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Abstract Disease management decision support
systems (DSS) are typically prediction algorithms
that help farmers assess the risk of an epidemic, to
guide whether, and to what extent, fungicide treat-
ment is needed. However, there is frequently little
information presented to quantify the value of using
the DSS, i.e. the likely increased profit or reduced
impact to the environment, and the risks of failing to
control the pest. Validation of DSS is often limited to
a small number of sites and seasons, as extensive field
testing is prohibitively expensive. It would therefore
be beneficial to have a method to estimate the value
of a DSS using existing data sets gathered for other
purposes.

We present a theoretical framework for evaluat-
ing the value of DSS, and then describe how this
can be applied in practice using four case studies of
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contrasting DSS under different data constraints. The
four case studies include DSS that guide (i) the total
dose of pesticide applied; (ii) the number of sprays
required; (iii) the timing of the first fungicide appli-
cation in a spray programme; and (iv) infection risk
alerts. We demonstrate how our theoretical frame-
work can be used to evaluate DSS, using existing
field and literature data to infer the benefits and risks
associated with their use. The limitations of using
existing data are explored.

Keywords Decision support system - Value -
Validation - Pesticide use efficiency - Fungicide use
efficiency

Introduction

Chemical pesticides are used to control insect pests,
weeds and diseases (collectively referred to as pests)
in most intensive agricultural systems. There are,
however, increasing concerns about the direct and
indirect effects of their use on public health and the
environment (Thompson et al., 2020; Whitmee et al.,
2015). The repeated use of pesticides has also led to
the development of pest resistance in many instances,
rendering products less effective and pest control
less manageable (Gould et al., 2018). To promote
more sustainable agricultural systems, EU Direc-
tive 2009/128/EC established eight key principles
to reduce pesticide use, including that users should
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apply pesticides where and when needed, and that
the decision to apply a spray should be based on pest
monitoring and thresholds (Barzman et al., 2015).

Decision support systems are tools that guide
users in making decisions about when, and possibly
where, to apply pesticides. Ideally, by incorporating
knowledge of pest dynamics and impacts in a DSS,
pesticides can be applied only when they are needed,
increasing pesticide use efficiency, maintaining control
of the pest without allowing an impact on yield. The
use of DSS often leads to a reduction in the amount of
pesticide applied (Lazaro et al., 2020), or recommen-
dations for alternative control strategies (e.g. Mensah,
2010; Zhang & Swinton, 2009), reducing the negative
impacts on the environment and human health. Indeed,
a recent meta-analysis of field experiments testing
the effectiveness of DSS demonstrated that they can
reduce the amount of pesticide used by half without
compromising yield (Lazaro et al., 2021).

Initial methods to guide the need for treatment took
the form of control thresholds — pest densities at given
crop growth stages above which a pesticide should
be applied (e.g. Pedigo et al., 1986). More complex
approaches were developed into algorithms and incor-
porated into decision support systems (DSS) or deci-
sion support tools, which can vary considerably in their
design and complexity. Some DSS calculate the risk of
pest outbreaks based on the environmental suitability
for the target pest populations at a location, and use
this risk to guide if a treatment should or should not
be applied (e.g. te Beest et al., 2009a, 2009b). More
complex DSS may incorporate process-based models
that simulate crop phenology and pest lifecycles to
guide the optimal application time and dose of an indi-
vidual pesticide product (e.g. Johnen et al., 2010, Par-
sons, et al., 2004). Recent DSS have included the use
of machine learning algorithms (Jabir & Falih, 2022),
cloud-based infrastructure (Rupnik et al., 2019), and
real-time updating (Rossi et al., 2014).

However, despite an increasing number of DSS
being published, uptake has been slow (Gent et al.,
2013). There are several reasons suggested for this
low uptake, and these vary with region (Marinko
et al., 2003), but they include lack of trust in the
performance of the DSS, the perceived need for
additional training, and a failure to demonstrate
positive economic benefits (Rose et al., 2017, Jgr-
gensen et al., 2007, Parker & Campion, 1997,
Marinko et al., 2003).
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This lack of confidence in DSS may be a con-
sequence of the difficulties involved in validating
DSS. To validate a DSS, field experiments need to
be designed and carried out that compare the pest
control in trials following a DSS to those following
a standard application programme for that region.
However, such field experiments are typically lim-
ited in space (few locations) and time (few years),
due to financial and time constraints. As a result, the
conditions represented in the validation studies may
not be representative of those under which the DSS
is used. With limited validation field trials, sites or
years that have an abnormal pest intensity are likely
to be missed. Several studies have demonstrated that
DSS can perform poorly when examined in environ-
ments in which they were not developed (e.g. Hij-
mans et al., 2000). Similarly, field tests of models
in the Nordic-Baltic region for control of Z. tritici
showed variable accuracy in guiding control deci-
sions, depending on the country they were used in.
The models tested were developed in Denmark and
showed (as might be expected) the highest accuracy
in Danish trials (Jgrgensen et al., 2020). The same
models also showed a much bigger potential for
reducing fungicide treatments in relative dry seasons
(when there were fewer opportunities for splash dis-
persal) compared with more normal seasons during
which standard treatments performed similarly to
the DSS. For these reasons, it is desirable to dem-
onstrate that DSS are accurate and effective in the
environments in which they may potentially be used.

