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(UNICEF, 2019). Food based approaches, particularly food

fortification, agronomic biofortification and genetic biofortification of

staple crops, were identified as strategies to combat Zn deficiencies

globally (Gibson and Ferguson, 1998; Graham et al., 1999; Bouis, 2003;

Velu et al., 2014). However, food fortification and agronomic

biofortification programs are more feasible in developed countries

compared to the least-developed, low-income countries, owing to

low accessibility and cost of industrially processed food and

micronutrient rich fertilisers (Horton, 2006; Cakmak, 2008; Gomez-

Galera et al., 2010). In contrast, genetic biofortification, which aims at

enhancing grain micronutrient concentration and substances that
promote nutrient bioavailability through plant breeding (Velu et al., 198

199

200

201

202

203

204

205

206

207
2014; Bouis and Saltzman, 2017), is a viable and cost-effective approach

for delivering essential micronutrients to low-income countries.

Wheat is an important staple crop providing more than 20-25%

daily calorie intake in Africa (FAO, 2019). In recent years, demand

for wheat and wheat products in SSA has substantially increased

and is projected to increase further in the immediate future

(Shiferaw et al., 2011; Mason et al., 2015; Guwela et al., 2021).

Previous work has shown that genetic variation for grain Zn and Fe

concentration in most of the cultivated wheat is not enough to meet
the estimated average requirement (EAR) for both children and

adults of reproductive and non-reproductive age. In contrast, wheat

Frontiers in Plant Science 02
The breeding targets for grain Zn and Fe concentration in wheat

were set at an additional 12 and 22 mg/kg from 25 and 30 mg/kg

respectively (Bouis et al., 2011; Bouis and Saltzman, 2017). These

targets were set to meet 60-80% of EAR for preschool children (4–6

years old) and for non-pregnant and non-lactating women of

reproductive age (Bouis and Saltzman, 2017). Previously, rye

translocations in a Pavon 76 wheat background significantly

increased grain zinc concentrations above the recurrent parent

(Velu et al., 2019). In CIMMYT, the use of Triticum aestivum

ssp. spelta- and Triticum turgidum ssp. dicoccum-based synthetics

have resulted in the release of varieties with 20-40% higher Zn levels

compared to local varieties (Singh et al., 2017; Guzman et al., 2019;

Velu et al., 2019). Similarly, HarvestPlus Yield Trials (HPYT) of

CIMMYT biofortified wheat varieties released in Nepal showed a

combination of high yields and high grain Zn and Fe concentrations

above the local checks (Thapa et al., 2022).

This paper describes the transfer of Am. muticum (TT) and T.

urartu (AuAu) introgressions, from doubled haploid introgression

lines into Malawian wheat varieties to achieve increased grain

mineral concentration.
2 Materials and methods
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progenitor species and other wild relatives in the wheat secondary

and tertiary gene pools have revealed a substantial genetic variation

for grain concentrations of Zn, Fe and other essential minerals

(Chhuneja et al., 2006; Rawat et al., 2009; Neelam et al., 2011;

Rawat et al., 2011; Tiwari et al., 2015). Through introgression

breeding, genetic variation from wheat progenitors and wild

relatives can be successfully transferred to modern cultivated

wheat (Anderson, 1949; Thórsson et al., 2001) to tap some useful

genetic variability for wheat improvement. Several studies have

shown higher grain Zn and Fe concentrations in introgression lines

developed from cultivated hexaploid/tetraploid wheat and several

wild species compared to their modern cultivated wheat parents

(Rawat et al., 2009; Tiwari et al., 2010; Neelam et al., 2011;

Wang et al., 2011; Farkas et al., 2014). For example, wheat/wild

2.1 Germplasm

The introgression lines used in this study were developed by

crossing DH-348 and DH-254 with three Malawian wheat varieties

(Kadzibonga, Nduna and Kenya nyati). The Nottingham Wheat

Research Centre (WRC), at the University of Nottingham

previously developed the DH lines. Briefly, DH-348 was developed

by pollinating hexaploid wheat cv. Pavon 76 with Am. muticum

accession 2130012 and T. urartuDH-254 was developed from a cross

between hexaploid wheat cv. Chinese Spring (ph1/ph1) and T. urartu

accession 1010002 (King et al., 2017; Grewal et al., 2018a). The F1
interspecific hybrid carrying the Am. muticum/wheat and the T.

urartu/wheat recombinant chromosome were backcrossed as females

to Paragon up to BC3, which was used to produce the DH lines (King
1 Introduction

Micronutrient deficiencies (MNDs) remain a global challenge,

affecting an approximated 2 billion people worldwide (White and

Broadley, 2009; World Health, 2009). Zinc (Zn) and iron (Fe)

deficiencies are widespread in low-income countries, particularly in

sub-Saharan Africa (SSA) and South-east Asia (Gupta et al., 2020).

Inadequate intake and bioavailability of these elements in diets remain

the major reasons for increased deficiency risks (Caulfield and Black,

2002; Maret and Sandstead, 2006; Prasad et al., 2014). A high

dependence on cereal diets and inability to afford foods that are rich

in essential micronutrients for a majority of people in SSA has resulted

in risk deficiencies of up to 96%, with a number of countries falling

above 50% (Kumssa et al., 2015). In Malawi for instance, Zn deficiency

risk is at ~60% of the population with most households having

deficiency risks in the range of 50-75% (Joy et al., 2014; NSO, 2016;

Likoswe et al., 2020). It is estimated that malnutrition results in an

annual economic burden of 10.3% of Malawi’s gross domestic product

shown up to a five-fold increase in grain Zn concentration above

their recurrent parents (Tiwari et al., 2010, Neelam et al., 2010,

Rawat et al., 2011). Progenitor species, particularly Ae. tauschii have

also shown to increase grain Zn and Fe concentrations by 20-40%

compared to local varieties (Singh et al., 2017).

