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Oikos The spatial structure of a host population has a profound effect on the dynamics of
2024: 10616 infectious diseases. The basic reproduction number, a central quantity in the study of
doi: 10.1111/0ik. 10616 epidemic dynamics, is affected by host clustering as well as host density. Several authors
T ) have developed methods to quantify the basic reproduction number in a spatially struc-

Subject Editor: Thorsten Wiegand tured host population. The methods used and the expressions derived are however dif-
Editor-in-Chief: Dries Bonte ficult to apply to real life spatial host structures. In this paper we introduce an explicit
Accepted 14 May 2024 expression for the basic reproduction number using the O-ring statistic, developed in

spatial statistics, that quantifies the host density as a function of the distance from a
randomly selected host individual. The O-ring statistic is frequently used in the study
of the ecology of spatially structured plant populations, being a convenient summary
of the properties of a landscape by way of a single function. The connection we develop
between spatial statistics and epidemic dynamics can be used to study the effect of
host spatial pattern on the basic reproduction number of infectious diseases. As well as
showing how explicit expressions for the basic reproduction number can be derived for
landscapes with standard structures, our expression for the basic reproduction number
is tested against a simulation model. The model structure in our simulation is motivated
by the spread of a plant disease epidemic, although it is applicable more broadly. The
agreement between our analytic expression for the basic reproduction number and the
corresponding numeric quantity extracted from simulations is close to perfect across a
wide range of landscape structures and model parameterisations, and including cases in
which more than one species of host is at risk of infection.

Keywords: host clustering, moment closure techniques, Neyman—Scott process,
O-ring statistic, pathogen dispersal function

Introduction

The effects of host spatial structure on the dynamics of infectious diseases is increas-
ingly recognised. For example, several authors, using epidemiological models, have
found that in a spatially clustered host population epidemic incidence increases faster
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at the start of the epidemic than in host populations with a
random spatial distribution (Bolker 1999, Brown and Bolker
2003, Bauch 2005). This finding has been experimentally
verified by Burdon and Chilvers (1976) in a controlled envi-
ronment experiment using the pathogen Pythium irregulare
infecting garden cress Lepidium sativu. Bolker (1999), Brown
and Bolker (2003) and Bauch (2005) also found that the crit-
ical transmission rate above which an epidemic will spread
depends on both the host distribution and the shape of the
dispersal distribution of infectious units around a host.

These results relate to one of the key concepts in
epidemiology, the existence of a threshold for epidemic
development. This threshold, called the basic reproduction
number, R, is defined as the average number of secondary
cases produced by one infected individual introduced into
a population of susceptible individuals. When R, > 1 the
number of infected individuals is expected to increase over
time, resulting in an epidemic. When R < 1 the disease will
not cause an epidemic and the pathogen eventually disappears
from the host population.

Expressions for the basic reproduction number, in terms of
the underlying host and pathogen population dynamics and
epidemiological parameters, have been derived in a wide range
of cases. These include vector transmitted diseases, the effect of
age structure, host behavioural heterogeneity and genetic het-
erogeneity (Keeling and Grenfell 2000, Madden et al. 2000).
The most generic method for the derivation of basic reproduc-
tion number in terms of the pathogen and host parameters
was developed by Diekmann et al. (1990) and popularised as
the next generation method some years later (Diekmann et al.
2009). However, virtually all models leading to an explicit
expression for R, make the underlying assumption of mass
action, the assumption that any infectious individual in the
population has an equal chance of infecting any susceptible
individual, thereby lacking spatial heterogeneity.

Epidemiological models, formulated as computer simula-
tion programmes, where the host population has an explicit
spatial structure and pathogen dispersal is modelled by a con-
tact distribution (dispersal distribution), have been developed
for a wide range of purposes. Bolker (1999) introduced a
spatially explicit epidemiological modelling framework that
allows a detailed specification of the spatial arrangement of
the host. Each host individual is treated as an individual unit
located in continuous space (a point pattern). The transmis-
sion of the pathogen is governed by an infectious unit’s disper-
sal distribution defined as the probability of an infectious unit
produced by a host located at coordinates (x;, x,) infecting a
susceptible host located at (y,, y,). In most models developed
so far, the dispersal distribution is rotationally symmetric. This
modelling methodology, either in its deterministic or stochas-
tic form, has been widely adopted by theoretical epidemiolo-
gists (Bolker 1999, Tildesley et al. 2006, Meentemeyer et al.
2011, te Beest et al. 2011, Cunniffe 2015, 2016).

