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Abstract  Disease management decision support 
systems (DSS) are typically prediction algorithms 
that help farmers assess the risk of an epidemic, to 
guide whether, and to what extent, fungicide treat-
ment is needed. However, there is frequently little 
information presented to quantify the value of using 
the DSS, i.e. the likely increased profit or reduced 
impact to the environment, and the risks of failing to 
control the pest. Validation of DSS is often limited to 
a small number of sites and seasons, as extensive field 
testing is prohibitively expensive. It would therefore 
be beneficial to have a method to estimate the value 
of a DSS using existing data sets gathered for other 
purposes.
We present a theoretical framework for evaluat-
ing the value of DSS, and then describe how this 
can be applied in practice using four case studies of 

contrasting DSS under different data constraints. The 
four case studies include DSS that guide (i) the total 
dose of pesticide applied; (ii) the number of sprays 
required; (iii) the timing of the first fungicide appli-
cation in a spray programme; and (iv) infection risk 
alerts. We demonstrate how our theoretical frame-
work can be used to evaluate DSS, using existing 
field and literature data to infer the benefits and risks 
associated with their use. The limitations of using 
existing data are explored.

Keywords  Decision support system · Value · 
Validation · Pesticide use efficiency · Fungicide use 
efficiency

Introduction

Chemical pesticides are used to control insect pests, 
weeds and diseases (collectively referred to as pests) 
in most intensive agricultural systems. There are, 
however, increasing concerns about the direct and 
indirect effects of their use on public health and the 
environment (Thompson et al., 2020; Whitmee et al., 
2015). The repeated use of pesticides has also led to 
the development of pest resistance in many instances, 
rendering products less effective and pest control 
less manageable (Gould et  al., 2018). To promote 
more sustainable agricultural systems, EU Direc-
tive 2009/128/EC established eight key principles 
to reduce pesticide use, including that users should 
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apply pesticides where and when needed, and that 
the decision to apply a spray should be based on pest 
monitoring and thresholds (Barzman et al., 2015).

Decision support systems are tools that guide 
users in making decisions about when, and possibly 
where, to apply pesticides. Ideally, by incorporating 
knowledge of pest dynamics and impacts in a DSS, 
pesticides can be applied only when they are needed, 
increasing pesticide use efficiency, maintaining control 
of the pest without allowing an impact on yield. The 
use of DSS often leads to a reduction in the amount of 
pesticide applied (Lázaro et al., 2020), or recommen-
dations for alternative control strategies (e.g. Mensah, 
2010; Zhang & Swinton, 2009), reducing the negative 
impacts on the environment and human health. Indeed, 
a recent meta-analysis of field experiments testing 
the effectiveness of DSS demonstrated that they can 
reduce the amount of pesticide used by half without 
compromising yield (Lázaro et al., 2021).

Initial methods to guide the need for treatment took 
the form of control thresholds – pest densities at given 
crop growth stages above which a pesticide should 
be applied (e.g. Pedigo et  al., 1986). More complex 
approaches were developed into algorithms and incor-
porated into decision support systems (DSS) or deci-
sion support tools, which can vary considerably in their 
design and complexity. Some DSS calculate the risk of 
pest outbreaks based on the environmental suitability 
for the target pest populations at a location, and use 
this risk to guide if a treatment should or should not 
be applied (e.g. te Beest et  al., 2009a, 2009b). More 
complex DSS may incorporate process-based models 
that simulate crop phenology and pest lifecycles to 
guide the optimal application time and dose of an indi-
vidual pesticide product (e.g. Johnen et al., 2010, Par-
sons, et al., 2004). Recent DSS have included the use 
of machine learning algorithms (Jabir & Falih, 2022), 
cloud-based infrastructure (Rupnik et  al., 2019), and 
real-time updating (Rossi et al., 2014).

However, despite an increasing number of DSS 
being published, uptake has been slow (Gent et al., 
2013). There are several reasons suggested for this 
low uptake, and these vary with region (Marinko 
et  al., 2003), but they include lack of trust in the 
performance of the DSS, the perceived need for 
additional training, and a failure to demonstrate 
positive economic benefits (Rose et  al., 2017, Jør-
gensen et  al., 2007, Parker & Campion, 1997, 
Marinko et al., 2003).

This lack of confidence in DSS may be a con-
sequence of the difficulties involved in validating 
DSS. To validate a DSS, field experiments need to 
be designed and carried out that compare the pest 
control in trials following a DSS to those following 
a standard application programme for that region. 
However, such field experiments are typically lim-
ited in space (few locations) and time (few years), 
due to financial and time constraints. As a result, the 
conditions represented in the validation studies may 
not be representative of those under which the DSS 
is used. With limited validation field trials, sites or 
years that have an abnormal pest intensity are likely 
to be missed. Several studies have demonstrated that 
DSS can perform poorly when examined in environ-
ments in which they were not developed (e.g. Hij-
mans et  al., 2000). Similarly, field tests of models 
in the Nordic-Baltic region for control of Z. tritici 
showed variable accuracy in guiding control deci-
sions, depending on the country they were used in. 
The models tested were developed in Denmark and 
showed (as might be expected) the highest accuracy 
in Danish trials (Jørgensen et  al., 2020). The same 
models also showed a much bigger potential for 
reducing fungicide treatments in relative dry seasons 
(when there were fewer opportunities for splash dis-
persal) compared with more normal seasons during 
which standard treatments performed similarly to 
the DSS. For these reasons, it is desirable to dem-
onstrate that DSS are accurate and effective in the 
environments in which they may potentially be used.

