species case. (A) and (C) show calculations for 

a range of generated host distributions, (B) and (D) show calculations for a range of epidemiological parameters. Each dot in each figure is 
the result of estimating R0 from 250 simulations using one set of life cycle parameters on one single landscape; note that 10 replicate sets of 
250 simulations were performed for each landscape × parameter set combination (there are vertical lines of 10 points in each plot, most 
clearly visible towards the right-hand side of (C)). For the methods of generating host distributions and varying parameters see the main text.
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and deleting hosts within the critical distance δ of a host with 
probability 1 − γ. An approximation to the Ripley’s K function 
for the Strauss process is given by (Isham 1984)

K r
r r

r r
� � �

�

� �� � �

�
�
�

��

�� �

� � �� �

2

2 1
. 	  (19) 

The O-ring statistic takes the form

O r
r
r� � �
�
�

�
�
�

�� �
� �

. 	  (20)

The basic reproduction number is given by

R rD r drR0 0

0

1 1 2� � �� � � �
�

�

�
�

�

�

�
��

�
� �

�

, 	  (21)

and substituting the dispersal density we find

R c

c

r e drR
r c

0 0
2

0

1
2

1� �
�
�
�

�
�
�

�� �

�

�

�
�
�
�

�

�

�
�
�
�

��
�
�

�
�
�

�
�

�
� �

�

�
. 	  (22)

Note that the factor c

c

r e dr
r c

�

�
�

2 02��
�
�

�
�
�

��
�
�

�
�
�

�  is always between 

0 and 1, with 0 for δ = 0 and 1 for δ = ∞. Therefore for δ ⟶ 

∞, R R0 0� �
�

 and as δ ⟶ 0, R R0 0�
�

.
For c = 2 this becomes

R eR0 0 1 1 1
2

� � �� � �
�

�

�
�

�

�

�
�

�

�

�
�

�

�

�
�

��
�
�

�
�
��

�
�
� . 	  (23)

For c = 1 this becomes

R eR0 0 1 1 1 1� � �� � � �
�
�

�
�
�

�

�
�
�

�

�
�
�

�

�
�
�

�

�
�
�

��
�
�

�
�
��

� ��
�

�
� . 	  (24)

We will first interpret the effect of parameter values on the 
basic reproduction number in general from the form of the 
Eq. 22–24, and then show a few examples for specific param-
eter values in Fig. 3. 

Host density and regularity
The basic reproduction number is linear in the R0 of the 
complete spatial randomness case, R0

∼
. This implies that 

the basic reproduction number increases linearly with the 
mean host density, λ, and with the pathogen transmission 
rate. Moreover, host regularity will always decrease the basic 
reproduction number, and the greater the level of regularity 
the smaller R0. Increasing the area around a host in which the 
host density is smaller than expected, δ, always decreases R0. 
The smaller the density of hosts in the vicinity of a host, 1 
− γ, the smaller R0. 

Pathogen dispersal density
In a regular host population, the basic reproduction number 
increases with increasing dispersal distance, α. This can be 
explained by considering the number of infectious units that 
will be deposited on a host. In a regular host distribution, 
infectious units will have a larger chance to be deposited on a 
host if they move beyond the area around the host where the 
host density is smaller than average in the entire population. 

The effect of the shape of the dispersal density, c, on 
the basic reproduction number in regular host populations 
is more difficult to see from the expression. We therefore 
explore this numerically.

Numerical examples
The above discussion shows the qualitative effects of host regu-
larity and pathogen dispersal density on the basic reproduction 
number. The analysis does not reveal the size of the effects nor 
is it possible to assess the effect of the dispersal density shape 
parameter, c, on the basic reproduction number. Numerical 
solutions of the equation for R0 shown in Fig. 3 explores the 
size of the effects of host regularity, pathogen dispersal and the 
shape parameter on the basic reproduction number. 