Additionally, evaluations of DSS often report only
the accuracy of the DSS predictions whether a DSS
correctly predicts the occurrence of a pest outbreak
(e.g. Small et al., 2015, Sciaretta et al., 2019), and not
report on the yield impact or cost benefit. However,
an end user is likely to be more interested in the value
obtained from using the DSS, whether economic (the
extra profit achieved by using the DSS) or environ-
mental (the reduction in the amount of pesticide used)
or both. Potentially more important, users need to be
sure that using the DSS is unlikely to result in a loss
(either of profit or environmental impact); particu-
larly relevant if the DSS predicts there is no need for
pesticide treatment, but a severe pest outbreak subse-
quently develops (a false negative prediction). Being
able to provide users with a cost-benefit analysis of
a DSS before they use it could lead to increased trust
and therefore uptake in DSS.
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Due to the constraints in experimentally validat-
ing DSS, what is needed is a suite of methods that
are able to quantify the value of DSS using exist-
ing datasets. However, existing large data sets are
unlikely to have been collected for the purpose of
testing DSS. For example, data may have been gath-
ered to measure the efficacy of new pesticide prod-
ucts in a range of environments, comparing them to
current ‘standard’ spray programmes and untreated
plots, or from research experiments undertaken by
various institutions with no shared protocol.

In this paper we present a generic framework
for estimating the value of DSS using pre-existing
data. We then describe how the methodology can be
applied in practice to four case studies of DSS sys-
tems with contrasting characteristics.

Method
Theoretical framework

The economic value of a DSS (V) is defined as the
difference between the cost of not following the DSS,
i.e. using a standard pesticide spray programme (Cs),
and the cost of following the DSS guidance (Cpygg)-
The value of a DSS may therefore be stated as:

V= Cg — Cpgs Q8

The costs incurred when using a given spray pro-
gramme (g) consist of the cost of the pesticide, the cost
of applying the pesticide, and the price of any crop yield
lost due to any uncontrolled pest damage, and is given by:

C(x,q) = F(q) + pL(x, q) 2)

where C(x, g) is the cost under a given pest intensity,
x, and spray programme, g, F(q) is the price of the
spray programme (including the amount of pesticide
applied and the cost of application), and L(x, g) is the
amount of yield lost when the spray programme ¢ is
applied in a situation with pest intensity x, and p is
the price of a unit of yield.

When using a DSS, the spray programme g is
generated by the DSS from a prediction of pest

intensity x4, and therefore g is a function of x;.4:

Coss (%4 (xprea) ) = F(4(Xpnea)) + PL (% 0 (¥rea))
3

Therefore, the cost associated with using a DSS
depends on both the actual pest intensity x, and the
pest intensity predicted by the DSS, x4, which then
informs the spray programme. The cost of a stand-
ard spray programme depends only on the actual pest

intensity and the standard spray programme:
Cs() = F(q,) + pL(x,q,). @)

Both the actual pest intensity, x, and the pest inten-
sity predicted by the DSS, x4, vary in space and
time. This variation can be described by a probabil-
ity density function, f(x, xpred), which describes the
joint distribution of the predicted pest intensity and
the observed pest intensity. This joint distribution
captures both the distribution of the real observed
pest intensity, and how well the DSS performs at dif-
ferent pest intensities — an accurate DSS will predict
values of x4 that are close to x. Poorly performing
DSS may be less accurate and/or less precise. Fig-
ure 1 illustrates possible relationships between the
observed pest intensity and that predicted by the DSS.

The value of a DSS can then be estimated by
calculating the difference in costs between the DSS
and the standard spray programme at all possible
combinations of the observed and predicted pest
intensity, weighted by their frequency, resulting in
a distribution of the value of the DSS. The result-
ing distribution of the value of the DSS can give an
indication of how likely different profit margins are,
including the probability of each DSS resulting in
an economic loss P(V < 0).

To summarise the value of a DSS, the expected
value of the DSS over all pest intensities may be
calculated by integrating over the joint probability
density function:

Xmax xmax
E(V) = / / {CS (X) - CDSS ()C, xpred) }f (X, xpred)ddepred
0 0
&)
where x,,,, is some maximum possible pest intensity.

To implement the above approach, the following
steps are required:

(i) Derive a distribution describing the joint prob-
ability of the actual pest intensity and that pre-
dicted by a DSS, f (%, X,req)

(i) Obtain the spray programme recommended by
the DSS given every predicted pest intensity,
Le. derive g(xyeq)

@ Springer



Eur J Plant Pathol

E‘high ;‘high
2 2

(=i a

) )

+— +~—
b= =

~ +~

wn wn

Q 5]

(o o
=) o)

D D

+— +
= R
= =

D 5]

A low & low

low high low

Pest intensity

Fig. 1 Illustrations of theoretical forms of the join distribution
function f(x, xpred). White represents the largest density and
black represents near zero density. Each distribution is from a

(iii) Calculate the costs associated with following
both the recommendation of the DSS given that
the true pest intensity was x, and of following
a standard spray programme. That is, calculate
L(x,q), and thus Cpgg(x, xpq) and Cg(x) for
each possible combination of x and x;.4.

Whilst theoretically possible, these parameter
estimation steps are rarely achievable due to a lack
of data, and/or the complexities associated with the
DSS. The more complex the model behind the DSS,
the greater the data requirements to parameterise
J(X, Xpreq) and C(x, q), and with the more complex
DSS such data is unlikely to be available. However,
by tailoring Eq. 5 to an individual DSS, it is pos-
sible to reframe the framework in a manner that
requires substantially less data to estimate.