Thus, the transfer of genetic variation from wheat wild relatives

to cultivated wheat through introgression of chromosome segments

from wheat wild relatives offers a useful approach for improving the

nutritional quality of wheat to the target levels required for

improving human nutrition. Pre-breeding efforts have resulted in

the successful transfer of a number of progenitor and wild relative

chromosomes from the genus, Triticum, Aegilops, Amblyopyrum

and Thinopyrum (King et al., 2018; Grewal et al., 2018b; King et al.,

2019; Grewal et al., 2021). Mineral analysis of some of the pre-

breeding materials have shown substantial variation in grain Zn and

Fe (Guwela, 2023) and these may be useful sources for transferring

the introgressions into other adapted wheat backgrounds.
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et al., 2019; Grewal et al., 2021). The three Malawian wheats, Kenya

Nyati, Kadzibonga and Nduna were obtained from stocks retained at

Lilongwe University of Agriculture and Natural Resources

(LUANAR) Malawi. The three Malawian varieties represent the

most widely cultivated wheat varieties in Malawi.

2.2 DNA sequencing

For the crossing program, two parental DH lines (DH-254 and

DH-348) were sequenced to determine their genetic makeup, with a

target on the size and site of introgression of the alien chromosome

segments. Genomic DNA (deoxyribonucleic acid) was collected

from 2-week-old leaf samples. Extraction was performed using

extraction buffer (0.1 m Tris–HCl (pH 7.5), 0.05 m EDTA (pH

8.0), 1.25% SDS). Library preparation and DNA sequencing was

performed by the Novogene (UK) Company Limited. The DNA

sample used for library preparation was prepared following the

manufacture’s recommendations of NEBNext® DNA Library Prep

Kit (New England BioLabs, US). Index codes were added to each

sample. Briefly, the genomic DNA was randomly fragmented to size

of 350 bp. DNA fragments were end polished, A-tailed, ligated with

adapters, size selected, and further PCR enriched. Then polymerase

chain reaction (PCR) products were purified (AMPure XP system),

followed by size distribution by Agilent 2100 Bioanalysis (Agilent

Technologies, CA, USA), and quantification using real-time PCR.

The library was then sequenced for 10x whole genome sequencing

(WGS) on NovaSeq 6000 S4 flow cell with PE150 strategy.

2.3 Generating a segregating population

Hybridisation of the donor (DH-348 and DH-254) and the

reciprocal parents (Nduna, Kadzibonga and Kenya nyati) was

performed in both directions (as both male and female). In total,

six cross combinations were made for each of the DH lines. Selected

F1 interspecific hybrids were backcrossed to respective recurrent

parents to obtain the BC1 population, which was selfed up to

BC1F3. Germination was followed by 4 weeks vernalisation (6°C

and photoperiod for 12 hours) seven day after sowing. The plants

were left under glasshouse conditions with the photoperiod set at 25°

C, light at 16 hours and 8 hours dark. Emasculation was done before

the spikes completely emerged from the flag leaf. Emasculated spikes

were covered with glassine bags following removal of the anthers.

Pollination was done two days after emasculation.

2.4 Genotyping

To characterise the introgression lines, genomic DNA of the

BC1 and BC1F1 populations was extracted in a 96 well plate from

leaf samples collected from 10 day old seedlings (Thomson and

Henry, 1995). Extraction was performed using template preparation

solution (TPS) buffer and isopropanol. Malawian wheats,

Kadzibonga, Kenya nyati and Nduna alongside wheat/Am.

accession 2130012 and T. urartu accession 1010002 were used as

controls. The KASP assays comprised of two allele specific primers

and one common reverse primer. A final reaction volume of 5 ml,
which included 1ng genomic DNA, 2.5 ml KASP reaction mix

(ROX), 0.068 ml primer mix and 2.43 ml nuclease free water Primer

mix, was dispensed into the 386 well plates using Gilson pipette max

268 (Gilson, INC. 3000 Parmenter St. Middleton, WI 53562). Plates

were sealed with optical quantitative polymerase chain reaction

(qPCR) seals (Sarstedtstr AG & Co. KG, Numbrecht, Germany)

following a brief centrifuge. Genotyping was done using ProFlex

PCR system (Applied Biosystems by Thermo Fisher Scientific). PCR

conditions were set as 15 min at 94°C; 10 touchdown cycles of 10 s

at 94°C, 1 min at 65–57°C (dropping 0.8°C per cycle); and 35 cycles

of 10 s at 94°C, 1 min at 57°C.

2.5 Genomic in-situ hybridisation

To validate the presence of the chromosome segments in the

introgression lines, genomic in-situ hybridisation (GISH) was

performed following a protocol described by Kato et al. (2004)

and King et al. (2017). Genomic DNA was extracted from Am.

muticum and the three progenitors of bread wheat: T. urartu, Ae.

speltoides, and Ae. tauschii using an extraction buffer (0.1 M Tris-

HCl, 0.05 m EDTA and 1.25% SDS). Genomic DNAs of Am.

muticum, T. urartu, Ae. tauschii and Ae. speltoides were labelled

by nick translation with ChromaTide Alexa Fluor 546-14-dUTP

(Alexa Fluor-546), ChromaTide Alexa Fluor 488-5-dUTP (Alexa

fluor-488) [Thermo Fisher Scientific (Invitrogen), Waltham, MA,

United States] and Alexa Fluor 594-5-dUTP (Alexa fluor-594)

[Thermo Fisher Scientific (Invitrogen), Waltham, MA, United

States] and ChromaTide Alexa 405 dUTP, respectively.

Metaphase spreads were prepared from root tips using a nitrous

oxide-enzymatic maceration method. Malawian wheat/Am.

muticum slides were probed using a probe mixture containing

1.5ml of T. urartu, 1.5ml Ae. speltoides, 2ml Ae. tauschii and 0.3ml
Am. muticum labelled genomic DNA in 2 × SSC and 1 × TE buffer

(pH 7.0) to a final volume of 10ml per slide. Malawian wheat/T.

urartu slides were probed using a similar probe mixture with the

exception of Am. muticum genomic DNA. Slides were

counterstained with Vectashield mounting medium with 4-6-

diamidino-2phenylindole dihydrochloride (DAPI). Analysis was

done using a Zeiss Axio ImagerZ2 upright epifluorescence

microscope (Carl Zeiss Ltd, Oberkochen, Germany) with filters

for DAPI (Ex/Em 358/461 nm, blue), Alexa Fluor 488 (Ex/Em 490/

520 nm, green), Alexa Fluor 594 (Ex/Em 590/615 nm, red) and

Alexa Fluor 546 (Ex/Em 555/570 nm, yellow). Photographs were

taken using a MetaSystems Coolcube 1 m CCD camera.