Although these models allow for a full specification of the
host spatial pattern and realistic pathogen dispersal, the main
drawback is that they are far less analytically tractable than
models of well mixed host populations. In particular, although
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the basic reproduction number can be estimated from simu-
lation outputs, there is as yet no simple, biologically intuitive,
analytical expression for the basic reproduction number for
spatial host distributions other than random distribution. For
spatially random host distributions Suprunenko et al. (2021)
and Wadkin et al. (2024) derive expressions for R;. They
include other aspects such as host depletion (Wadkin et al.
2024) and the effect of disease control (Suprunenko et al.
2021). An expression for R, in non-random host distribu-
tions would make it easier, compared to simulation runs, to
understand the effects of pathogen life-cycle parameters and
host spatial structure characteristics on the basic reproduc-
tion number. Ideally, such an expression would not need a
full specification of the host landscape (as simulations need)
but instead would enable the calculation of R, on the basis of
some simplified landscape characteristics.

In spatial statistics a range of measures have been
developed to characterise spatial point patterns (Cressie
1991, Diggle 2003, Baddeley et al. 2015). Ecologists have
used these measures to study the ecology of plant populations
(Law etal. 2009, Ben-Said 2021). One of the most commonly
used measures is Ripley’s K(r) function (Ripley 1976, 1977).
Ripley’s K(r) is defined as the expected density of individuals
in a circle with radius 7 around a randomly chosen plant
individual.

K(r)=L" x FE {the number of individuals within a
(1)

distance 7 of a randomly chosen individual},

where A is the plant density (number per unit area). Another
well known statistic is the pair correlation function g(r) which
is defined as the probability of finding a host at distance 7
from a randomly chosen host (given that there is a host). The
pair correlation function is related to Ripley’s K-statistic as

gl)=-- %) o

2 dr

For our purpose a more useful statistic, derived from the
above statistics, was introduced by Wiegand and Moloney
(2004) as the O-ring statistic, O(7). The O-ring statistic is
defined as the expected density of individuals at a distance
r from a randomly chosen individual and is related to the
pair correlation function by O(r) =Ag(r). So, 21rO(r) dr is
the expected number of individuals in a ring of width &r and
radius 7 from a random individual.

The O(r) statistic is a convenient and concise summary of
the entire structure of a landscape, and describes how many
potential hosts an infectious unit encounters as a function of
distance. This leads us to suggest that the dispersal density,
D(7), defined as the probability that an infectious unit is
deposited at a distance 7 from the infectious host and the
O-ring statistic, O(7), are the key ingredients of the basic
reproduction number of infectious diseases in spatially
structured host populations.
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We derive the expression for the basic reproduction
number of an infectious disease in a spatially structured host
population and test the expression using a spatially explicit
stochastic epidemiological model. Both pathogens with a
single host species and pathogens with multiple host species
will be discussed.

The expression for R,

In this section we derive the expression for the net-
reproductive number R,. To introduce the use of the O-ring
statistic in calculating R, we first describe the one host species
case, before generalising to the multiple host case.

One host species

The basic reproduction number, R, quantifies the growth of
a population according to a discrete process mapping from
one generation to the next. If the number of infected hosts
in generation ¢ is given by /, the dynamics of the infected
population is given by

Lia=R 1. (3)

We assume one infected host produces on average 6 infectious
units (such as spores or vectors carrying the pathogen) per
time unit, the probability per time unit for the infected host to
be removed (e.g. die or reach the end of the infectious period)
is p. The mean total number of infectious units produced by
a host during the infectious period is thus 6/p. The dispersal
density, D(7), is the probability density that an infectious unit
is deposited at distance 7 from the host. At distance 7 from
the host, in an otherwise uninfected population, the density
of susceptible hosts equals O(7). The probability density
that an infectious unit is deposited on a susceptible host at
distance 7 is thus given by O(r)D(7). Therefore, the density
of hosts receiving an infectious unit at a distance 7 from a
randomly chosen infectious host equals 2t7O(7) D(7), and the
total number of hosts receiving an infectious unit may be
calculated by integrating over 7. An infectious unit deposited
on a susceptible host infects the host with probability B, the
infection efficiency. The basic reproduction number then is
given by

0

0
R, :uBI2nrO(r)D(r)dr. (4)

0

In the standard non-spatial SIR model, the basic reproductive
number would be given by

R, = 937»- (5)
u

Later on (Eq. 18) we will show that this is also the expression
for R, in a randomly distributed host population.

Multiple host species
The approach is easily generalised to multiple host species.
The multi-variate Ripley’s K-function for hosts of type j
around a host of type 7 is defined as: K;;(r) = X;IE {number
of individuals host type 7 within distance 7 of a randomly
chosen host of type j}.

This characterises the density of the population of species 7
around hosts of species j. Next, the O-ring statistic for species
i around a host of type j is

0;(r)= Tonr dr

(6)
We assume that the dispersal distribution around an infected
host 7 and host j are the same, D(7), although this is eas-
ily generalised. The number of infectious units produced per
time unit by one host of type 7 is 0,, the probability per time
unit for the host to die is p,, and the probability that an infec-
tious unit causes an infection on host 7 is .