To illustrate the implementation of the frame-
work we consider four case studies, with different
types of DSS and/or different data availability; dem-
onstrating how to reframe Eq. 5 for each. The four
case studies considered are:

1. DSS that inform a user when it is safe to reduce
the applied pesticide dose (e.g. Kudsk, 2007;
Schepers et al., 1996).

2. DSS that guide the number of pesticide applica-
tions to apply to a crop to protect against a pest.
The simplest case is when the DSS determines
whether a pesticide application should be applied
or not (Shtienberg, 2013). Such DSS often do not
explicitly predict pest intensity (x, ) but instead

@ Springer
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DSS that predicts with (left) very good accuracy and precision,
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only provide an indication of risk, for example
when humidity has been high for a given number
of days (e.g. Hansen et al., 1994), and so surrogates
for x,,.q must be used in the analysis of value.

3. DSS that guide when to start spraying (e.g. Mari-
mon et al., 2020).

4. A case when no data are directly available but
data on the accuracy of prediction exists in the
form, for example, of a confusion matrix.

The implementation of case studies 1 and 4 are
shown in the Supplementary Information.

Results

A DSS developed to predict whether fungicide dose
reduction is appropriate

The te Beest DSS

The DSS described in te Beest et al. (2009a) supports
decisions on controlling Zymoseptoria tritici (previ-
ously Mycosphaerella graminicola; the causal organ-
ism of septoria tritici blotch). Zymoseptoria tritici is
a fungal pathogen that is a serious problem in wheat
(Hagelskjer and Nistrup Jgrgensen, 2003), and is typ-
ically controlled by fungicide applications at key crop
growth stages.

Based on weather data from January to April the
DSS predicts whether a damaging epidemic is likely to
occur, and when a damaging epidemic is not predicted
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a reduced fungicide dose may be appropriate. This
DSS therefore does not explicitly predict pest inten-
sity (xpred) but instead provides a binary output indicating
whether or not it is safe to lower the dose. In two sub-
sequent papers (te Beest et al., 2009b, 2013) the authors
calculated the optimal fungicide dose to maximise the
economic return. Their analysis on disease susceptible
varieties forms the basis for the example presented here.

Formulating the value calculation for the DSS

As noted above, the prediction of disease intensity is
captured as one of two discrete states; a low severity
season where a reduced dose rate is appropriate (5,), or
a season where a damaging epidemic is predicted and a
standard dose rate is likely to be required (6,, ) There-
fore, the predicted disease severity x4 is represented
by the surrogate values {6, 6, }. Equation 5 therefore
simplifies to:

E(V) = " Cox) = Coss ()M B)dx  (6)
8 0

The distribution f(x, ), which describes the rela-
tionship between observed uncontrolled disease
severity x and the dose predicted by DSS, simplifies
to

f(x,6) = 7,8/(x,6) + 7,8,(x, 6) (7

where g;(x, ) is the observed distribution of uncon-
trolled disease severity when a low dose is pre-
dicted (5 = 61) and is zero otherwise, and g, (x, 6) is
the observed distribution of disease severity when a
standard dose is predicted (6 = &,) and is zero other-
wise. The parameters y,; and y,, scale according to the
proportions of the total predictions allocated to o, or
0, (ensuring that f(x, §) integrates to one). As severity
is bounded between 0 and 100%, a beta distribution

100

100
E(V)=/ (CS(x)—CDSS(x,él))f(x,él)dx+/

0 0

100 100
= /0 {AF + p0YyAx}f(x,8,)dx + 0 = AF/O

% 0YyAa
= y,AF + pOY, A - {AF+M
Y1 puLy yl<al+ﬂl> i )

is an appropriate distribution to model the severity
(scaled between 0 and 1).

To derive the yield loss, L(x, 6), associated with
applying dose 6 to disease of severity x, we adopted
the equations reported in te Beest et al. (2009b).
They assume that the amount of yield lost increases
linearly with the disease severity:

(x,6) = YyAS(x, 0) ®)

where Y, is the yield potential assuming no Z. tritici
infection, S(x, 6) is the treated disease severity and
A is the yield loss coefficient per unit severity. The
treated disease severity, S, is given by:

S(x,8) = (1 - R(1 — e™))x ©)

where R defines the maximum proportional reduction
at high values of fungicide, 6 is the total amount of
fungicide dose applied across the season and k deter-
mines the shape of the dose—response curve.

If a damaging epidemic is predicted then apply-
ing ¢, is appropriate hence the difference in cost
between using the DSS or following standard prac-
tice is zero:

Cs(x) = Cpss(x.6,) =0 (10)

If low disease severity is predicted then the dif-
ference in cost is given by

Cs(x) — Cpss (%, 8)) = AF + POYyAx an

where 6 = R(e7*Pr — ¢™%P1) and AF is the difference
in cost between the two spray programmes. The cost
of application remains the same between the standard
and DSS spray programmes, and so does not appear
in Eq. 11.