Additionally, evaluations of DSS often report only 
the accuracy of the DSS predictions whether a DSS 
correctly predicts the occurrence of a pest outbreak 
(e.g. Small et al., 2015, Sciaretta et al., 2019), and not 
report on the yield impact or cost benefit. However, 
an end user is likely to be more interested in the value 
obtained from using the DSS, whether economic (the 
extra profit achieved by using the DSS) or environ-
mental (the reduction in the amount of pesticide used) 
or both. Potentially more important, users need to be 
sure that using the DSS is unlikely to result in a loss 
(either of profit or environmental impact); particu-
larly relevant if the DSS predicts there is no need for 
pesticide treatment, but a severe pest outbreak subse-
quently develops (a false negative prediction). Being 
able to provide users with a cost–benefit analysis of 
a DSS before they use it could lead to increased trust 
and therefore uptake in DSS.
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Due to the constraints in experimentally validat-
ing DSS, what is needed is a suite of methods that 
are able to quantify the value of DSS using exist-
ing datasets. However, existing large data sets are 
unlikely to have been collected for the purpose of 
testing DSS. For example, data may have been gath-
ered to measure the efficacy of new pesticide prod-
ucts in a range of environments, comparing them to 
current ‘standard’ spray programmes and untreated 
plots, or from research experiments undertaken by 
various institutions with no shared protocol.

In this paper we present a generic framework 
for estimating the value of DSS using pre-existing 
data. We then describe how the methodology can be 
applied in practice to four case studies of DSS sys-
tems with contrasting characteristics.

Method

Theoretical framework

The economic value of a DSS (V)  is defined as the 
difference between the cost of not following the DSS, 
i.e. using a standard pesticide spray programme 

(

CS

)

 , 
and the cost of following the DSS guidance 

(

CDSS

)

 . 
The value of a DSS may therefore be stated as:

The costs incurred when using a given spray pro-
gramme (q) consist of the cost of the pesticide, the cost 
of applying the pesticide, and the price of any crop yield 
lost due to any uncontrolled pest damage, and is given by:

where C(x, q) is the cost under a given pest intensity, 
x , and spray programme, q , F(q) is the price of the 
spray programme (including the amount of pesticide 
applied and the cost of application), and L(x, q) is the 
amount of yield lost when the spray programme q is 
applied in a situation with pest intensity x , and � is 
the price of a unit of yield.

When using a DSS, the spray programme q is 
generated by the DSS from a prediction of pest 
intensity xpred , and therefore q is a function of xpred:

(1)V = CS − CDSS

(2)C(x, q) = F(q) + �L(x, q)

(3)
CDSS

(

x, q
(

xpred
))

= F
(

q
(

xpred
))

+ �L
(

x, q
(

xpred
))

Therefore, the cost associated with using a DSS 
depends on both the actual pest intensity x , and the 
pest intensity predicted by the DSS, xpred , which then 
informs the spray programme. The cost of a stand-
ard spray programme depends only on the actual pest 
intensity and the standard spray programme:

Both the actual pest intensity, x , and the pest inten-
sity predicted by the DSS, xpred, vary in space and 
time. This variation can be described by a probabil-
ity density function,  f

(

x, xpred
)

 , which describes the 
joint distribution of the predicted pest intensity and 
the observed pest intensity. This joint distribution 
captures both the distribution of the real observed 
pest intensity, and how well the DSS performs at dif-
ferent pest intensities – an accurate DSS will predict 
values of xpred that are close to x . Poorly performing 
DSS may be less accurate and/or less precise. Fig-
ure  1 illustrates possible relationships between the 
observed pest intensity and that predicted by the DSS.

The value of a DSS can then be estimated by 
calculating the difference in costs between the DSS 
and the standard spray programme at all possible 
combinations of the observed and predicted pest 
intensity, weighted by their frequency, resulting in 
a distribution of the value of the DSS. The result-
ing distribution of the value of the DSS can give an 
indication of how likely different profit margins are, 
including the probability of each DSS resulting in 
an economic loss P(V < 0).

To summarise the value of a DSS, the expected 
value of the DSS over all pest intensities may be 
calculated by integrating over the joint probability 
density function:

where xmax is some maximum possible pest intensity.
To implement the above approach, the following 

steps are required:

	 (i)	 Derive a distribution describing the joint prob-
ability of the actual pest intensity and that pre-
dicted by a DSS, f

(

x, xpred
)

	(ii)	 Obtain the spray programme recommended by 
the DSS given every predicted pest intensity, 
i.e. derive q(xpred)

(4)CS(x) = F
(

qs
)

+ �L
(

x, qs
)

.

(5)

E(V) = ∫
xmax

0 ∫
xmax

0

{

CS(x) − CDSS

(

x, xpred
)}

f
(

x, xpred
)

dxdxpred
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	(iii)	 Calculate the costs associated with following 
both the recommendation of the DSS given that 
the true pest intensity was x , and of following 
a standard spray programme. That is, calculate 
L(x, q) , and thus CDSS(x, xpred) and CS(x) for 
each possible combination of x and xpred.

Whilst theoretically possible, these parameter 
estimation steps are rarely achievable due to a lack 
of data, and/or the complexities associated with the 
DSS. The more complex the model behind the DSS, 
the greater the data requirements to parameterise 
f (x, xpred) and C(x, q) , and with the more complex 
DSS such data is unlikely to be available. However, 
by tailoring Eq.  5 to an individual DSS, it is pos-
sible to reframe the framework in a manner that 
requires substantially less data to estimate.

To illustrate the implementation of the frame-
work we consider four case studies, with different 
types of DSS and/or different data availability; dem-
onstrating how to reframe Eq. 5 for each. The four 
case studies considered are:

1.	 DSS that inform a user when it is safe to reduce 
the applied pesticide dose (e.g. Kudsk, 2007; 
Schepers et al., 1996).