2.6 Field phenotyping

2.6.1 Soil sampling, preparation and analysis
A composite soil sample was collected on each block at the trial

site before trial establishment. Soil samples were air-dried, crushed
m

F

uticum, DH 348
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2.6.2 Experimental design, trial management and
field data collection

The experiment was conducted in the winter of 2022 (May to

October). Wheat lines were grown under field conditions in an

optimally irrigated environment at LUANAR (14.18’S 33.76’ E) in

Lilongwe, Malawi. Forty-eight BC1F3 introgression lines (11 Malawian

wheat/T. urartu DH-254 and 37 Malawian wheat/Am. muticum DH-

348) were planted alongside three Malawian wheat varieties

(Kadzibonga, Kenya nyati and Nduna), two DH lines (DH-348 and
DH-254) and Paragon, Pavon 76 and Chinese spring, in a randomised
2

414

415

416

417

418

419

420
complete block design (RCBD) with three replicates. Plots were 2 m

each, with six rows spaced at 0.15m. Plot spacing was 0.30m and block

spacing was 1.0 m. Basal dressing fertiliser 23N:10P:5K +6S +1Zn

(SuperFert Fertilisers, Harare, Zimbabwe) was applied 14 days after

planting at a rate of 200 kg N/ha. Three weeks later, Urea (46% N) was

applied as top dressing at a rate of 100 kg N/ha. Basal and top dressing
were applied according to the Malawi guide to agriculture production

(MoAI, 2020) guidelines. The Malawi government recently approved
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2.8 Data analysis

The Earlham Institute bioinformatics pipeline (Coombes et al.,

2022) was used to analyse the sequencing data. Florescence detection

and data analysis of KASP reactions was performed using Quant

Studio Design and Analysis Software V1.5.0 (Applied Biosystems by

Thermo Fisher Scientific). GISH analysis was carried out using Meta

Systems ISIS and Metafer software (Metasystems GmbH,

Altlussheim, Germany). For field data, one-way analysis of variance

(ANOVA) was performed using GenStat for windows statistical

package, version 21 (VSN, 2022). A post-hoc test was performed

using Tukey’s HDS test. Pearson correlation analyses were performed

in RStudio (version 4.1.3), and correlation heatmaps were created

using the same software. The statistical linear model considered the

response Yij of the jth treatment in the ith replication expressed as:
200 grams of each of the composite soil sample was transferred into

zip-loc bags, labelled and shipped to the University of Nottingham for

analysis. Soil pH was determined following suspension of 5 g of soil

sample into 12.5 ml Milli-Q water (18.2 MW cm; 1:2.5 m/v).

Total nitrogen (N) was measured using the Kjeldahl method

(Kjeldahl, 1883). Organic matter was determined using the Walkley

and Black method (Walkley and Black, 1934). Extractable soil Zn and

Fe were determined by the diethylene triamine penta-acetic acid

(DTPA) extraction method (Lindsay and Norvell, 1978) followed by

multi-element analysis with ICP-MS. Available phosphorus (P) and

K were measured using the Mehlich- 3 extraction (Mehlich, 1984).

diluted with milliQ water (18.2 MΩ cm; Fisher Scientific UK Ltd,

Loughborough, UK) up to 50 mL. Grain multi-element analysis was

undertaken using inductively coupled plasma mass spectrometry

(Thermo Fisher Scientific iCAPQ, Thermo Fisher Scientific,

Bremen, Germany) as described by Gashu et al. (2021) and

Khokhar et al., 2018. A total of 189 grain samples including

blanks, CRMs and LRMs were analysed. The Zn and Fe specific

recovery from CRMs from grain samples was 99 and 97%

respectively. The limit of detection (LOD) values for grain Zn and

Fe were 0.7 and 2.2 respectively.
where m
Yij = µ +

is the grand mean o
bi + t i + eij

f all genotypes, bi is
 the block effect,
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the NPK (23:10:5 + 6S +1Zn) basal fertiliser with 1% Zn due to severe

deficiencies (< 2 mg kg-1) of plant available soil Zn across the country

(IFDC et al., 2018). Thus, all basal fertiliser blends for selected cereals

and legumes in Malawi have 1% Zn. First weeding was done 4 weeks

after planting and subsequent weeding as soon as weeds appeared.

Insect pests were controlled by applying Profex Super (Profencfos 40%

+ Cypermenthrin 4% EC –Kewalram Chanrai group). Data collected

included days to heading (DH), days to flowering (DF), days to

maturity (DM), plant height, thousand kernel weight (TKW) and

grain yield. Grain yield was converted from g/m2 to kg/ha. Plant height

and number of tillers were collected from five randomly selected plants

in the net plot, to get an average of both.

2.7 Grain sample digestion and
multi-elemental analysis

Grain samples were digested using a hot block acid digestion

system (Anton Paar Gmbh, Graz, Austria) as described by

Gashu et al., 2021. Approximately 0.4 g of each of the grain

samples along with certified reference material (wheat flour

1567b-CRM) and laboratory reference material (Paragon wheat-

LRM) were digested using a Multicube 48 digestion block (Anton

Paar Gmbh, Graz, Austria). Two operational blanks were added in

each run. The digestion block was set at 105°C for 2h. Samples were

tj is the effect of the jth treatment (genotype) and eij is the average

experimental error.

3 Results

3.1 Sequencing and GISH analysis of the
parental lines

The sequence reads from the parental lines, hexaploid wheat cvs.

Chinese Spring and Paragon, and Am. muticum DH-348 were

mapped to the wheat reference genome assembly cv. Chinese

Spring RefSeq v.1.0 (IWGSC et al., 2018). Whole genome sequence

analysis of Am. muticum DH-348 revealed the presence of two Am.

muticum segments on wheat chromosomes (Chr) 4D and 7A as

shown in the drop in read coverage (red blocks) in Figure 1A.