Combining Egs. 6, 10, and 11, the expected value
of the DSS can be calculated analytically, by recognis-
ing that [ xf(x)dx is the expected value of a probabil-
ity distribution, which for a beta distribution is ﬁ:

(Cs(x) = Cpgs(x, 8,))f (x, 8, )dx (12)

100
f(x, 5,)dx+p0YO/1/ xf(x, 6,)a’x

0
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Fig. 2 Beta distributions (solid lines) fitted to the sever-
ity of septoria tritici blotch on leaf 2 of wheat at GS75 from
untreated trials on susceptible cultivars in te Beest (2009b),

Table 1 The shape parameters of the Beta distributions
describing the severity of septoria tritici blotch on leaf 2 of
wheat at GS75, depending on whether te Beest et al. (2009a)

when (left) a severe epidemic is not predicted, or (right) a
severe epidemic is predicted by the DSS

predicted high or low disease intensity, and the scaling param-
eter applied to each distribution

Predicted epidemic Beta distribution parameters Scaling
parameter
(ra)
a B
Severe epidemic is not predicted (/) 1.421791 16.427796 0.325
Severe epidemic is predicted (h) 2.274092 11.196507 0.675

There is an economic loss if V < 0. This can only
happen when low disease intensity is predicted, and
when AF + p0Y,ix < 0.

Rearranging for disease intensity, we can see that
an economic loss only occurs when

AF

—<
—p0YgA 3)

Parameterisation.

We fitted Eq. (7) to fungicide trials data for sus-
ceptible varieties of wheat described in te Beest et al.
(2009b). The data were from across the UK: 25 site x
year combinations spanning 2003 — 2005. To quan-
tify disease intensity (x) we use the disease sever-
ity (%) on leaf 2 at growth stage 75, which te Beest
et al. (2009b) found to have a good relationship to
yield. We fitted separate distributions (Eq. 7) to the
untreated severity for each dose level using the "fit-
dist” function from the “fitdistrplus® package in R.
Together, these distributions, scaled by the proportion

@ Springer

Table 2 The expected value of the te Beest model at three dif-
ferent wheat price points, and the probability of a user using
the DSS making a loss

Wheat price Expected value of  Probability of

€t DSS negative value
(£ha™)

100 6.41 Negligible

200 5.69 0.0014

300 4.61 0.0104

of trials for which were observed (denoted y,), make
up the joint distribution function (Fig. 2). The fitted
parameters are given in Table 1. As expected, when a
severe epidemic was not predicted the distribution is
skewed towards the lower end of the severity range,
with a mean severity of 8.0%, whereas when a severe
epidemic is predicted the distribution skews towards
high severity with a mean severity of 16.9%.

To parameterise the yield loss relationship, we used
the values given in te Beest et al. (2009a) (¥, = 9.15
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t ha™!, 1 =0.0081, R =0.996, and k = 2.8) with a
range of crop prices (100, 200 and 300 £ ha™') and
45 £ ha™! per spray dose. Following te Beest et al.
(2009a), we assume a standard spray programme
adopts a total dose of 1.5 units ha™'. If an epidemic
is predicted then the user is guided to follow this
standard recommendation, otherwise a more con-
servative application of 1 unit ha™! is applied. The
results are shown in Table 2. The expected value of
this DSS decreases as the wheat price increases, and
the probability of incurring a loss when using the DSS
increases.

Evaluating a DSS that informs on the number of
required pesticide applications

The Crop Protection Online DSS

Our second case study concerns the Crop Protec-
tion Online (CPO) DSS. This DSS was developed
in Denmark and includes models for several pests
and pathogens, one of which is Zymoseptoria tritici
(Hagleskjer & Jgrgensen, 2003). The CPO DSS aims
to achieve the best control with the lowest inputs.

For Z. tritici, CPO tracks the cumulative number
of days that have greater than 1 mm of rain between
wheat growth stages (GS) 32 and 71. When suscepti-
ble cultivars are grown, the model suggests that fun-
gicide is applied following four days with more than
1 mm of rain, whereas on resistant cultivars five days
are required before a fungicide application is sug-
gested and the model first starts counting at GS 37.
Once sprayed, the model assumes protection for ten
days, after which a spray is suggested after a further
four or five days of rain (Jgrgensen et al., 2020).

Formulating the value calculation for the DSS

To estimate the value of the CPO DSS, we evaluate
how the number of sprays predicted by CPO related
to the observed disease severity and how that in turn
affected costs. Therefore, the predicted disease inten-
Sity Xpeq 1S represented by the surrogate value, n, the
number of sprays predicted by the DSS. The expected

value of the DSS therefore degenerates from Eq. 5 to:

HW=2JTWQ@—%Mm%mmwa@

where f(x,n) describes the distribution between the
untreated disease severity (x) and the number of sug-
gested sprays.

The distribution f(x,n), which describes the rela-
tionship between untreated disease severity x and the
number of sprays predicted by DSS, simplifies to

flom) =Y 78, (15)
j=0

where g;(x) is the distribution of untreated disease
severity when j sprays are predicted and is zero other-
wise. As above we assume that the form of these dis-
tributions can be described by a Beta distribution, and
that the parameters y; scale according to the propor-
tions of the total predictions allocated to each number
of sprays (ensuring that f(x, n) integrates to one).
We assume that yield is given by

Y(x,D) =Y, — AS(x,n) (16)

where Y, is the yield potential assuming no Z. tritici
infection, S(x, n) is the disease severity and A is the
yield loss coefficient per unit severity. The disease
severity, S, is given by:

S(x,n) = xe ™ ", (17)

where x is the untreated severity, and x is a shape
parameter. Therefore, similar to above, yield
loss increases linearly with the disease severity,
L(x,n) = AS(x,n) and the difference in cost between
a standard spray programme and the DSS is given by:

Cs(x) — Cpgs(x,n) = AF + pA{S(x,n;) — Sx,n)}
(18)

Table 3 The number of trials in each country in the dataset

Country Number
of trials
Denmark 17
France 47
Germany 45
Ireland 10
Poland 8
Sweden
UK 54

@ Springer
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where n; is the number of sprays applied as stand-
ard and AF is the difference in cost between the two
spray programmes.