Next, we define the bi-variate basic reproduction number
as the average number of secondary cases in species i produced
by one infected individual of species j introduced into a
population of susceptible individuals, Rj,

R; = i[3,."-27'570,']‘ (r)D(r)dr. 7)
i

The dynamics of the number of infected hosts of all host
types, I,,, (i is 1 to K) in pathogen generation 7 + 1 then is
described by

Ii,t+1 = AIi,t' (8)
where
L= (Lolop B I, ) )
and
Rll te RKI
A=| : ol (10)
Ry - R

Matrix A is called the next-generation matrix. The pathogen’s
basic reproduction number then is calculated as the largest
eigenvalue of the matrix A (Diekman et al. 1990, 2009, van
den Bosch et al. 2008).

A numerical test

In this section we compare values of R, calculated using the
expression derived above with numerical simulations of the
epidemic process. The calculations use the Neymann—Scott
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process for which the equations are given in the section A
closer analysis of the R, in the example case’.

The landscape

We consider cases with one host species and two host species.
The host landscape is generated using a Neyman—Scott
process (Neyman and Scott 1958, see also the section ‘A
closer analysis of R, in the example case’).

Number of hosts and number of clusters

For host type 1 and host type 2 the total number of hosts
are fixed numbers (n, =800, n,=1200). For each landscape
the number of clusters (pl, p2) is drawn from a uniform
distribution on the interval [2, 10]. For each landscape
generated the clusters are distributed randomly through
space.

Landscape and dispersal scaling

The scale of the landscape is to some extent interchangeable
with the scale of the pathogen dispersal. A landscape where we
increase the distance between hosts by a factor of 2, but also
increase the pathogen dispersal distances by a factor of 2, are
dynamically the same landscapes. It therefore suffices to keep
one of these fixed and vary the other. For simplicity in the
programme we chose to keep the dispersal scale of the patho-
gen fixed and vary the scale of the landscape. To this end a
landscape scaling factor, s, is introduced. All distances of hosts
in the landscape are scaled with s. For each landscape the value
of s is drawn from the interval [0.1, 5]. To ensure that half
the landscapes are small and half the landscapes are large we
selected half of the landscapes to have s > 1, and the other half
to have s < 1, with uniform distributions used within each
range (i.e. with [0.1,1] and (1,5]). For each cluster separately
its width is drawn from a uniform distribution on the interval
[0.025s, 0.2s], resulting in different cluster widths.

Structure of a cluster

For each cluster the number of hosts is drawn from a Poisson
distribution with mean N/p, where p, is the number of
clusters for host type 7, and where for the last cluster the size
is determined by the fixed number of hosts of that type in the
landscape minus the total number in all the clusters drawn up
to the last cluster (landscapes which already had more than
N, hosts in the first p; — 1 clusters due to stochastic effects
were simply discarded). Individual hosts have displacement
(Ax, Ay) from the centre. The displacements are drawn from a
Normal distribution (with zero mean and standard deviation
given by the cluster widtch).

Figure 1A shows one realisation of this process. For this
landscape the bi-variate O-ring statistics, calculated in R
using the ‘spatstat’ package ver. 3.0-6 (Baddeley et al. 2015)
are shown in Fig. 1C.

The pathogen dynamics

Each host can be in one of three states, uninfected/susceptible,
S, infected and infectious, 7, or removed and no longer
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infectious, R. Infected hosts are removed at a constant rate .
A host 7 that is susceptible becomes infected and infectious
with a probability per time unit, @, given by

: :BiZD(ﬁj)- (11)

where D(rl.j) is the probability that an infectious unit
produced by an infected and infectious host j is deposited at
a distance 7, between host j and host 7, and , is the infection
efficiency. So, the rate at which a susceptible becomes infected
depends on the sum of the rates at which infectious units are
transferred from infected hosts j to the susceptible host 7.

As a description of the dispersal density, we use the power-
exponential density (Rieux et al. 2014, Fabre et al. 2021)

D(r)= (12)

271(12F(2)
c

This flexible density, parameterised by a scale parameter, o, and
shape parameter, ¢, can describe both thin tailed and fat tailed
dispersal densities, depending on the value of ¢. For a value of
c=2, the dispersal density is a Normal density, for a value c=1
it is an exponential density and for a value ¢ < 1 the density is
fat tailed (meaning the tail decreases slower than exponentially
with 7 for large values of 7). Figure 1B shows the shape of the
dispersal distribution for three values of .