2.	 DSS that guide the number of pesticide applica-
tions to apply to a crop to protect against a pest. 
The simplest case is when the DSS determines 
whether a pesticide application should be applied 
or not (Shtienberg, 2013). Such DSS often do not 
explicitly predict pest intensity 

(

xpred
)

  but instead 

only provide an indication of risk, for example 
when humidity has been high for a given number 
of days (e.g. Hansen et al., 1994), and so surrogates 
for xpred must be used in the analysis of value.

3.	 DSS that guide when to start spraying (e.g. Mari-
mon et al., 2020).

4.	 A case when no data are directly available but 
data on the accuracy of prediction exists in the 
form, for example, of a confusion matrix.

The implementation of case studies 1 and 4 are 
shown in the Supplementary Information.

Results

A DSS developed to predict whether fungicide dose 
reduction is appropriate

The te Beest DSS

The DSS described in te Beest et al. (2009a) supports 
decisions on controlling Zymoseptoria tritici (previ-
ously Mycosphaerella graminicola; the causal organ-
ism of septoria tritici blotch). Zymoseptoria tritici is 
a fungal pathogen that is a serious problem in wheat 
(Hagelskjær and Nistrup Jørgensen, 2003), and is typ-
ically controlled by fungicide applications at key crop 
growth stages.

Based on weather data from January to April the 
DSS predicts whether a damaging epidemic is likely to 
occur, and when a damaging epidemic is not predicted 

Fig. 1   Illustrations of theoretical forms of the join distribution 
function f

(

x, xpred
)

 . White represents the largest density and 
black represents near zero density. Each distribution is from a 

DSS that predicts with (left) very good accuracy and precision, 
(middle) good accuracy but poor precision, and (right) poor 
accuracy but good precision



Eur J Plant Pathol	

1 3
Vol.: (0123456789)

a reduced fungicide dose may be appropriate. This 
DSS therefore does not explicitly predict pest inten-
sity 

(

xpred
)

 but instead provides a binary output indicating 
whether or not it is safe to lower the dose. In two sub-
sequent papers (te Beest et al., 2009b, 2013) the authors 
calculated the optimal fungicide dose to maximise the 
economic return. Their analysis on disease susceptible 
varieties forms the basis for the example presented here.

Formulating the value calculation for the DSS

As noted above, the prediction of disease intensity is 
captured as one of two discrete states; a low severity 
season where a reduced dose rate is appropriate 

(

�l
)

 , or 
a season where a damaging epidemic is predicted and a 
standard dose rate is likely to be required 

(

�h
)

 . There-
fore, the predicted disease severity xpred is represented 
by the surrogate values {�l, �h} . Equation  5 therefore 
simplifies to:

The distribution f (x, �) , which describes the rela-
tionship between observed uncontrolled disease 
severity x and the dose predicted by DSS, simplifies 
to

where gl(x, �) is the observed distribution of uncon-
trolled disease severity when a low dose is pre-
dicted 

(

� = �l
)

  and is zero otherwise, and gh(x, �) is 
the observed distribution of disease severity when a 
standard dose is predicted 

(

� = �h
)

 and is zero other-
wise. The parameters �l and �h scale according to the 
proportions of the total predictions allocated to �l or 
�h (ensuring that f (x, �) integrates to one). As severity 
is bounded between 0 and 100%, a beta distribution 

(6)E(V) =
∑

�∫
xmax

0

{

CS(x) − CDSS(x, �)
}

f (x, �)dx

(7)f (x, �) = �lgl(x, �) + �hgh(x, �)

is an appropriate distribution to model the severity 
(scaled between 0 and 1).

To derive the yield loss, L(x, �) , associated with 
applying dose � to disease of severity x , we adopted 
the equations reported in te Beest et  al. (2009b). 
They assume that the amount of yield lost increases 
linearly with the disease severity:

where Y0 is the yield potential assuming no Z. tritici 
infection, S(x, �) is the treated disease severity and 
� is the yield loss coefficient per unit severity. The 
treated disease severity, S , is given by:

where R defines the maximum proportional reduction 
at high values of fungicide, � is the total amount of 
fungicide dose applied across the season and k deter-
mines the shape of the dose–response curve.

If a damaging epidemic is predicted then apply-
ing �h is appropriate hence the difference in cost 
between using the DSS or following standard prac-
tice is zero:

If low disease severity is predicted then the dif-
ference in cost is given by

where � = R
(

e−kDh − e−kDl

)

 and ΔF is the difference 
in cost between the two spray programmes. The cost 
of application remains the same between the standard 
and DSS spray programmes, and so does not appear 
in Eq. 11.

Combining Eqs. 6, 10, and 11, the expected value 
of the DSS can be calculated analytically, by recognis-
ing that ∫ xf (x)dx is the expected value of a probabil-
ity distribution, which for a beta distribution is �

�+�
:

(8)(x, �) = Y0�S(x, �)

(9)S(x, �) =
(

1 − R(1 − e−k�)
)

x

(10)CS(x) − CDSS

(

x, �h
)

= 0

(11)CS(x) − CDSS

(

x, �l
)

= ΔF + P�Y0�x

(12)E(V) = ∫
100

0

(

CS(x) − CDSS

(

x, �l
))

f
(

x, �l
)

dx + ∫
100

0

(

CS(x) − CDSS(x, �h
)

)f
(

x, �h
)

dx

= ∫
100

0

{

ΔF + ��Y0�x
}

f
(

x, �l
)

dx + 0 = ΔF∫
100

0

f
(

x, �l
)

dx + ��Y0�∫
100

0

xf
(

x, �l
)

dx

= �lΔF + ��Y0��l

(

�l

�l + �l

)

= �l

{

ΔF +
��Y0��l

�l+�l

}
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There is an economic loss if V < 0 . This can only 
happen when low disease intensity is predicted, and 
when ΔF + 𝜌𝜃Y0𝜆x < 0.