Analysis of the size of the introgressed segments showed that the

segment on Chr 4D is bigger (51.2Mbp) compared to the segment on

Chr 7A (9.1 Mbp). Sequence analysis also revealed a monosomic

deletion on the short arm of Chr 5D. GISH analysis of Am muticum

DH-348 (Figure 1B) partially validated the sequencing results, as it

showed a pair of recombinant chromosomes with a large D

chromosome (red) and a small T segment (gold) at the distal end

of the D chromosome. The Am. muticum segment visible from the
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76.40 and 28.77 Mbps. Sequence analysis also showed that a portion of

chromosome 5A had duplicated and translocated to Chr 5D to replace

the 5DL chromosome portion (Figure 2A). GISH analysis did not

validate the presence of the 5Au segments translocated to the 5A

chromosome of wheat (Figure 2B) because the probe used for detecting

the A genome of wheat is prepared from the wheat progenitor,

T. urartu and thus in wheat/T. urartu introgression lines, the probe

detects both the A and Au genomes (Grewal et al., 2021).

3.2 Malawian wheat/T. urartu DH-254 and
Malawian wheat/Am. muticum DH-348
segregating populations
In the initial round of crossing, 262 and 120 F1 seeds were obtained

for theMalawian wheats/Am.muticumDH-348 andMalawian wheats/
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One hundred and eighty-two chromosome-specific KASPmarkers

were tested on the parental line, three of the Am. muticum DH-348,

three of the Am. muticum accession 2130012 and the three Malawian
group (1A-7A, 1B-7B and 1D-7D) based on their position and results

from previous work (King et al., 2019). The markers were designated

codes between WRC1001-WRC1329 (Grewal et al., 2020) and

WRC1330-WRC169 (Grewal et al., 2022). Genotyping of 80 wheat/

Am. muticum BC1 plants with group 4 (WRC1314, WRC1315,

WRC1316 and WRC1784) and group 7 markers (WRC2020 and

WRC2104), detected the presence of heterozygous Am. muticum

segments on wheat Chr 4D and Chr 7A in 19 lines, the 4D segment

in 15 lines, and the 7A segment in 13 lines. To validate the genotyping

results, multi-colour GISH was performed on 40 of 47 BC1 plants
GISH metaphase spread is likely from Chr 4D as the segment on 7A

is too small to be detected by GISH.

Analysis of T. urartu DH-254 showed two segments of T. urartu

3.3 Molecular and cytogenetic
characterisation of Malawian wheat/
Am. muticum BC1 and BC1F1 plants

FIGURE 1

(A) Sequencing visualisation of DH-348 showing the Am. muticum segment introgressed on wheat Chr 4D and on Chr 7A (Am. muticum
chromosomes in red blocks, wheat chromosomes in blue blocks), and a monosomic deletion on wheat Chr 5D (yellow arrow). (B) GISH image of
metaphase spreads from roots of DH-348 showing the A, B, D and T genomes (A genome - green, B genome - blue, D genome – red, T genome -
gold). The blue arrows indicate the site of Am. muticum introgressions.
heterozygo

lines with
us for the Am. mut

the 4T and 7T s
icum segments. GISH
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recombined with the 5A chromosome of wheat. The segments were
analysis of the 19
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T. urartuDH-254 combinations, respectively. Backcrossing selected F1

seeds generated 362 and 190 BC1 seeds, and Self-fertilisation of the BC1

plants generated 11,058 Malawian wheat/Am. muticum DH-348 and

5,300 Malawian wheat/T. urartu DH-254 BC1F2 seeds. Further self-

fertilisation/bulking of the seeds resulted in the generation of 46,950

Malawian wheat/Am. muticum DH-348 and 16,535 Malawian wheat/

T. urartu DH-254 BC1F3 seeds. Among the Malawian wheat/T. urartu

DH-254 cross combinations, three combinations (T. urartu DH 254

×Kadzibonga, Kadzibonga ×T. urartu DH 254 and Nduna × T. urartu

DH 245) were lost at F1 and BC1F2 due to the inability to produce seed,

and failure of the selected seeds to germinate, respectively. Among the

Malawian wheat/Am. muticum DH-348 cross combinations, only one

combination (Am. muticum DH 348 × Kenya nyati) was lost at BC1F2
due to failure of the selected seeds to germinate.

heterozygous segment on the distal end of the short arm of wheat

Chr 4D but not the 7T segment because of the small size (Figure 3).

Lines with only the 4T segment also showed heterozygous segments on

wheat chromosome 4D, whilst lines with only the 7A segment were not

verified by GISH. Subsequent genotyping of 85 BC1F1 plants obtained

from selfing the heterozygous BC1 population detected 25 lines

homozygous for the 4T segment on Chr 4D, 14 lines homozygous

for the 7T segment on Chr 7A and 2 lines (BC1F1 64-2 and BC1F1 61-2)

with both the segments on Chr 7A and Chr 4D homozygous. Further

analysis showed that 26 lines remained heterozygous for the segment

on Chr 4D while the rest of the lines had lost the segments (Table 1).

To validate these results mcGISHwas performed on 31 of the 41 BC1F1
plants homozygous for the Am. muticum segments. The presence of a

pair of 4T segments in the lines observed with only a 4T/4D

recombination was also validated in 23 of the 25 introgression lines,
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and no segment was detected in seven of the fourteen lines with the 7T/

7D recombination. In the lines with both the 4T and 7T segments,

GISH validated the presence of a pair of the 4T in line BC1F1 64-2

whilst line BC1F1 61-2 could not be validated, because the roots

obtained did not give good metaphase spreads. GISH also showed

that 25 of the 31 BC1F1 lines analysed had maintained the euploid

chromosome condition, while five lines had a missing D chromosome,

likely inherited from the monosomic deletion observed in the sequence

of the parental line DH-348. Line BC1F1 58-1 showed the entire

chromosome set, plus an extra B chromosome (Figure 4).