Parameterisation

Data from 186 field trials were used to estimate both
the distribution function and the yield loss relation-
ship. The trials were conducted to assess the effi-
cacy of new fungicide products and were carried
out between 2014 and 2018 in eight countries across
Europe (Table 3) by Corteva Agriscience (Indian-
apolis, United States). In each trial, the severity of
several foliar diseases on the top six leaves of wheat
was recorded at various time points during the grow-
ing season, and crop yield was recorded for some of
the trials. The crop growth stage was also recorded at
various time points in most trials. Each trial consisted
of two or more fungicide treatment programmes,
including a control where no fungicide was applied
(untreated). There were typically four replicates per
treatment in a randomised block design. The cultivars
used were susceptible or moderately susceptible to Z.
tritici.

One spray predicted

Three sprays predicted

0.02

0.00

0 25 50 75

i

L = 1

100

To quantify disease intensity (x) we use the dis-
ease severity on leaf 2 at growth stage 75 (GS75)
— the same metric as in the previous section. As
noted above, this has been found to be a strong pre-
dictor of yield, which was confirmed to be the case
for the data used in this case study. Where neces-
sary, the date of GS75 was linearly interpolated
from the nearest recorded growth stages, and the
severity on leaf two was estimated at that date. For
trials in which the severity could not be estimated,
either because there wasn’t suitable growth stages
or severity reported to allow interpolation, the trial
was omitted from the analysis.

To calculate the number of sprays suggested
by the CPO DSS at each of the field trials, hourly
precipitation data was downloaded from the ERAS
reanalysis (Copernicus Climate Change Service
Climate Data Store, 2020), which has a 30-km
grid resolution. After coding the rules of the DSS,
described in Jgrgensen et al. (2020), n was calcu-
lated from the weather data for each trial for which
severity data was available (58 of the 186 trials).

Between one and four sprays were predicted for
each trial by the CPO DSS, with 4, 24, 10, and 2
trials having 1, 2, 3, and 4 sprays, respectively. To

Two sprays predicted

il

Four sprays predicted

0 25 100

Untreated severity (%)

Fig. 3 The probability density of the untreated severity of sep-
toria leaf blotch on leaf 2 of wheat plants at growth stage 75,
when the CPO DSS predicts 1, 2, 3, or 4 sprays. Both the data

@ Springer

(represented as a scaled histogram) and the fitted probability
distributions (red lines) are shown
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Table 4 The shape parameters of the Beta distributions,
describing the severity of septoria on leaf 2 of wheat at growth
stage 75, depending on whether the CPO DSS predicted 1, 2,
3, or 4 sprays for each trial, and the scaling parameter applied
to each distribution

Number of sprays pre-  Beta distribution Scaling
dicted by CPO parameters parameter
(ra)
a B
1 5.70 7.38 0.1
2 1.67 0.98 0.6
3 223 0.83 0.25
4 6.54 0.78 0.05

fit the distribution function (Eq. 15), we used the
“fitdist™ function from the fitdistrplus® package in
R. The fitted distributions are shown in Fig. 3 with
parameters reported in Table 4.

To fit the parameters for the yield loss relation-
ships (Eqgs. 16 and 17) a linear model was fit with
the “Im" function in R. The fitted parameter values
were k = 0.43 with standard error 0.026, Y, = 11.36
and 4 =0.05 with standard errors 0.22 and 0.005
respectively, R? = 0.45 (Fig. 4).

In our examples we consider scenarios with a
range of crop prices (100, 200 and 300 £ t™!) and
25 £ ha™! per spray application. We assume stand-
ard practice is to apply two fungicide applications,
n =72. The distribution of value of the DSS was
calculated by Monte Carlo simulation accounting

100 ‘

Treated severity (%)

25

Untreated severity (%)

Fig. 4 Left, the relationship between untreated and treated
severity (%) when trials are treated with 0, 1, 2, 3 and 4 fungi-
cide applications. The fitted parameter for x = 0.43 with stand-
ard error 0.026. Right. The relationship between the severity

Table 5 The expected value of the CPO DSS for various
prices of wheat

Wheat price (£ t™!) Expected value of DSS Probability of
(£ha™h) negative value

100 4.87 0.12

200 16.3 0.10

300 26.4 0.11

for the f distribution and the errors in the fitted
yield relationships. Values for the expected yield
and probability of loss are given in Table 5 with
associated errors propagated from the fitted yield
response functions.

Evaluating DSS that inform when to start a pesticide
application programme

The Hutton Criteria DSS

The third DSS we evaluate is the Hutton Criteria,
which was developed to identify when potato crops
are at high risk of infection by potato late blight,
caused by Phytophthora infestans. The DSS uses daily
air temperature and humidity to determine risk. A high
risk ‘Hutton Criteria’ period occurs when two consec-
utive days have a minimum temperature of 10 °C, and
at least six hours of relative humidity at or above 90%.

While the Hutton Criteria can be used to identify
risk periods throughout the potato growing season,

: L]
. .
.
0 25 50 75 100
Severity (%)

on leaf 2 at GS75 and yield in all treatments. The fitted yield
loss relationship had parameters Y, = 11.36 and 4 = 0.05 with
standard errors 0.22 and 0.005 respectively, R> = 0.45
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it is often used to identify when to start applying a
weekly fungicide programme. In this case study, we
estimate the value of the Hutton Criteria in identify-
ing the optimal timing for the first spray.