Rearranging for disease intensity, we can see that 
an economic loss only occurs when

Parameterisation.
We fitted Eq.  (7) to fungicide trials data for sus-

ceptible varieties of wheat described in te Beest et al. 
(2009b). The data were from across the UK: 25 site x 
year combinations spanning 2003 – 2005. To quan-
tify disease intensity (x) we use the disease sever-
ity (%) on leaf 2 at growth stage 75, which te Beest 
et  al. (2009b) found to have a good relationship to 
yield. We fitted separate distributions (Eq.  7) to the 
untreated severity for each dose level using the `fit-
dist` function from the `fitdistrplus` package in R. 
Together, these distributions, scaled by the proportion 

(13)
ΔF

−𝜌𝜃Y0𝜆
< x

of trials for which were observed (denoted �i ), make 
up the joint distribution function (Fig. 2). The fitted 
parameters are given in Table 1. As expected, when a 
severe epidemic was not predicted the distribution is 
skewed towards the lower end of the severity range, 
with a mean severity of 8.0%, whereas when a severe 
epidemic is predicted the distribution skews towards 
high severity with a mean severity of 16.9%.

To parameterise the yield loss relationship, we used 
the values given in te Beest et al. (2009a) ( Y0 = 9.15 

Fig. 2   Beta distributions (solid lines) fitted to the sever-
ity of septoria tritici blotch on leaf 2 of wheat at GS75 from 
untreated trials on susceptible cultivars in te Beest (2009b), 

when (left) a severe epidemic is not predicted, or (right) a 
severe epidemic is predicted by the DSS

Table 1   The shape parameters of the Beta distributions 
describing the severity of septoria tritici blotch on leaf 2 of 
wheat at GS75, depending on whether te Beest et al. (2009a) 

predicted high or low disease intensity, and the scaling param-
eter applied to each distribution

Predicted epidemic Beta distribution parameters Scaling 
parameter 
( �

n
)

� �

Severe epidemic is not predicted ( l) 1.421791 16.427796 0.325
Severe epidemic is predicted ( h) 2.274092 11.196507 0.675

Table 2   The expected value of the te Beest model at three dif-
ferent wheat price points, and the probability of a user using 
the DSS making a loss

Wheat price
(£ t−1)

Expected value of 
DSS
(£ ha−1)

Probability of 
negative value

100 6.41 Negligible
200 5.69 0.0014
300 4.61 0.0104
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t ha−1, � = 0.0081 , R = 0.996 , and k = 2.8 ) with a 
range of crop prices (100, 200 and 300 £ ha−1) and 
45 £ ha−1 per spray dose. Following te Beest et  al. 
(2009a), we assume a standard spray programme 
adopts a total dose of 1.5 units ha−1. If an epidemic 
is predicted then the user is guided to follow this 
standard recommendation, otherwise a more con-
servative application of 1 unit ha−1 is applied. The 
results are shown in Table  2. The expected value of 
this DSS decreases as the wheat price increases, and 
the probability of incurring a loss when using the DSS 
increases.

Evaluating a DSS that informs on the number of 
required pesticide applications

The Crop Protection Online DSS

Our second case study concerns the Crop Protec-
tion Online (CPO) DSS. This DSS was developed 
in Denmark and includes models for several pests 
and pathogens, one of which is Zymoseptoria tritici 
(Hagleskjær & Jørgensen, 2003). The CPO DSS aims 
to achieve the best control with the lowest inputs.

For Z. tritici, CPO tracks the cumulative number 
of days that have greater than 1 mm of rain between 
wheat growth stages (GS) 32 and 71. When suscepti-
ble cultivars are grown, the model suggests that fun-
gicide is applied following four days with more than 
1 mm of rain, whereas on resistant cultivars five days 
are required before a fungicide application is sug-
gested and the model first starts counting at GS 37. 
Once sprayed, the model assumes protection for ten 
days, after which a spray is suggested after a further 
four or five days of rain (Jørgensen et al., 2020).

Formulating the value calculation for the DSS

To estimate the value of the CPO DSS, we evaluate 
how the number of sprays predicted by CPO related 
to the observed disease severity and how that in turn 
affected costs. Therefore, the predicted disease inten-
sity xpred is represented by the surrogate value, n , the 
number of sprays predicted by the DSS. The expected 
value of the DSS therefore degenerates from Eq. 5 to:

(14)E(V) =
∑

n∫
xmax

0

{

CS(x) − CDSS(x, n)
}

f (x, n)dx

where f (x, n) describes the distribution between the 
untreated disease severity ( x ) and the number of sug-
gested sprays.

The distribution f (x, n) , which describes the rela-
tionship between untreated disease severity x and the 
number of sprays predicted by DSS, simplifies to

where gj(x) is the distribution of untreated disease 
severity when j sprays are predicted and is zero other-
wise. As above we assume that the form of these dis-
tributions can be described by a Beta distribution, and 
that the parameters �j scale according to the propor-
tions of the total predictions allocated to each number 
of sprays (ensuring that f (x, n) integrates to one).

We assume that yield is given by

where Y0 is the yield potential assuming no Z. tritici 
infection, S(x, n) is the disease severity and � is the 
yield loss coefficient per unit severity. The disease 
severity, S , is given by:

where x is the untreated severity, and � is a shape 
parameter. Therefore, similar to above, yield 
loss increases linearly with the disease severity, 
L(x, n) = �S(x, n) and the difference in cost between 
a standard spray programme and the DSS is given by:

(15)f (x, n) =

n
∑

j=0

�jgj(x)

(16)Y(x,D) = Y0 − �S(x, n)

(17)S(x, n) = xe−�n,

(18)
CS(x) − CDSS(x, n) = ΔF + ��

{

S
(

x, ns
)

− S(x, n)
}

Table 3   The number of trials in each country in the dataset

Country Number 
of trials

Denmark 17
France 47
Germany 45
Ireland 10
Poland 8
Sweden 4
UK 54
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where ns is the number of sprays applied as stand-
ard and ΔF is the difference in cost between the two 
spray programmes.