3.4 Molecular and cytogenetic
characterisation of Malawian wheat/
T. urartu BC1 and BC1F1 plants with
chromosome specific KASP markers

Malawian wheat/T. urartu DH-254, three of the T. urartu

accessions, three of the T. urartu DH-254 and the three Malawian

varieties were genotyped using 144 chromosome-specific KASP

FIGURE 3

GISH images of BC1 root metaphase spreads showing the A, B, D and T ge
- gold). The blue arrows indicate the site of Am. muticum (T) introgression
where KASP showed a segment on wheat chromosome 7A, and GISH sho
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markers polymorphic between wheat and T. urartu. Markers were
markers within the region of the 76.40 Mbps segment (WRC605 and

WRC608) gave heterozygous calls for the T. urartu segment on wheat

Chr 5A in 31 lines and a homozygous wheat call on the remaining

lines. The marker detecting the 5Au smaller segment (28.7 Mbps) was

unable to detect the DH-254 controls, and thus none of the BC1

plants could be scored for the small segment. Subsequent

characterisation of 81 BC1F1 plants for the larger 5Au segment

detected 14 homozygous lines, 50 heterozygous lines and 21 lines

with no segment (Table 2). Among the 14 homozygous lines, only 11

grew to maturity, produced seed, and could be carried forward to the

next generation. GISH analysis of selected BC1 and BC1F1 did not

validate the presence of the 5Au segment recombined with the 5A

chromosome of wheat. However, GISH detected the presence of the
visualisation and GISH image of the parental line (T. urartu DH-

254). GISH analysis also revealed the number of chromosomes of all

the introgression lines (Figure 5).

mes (A genome - green, B genome - blue, D genome – red, T genome
into Chr 4D of wheat. GISH image for line BC1-607-1 shows a plant
d no segment present.
FIGURE 2

(A) Sequencing visualisation of DH-254 showing T. urartu segments introgressed on wheat Chr5A (shown by orange arrows) and the 5D-5A intergenomic
recombination shown by the drop in chromosome block on chromosome 5D. (B) GISH image of metaphase spreads from roots of DH-254 showing the A,
B and D genomes (A genome - green, B genome - blue, D genome – red). Orange arrows show the 5A-5D recombinant chromosomes.
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TABLE 1 A list of Malawian wheat/Am. muticum DH-348 BC1 and BC1F1 lines showing number of Am. muticum segments detected by chromosome
specific KASP markers and verified by GISH, location of the segments on the wheat chromosomes and number of chromosomes revealed by
GISH analysis.

Cross
combination

BC1 code
BC1F1
code

No. of
segments
KASP

No of
segments
GISH

Location on
wheat
chromosome

No.
of
chromosomes

Missing/
extra

DHF1 348 x Nduna BC1 605-2 BC1F1 64-2 2 1 4D,7A 42 0

BC1 606-1 BC1F1 62-1 1 1 4D 41 D

BC1 603-3 BC1F1 67-4 1 0 7A 42 0

BC1 606-3 BC1F1 63-2 1 1 4D 42 0

BC1 603-3 BC1F1 67-2 1 1 4D 42 0

DHF1 348
x Kadzibonga

BC1 597-2 BC1F1 78-1 1 1 4D 42 0

BC1 599-1 BC1F1 72-2 1 1 4D 42 0

BC1 600-3 BC1F1 70-1 1 1 4D 42 0

BC1 600-1 BC1F1 71-1 1 0 7A 42 0

BC1 600-1 BC1F1 71-3 1 0 7A – –

BC1 598-3 BC1F1 75-1 1 0 7A – –

BC1 599-4 BC1F1 73-2 1 1 4D – –

BC1 600-4 BC1F1 123-3 1 0 7A - –

Nduna x DHF1 348

BC1 607-4 BC1F1 60-1 1 1 4D 42 0

BC1 607-4 BC1F1 60-2 1 1 4D 42 0

BC1 608-3 BC1F1 59-2 1 1 4D 42 0

BC1 608-2 BC1F1 58-1 1 0 7A 43 B

BC1 610-1 BC1F1 54-1 1 0 7A – –

BC1 607-3 BC1F1 61-2 2 1 4D,7A – –

BC1 609-3 BC1F1 56-1 1 1 4D – –

BC1 609-3 BC1F1 56-2 1 1 4D 41 D

BC1 605-3 BC1F1 113-2 1 1 4D 42 0

BC1 607-1 BC1F1 116-2 1 0 7A 42 0

BC1 606-1 BC1F1 62-1 1 1 4D 42 0

BC1 606-1 BC1F1 62-3 1 0 7A 42 0

Kadzibonga x
DHF1 348

BC1 612-3 BC1F1 50-1 1 1 4D 42 0

BC1 611-1 BC1F1 51-1 1 1 4D 42 0

BC1 612-2 BC1F1 49-1 1 1 4D 42 0

BC1 611-4 BC1F1 53-1 1 0 7A 42 0

BC1 612-3 BC1F1 50-2 1 1 4D 42 0

Kenya Nyati x
DHF1 348

BC1 618-1 BC1F1 38-1 1 1 4D 42 0

BC1 615-3 BC1F1 42-2 1 1 4D 41 D

BC1 616-2 BC1F1 35-1 1 1 4D 42 0

BC1 616-2 BC1F1 35-2 1 1 4D 41 D

BC1 616-3 BC1F1 36-1 1 1 4D 42 0

BC1 617-1 BC1F1 37-1 1 1 4D 41 D

(Continued)
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FIGURE 4

GISH images of BC1F1 root metaphase spreads showing the A, B, D and T
genome - gold). The blue arrows indicate the site of Am. muticum (T) intr
segments on wheat Chr 4D, GISH did not capture the other set of 7T segm
euploid sets of chromosomes each with a pair of 4T segments on wheat C
chromosome) metaphase spread with a pair of 4T segments on Chr 4D. B
aneuploid set of chromosomes (43 with an extra B chromosome).
Frontiers in Plant Science 08
nomes (A genome - green, B genome - blue, D genome – red, T
ressions into Chr 4D of wheat. BC1F1-64-2 shows only a pair of 4T
nts revealed by KASP. BC1F1-78-1, BC1F1-36-1 and BC1F1-70-1 show
r 4D. BC1F1-62-1 shows an anueploid (41 with a missing D
F1-58 has a 7A segment undetectable by GISH; however, this shows an
3.5 Soil analysis

Table 3 describes the soil physio-chemical properties of the

soils at the experimental site. The soils were classified as clay loam,

with an average soil pH of 6.7. DTPA-Zn and Fe were 0.3 and

7.7 mg kg-1 respectively. Soil analysis also showed that the soil

samples had an average of 0.2% total nitrogen, 20.6 mg kg-1

available P and 67.4 mg kg-1 K.