Simulating the epidemics

After the landscape has been generated, and the number of
infectious units produced per unit time per host, 6, the host
death rate, p;, and the infection efficiency, B, as well as the
dispersal density parameters, ¢ and o, have been defined, the
simulated epidemic is started. Each run starts with seeding
a small number of infectious hosts into the host landscape,
Fig. 1D. The state and generation of each host individual is
recorded through time, Fig. ID-E.

Estimating the basic reproduction number
The method to estimate R, from the simulated data is based
on the idea of fitting a non-spatial branching process type
model to estimate directly the individual elements of the next
generation matrix. _ T

If the data in generation r are [, = (lu, fzyt) then the
number of infected hosts of type 1 in the next generation will
be the sum of two random variables, A + B. Lloyd-Smith et al.
(2005) shows how exponentially-distributed infectious peri-
ods in a continuous time model cause the number of infec-
tions due to single infected individual to be distributed as
Geometric(p), where p=1/(1+R,). Because the sum of X
identically independent Geometric(p) distributions follows
a negative binomial distribution with parameters X and p
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Figure 1. An overview of the processes in this paper. (A) An example of a two host species spatial pattern generated using the Neyman—Scott
process. (B) The shape of the dispersal density, Eq. 12, for various values of the shape parameter ¢. The distributions are normalised such
that all three go through (0,1). This is done for illustrative purposes in this figure only. (C) The O-ring statistics for the two species host
distribution in figure A: note the values on the y-axis are multipled by 1000, and so range from 0 to about 1750. (D) The development of
the first few generations of a single exemplar epidemic on the two host species distribution of (A). The hosts infected in each generation are
shown by larger red (type 1) and blue (type 2) dots; black dots show post-infectious hosts infected in previous generations. (E) The dynamics
of the number of infected hosts of type 1 and type 2 in a set of 250 simulations, on the two species host distribution in (A). The thick lines
with filled dots show the results of fitting the non-spatial branching process model to the data from these 250 simulations: estimated
parameters R, =1.240, R ,=2.580, R, =0.486, R,,=1.394 and so R,=2.440. The box plots summarise the values of all 250 replicate
simulations. The dotted lines with open dots show the numbers of infected hosts of each type in the single simulation shown in (D). (F)
The distribution of the simulated basic reproduction number, R, for 1000 sets of 250 simulations (i.e. 1000 sets of ensembles of simulations
exemplified by those shown in (E)). The vertical lines and symbols on the x-axis show the values of the mean basic reproduction number as
estimated by averaging the values as found in each of 1000 sets of 250 simulations and as calculated from the integral expression and the
O-ring statistic (average value of R4=2.601 and R"**=2.566). Parameter values used: c=1, 8,=0.1, 6,=0.1, p,=0.05, p,=0.1,
p,=2.0, p,=4.0, «, =0.25, a, = 1.0. Initial number of infected hosts of type 1 is 1, initial number of infected hosts of type 2 is 1.
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(Boswell and Patil 1970), and assuming there is no density
dependence, the distributions of A and B are therefore

A~ NegBin(ll,,,% N Rn)

B~ NegBin(lz,t,% N Rn)

This allows us to calculate the contribution to the likelihood
from infected hosts of type 1 in generation #+ 1, L, , |, by
convolution

. (13)

Diee1
D P(A=i)P(B=1-i), (14)

i=0

Ll,t+1 =

which takes the sum over all possible ways A4 + B could equal
I

1, t+1°

For a single simulation, the likelihood, Z, calculated using
data up to generation F is therefore

F
L =HL1,Z‘L2,7’: (15)
i=1

which is a function of the R;. Given data from M (= 250)
done with the same parameter values and done on the same
landscape simulations — where in each simulation a single
individual of each type was infected initially — we can then
calculate an overall likelihood function over the ensemble
of simulations by multiplying M expressions of the form
above (with F=2). This allows us to estimate the best-fitcting
values of R, using standard numerical techniques to maximise
the log-likelihood and to use these estimates to estimate
the overall value of R, as the largest eigenvalue of the next
generation matrix.

Comparing the simulated and analytically
calculated R,

A first test of the expression for R was done using the land-
scape in Fig. 1A and the dispersal densities shown in Fig. 1B.
One realisation with a seed of two randomly placed infected
hosts — one infected host of each type — in Generation 0 of
our epidemic simulation (written in the C programming

language; available online at hteps://github.com/nikcun-
niffe/rZeroORing) is shown in Fig. 1D and the densities of
the two infected host types in the first three generations in a
single set of 250 replicated simulations are shown in Fig. 1E.
Figure 1F shows the distribution of R values calculated with
the method explained above, with initial condition of one
infected host for each host type, over 1000 independent sets
of 250 simulations. The mean value of the R, calculated from
the 1000 sets of 250 simulations (red dot) is very close to the
R, calculated from the analytical expression (blue triangle);
numerical integration was done in R using the ‘sfsmisc’ pack-
age ver. 1.1-16 (Maechler 2023).