Parameterisation

Data from 186 field trials were used to estimate both 
the distribution function and the yield loss relation-
ship. The trials were conducted to assess the effi-
cacy of new fungicide products and were carried 
out between 2014 and 2018 in eight countries across 
Europe (Table  3) by Corteva Agriscience (Indian-
apolis, United States). In each trial, the severity of 
several foliar diseases on the top six leaves of wheat 
was recorded at various time points during the grow-
ing season, and crop yield was recorded for some of 
the trials. The crop growth stage was also recorded at 
various time points in most trials. Each trial consisted 
of two or more fungicide treatment programmes, 
including a control where no fungicide was applied 
(untreated). There were typically four replicates per 
treatment in a randomised block design. The cultivars 
used were susceptible or moderately susceptible to Z. 
tritici.

To quantify disease intensity (x) we use the dis-
ease severity on leaf 2 at growth stage 75 (GS75) 
– the same metric as in the previous section. As 
noted above, this has been found to be a strong pre-
dictor of yield, which was confirmed to be the case 
for the data used in this case study. Where neces-
sary, the date of GS75 was linearly interpolated 
from the nearest recorded growth stages, and the 
severity on leaf two was estimated at that date. For 
trials in which the severity could not be estimated, 
either because there wasn’t suitable growth stages 
or severity reported to allow interpolation, the trial 
was omitted from the analysis.

To calculate the number of sprays suggested 
by the CPO DSS at each of the field trials, hourly 
precipitation data was downloaded from the ERA5 
reanalysis (Copernicus Climate Change Service 
Climate Data Store, 2020), which has a 30-km 
grid resolution. After coding the rules of the DSS, 
described in Jørgensen et  al. (2020), n was calcu-
lated from the weather data for each trial for which 
severity data was available (58 of the 186 trials).

Between one and four sprays were predicted for 
each trial by the CPO DSS, with 4, 24, 10, and 2 
trials having 1, 2, 3, and 4 sprays, respectively. To 

Fig. 3   The probability density of the untreated severity of sep-
toria leaf blotch on leaf 2 of wheat plants at growth stage 75, 
when the CPO DSS predicts 1, 2, 3, or 4 sprays. Both the data 

(represented as a scaled histogram) and the fitted probability 
distributions (red lines) are shown
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fit the distribution function (Eq.  15), we used the 
`fitdist` function from the `fitdistrplus` package in 
R. The fitted distributions are shown in Fig. 3 with 
parameters reported in Table 4.

To fit the parameters for the yield loss relation-
ships (Eqs. 16 and 17) a linear model was fit with 
the `lm` function in R. The fitted parameter values 
were � = 0.43 with standard error 0.026, Y0 = 11.36 
and  � = 0.05 with standard errors 0.22 and 0.005 
respectively, R2 = 0.45 (Fig. 4).

In our examples we consider scenarios with a 
range of crop prices (100, 200 and 300 £ t−1) and 
25 £ ha−1 per spray application. We assume stand-
ard practice is to apply two fungicide applications, 
n = 2 . The distribution of value of the DSS was 
calculated by Monte Carlo simulation accounting 

for the f  distribution and the errors in the fitted 
yield relationships. Values for the expected yield 
and probability of loss are given in Table  5 with 
associated errors propagated from the fitted yield 
response functions.

Evaluating DSS that inform when to start a pesticide 
application programme

The Hutton Criteria DSS

The third DSS we evaluate is the Hutton Criteria, 
which was developed to identify when potato crops 
are at high risk of infection by potato late blight, 
caused by Phytophthora infestans. The DSS uses daily 
air temperature and humidity to determine risk. A high 
risk ‘Hutton Criteria’ period occurs when two consec-
utive days have a minimum temperature of 10 °C, and 
at least six hours of relative humidity at or above 90%.

While the Hutton Criteria can be used to identify 
risk periods throughout the potato growing season, 

Table 4   The shape parameters of the Beta distributions, 
describing the severity of septoria on leaf 2 of wheat at growth 
stage 75, depending on whether the CPO DSS predicted 1, 2, 
3, or 4 sprays for each trial, and the scaling parameter applied 
to each distribution

Number of sprays pre-
dicted by CPO

Beta distribution 
parameters

Scaling 
parameter 
( �

n
)

� �

1 5.70 7.38 0.1
2 1.67 0.98 0.6
3 2.23 0.83 0.25
4 6.54 0.78 0.05

Fig. 4   Left, the relationship between untreated and treated 
severity (%) when trials are treated with 0, 1, 2, 3 and 4 fungi-
cide applications. The fitted parameter for � = 0.43 with stand-
ard error 0.026 . Right. The relationship between the severity 

on leaf 2 at GS75 and yield in all treatments. The fitted yield 
loss relationship had parameters Y0 = 11.36 and  � = 0.05 with 
standard errors 0.22 and 0.005 respectively, R2

= 0.45

Table 5   The expected value of the CPO DSS for various 
prices of wheat

Wheat price (£ t−1) Expected value of DSS 
(£ ha−1)

Probability of 
negative value

100 4.87 0.12
200 16.3 0.10
300 26.4 0.11
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it is often used to identify when to start applying a 
weekly fungicide programme. In this case study, we 
estimate the value of the Hutton Criteria in identify-
ing the optimal timing for the first spray.