Figure 3A–B show that when the basic reproduction num-
ber in a spatially random host population is larger than unity, 
a more regular host distribution can bring the basic reproduc-
tion number below unity, preventing epidemic invasion. This 
requires large exclusions zones, δ, or a high strength of exclu-
sion, 1 − γ. The basic reproduction number increases with 
the dispersal scale, α, (Fig. 3C) and decreases with increasing 
value of the shape parameter (Fig. 3D). Shape parameters c 
> 1 are dispersal densities with a thin tail (the tail decreases 
faster than exponential with distance for large distances) and 
for c < 1 the dispersal density is fat tailed (the tail decreases 
slower than exponentially with distance for large distances). 
That a thinner tail decreases R0 is intuitively explained because 
it makes the probability that an infectious unit reaches a host 
outside the exclusion zone to be smaller. 

Spatially clustered host distributions

The Neyman–Scott process generates spatially clustered host 
distributions. Ripley’s K function for the Neyman–Scott 
process is given by

K r r e
r

� � � � �
�

�
�

�
2

41
2

2

. 	  (25)
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where ρ is the cluster density and σ is the standard deviation 
of the distance of a host to the centre of the cluster it belongs 
to (Diggle 2003). From this we find that the O-ring statistic 
is given by:

O r e
r

� � � �
�

�
�
�

�

�
�
�

�
�

� ��
�1 1

4 2
4

2

2 , 	  (26)

and the basic-reproduction number is

R r e D r drR
r

0 0 2
4

0

1 2 1
4

2

2� � � �
�

�

�
�

�

�

�
�

�
�

�
�

�
� ��

� . 	  (27)

Substituting the dispersal density, we get

R c

c

re drR
r rc

0 0
2 2

4

0

1
4 2

2

2� �
�
�
�

�
�
�

�

�

�
�
�
�

�

�

�
�

��
�
�

�
�
� �

�

�
�

� �� �

� �

� ��
�

.
	  (28)

For c = 2 this becomes

R R0 0 2 2
1 1

4
� �

�� �
�

�
�
�

�

�
�
�

�

�� � �
. 	  (29)

For c = 1 this becomes

R e erfcR0 0 21 1
2

1
2

� � � �
�
�

�
�
�

�

�

�
�

�

�

�
�

�

�

�
�

�

�

�
�

�
�
�

�
�
��

���
� �
�

�
�

�
� . 	  (30)

Where erfc is the complementary error function.
We will first interpret the effect of parameter values on the 

basic reproduction number in general from the form of the 
Eq. 28–30, and then show a few examples for specific param-
eter values in Fig. 3.

Host density and clustering

Interpreting the form of Eq. 28–30 we see that as in the case 
with host regularity, the basic reproduction number is linear 
in the R0 of the complete spatial randomness case, R0

� . This 
implies that the basic-reproduction number increases linearly 
with the mean host density, λ, and with the pathogen trans-
mission rate. Moreover, host clustering will always increase 
the basic-reproduction number and the greater the level of 
clustering the larger R0. Increasing σ decreases the level of 
host clustering and decreases the value of R0. Increasing the 
number of clusters, ρ, in a host population with a fixed num-
ber of hosts, decreases the level of clustering and decreases R0. 

That R0 decreases with the level of clustering can be 
explained by the fact that for any biologically relevant 
dispersal kernel more infectious units will be deposited closer 
to the infected host than further away from the infected host. 
In the case of a clustered host distribution this leads to more 
infectious units being deposited on susceptible hosts then in 
the case of a spatially random host distribution.

Pathogen dispersal density

Interpreting the form of Eq. 28–30 we see that in a clustered 
host population, the basic reproduction number decreases 
with increasing dispersal distance. This can be explained as 
before by considering the number of infectious units that 
will be deposited on a host. In a clustered host distribution, 
infectious units will have a higher probability of moving out 
of the cluster from which they originate when the dispersal 
scale is larger. Infectious units that moved out of the host 
cluster they originate from will have a smaller probability to 
be deposited on a host and cause an infection. 

The effect of the shape of the dispersal density, c, on the 
basic reproduction number in clustered host populations 
is more difficult to see from the expression. We therefore 
explore this numerically.

Numerical examples

Numerical solutions of the equation for R0 shown in Fig. 3 
explores the size of the effects of host clustering and pathogen 
dispersal on the basic reproduction number. 