The results of sets of simulations for the three dispersal
distributions (Normal, exponential and fat-tailed) are
summarised in Table 1. There is a close correspondence
between the simulated R, and the R, calculated from the
analytic expression both in the case of one host and in the
case of two host types.

To assess how far landscape structure affects the accuracy
of the analytic R, expression, 100 replicate landscapes were
generated as described above. Each landscape is generated by
drawing a value for s and p as well as drawing values for the
cluster width. For each of these 100 different landscapes, 10
replicate sets of 250 simulations were done using the baseline
parameter values as in the caption of Table 1, and 10 values
of R, calculated. The value of the simulated R, values and
the R, calculated from the expression are plotted in Fig. 24,
C. Clearly there is a nearly perfect agreement between the
simulated and the calculated R, value irrespective of the
landscape and the dispersal density used.

To assess the effect of the pathogen lifecycle parameters
(the number of infectious units 0, probability per time unit
to die p,, probability that an infectious unit causes an infec-
tion P, the shape parameter of the dispersal density ¢ and the
dispersal scale parameter ) 200 sets of parameter values were
drawn. Initially values were drawn from homogeneous distri-
butions on the interval 20-200% of the baseline value of the
parameter. Further parameter sets were generated by drawing
only values for one of the parameters and retaining the other
parameters at their baseline value. We restricted to ¢=0.5,
¢=1.0 and ¢=2.0. Using the landscape of Fig. 1A and the
three dispersal densities of Fig. 1B, 10 replicate sets of 250
runs were done for each set of pathogen life-cycle parameters
and 10 values of R, calculated. Figure 2B and D show that
there is a near perfect correspondence between the simulated

Table 1. The basic reproduction number of the simulated epidemic and calculated from the analytic expression for the baseline parameter
values. (6,=0.1; 0,=0.1; p,=0.05; p,=0.1; p,=2; p,=4; a=0.25). Numbers in the ‘fitted’ cells are the median values over an ensemble of
1000 sets of 250 simulations; the values in brackets are the 5 and 95 percentiles.

Gaussian (c=2)

Exponential (c=1) Fat tailed (c=0.5)

Fitted Analytic Fitted Analytic Fitted Analytic
Species 1 only 1.322 1.286 1.365 1.349 1.542 1.551
(1.201-1.464) (1.257-1.491) (1.414-1.692)
Species 2 only 1.285 1.237 1.569 1.541 2.063 2.063
(1.150-1.401) (1.450-1.719) (1.926-2.193)
Both types 2.182 2.078 2.613 2.566 3.431 3.426
(1.999-2.361) (2.439-2.807) (3.241-3.648)
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Figure 2. Comparison of the basic reproductive number calculated from simulations, R, and calculated using the integral expression and
the O-ring statistic, R, (A) and (B) are for the single species case, (C) and (D) for the two species case. (A) and (C) show calculations for
a range of generated host distributions, (B) and (D) show calculations for a range of epidemiological parameters. Each dot in each figure is
the result of estimating R, from 250 simulations using one set of life cycle parameters on one single landscape; note that 10 replicate sets of
250 simulations were performed for each landscape X parameter set combination (there are vertical lines of 10 points in each plot, most
clearly visible towards the right-hand side of (C)). For the methods of generating host distributions and varying parameters see the main text.

R, and the R, calculated from the analytic expressions irre-
spective of the values of the pathogen life-cycle parameters.

A closer analysis of R, in the example case

Complete spatial randomness

The homogeneous Poisson process can be used to generate a
completely spatially random host distribution. The Ripley’s K
function for this process has the form

K(r)=7tr2. (16)
This is intuitively clear as the number of hosts within a circle
of radius 7 around any host is proportional to the area of the
circle. The O-ring statistic takes the form

O(r) =2, (17)
which indicates that at every distance from a randomly
selected host the host density is the same as the mean host
density. The basic reproduction number then becomes

RozgﬁsznrD(r)drzgﬁx:zéo. (18)
W n

As expected, the basic reproduction number is linearly
dependent on host density and on the pathogen transmission
rate. This holds for the R, in standard SEIR models as well
(Kermack and McKendrick 1927). When infectious units
disperse further from their host, increasing o, the basic repro-
duction number stays the same in a spatially random host
population. Also, the shape of the dispersal density, whether
it has a fat tail, ¢ < 1, or an exponentially bounded tail, ¢ > 1,
does not affect the value of the basic reproduction number in
a spatially random host population.