3.6 Mineral analysis

3.6.1 Grain zinc concentration
Analysis of grain samples showed a significant variation in grain

Zn concentrations (P<0.0001) among the 55 genotypes (Table 4).

Grain Zn concentrations varied from 35.5-108.6 mg kg-1 with an

overall mean of 57.9 mg kg-1. DH-348 had the highest grain Zn

concentration of all the genotypes analysed with 108.6 mg kg-1,

while BC1F3-30 had the highest grain Zn concentration of the

BC1F3 introgression lines with 84.9 mg kg-1. Overall, 13% of the

BC1F3 lines had Zn concentrations between 70-85 mg kg-1, 25%

between 60-68 mg kg-1 and 43% between 50-59 mg kg-1. The three

Malawian checks, Kenya nyati, Kadzibonga and Nduna had grain

zinc concentrations of 42.0, 35.8 and 35.3 mg kg-1 respectively, and

these were the lowest among all the genotypes, except for BC1F3-44,

which had a concentration of 38.6 mg kg-1. Mineral analysis also

showed a significant variation among the UK checks, with Pavon 76

having the highest concentration. Mineral analysis for T. urartu

DH-254 was not conducted because the plants did not produce

any seed.

TABLE 1 Continued

Cross
combination

BC1 code
BC1F1
code

No. of
segments
KASP

No of
segments
GISH

Location on
wheat
chromosome

No.
of
chromosomes

Missing/
extra

BC1 618-3 BC1F1 39-1 1 0 7A 42 0

BC1 615-4 BC1F1 43-2 1 0 7A 42 0

BC1 615-4 BC1F1 43-3 1 1 4D 42 0

BC1 615-6 BC1F1 121-3 1 0 7A – –

BC1 615-1 BC1F1 120-3 1 0 7A – –

Lines with a – on chromosome numbers were not verified with GISH.
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TABLE 2 A list of Malawian wheat/T. urartu DH 254 BC1 and BC1F1 lines show
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3.6.2 Grain iron concentration
Significant variation (P<0.0001) was observed in the grain Fe

concentrations of the 55 genotypes (Table 4). The Fe concentrations

varied from 38.3-95.8 mg kg -1 with an overall mean of 54.2 mg kg-1.

DH-348 showed the highest grain Fe concentration (95.8 mg kg -1)

followed by BC1F3-30 (87.4 mg kg -1), BC1F3-13 (76.6 mg kg-1) and

BC1F3-11 (70.7 mg kg-1) respectively. Overall, 6% of the BC1F3
introgression lines had Fe concentrations between 70-87 mg kg -1,

10% between 60-66 mg kg-1, 54% between 50-59 mg kg -1, and

the remaining had Fe concentrations above 40 mg kg-1, with the

exceptions of BC1F3-6 and BC1F3-51, which had 38.8 and 38.3 mg

kg-1. The Fe concentrations of the Malawian checks, Kadzibonga,

Kenya nyati and Nduna were 53.2, 42.0 and 35.3 mg kg-1 while

Kenya Nyati x DHF1 254 BC1 649-1 BC1F1 87-2

BC1 648-2 BC1F1 107-4

Lines with a – on chromosome numbers were not verified with GISH.

FIGURE 5

GISH images of metaphase spreads from the BC1F1 roots of Malawian whe
(A genome - green, B genome - blue, D genome – red). The blue arrow o
Frontiers in Plant Science 09
Pavon 76, Chinese spring and Paragon had Fe concentrations of

61.4, 60.4 and 46.6 mg kg-1 respectively.

3.7 Grain yield and associated traits

Grain yields varied significantly (P< 0.0001), ranging from 724-

5741 kg ha-1, with an overall mean of 2448 kg ha-1 (Table 4). BC1F3-

49, BC1F3-34 BC1F3-46, BC1F3-37, BC1F3-36, BC1F3-40, BC1F3-17,

BC1F3-19, BC1F3-9 and BC1F3-6 yielded 4741, 4630, 4556, 4186,

4148, 3741, 3667, 3481, 3333 and 3259 kg ha-1 respectively. The

yields of these 10 lines were higher than the highest yielding

Malawian check Nduna, which had a yield of 3185 kg ha-1.

ing number of T. urartu segments detected by KASP markers, their
H analysis.

f AU

ents
SP

No of AU

segments
by GISH

Location on
wheat

chromosome

No.
of

chromosomes

5A –

0 5A 42

0 5A 13A,14B,13D+1A/D

0 5A 42

0 5A 42

0 5A 41

0 5A 41

0 5A 42

5A –

0 5A 14A,14B, 13D+1A/D

5A –

5A –

5A –

5A –
1008
/T. urartu introgression lines showing the A, B and D genomes
BC1F1-102-2 shows the 5A-5D translocation.
location on the wheat genome and number of chromosomes revealed by G

Cross combination BC1 code BC1F1 code
No
seg
by

DHF1 254 x Kenya nyati

BC1 642-5 BC1F1 91-3

BC1 642-2 BC1F1 89-2

BC1 640-4 BC1F1 82-1

BC1 640-5 BC1F1 83-1

BC1 642-5 BC1F1 91-1

BC1 640-2 BC1F1 81-1

BC1 640-2 BC1F1 81-2

BC1 644-4 BC1F1 97-2

DHF1 254 x Nduna

BC1 647-5 BC1F1 105-1

BC1 647-1 BC1F1 102-2

BC1 647-5 BC1F1 105-3

BC1 649-4 BC1F1 108-1
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TABLE 3 Physio-chemical properties of soil samples collected from the th