The figure shows that when a pathogen has a basic repro-
duction number smaller than unity in a spatially random 
host population, host clustering can bring the R0 above unity. 
In Fig. 3E 1/σ equals zero for a random host distribution. 
The figure shows that the effect of host clustering on the basic 
reproduction number can, depending on the values of the 
other parameters, be large. In the numerical example shown 
the basic reproduction number is smaller than unity for ran-
dom host distributions and becomes four for very clustered 
host distributions. An increased density of host clusters, ρ, 
(Fig. 3F) decreases R0 because increasing ρ at constant host 
density decreases the level of host clustering. The effect of the 
pathogen dispersal scale, Fig. 3G, can also be considerable. 
Increasing the dispersal distance from close to 0 to large val-
ues decreases R0 from around 4 to less than 1. 

The shape of the dispersal distribution has a pronounced 
effect on the basic reproduction number, with fat tailed dis-
tributions having small values of R0. Thinner tails imply that 
a larger fraction of the infectious units is deposited closer to 
the parent host, which increases the probability it is deposited 
in a host in the cluster it originates from.

Discussion

We introduced a method to calculate the basic reproduc-
tion number, R0, for a spatially explicit host population. The 
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spatial host distribution is characterised via the O-ring statis-
tic which is interpreted as the density of hosts at a distance r 
from a randomly selected host. The O-ring statistic is a mea-
sure from spatial statistics frequently used in the study of the 
ecology of plant spatial population dynamics (Wiegand and 
Moloney 2004, Law et  al. 2009). The method to calculate 
R0 thus establishes a connection between the epidemiology 
of infectious diseases in spatially structured host populations 
and spatial statistics methods from spatial ecology. 

We presented the calculation of R0 for a single host species 
as well as for multiple host species. In the derivation of the R0 

for multiple host species we used the next-generation matrix 
approach as developed by Diekmann et al. (1990, 2009). We 
note here that this does not imply that the method is only 
valid for discrete time epidemic models. The next generation 
matrix approach is valid for both continuous time and discrete 
time models (Diggle 2003): indeed the simulations on which 
we tested the analytic method were continuous time models.

The expression for R0 has a clear intuitive biological inter-
pretation that allows it to be used in the analysis of epidem-
ics on realistic spatial host patterns. Basically, the product 
D(r)O(r) describes how a pathogen ‘sees’ the host population 

Figure 3. The effect of parameter values on the basic reproduction number. (A–D) are for the Strauss process (regular host distributions), 
(E–H) for the Neyman–Scott process (clustered host distributions). (A) shows the effect of the strength of the exclusion zone on R0, (B) the 
effect of the size of the exclusion zone on R0, (C) the effect of the dispersal scale on R0, and (D) the effect of the dispersal density shape param-
eter on R0. (E) shows the effect of the inverse of the cluster width on R0, (F) the effect of the density of clusters on R0, (G) the effect of the 
dispersal scale on R0, and H the effect of the dispersal density shape parameter on R0. For this figure for the Strauss process δ = 0.5, γ = 0.1,  
and the other parameters are as given in the subscript of Fig. 1. For the Neyman−Scott process  and the other parameters as in Fig. 1. 
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around and infected host individual. D(r)O(r) is the prob-
ability that an infectious unit released from an infectious host 
lands on another host at distance r from the originating host. 
Calculating the basic reproduction number then is a mat-
ter of adding up all of the D(r)O(r) contributions through 
the entire space and multiplying with the number of effective 
infectious units, θβ/μ.

The values of the parameters needed to calculate R0 can 
be obtained experimentally, though some are complicated 
to estimate. Values are published for some patho-systems. 
The pathogen life cycle parameters ‘the number of infec-
tious units’, θi, the ‘probability per time unit to die’, μI, and 
the probability that an infectious unit causes an infection, 
βI, appear in all expressions for R0 as the basic reproductive 
number in a spatially random host distribution, R0

� � �
�
��

, which is the same as the basic reproductive number in the 
SIR models. Values of R0 for plant pathogens have been 
published (Wadkin  et  al. 2024). Dispersal densities of the 
infectious units are notoriously difficult to quantify as these 
infectious units can disperse over large distances which then 
are hard to quantify using sampling. Some dispersal densities 
for plant pathogens based on direct measurement of dispersal 
distances have been published (Rieux et al. 2014), and indi-
rect estimates, usually based on fitting a model to spatially 
refined epidemiological data can also be found in the litera-
ture (Neri et al. 2014). Finally, the O-ring statistic has to be 
derived from a spatially resolved host map. This must be done 
on a case-by-case basis, but since the host is stationary this is 
relatively easy to do. 