Formulating the value calculation for the DSS

For this case study we reformulate Eqs. 3 – 4 to rep-
resent the disease intensity in terms of the number of 
days away from a theoretical optimal timing of the 
first spray, denoted t0. In this formulation, the variable 
t0 is conceptually similar to our true pest intensity x. 
In an environment favourable to a pest t0 would occur 
earlier in the growing season, whereas in unsuitable 
environments t0 would occur later.

Equation 5 is reformulated as:

where tpred is the time at which the DSS suggests the 
first spray should occur, ts the time at which it occurs 
under a standard application programme, and tstart 
and tend can be considered to be the planting date and 
harvest dates respectively. We measure time as days 
after planting ( tstart = 0) and assume that the joint dis-
tribution f

(

t0, tpred
)

 can be described by a bivariate 
normal.

The losses due to disease are assumed to occur 
when the first spray is late. Therefore, we assume 
that no yield is lost if the spray programme starts 
earlier than the start of the epidemic, and that the 
amount of yield lost due to a spray program starting 
� days after the optimal spray time was assumed to 
increase linearly after t0 . That is:

where � = t − t0.
The cost of a spray programme depends on both 

the ideal spray time, t0 , and the time at which the 
first spray was applied 

(

tf
)

 and is given by:

A spray programme based on the DSS may 
result in fewer or more sprays applied, changing 
the amount and therefore the cost of the fungicide 
applied and the application costs.

(19)

E(V) = ∫
tend

tstart
∫

tend

tstart

{

CS

(

t0, tS
)

− CDSS

(

t0, tpred
)}

f
(

t0, tpred
)

dt0dtpred

(20)L(𝜏) =

{

0𝜏 < 0

m𝜏𝜏 ≥ 0

(21)C
(

t0, tf
)

= F
(

tf
)

+ �L
(

t0, tf
)

Parameterisation.

To estimate the distribution function and the yield 
loss relationship, data from 26 field experiments were 
used, which included information on the fungicide 
treatments and severity observations. Experiments 
typically included several treatments with four rep-
licates per treatment in a randomised block design. 
Several of the experiments also included yield data.

The time at which the first spray was predicted by 
the Hutton Criteria DSS, tpred , was estimated from 
weather data retrieved from the Copernicus cli-
mate data store for each time period and location of 
each trial. Risk periods were calculated according to 
the Hutton Criteria, and the first risk period follow-
ing crop emergence was taken as the predicted first 
spray time, tpred . Based on Skelsey et  al. (2009), we 
assumed that the value of t0 was a single latent period 
5 days — before the first observation of symptoms.

The joint distribution function, f (t0, tpred) , was esti-
mated by fitting a bivariate normal to the paired val-
ues of t0 and tpred , calculated for each trial, using the 
`mvtnorm` package. The fitted parameters were 
�t0

= 34.8 , �tpred
= 38.8 , �t0 = 14.4 , �tpred = 9.0 , and 

� = 0.47 (Fig. 5).
The data available to fit the yield loss relationship 

were highly variable, and so we took a conservative 
approach and estimated the slope parameter so that the 
observed yield-loss relationship was an envelope of the 
data, giving an estimate of m = 5 (see Eq. (20)).

Based on the average first spray time in the data, 
we assume a standard first spray at 40  days after 

Fig. 5   The fitted joint distribution (contour lines) of the opti-
mal starting spray time 

(

t0
)

  and the predicted starting spray 
time 

(

tp
)

 . Data are depicted by the points



Eur J Plant Pathol	

1 3
Vol.: (0123456789)

planting, after which sprays are applied weekly until 
day 110, therefore 10 sprays were applied under a 
standard spray program, while the number of sprays 
suggested by the DSS varied. The cost of an individ-
ual spray was taken as £45 per application.

Noting that the data we had to parameterise the yield 
loss relationship were variable and that the yield loss 
relationship was fitted to be conservative, the expected 
value of the Hutton Criteria was calculated to be 
£420 ha−1, but with a 45% chance of a negative value.

Estimating the joint distribution from literature 
statistics

The AHDB Sclerotinia Stem Rot DSS

The AHDB DSS produces risk alerts for sclerotinia 
stem rot, which is usually the main disease to consider 
during the flowering stages of oilseed rape. If spores 
are present, conducive weather is required for infec-
tion to occur. Fungicides for sclerotinia control are 
protectants and need to be applied prior to infection.

The forecast is weather-based and alerts farmers 
to the risk of infection (AHDB, 2022). The AHDB 
highlight the value of the tool for allowing farm-
ers to delay treatment if risks are low, resulting in 
potentially fewer sprays. We therefore consider this 
example, assuming that standard practice would be to 
apply control.

Formulating the value calculation for the DSS

Data are presented on the AHDB website allowing 
farmers to assess the performance of the system. This 
takes the form of the probability of true positive 

(

pyy
)

 , 
false positive 

(

pny
)

 , true negative 
(

pnn
)

 and false nega-
tive 

(

pyn
)

 alerts, where the first index in pij relates to 
the observation and the second relates to whether an 
alert was produced by the DSS.

To use this information to estimate value, we sim-
plify the density function f

(

x, xpred
)

 by degenerating 
it to one of these four discrete states. The expected 
value becomes:

where fx,xpred = pij with i ∈ {y, n} and j ∈ {y, n}.
(22)

E(V) =
∑

x=y,n

∑

xpred=y,n

{

CS(x) − CDSS

(

x, xpred
)}

fx,xpred .