Formulating the value calculation for the DSS

For this case study we reformulate Eqs. 3 — 4 to rep-
resent the disease intensity in terms of the number of
days away from a theoretical optimal timing of the
first spray, denoted ¢, In this formulation, the variable
1, is conceptually similar to our true pest intensity x.
In an environment favourable to a pest £, would occur
earlier in the growing season, whereas in unsuitable
environments f, would occur later.

Equation 5 is reformulated as:

Tend Tend
E(V) = / / {Cs (f()a ’s) - CDSS(IO’ tprcd) }f(to’ tprcd)dtodtprcd
ts\ur\ ’.\Idrl
19)
where ¢ .4 is the time at which the DSS suggests the

T

first sprgy should occur, ¢, the time at which it occurs
under a standard application programme, and f,,
and 7,4 can be considered to be the planting date and
harvest dates respectively. We measure time as days
after planting (f,,,, = 0) and assume that the joint dis-
tribution f(#y, #,eq) can be described by a bivariate
normal.

The losses due to disease are assumed to occur
when the first spray is late. Therefore, we assume
that no yield is lost if the spray programme starts
earlier than the start of the epidemic, and that the
amount of yield lost due to a spray program starting
7 days after the optimal spray time was assumed to
increase linearly after #,. That is:

0r <0
L(r) = { m;'<2 0 (20)

where 7 =t — ¢,

The cost of a spray programme depends on both
the ideal spray time, #;, and the time at which the
first spray was applied (tf) and is given by:

C(to.tr) = F (1) + pL(to. 1) 1)

A spray programme based on the DSS may
result in fewer or more sprays applied, changing
the amount and therefore the cost of the fungicide
applied and the application costs.

@ Springer

Parameterisation.

To estimate the distribution function and the yield
loss relationship, data from 26 field experiments were
used, which included information on the fungicide
treatments and severity observations. Experiments
typically included several treatments with four rep-
licates per treatment in a randomised block design.
Several of the experiments also included yield data.

The time at which the first spray was predicted by
the Hutton Criteria DSS, 7.4, was estimated from
weather data retrieved from the Copernicus cli-
mate data store for each time period and location of
each trial. Risk periods were calculated according to
the Hutton Criteria, and the first risk period follow-
ing crop emergence was taken as the predicted first
spray time, 7,,..4. Based on Skelsey et al. (2009), we
assumed that the value of #, was a single latent period
5 days — before the first observation of symptoms.

The joint distribution function, f(#), f.q), Was esti-
mated by fitting a bivariate normal to the paired val-
ues of £, and .4, calculated for each trial, using the
‘mvtnorm”™ package. The fitted parameters were
My, = 34.8, Hy = 38.8, o, = 14.4, O = 9.0, and
p = 0.47 (Fig. 5).

The data available to fit the yield loss relationship
were highly variable, and so we took a conservative
approach and estimated the slope parameter so that the
observed yield-loss relationship was an envelope of the
data, giving an estimate of m = 5 (see Eq. (20)).

Based on the average first spray time in the data,
we assume a standard first spray at 40 days after

Density
B le03

Se-04

tp (days after planting)

0 20 40 60
t0 (days after planting)

Fig. 5 The fitted joint distribution (contour lines) of the opti-
mal starting spray time (to) and the predicted starting spray
time (z,). Data are depicted by the points
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planting, after which sprays are applied weekly until
day 110, therefore 10 sprays were applied under a
standard spray program, while the number of sprays
suggested by the DSS varied. The cost of an individ-
ual spray was taken as £45 per application.

Noting that the data we had to parameterise the yield
loss relationship were variable and that the yield loss
relationship was fitted to be conservative, the expected
value of the Hutton Criteria was calculated to be
£420 ha™!, but with a 45% chance of a negative value.

Estimating the joint distribution from literature
statistics

The AHDB Sclerotinia Stem Rot DSS

The AHDB DSS produces risk alerts for sclerotinia
stem rot, which is usually the main disease to consider
during the flowering stages of oilseed rape. If spores
are present, conducive weather is required for infec-
tion to occur. Fungicides for sclerotinia control are
protectants and need to be applied prior to infection.

The forecast is weather-based and alerts farmers
to the risk of infection (AHDB, 2022). The AHDB
highlight the value of the tool for allowing farm-
ers to delay treatment if risks are low, resulting in
potentially fewer sprays. We therefore consider this
example, assuming that standard practice would be to
apply control.

Formulating the value calculation for the DSS

Data are presented on the AHDB website allowing
farmers to assess the performance of the system. This
takes the form of the probability of true positive (p,, ),
false positive (p,, ). true negative (p,, ) and false nega-
tive (p,, ) alerts, where the first index in p; relates to
the observation and the second relates to whether an
alert was produced by the DSS.

To use this information to estimate value, we sim-
plify the density function f (x, xpred) by degenerating
it to one of these four discrete states. The expected
value becomes:

E(V) = Z Z {CS ) = CDSS (x’ xpred) }fx,xpred :

XY Xpyeg =Yl

(22)
where fx,x,),,,, = p; withi € {y,n}and j € {y,n}.