Parameter Block 1 Blo

Soil pH 6.6 6

Organic matter (%) 2.0 2

DTPA-Zn (mg/kg) 0.2 0

DTPA-Fe (mg/kg) 7.2 8

Total N (%) 0.3 0

Available P (mg/kg) 20.3 2

K (mg/kg) 62.1 5

Silt (%) 16
44

40

lo

1078

1079

1080

1081

1082

1083

1084
Although Nduna showed the highest yield among the Malawian

Clay (%) 44

Sand (%) 42

Textural class Clay loam Clay
checks, Kadzibonga and Kenya nyati, and introgression lines

analysis also showed that grain Fe negatively and significantly

Q28

unrelated species that carry genetic variation for high mineral

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110
BC1F3-38, BC1F3-18, BC1F3-51, BC1F3-15 and BC1F3-31 had

statistically similar yields. Paragon had the lowest grain yield

(890 kg ha-1) out of the three UK checks, while Pavon 76 and

Chinese Spring had 1222 and 2148 kg ha-1 respectively. Grain yields

for BC1F3-30 and DH-348 were 729 and 724 kg ha-1, and these were

the lowest yields among all the genotypes. The thousand kernel

weight varied (P<0.0001) from 18-55 g, with an overall mean of

47 g. BC1F3-49 and BC1F3-2 had the highest kernel weight (55 g

each), followed by BC1F3-9 and BC1F3-26, both with 52 g. TKW for

the majority of the BC1F3 introgression lines was 50 g and this was

statistically comparable to all three Malawian checks, Pavon 76, and

Chinese Spring. DH-348, BC1F3-30 and Paragon had the lowest

TKW among all the genotypes. Significant variation (P<0.0001) was

also observed in the days to flowering, days to heading and days to

maturity (Table 4). Days to heading varied from 65-123, days to

flowering 69-128 while days to maturity varied from 95-153. BC1F3-

26 BC1F3- 55 BC1F3-30, BC1F3-53, BC1F3-47 and BC1F3-45 had the

longest time to heading, flowering and maturing, while BC1F3-18,

BC1F3-52, BC1F3- 17, BC1F3-27 and BC1F3-51 took the shortest

time. The majority of the BC1F3 introgression lines took 65-80 days

to heading, 69-85 days to flowering, and 95-108 days to maturing.

The number of tillers were significantly variable (P< 0.0001),

varying from 3-13 with an overall mean of six. Chinese Spring

had the highest number of tillers (13), followed by BC1F3-54 with 12

tillers. Among the introgression lines, 22, 20, 18 and 16% had seven,
six, eight and five tillers respectively. Plant height of the 55

translocation lines in a wheat backgrounds also showed significantly

higher Zn and Fe concentration above their recurrent parents (Velu

et al., 2019). At the Nottingham WRC, a number of Am. muticum

and T. urartu introgression lines developed for trait analysis were

1111

1112

1113

1114

1115

1116
genotypes was also highly significant (P<0.0001), ranging from

33-100 cm. Plant height for the majority of the BC1F3 lines varied

from 50-70 cm, with a few lines between 71-89 cm. Chinese Spring

grew to 100 cm, whilst heights of Paragon and Pavon 76 were 64

and 66 cm, respectively. Nduna, Kenya nyati and Kadzibonga had
heights of 55, 56 and 57 cm, respectively. It was observed that

amongst the BC1F3 introgression lines, 72% of the spikes had awns

Frontiers in Plant Science 10
replicates of the experimental site.

2 Block 3 Average

6.7 6.7

2.3 2.4

0.3 0.3

7.7 7.7

0.2 0.2

21 20.6

83.2 67.4

16 15.3

44 44.0

40 40.7

am Clay loam Clay loam
Spring, DH-348 and Kadzibonga had awnless spikes, while Pavon

76, Kenya nyati and Nduna showed awned spikes.

3.8 Correlation analysis
Grain Zn concentration positively and significantly correlated with

grain Fe (r = 0.72, P =<0.0001. and. However, grain Zn showed a weak

negative correlation with both TKW (r = -0.33, P<0.0001) and grain

yield (r = -0.25, P = 0.009). Grain Fe showed a weak positive correlation

with days to heading (r = 0.35, P< 0.0001), days to anthesis (r = 0.35,

P<0.0001) and days to maturity (r = 0.35, P< 0.0001). Correlation
correlated with both TKW (r = -0.39, P<0.0001), and grain yield

(r = 0.47, P<0.0001). TKW positively correlated with Grain yield

(r = 0.530, P<0.0001), and there were strong positive correlations

between days to heading, flowering and maturity (Table 6).

4 Discussion

The use of chromosome introgressions from distantly related or
concentration of essential elements is one of the approaches that

can be utilised to increase micronutrient concentration in crops

(Velu et al., 2019). Recently, high Zn wheat varieties developed from

crossing the wheat progenitor Ae. tauschii with T. durum/wild

tetraploid T. dicoccum via synthetic wheat, were released in Pakistan

and India (Singh et al., 2017; Velu et al., 2019). Screening of rye
shown to have potential for increased grain Zn and Fe above their

recurrent parents, and T. urartu, DH-254 and Am. muticum, DH-

348 showed the highest grain Zn and Fe concentrations (Guwela,

1117

1118

1119
while 28% were awnless. Among the checks, Paragon, Chinese
1120
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TABLE 4 Variation in grain zinc and iron concentration and associated grain yield, yield components and phenotypic and phenological traits of 37
Malawian wheat/DH-348and 11 Malawian wheat/DH-254BC1F3 introgression lines grown in 2022 winter season.
um
f t

(Continued)
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1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231
Genotypes

Grain
Zn
(mg
kg-1)

Grain
Fe
(mg
kg-1)

Grain
yield

(kg/ha)

Thousand
kernel

weight (g)