Regular host distributions

There is a variety of point processes that generates host dis-
tributions more regular than the complete spatially random,
CSR, distribution. The Strauss process generates host distribu-
tions where the density of hosts within a critical distance § of
each host is smaller than expected under CSR. These distribu-
tions are generated starting with a CSR distribution of hosts
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and deleting hosts within the critical distance 8 of a host with
probability 1 — y. An approximation to the Ripley’s X function
for the Strauss process is given by (Isham 1984)

l((r)z (19)

yrr’ r<d
w?-(1-8)n8  r>38

The O-ring statistic takes the form

Ay r<3d

o0)-1,

The basic reproduction number is given by

r>8 20)

5

Ro=FRi 1_(1_y)jzmp(r)dr , (21)
0

and substituting the dispersal density we find

¢
r

(1 - 3()-?7*6(0‘J dr |. (22)

“Rl1-_°
Ry =R azr(zj
4

c
»

s [
LJ‘ re “) dr is always between
azf(zj 0
c
0and 1, with 0 for §=0 and 1 for § = co. Therefore for & —

00, Ry—> YR, andasd — 0, R, — R, .
For ¢=2 this becomes

Note that the factor

62
Ry=R|1-(1-7) 1_[(?J . (23)

For ¢=1 this becomes

Ry=Ry 1—(1—y)(1—(1+8j3_(3j] . (24)

o

We will first interpret the effect of parameter values on the
basic reproduction number in general from the form of the
Eq. 22-24, and then show a few examples for specific param-
eter values in Fig. 3.

Host density and regularity
The basic reproduction number is linear in the R, of the

complete spatial randomness case, R,. This implies that
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the basic reproduction number increases linearly with the
mean host density, A, and with the pathogen transmission
rate. Moreover, host regularity will always decrease the basic
reproduction number, and the greater the level of regularity
the smaller R. Increasing the area around a host in which the
host density is smaller than expected, 8, always decreases R,.
The smaller the density of hosts in the vicinity of a host, 1
— v, the smaller R,.

Pathogen dispersal density
In a regular host population, the basic reproduction number
increases with increasing dispersal distance, «. This can be
explained by considering the number of infectious units that
will be deposited on a host. In a regular host distribution,
infectious units will have a larger chance to be deposited on a
host if they move beyond the area around the host where the
host density is smaller than average in the entire population.
The effect of the shape of the dispersal density, ¢, on
the basic reproduction number in regular host populations
is more difficult to see from the expression. We therefore
explore this numerically.

Numerical examples

The above discussion shows the qualitative effects of host regu-
larity and pathogen dispersal density on the basic reproduction
number. The analysis does not reveal the size of the effects nor
is it possible to assess the effect of the dispersal density shape
parameter, ¢, on the basic reproduction number. Numerical
solutions of the equation for R, shown in Fig. 3 explores the
size of the effects of host regularity, pathogen dispersal and the
shape parameter on the basic reproduction number.

Figure 3A—B show that when the basic reproduction num-
ber in a spatially random host population is larger than unity,
a more regular host distribution can bring the basic reproduc-
tion number below unity, preventing epidemic invasion. This
requires large exclusions zones, d, or a high strength of exclu-
sion, 1 — 7. The basic reproduction number increases with
the dispersal scale, a, (Fig. 3C) and decreases with increasing
value of the shape parameter (Fig. 3D). Shape parameters ¢
> 1 are dispersal densities with a thin tail (the tail decreases
faster than exponential with distance for large distances) and
for ¢ < 1 the dispersal density is fat tailed (the tail decreases
slower than exponentially with distance for large distances).
That a thinner tail decreases R, is intuitively explained because
it makes the probability that an infectious unit reaches a host
outside the exclusion zone to be smaller.

Spatially clustered host distributions

The Neyman—Scott process generates spatially clustered host
distributions. Ripley’s K function for the Neyman—Scott
process is given by

K(r)znrz +— (25)
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where p is the cluster density and ¢ is the standard deviation
of the distance of a host to the centre of the cluster it belongs
to (Diggle 2003). From this we find that the O-ring statistic
is given by:

2
P

e 4 |, (26)

O(r)=xA|1
(7') +p47t62

and the basic-reproduction number is

0 rZ

Ro=R|1+ j e @ D(r)dr |, (27)
0

p4nc

Substituting the dispersal density, we get

[

~ T - 28
R =R|1+—— J.re“ 4o’ gy | 28)
p47c0c21"( jc 0
For ¢=2 this becomes
Ro=Ro|14— ! (29)

pn(oc2 + 402) .

For ¢=1 this becomes

Ry=Ry| 1+

=S Ue,ﬁ( ) , (30)

2p

Where erfc is the complementary error function.

We will first interpret the effect of parameter values on the
basic reproduction number in general from the form of the
Eq. 28-30, and then show a few examples for specific param-
eter values in Fig. 3.