As standard practice is to apply a spray, if a risk
alert is given by the DSS then farmers using the DSS
would also follow standard practice and apply a spray.
Therefore, when a risk alert is given, the difference
in cost between using the DSS or following standard
practice is zero:

Cs(x) — Cpss (x, xmd) =0, when x.

pred = yandx € {y’n}

(23)

If no risk is predicted and no infection occurs then

the only difference is that those who follow standard
practice apply an unnecessary spray:

Cs(x) — Cpgs (X Xppea) = €, When x4 = nand x = n

(24)

However, if no risk is predicted but an infection

occurs then the farmers following the DSS don’t
apply a spray and lose the price of the lost crop:

pre

Cs(x) — Cpgs (x, xpred) =c—v, forx=y, Xpred = 11
(25)
where c is the cost of treating and v is the expected
difference in value between a healthy and infected
crop.
Therefore, the expected value can be simplified to:

E(V) =cp,, + (c = v)p,, (26)

Parameterisation.

For 2021 the following statistics were recorded
on the AHDB website: true positive (pyy = 9.9%),
a false positive ((pny = 3.4%), a true negative
(P, = 81.3%) and a false negative (pyn = 5.4%).

Therefore, for this case study, Eq. 26 becomes:

E(V) =0.813c + 0.054(c —v) 27

Therefore, as long as the cost of control (¢) is
greater than 0.06 times the value of crop loss (v) in
a situation where a Sclerotinia outbreak occurs but
the DSS does not give an alert, the expected value of
the DSS is positive. The value of the DSS depends
on the cost of control, and the value of any crop lost
(Fig. 6). Under reasonable assumptions of the value
of crop lost and cost of control, the expected value of
the DSS is positive.

In this case, there is a 5.4% chance that the farmer
will suffer a loss of v — ¢ compared to if they had
followed standard practice.
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100

Cost of potential yield lost (£/ha)

0 25 50 75 100
Cost of control (£/ha)

Fig. 6 The expected value of the Sclerotinia Stem Rot DSS
varies depending on the cost of applying control, and the value
of the potential crop lost when a false negative alert occurs

Discussion

In this paper we present a framework (Eq. 5) that can
enable researchers to estimate the value of a DSS
from data that have been collected for other purposes.
This framework requires two key pieces of informa-
tion: a relationship between the distribution of pest
intensity in a region and the degree to which the DSS
accurately reflects that pest intensity; and a relation-
ship describing the effectiveness of pest manage-
ment programmes over the whole distribution of pest
intensity.

While the framework is simple in concept, the
generic formulation is impractical in most instances
as the data requirements are vast. Nevertheless, we
have demonstrated that this formulation can be sim-
plified to make it practically useful. Each of the prac-
tical implementations use surrogates for the predicted
pest or disease intensity, such as the number of sprays
suggested by the DSS, the dose suggested, or the tim-
ing of the first spray of a pesticide programme. This
abstraction from the underlying infection level is par-
ticularly important for evaluating DSS that predict
the risk of pest damage as opposed to the percentage
disease or infestation. While all the case studies pre-
sented have focused on the use of fungicides to con-
trol fungal or oomycete pathogens, the framework
could be applied to the application of insecticides to
control invertebrate pests. However, it may be less
applicable to systems that advise on weed control, as
decisions made in one year can affect the long-term
efficacy of weed control programs through effects on
seed bank density (Benjamin et al., 2009). Because of
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this, the value of herbicide DSS would need to con-
sider the long-term dynamics of the seed bank over
the course of DSS-informed and standard herbicide
application programmes.

The results presented in this paper demonstrate
both the potential and the limitations of the frame-
work. In all cases we were able to calculate the
expected value of the DSS. In each case the economic
value was positive, providing additional profit com-
pared with using a standard spray programme. Where
the uncertainties in the underlying distributions were
able to be estimated — such as for CPO and the Hut-
ton Criteria — we also calculated the distribution in
the value, allowing an estimate of the probability of
a negative value compared to a standard spray pro-
gramme. For each of the DSS for which a distribution
of value could be obtained, the probability of a user
obtaining negative value was non-negligible, and as
high as 45% for the timing of the first application of
a potato fungicide programme. This outcome should
remind users that DSS are supporting tools, and
should not be seen as the sole means of making the
final decision. Until more precise prediction models
are developed for all relevant pest and diseases, field
scouting and monitoring remains a very important
element in IPM decision making.

The first case study we explored (te Beest et al.,
2009b) was a simple DSS developed to predict
whether a less intense fungicide programme could
be used without compromising profit. The authors of
the paper provided the information that we needed
to parameterise the joint distribution describing the
relationship between the observed disease intensity
and that predicted by the DSS. To ensure consist-
ency, it is important that the data used to derive the
joint distribution are from the same (or similar) set of
experiments that is used to derive the loss relation-
ship. Therefore, we also adopted the parameters for
the empirical yield loss relationship that the authors
had derived (from trials conducted in the UK). This
case study illustrates that the information necessary
to implement the framework can be derived from data
reported in the literature, but not without limitations.
In particular, the parameters for the yield loss rela-
tionship were presented without any metric of uncer-
tainty, and so a fully informed Monte Carlo simula-
tion to derive the distribution of value could not be
undertaken.
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Our second study used raw secondary data to
derive the joint distributions and yield loss relation-
ships. The clear advantage here was that we could
quantify more directly the uncertainties associated
with the yield loss relationships and consider a wider
range of plausible forms. Nonetheless, we were faced
with several challenges deriving the relationships for
pesticide efficacy, not least because the data used a
range of fungicide products and doses, with no clear
mechanism to account for differences in their efficacy.
In the end we adopted a simple approach and con-
sidered only the number of applications made. The
variation in response that results from this simpli-
fied assumption (on top of environmental variation)
is clearly large yet a usable signal prevailed. Indeed,
the variation in predictions meant that, although the
expected value was positive for CPO, there was a
large variation in the predicted response. Despite this,
the value of the DSS was very rarely negative.