As standard practice is to apply a spray, if a risk 
alert is given by the DSS then farmers using the DSS 
would also follow standard practice and apply a spray. 
Therefore, when a risk alert is given, the difference 
in cost between using the DSS or following standard 
practice is zero:

If no risk is predicted and no infection occurs then 
the only difference is that those who follow standard 
practice apply an unnecessary spray:

However, if no risk is predicted but an infection 
occurs then the farmers following the DSS don’t 
apply a spray and lose the price of the lost crop:

where c is the cost of treating and v is the expected 
difference in value between a healthy and infected 
crop.

Therefore, the expected value can be simplified to:

Parameterisation.
For 2021 the following statistics were recorded 

on the AHDB website: true positive 
(

pyy = 9.9%
)

 , 
a false positive ( 

(

pny = 3.4%
)

 , a true negative 
( 
(

pnn = 81.3%
)

 and a false negative 
(

pyn = 5.4%
)

.
Therefore, for this case study, Eq. 26 becomes:

Therefore, as long as the cost of control  (c)  is 
greater than 0.06 times the value of crop loss (v) in 
a situation where a Sclerotinia outbreak occurs but 
the DSS does not give an alert, the expected value of 
the DSS is positive. The value of the DSS depends 
on the cost of control, and the value of any crop lost 
(Fig.  6). Under reasonable assumptions of the value 
of crop lost and cost of control, the expected value of 
the DSS is positive.

In this case, there is a 5.4% chance that the farmer 
will suffer a loss of  v − c compared to if they had 
followed standard practice.

(23)
CS(x) − CDSS

(

x, xpred
)

= 0, when xpred = yand x ∈ {y, n}

(24)
CS(x) − CDSS

(

x, xpred
)

= c, when xpred = nand x = n

(25)
CS(x) − CDSS

(

x, xpred
)

= c − v, for x = y, xpred = n

(26)E(V) = cpnn + (c − v)pyn

(27)E(V) = 0.813c + 0.054(c − v)
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Discussion

In this paper we present a framework (Eq. 5) that can 
enable researchers to estimate the value of a DSS 
from data that have been collected for other purposes. 
This framework requires two key pieces of informa-
tion: a relationship between the distribution of pest 
intensity in a region and the degree to which the DSS 
accurately reflects that pest intensity; and a relation-
ship describing the effectiveness of pest manage-
ment programmes over the whole distribution of pest 
intensity.

While the framework is simple in concept, the 
generic formulation is impractical in most instances 
as the data requirements are vast. Nevertheless, we 
have demonstrated that this formulation can be sim-
plified to make it practically useful. Each of the prac-
tical implementations use surrogates for the predicted 
pest or disease intensity, such as the number of sprays 
suggested by the DSS, the dose suggested, or the tim-
ing of the first spray of a pesticide programme. This 
abstraction from the underlying infection level is par-
ticularly important for evaluating DSS that predict 
the risk of pest damage as opposed to the percentage 
disease or infestation. While all the case studies pre-
sented have focused on the use of fungicides to con-
trol fungal or oomycete pathogens, the framework 
could be applied to the application of insecticides to 
control invertebrate pests. However, it may be less 
applicable to systems that advise on weed control, as 
decisions made in one year can affect the long-term 
efficacy of weed control programs through effects on 
seed bank density (Benjamin et al., 2009). Because of 

this, the value of herbicide DSS would need to con-
sider the long-term dynamics of the seed bank over 
the course of DSS-informed and standard herbicide 
application programmes.

The results presented in this paper demonstrate 
both the potential and the limitations of the frame-
work. In all cases we were able to calculate the 
expected value of the DSS. In each case the economic 
value was positive, providing additional profit com-
pared with using a standard spray programme. Where 
the uncertainties in the underlying distributions were 
able to be estimated – such as for CPO and the Hut-
ton Criteria – we also calculated the distribution in 
the value, allowing an estimate of the probability of 
a negative value compared to a standard spray pro-
gramme. For each of the DSS for which a distribution 
of value could be obtained, the probability of a user 
obtaining negative value was non-negligible, and as 
high as 45% for the timing of the first application of 
a potato fungicide programme. This outcome should 
remind users that DSS are supporting tools, and 
should not be seen as the sole means of making the 
final decision. Until more precise prediction models 
are developed for all relevant pest and diseases, field 
scouting and monitoring remains a very important 
element in IPM decision making.

The first case study we explored (te Beest et  al., 
2009b) was a simple DSS developed to predict 
whether a less intense fungicide programme could 
be used without compromising profit. The authors of 
the paper provided the information that we needed 
to parameterise the joint distribution describing the 
relationship between the observed disease intensity 
and that predicted by the DSS. To ensure consist-
ency, it is important that the data used to derive the 
joint distribution are from the same (or similar) set of 
experiments that is used to derive the loss relation-
ship. Therefore, we also adopted the parameters for 
the empirical yield loss relationship that the authors 
had derived (from trials conducted in the UK). This 
case study illustrates that the information necessary 
to implement the framework can be derived from data 
reported in the literature, but not without limitations. 
In particular, the parameters for the yield loss rela-
tionship were presented without any metric of uncer-
tainty, and so a fully informed Monte Carlo simula-
tion to derive the distribution of value could not be 
undertaken.

Fig. 6   The expected value of the Sclerotinia Stem Rot DSS 
varies depending on the cost of applying control, and the value 
of the potential crop lost when a false negative alert occurs
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Our second study used raw secondary data to 
derive the joint distributions and yield loss relation-
ships. The clear advantage here was that we could 
quantify more directly the uncertainties associated 
with the yield loss relationships and consider a wider 
range of plausible forms. Nonetheless, we were faced 
with several challenges deriving the relationships for 
pesticide efficacy, not least because the data used a 
range of fungicide products and doses, with no clear 
mechanism to account for differences in their efficacy. 
In the end we adopted a simple approach and con-
sidered only the number of applications made. The 
variation in response that results from this simpli-
fied assumption (on top of environmental variation) 
is clearly large yet a usable signal prevailed. Indeed, 
the variation in predictions meant that, although the 
expected value was positive for CPO, there was a 
large variation in the predicted response. Despite this, 
the value of the DSS was very rarely negative.