Several authors have studied the effect of spatial host 
distribution on epidemic dynamics using moment closure 
techniques (Bolker and Pacala 1999, Filipe and Maule 2003, 
Brown and Bolker 2004, Bauch 2005). These methods result 
in expressions for R0 from which valuable insight is gained 
into the effects of spatial host structure on the dynamics of 
infectious pathogens and give insight into the situation when 
the epidemic runs into density dependence. Of these Filipe 
and Maule introduced a function describing the mean host 
density as function of distance from a randomly chosen host. 
This function is mathematically similar to the O-ring statis-
tics. Due to the use of the moment closure technique the 
expression arrived for R0 does however have a very complex 
structure and can not easily be applied to realistic spatial host 
distributions. Filipe and Maule’s R0 expression also does not 
allow for an intuitive interpretation along the lines as the 
expression for R0 introduced in this paper.

The results of our qualitative and quantitative analysis gen-
erally agree with the results by other authors. Bolker (1999), 
Brown and Bolker (2004) and North and Ovaskainene 
(2007), showed that the initial epidemic growth rate is larger 
in a clustered host population compared to that in a spatially 
random population. Since the generation time is kept con-
stant in their simulations this implies that R0 in a clustered 
host population is larger than in a spatially random host pop-
ulation, which agrees with our findings. 

Brown and Bolker (2004) pay special attention to the 
local depletion of susceptible hosts and its effect on the 

net-reproductive number. They show that for very concen-
trated dispersal kernels the high infection rate of neighbour-
ing hosts can deplete the availability of susceptible host to 
such an extent that the epidemic does not develop where 
on basis of an R0 calculation it is expected to develop. They 
develop a moment closure method that incorporates this 
local host depletion into the calculation of the basic repro-
duction number. We have in our simulations not noticed that 
a concentrated dispersal distribution affects the numerically 
derived value of R0 to deviate significantly from the value cal-
culated using the O-ring statistic.

In the example studied we use three cases 1) complete 
spatial randomness, 2) over dispersed host patterns generated 
by the Strauss process and 3) clustered host distributions 
generated by the Neyman-Scott method to generate the 
spatial host distribution. The method is however equally 
well applicable to any real-life spatial host distribution from 
which the O-ring statistic can be calculated numerically 
(Wiegand and Moloney 2004). This opens the possibility to 
use the method in the analysis of practically relevant cases. 
For example, the expression for R0 can be used in land use 
planning for nature development and agriculture to reduce 
the risk of disease outbreaks. For example, increased tree 
cover has been widely acknowledged as a fundamental 
requirement to mitigate the effects of climate change and 
restore natural habitats (Griscom  et  al. 2017, Chazdon 
and Brancalion 2019). However, tree pests and diseases are 
a continuous threat to tree health (Boyd et  al. 2013). Any 
increase in forested area will increase the opportunity for 
pathogens to invade and spread. The question is thus how 
these new forests could be spatially structured to minimise 
the risk of outbreaks of pests and diseases and/or be resilient 
when such outbreaks do occur. Using the expression for 
R0 it is possible, for known pathogens, to plan the spatial 
arrangement of forest lots such that the risk of epidemic 
damage is minimised. The same holds for agricultural fields 
threatened by crop pathogens.

Our method to calculate the basic reproduction number of 
an infectious disease in a spatially structure host population 
forms a natural connection between the spatial statistics 
measure used in the study of the spatial ecology of plant 
populations and the dynamics of pathogen on these plant 
populations. Using the method introduces it is possible 
to study the effect of real-life spatial host distributions on 
epidemic dynamics.
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