The third case study, estimating the value of the
Hutton Criteria, provides a case study where the data
were insufficient to confidently estimate the value of
a DSS. The Hutton Ceriteria, in its basic form, high-
lights days on which there is likely to be significant
pest pressure, and therefore farmers should consider
applying a spray. In simplifying the framework to
make it amenable to parameter estimation with the
available data, several simplifying assumptions had to
be made, such as the time point of an optimal spray
time, and the effect on yield. As #, is an unknown
optimal spray timing, there will be uncertainty in its
true value, which is captured within the joint distri-
bution function. While this may lead to an imprecise
joint distribution function, it should allow for a rea-
sonable estimate of the expected value to be calcu-
lated. Even so, the data presented here are likely too
sparce to accurately parameterise the joint distribu-
tion function, meaning that the distribution of value
should be treated with caution.

By far the simplest implementation relates to when
data are available to populate a matrix specifying the
proportion of times that the DSS predicts accurately
or incorrectly, as in our fourth case study. This clear
and simple quantification has the benefit that it is
straight forward to interpret, but it is only applicable
when data on the accuracy of prediction are available.

We have considered four variations of the generic
framework, but there are likely to be other formula-
tions. The approaches that we considered were driven

by the type of DSS and data available. We have only
considered simple DSS, and simplified them further
where necessary. It is likely to be difficult to obtain
enough data to get good estimates of L(x,g) when a
DSS recommends specific products, doses and/or
timings of pesticide applications. As demonstrated,
simplifying the framework reduces the data required
to characterise and fit the distributions. In doing so,
however, the framework does lose some precision.

Ultimately, the accuracy of the framework will
depend on the quality and amount of data available,
with better data requiring fewer simplifications and
enabling a better characterisation of the distribution
and relationships that form the basis of the frame-
work. Increasingly, industry and the research commu-
nity are adopting principles of FAIR data (Findable,
Accessible, Interoperable and Reusable). Theoreti-
cally it is possible to design experimental protocols to
provide data to explicitly parameterise both the joint
distribution function and the cost function. Combin-
ing data sets from a variety of sources would prove a
powerful resource for approaches such as the one we
present here.

The assumptions made in establishing the frame-
works for the DSS can have profound implications.
Indeed, a key difference between case studies 1 and
2, both considering the same pathogen, is that an
increase in wheat price leads to the value of the DSS
decreasing in case study 1, whereas in case study 2
value increases. The reason for this discrepancy lies
with the choice of the standard spray programme. In
case study 1, it was assumed that a standard spray
programme was highly effective in the UK, and that
the DSS informs the user when it is viable to spray
less, saving the cost of unnecessary fungicide appli-
cations. For case study 2, the assumption is that a
standard spray programme provides moderate control.
The value of the CPO DSS is largely determined by
the value obtained when large epidemics are correctly
forecast by the DSS and thereby controlled. When
the price of wheat is more expensive, these yield sav-
ings are even more valuable. Such nuances highlight
the need for locally relevant information on what is
meant by a “standard programme” and associated
yield prices and costs.

Despite the limitations, the framework provides a
method to give developers and users increased knowl-
edge of the potential benefits and risks when using a
DSS in a particular region, whether it is in a region
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similar to that in which the DSS was developed or
elsewhere. Testing the DSS for a new environment
requires data from that environment.

One aspect that has been touched on only briefly in
this paper is an analysis of the variation in the value
of the DSS. By capturing the variability in the rela-
tionships, it is possible to explore the distribution
of the value of each DSS. While we have attempted
to capture the distribution in the pest intensity, the
framework can also capture the variability in each
of the relationships and propagate that variability
through to the distribution of value. This is particu-
larly important in assessing the DSS in terms of their
benefit for risk-averse users, who may want to be
reassured how often the DSS outperforms a standard
spray programme. Additionally, the distribution in
value would enable researchers to develop DSS that
minimise the risk of losses to the users of the system.

Throughout this paper, we have attempted to pro-
vide a data driven approach to valuing decision sup-
port systems, limiting model-based assumptions to
empirical relationships describing yield loss and
pesticide efficacy. However, in the absence of new
data, expert opinion could be used to adjust any
existing distributions to then test the value of DSS
in other regions. Expert opinion could also be inte-
grated into the methodology through a Bayesian
approach to derive the distributions in the framework
using expert informed priors. The benefit of such an
approach would be increased flexibility to test over a
larger range of environments, however, it is then not
straightforward to say whether the DSS has performed
well or whether the analysis has reproduced model-
based assumptions. Ultimately, we argue that a com-
bination of model-based and data driven approaches
should be adopted to derive the value of DSS where
direct field testing of a DSS is not possible.

Conclusions

The generic framework presented has the flexibil-
ity to estimate the value of DSS in many situations
given the availability of sufficient data to quan-
tify the joint distribution between predicted and
actual pest intensity and information to quantify
the impact of control on a given level of disease.
In doing so we hope to allow DSS developers and
academics to better illustrate the value of DSS in
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different environments. It is desirable to present the
user with both the expected value of a DSS, as well
as a measure of the risk of extreme losses so that
they can assess benefits and risks associated with
following DSS guidance.
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