Host density and clustering

Interpreting the form of Eq. 28-30 we see that as in the case
with host regularity, the basic reproduction number is linear
in the R, of the complete spatial randomness case, R, . This
implies that the basic-reproduction number increases linearly
with the mean host density, A, and with the pathogen trans-
mission rate. Moreover, host clustering will always increase
the basic-reproduction number and the greater the level of
clustering the larger R,. Increasing ¢ decreases the level of
host clustering and decreases the value of R. Increasing the
number of clusters, p, in a host population with a fixed num-
ber of hosts, decreases the level of clustering and decreases R,

That R, decreases with the level of clustering can be
explained by the fact that for any biologically relevant
dispersal kernel more infectious units will be deposited closer
to the infected host than further away from the infected host.
In the case of a clustered host distribution this leads to more
infectious units being deposited on susceptible hosts then in
the case of a spatially random host distribution.

Pathogen dispersal density

Interpreting the form of Eq. 28-30 we see that in a clustered
host population, the basic reproduction number decreases
with increasing dispersal distance. This can be explained as
before by considering the number of infectious units that
will be deposited on a host. In a clustered host distribution,
infectious units will have a higher probability of moving out
of the cluster from which they originate when the dispersal
scale is larger. Infectious units that moved out of the host
cluster they originate from will have a smaller probability to
be deposited on a host and cause an infection.

The effect of the shape of the dispersal density, ¢, on the
basic reproduction number in clustered host populations
is more difficult to see from the expression. We therefore
explore this numerically.

Numerical examples

Numerical solutions of the equation for R, shown in Fig. 3
explores the size of the effects of host clustering and pathogen
dispersal on the basic reproduction number.

The figure shows that when a pathogen has a basic repro-
duction number smaller than unity in a spatially random
host population, host clustering can bring the R, above unity.
In Fig. 3E 1/6 equals zero for a random host distribution.
The figure shows that the effect of host clustering on the basic
reproduction number can, depending on the values of the
other parameters, be large. In the numerical example shown
the basic reproduction number is smaller than unity for ran-
dom host distributions and becomes four for very clustered
host distributions. An increased density of host clusters, p,
(Fig. 3F) decreases R, because increasing p at constant host
density decreases the level of host clustering. The effect of the
pathogen dispersal scale, Fig. 3G, can also be considerable.
Increasing the dispersal distance from close to 0 to large val-
ues decreases R, from around 4 to less than 1.

The shape of the dispersal distribution has a pronounced
effect on the basic reproduction number, with fat tailed dis-
tributions having small values of R,. Thinner tails imply that
a larger fraction of the infectious units is deposited closer to
the parent host, which increases the probability it is deposited
in a host in the cluster it originates from.

Discussion

We introduced a method to calculate the basic reproduc-
tion number, R, for a spatially explicit host population. The
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Figure 3. The effect of parameter values on the basic reproduction number. (A-D) are for the Strauss process (regular host distributions),
(E-H) for the Neyman—Scott process (clustered host distributions). (A) shows the effect of the strength of the exclusion zone on R, (B) the
effect of the size of the exclusion zone on R, (C) the effect of the dispersal scale on R, and (D) the effect of the dispersal density shape param-

eter on R. (E) shows the effect of the inverse of the cluster width on R,

(F) the effect of the density of clusters on R, (G) the effect of the

dispersal scale on R, and H the effect of the dispersal density shape parameter on R,. For this figure for the Strauss process §=0.5, y=0.1,
and the other parameters are as given in the subscript of Fig. 1. For the Neyman—Scott process and the other parameters as in Fig. 1.

spatial host distribution is characterised via the O-ring statis-
tic which is interpreted as the density of hosts at a distance »
from a randomly selected host. The O-ring statistic is a mea-
sure from spatial statistics frequently used in the study of the
ecology of plant spatial population dynamics (Wiegand and
Moloney 2004, Law et al. 2009). The method to calculate
R, thus establishes a connection between the epidemiology
of infectious diseases in spatially structured host populations
and spatial statistics methods from spatial ecology.

We presented the calculation of R, for a single host species
as well as for multiple host species. In the derivation of the &,
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for multiple host species we used the next-generation matrix
approach as developed by Diekmann et al. (1990, 2009). We
note here that this does not imply that the method is only
valid for discrete time epidemic models. The next generation
matrix approach is valid for both continuous time and discrete
time models (Diggle 2003): indeed the simulations on which
we tested the analytic method were continuous time models.
The expression for R, has a clear intuitive biological inter-
pretation that allows it to be used in the analysis of epidem-
ics on realistic spatial host patterns. Basically, the product
D(r) O(r) describes how a pathogen ‘sees’ the host population
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around and infected host individual. D(r)O(7) is the prob-
ability that an infectious unit released from an infectious host
lands on another host at distance 7 from the originating host.
Calculating the basic reproduction number then is a mat-
ter of adding up all of the D(r)O(7) contributions through
the entire space and multiplying with the number of effective
infectious units, OP/L.