The third case study, estimating the value of the 
Hutton Criteria, provides a case study where the data 
were insufficient to confidently estimate the value of 
a DSS. The Hutton Criteria, in its basic form, high-
lights days on which there is likely to be significant 
pest pressure, and therefore farmers should consider 
applying a spray. In simplifying the framework to 
make it amenable to parameter estimation with the 
available data, several simplifying assumptions had to 
be made, such as the time point of an optimal spray 
time, and the effect on yield. As t0 is an unknown 
optimal spray timing, there will be uncertainty in its 
true value, which is captured within the joint distri-
bution function. While this may lead to an imprecise 
joint distribution function, it should allow for a rea-
sonable estimate of the expected value to be calcu-
lated. Even so, the data presented here are likely too 
sparce to accurately parameterise the joint distribu-
tion function, meaning that the distribution of value 
should be treated with caution.

By far the simplest implementation relates to when 
data are available to populate a matrix specifying the 
proportion of times that the DSS predicts accurately 
or incorrectly, as in our fourth case study. This clear 
and simple quantification has the benefit that it is 
straight forward to interpret, but it is only applicable 
when data on the accuracy of prediction are available.

We have considered four variations of the generic 
framework, but there are likely to be other formula-
tions. The approaches that we considered were driven 

by the type of DSS and data available. We have only 
considered simple DSS, and simplified them further 
where necessary. It is likely to be difficult to obtain 
enough data to get good estimates of L(x, q) when a 
DSS recommends specific products, doses and/or 
timings of pesticide applications. As demonstrated, 
simplifying the framework reduces the data required 
to characterise and fit the distributions. In doing so, 
however, the framework does lose some precision.

Ultimately, the accuracy of the framework will 
depend on the quality and amount of data available, 
with better data requiring fewer simplifications and 
enabling a better characterisation of the distribution 
and relationships that form the basis of the frame-
work. Increasingly, industry and the research commu-
nity are adopting principles of FAIR data (Findable, 
Accessible, Interoperable and Reusable). Theoreti-
cally it is possible to design experimental protocols to 
provide data to explicitly parameterise both the joint 
distribution function and the cost function. Combin-
ing data sets from a variety of sources would prove a 
powerful resource for approaches such as the one we 
present here.

The assumptions made in establishing the frame-
works for the DSS can have profound implications. 
Indeed, a key difference between case studies 1 and 
2, both considering the same pathogen, is that an 
increase in wheat price leads to the value of the DSS 
decreasing in case study 1, whereas in case study 2 
value increases. The reason for this discrepancy lies 
with the choice of the standard spray programme. In 
case study 1, it was assumed that a standard spray 
programme was highly effective in the UK, and that 
the DSS informs the user when it is viable to spray 
less, saving the cost of unnecessary fungicide appli-
cations. For case study 2, the assumption is that a 
standard spray programme provides moderate control. 
The value of the CPO DSS is largely determined by 
the value obtained when large epidemics are correctly 
forecast by the DSS and thereby controlled. When 
the price of wheat is more expensive, these yield sav-
ings are even more valuable. Such nuances highlight 
the need for locally relevant information on what is 
meant by a “standard programme” and associated 
yield prices and costs.

Despite the limitations, the framework provides a 
method to give developers and users increased knowl-
edge of the potential benefits and risks when using a 
DSS in a particular region, whether it is in a region 
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similar to that in which the DSS was developed or 
elsewhere. Testing the DSS for a new environment 
requires data from that environment.

One aspect that has been touched on only briefly in 
this paper is an analysis of the variation in the value 
of the DSS. By capturing the variability in the rela-
tionships, it is possible to explore the distribution 
of the value of each DSS. While we have attempted 
to capture the distribution in the pest intensity, the 
framework can also capture the variability in each 
of the relationships and propagate that variability 
through to the distribution of value. This is particu-
larly important in assessing the DSS in terms of their 
benefit for risk-averse users, who may want to be 
reassured how often the DSS outperforms a standard 
spray programme. Additionally, the distribution in 
value would enable researchers to develop DSS that 
minimise the risk of losses to the users of the system.

Throughout this paper, we have attempted to pro-
vide a data driven approach to valuing decision sup-
port systems, limiting model-based assumptions to 
empirical relationships describing yield loss and 
pesticide efficacy. However, in the absence of new 
data, expert opinion could be used to adjust any 
existing distributions to then test the value of DSS 
in other regions. Expert opinion could also be inte-
grated into the methodology through a Bayesian 
approach to derive the distributions in the framework 
using expert informed priors. The benefit of such an 
approach would be increased flexibility to test over a 
larger range of environments, however, it is then not 
straightforward to say whether the DSS has performed 
well or whether the analysis has reproduced model-
based assumptions. Ultimately, we argue that a com-
bination of model-based and data driven approaches 
should be adopted to derive the value of DSS where 
direct field testing of a DSS is not possible.

Conclusions

The generic framework presented has the flexibil-
ity to estimate the value of DSS in many situations 
given the availability of sufficient data to quan-
tify the joint distribution between predicted and 
actual pest intensity and information to quantify 
the impact of control on a given level of disease. 
In doing so we hope to allow DSS developers and 
academics to better illustrate the value of DSS in 

different environments. It is desirable to present the 
user with both the expected value of a DSS, as well 
as a measure of the risk of extreme losses so that 
they can assess benefits and risks associated with 
following DSS guidance.
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