The values of the parameters needed to calculate R, can
be obtained experimentally, though some are complicated
to estimate. Values are published for some patho-systems.
The pathogen life cycle parameters ‘the number of infec-
tious units’, 0, the ‘probability per time unit to die’, p;, and
the probability that an infectious unit causes an infection,
B,, appear in all expressions for R, as the basic reproductive

number in a spatially random host distribution, R, = —BA

, which is the same as the basic reproductive number in the
SIR models. Values of R, for plant pathogens have been
published (Wadkin et al. 2024). Dispersal densities of the
infectious units are notoriously difficult to quantify as these
infectious units can disperse over large distances which then
are hard to quantify using sampling. Some dispersal densities
for plant pathogens based on direct measurement of dispersal
distances have been published (Rieux et al. 2014), and indi-
rect estimates, usually based on fitting a model to spatially
refined epidemiological data can also be found in the litera-
ture (Neri et al. 2014). Finally, the O-ring statistic has to be
derived from a spatially resolved host map. This must be done
on a case-by-case basis, but since the host is stationary this is
relatively easy to do.

Several authors have studied the effect of spatial host
distribution on epidemic dynamics using moment closure
techniques (Bolker and Pacala 1999, Filipe and Maule 2003,
Brown and Bolker 2004, Bauch 2005). These methods result
in expressions for R from which valuable insight is gained
into the effects of spatial host structure on the dynamics of
infectious pathogens and give insight into the situation when
the epidemic runs into density dependence. Of these Filipe
and Maule introduced a function describing the mean host
density as function of distance from a randomly chosen host.
This function is mathematically similar to the O-ring statis-
tics. Due to the use of the moment closure technique the
expression arrived for R, does however have a very complex
structure and can not easily be applied to realistic spatial host
distributions. Filipe and Maule’s R expression also does not
allow for an intuitive interpretation along the lines as the
expression for R introduced in this paper.

The results of our qualitative and quantitative analysis gen-
erally agree with the results by other authors. Bolker (1999),
Brown and Bolker (2004) and North and Ovaskainene
(2007), showed that the initial epidemic growth rate is larger
in a clustered host population compared to that in a spatially
random population. Since the generation time is kept con-
stant in their simulations this implies that R, in a clustered
host population is larger than in a spatially random host pop-
ulation, which agrees with our findings.

Brown and Bolker (2004) pay special attention to the
local depletion of susceptible hosts and its effect on the

net-reproductive number. They show that for very concen-
trated dispersal kernels the high infection rate of neighbour-
ing hosts can deplete the availability of susceptible host to
such an extent that the epidemic does not develop where
on basis of an R, calculation it is expected to develop. They
develop a moment closure method that incorporates this
local host depletion into the calculation of the basic repro-
duction number. We have in our simulations not noticed that
a concentrated dispersal distribution affects the numerically
derived value of R to deviate significantly from the value cal-
culated using the O-ring statistic.

In the example studied we use three cases 1) complete
spatial randomness, 2) over dispersed host patterns generated
by the Strauss process and 3) clustered host distributions
generated by the Neyman-Scott method to generate the
spatial host distribution. The method is however equally
well applicable to any real-life spatial host distribution from
which the O-ring statistic can be calculated numerically
(Wiegand and Moloney 2004). This opens the possibility to
use the method in the analysis of practically relevant cases.
For example, the expression for R, can be used in land use
planning for nature development and agriculture to reduce
the risk of disease outbreaks. For example, increased tree
cover has been widely acknowledged as a fundamental
requirement to mitigate the effects of climate change and
restore natural habitats (Griscom et al. 2017, Chazdon
and Brancalion 2019). However, tree pests and diseases are
a continuous threat to tree health (Boyd et al. 2013). Any
increase in forested area will increase the opportunity for
pathogens to invade and spread. The question is thus how
these new forests could be spatially structured to minimise
the risk of outbreaks of pests and diseases and/or be resilient
when such outbreaks do occur. Using the expression for
R, it is possible, for known pathogens, to plan the spatial
arrangement of forest lots such that the risk of epidemic
damage is minimised. The same holds for agricultural fields
threatened by crop pathogens.

Our method to calculate the basic reproduction number of
an infectious disease in a spatially structure host population
forms a natural connection between the spatial statistics
measure used in the study of the spatial ecology of plant
populations and the dynamics of pathogen on these plant
populations. Using the method introduces it is possible
to study the effect of real-life spatial host distributions on
epidemic dynamics.
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