N
o

DH 348 108.6 95.8 729 35

BC1F3-30 84.9 87.3 724 25

BC1F3-10 76.9 55 2889 50

BC1F3-39 76.6 59.2 2778 50

BC1F3-13 75.9 76.7 1630 43

BC1F3-11 73.2 70.7 1091 40

BC1F3-27 73.1 66 2407 50

BC1F3-28 73.1 66 1222 42

BC1F3-34 67.1 48.1 4630 50

BC1F3-36 66.7 52 4148 50

BC1F3-38 65.7 49.9 3148 50

BC1F3-29 64.2 64 1014 40

Pavon 63.9 61.4 2148 50

BC1F3-20 63.8 60.3 2370 50

BC1F3-32 63.8 48.9 2333 50

BC1F3-42 63.3 48.9 1378 40

BC1F3-47 61 52.6 2630 42

BC1F3-40 60.8 47.7 3741 50

BC1F3-31 60.6 51.5 3037 50

BC1F3-37 60.4 51.5 4186 50

BC1F3-15 60.3 55.8 3037 50

BC1F3-18 59.9 51.2 3111 50

BC1F3-35 59.9 52.1 2326 49

BC1F3-16 59.7 53.4 2259 49

BC1F3-46 58.9 45.1 4556 50

BC1F3-53 58.2 53.5 1815 43

BC1F3-57 57.7 56.1 2815 50

BC1F3-41 57.2 61.2 1804 51

BC1F3-45 57 56.6 1259 49

BC1F3-49 56.8 45.6 4741 55

BC1F3-19 55.8 54.8 3481 50

BC1F3-9 55.7 51.4 3333 52

BC1F3-2 55.4 59.3 1148 55

BC1F3-33 53.5 56.3 2844 50

BC1F3-6 52.5 38.8 3259 50

BC1F3-3 52.4 52.7 2333 50
Frontiers in Plant Science 11
ber
illers

Plant
Height
(cm)

Days to
heading

Days to
anthesis

Days to
maturity

Spike
type

7 54 105 109 135 Awnless

8 60 119 123 149 Awned

5 55 67 71 97 Awned

6 62 72 76 102 Awnless

8 54 71 75 101 Awnless

7 80 92 96 122 Awnless

5 54 65 68 95 Awnless

8 85 110 114 140 Awnless

6 59 90 94 120 Awned

7 62 67 71 97 Awned

7 51 74 78 104 Awned

7 71 98 102 129 Awnless

6 66 73 77 103 Awned

4 45 66 70 96 Awned

6 62 67 71 97 Awnless

8 89 114 117 144 Awned

8 74 119 123 149 Awned

7 58 73 76 103 Awned

7 48 78 72 108 Awned

7 53 69 73 99 Awned

6 51 68 73 98 Awned

3 47 65 68 95 Awned

7 64 72 76 102 Awned

4 53 67 72 97 Awnless

6 68 72 76 103 Awned

9 73 119 123 149 Awned

5 67 68 72 98 Awned

7 70 73 77 103 Awned

8 80 119 122 149 Awned

8 61 68 71 98 Awned

5 46 81 84 111 Awned

5 58 77 81 107 Awned

5 77 72 76 102 Awnless

9 61 70 74 100 Awned

6 62 86 90 116 Awnless

6 74 81 85 113 Awnless
1232
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TABLE 4 Continued

Genotypes

Grain
Zn
(mg
kg-1)

Grain
Fe
(mg
kg-1)

Grain
yield

(kg/ha)

Thousand
kernel

weight (g)

N
o

BC1F3-60 52 56 1000 44

BC1F3-26 51.9 66.2 2617 50

BC1F3-1 51.9 57.2 2148 48

BC1F3-48 50.3 45.7 1688 50

BC1F3-52 50 45.5 2741 50

BC1F3-7 49.5 54.7 2778 50

BC1F3-51 49.2 38 3074 50

BC1F3-23 48.4 46.2 1815 42

Chinese spring 48.2 60.4 1222 48

BC1F3-21 47.4 53.4 2074 43

BC1F3-50 45 49 1556 50

BC1F3-17 44.4 517 3667 50

BC1F3-5 44.4 51.7 2962 50

BC1F3-54 43.2 51.7 815 45

Paragon 43 46.6 890 18

Kenya Nyati 42 43.1 3037 50

BC1F3-44 38.6 45.9 2852 51

Kadzibonga 35.8 53.2 3111 49

Nduna 35.3 41.3 3185 50

Grand mean 57.9 54.4 2448 47

P- Value <0.0001 <0.0001 <0.0001 <0.0001
2023; Guwela et al., 2024). The two lines were therefore selected for

the current study based on their high Zn and Fe concentrations.

To transfer the Am. muticum (TT) and T. urartu (AuAu)

introgressions, which potentially increased mineral nutrients,

from the DH lines into Malawian wheat varieties, hexaploid

wheat/Am. muticum DH-348 and hexaploid wheat/T. urartu DH-

254 were crossed with the three Malawian wheat varieties

(Kadzibonga, Nduna and Kennya nyati). A combination of whole

genome sequencing, KASP analysis and genomic in situ

hybridisation (GISH) revealed a 4T and a 7T segment of Am.

muticum on wheat chromosome 4D and 7A of Am. muticum DH-

348. Whole genome sequencing and KASP analysis also revealed

the presence of two 5Au segments on wheat chromosome 5A of T.

urartu DH-254. A crossing program for Am. muticum DH-348 and

T. urartu DH-254 with Kadzibonga, Nduna and Kenya nyati

resulted in the generation of forty-one Malawian wheat/Am.

muticum BC1F3 introgression lines with both the 4T and 7T

LSD (5%) 16.4 9.8 1455 8.5 3

CV% 17.4 11.1 20.2 11.1

Degrees of freedom (df) for replicates = 2, df for genotypes = 54.
The introgression lines have been ordered according to grain Zn (highest to lowest).
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ber
illers

Plant
Height
(cm)

Days to
heading

Days to
anthesis

Days to
maturity

Spike
type

7 73 94 98 132 Awned

10 43 123 128 153 Awned

5 52 72 76 102 Awned

5 82 67 72 97 Awned

3 49 65 68 95 Awned

6 68 89 93 119 Awned

6 58 65 69 95 Awned

3 53 70 77 103 Awned

13 100 87 91 117 Awnless

8 51 70 73 100 Awned

9 72 83 97 113 Awned

4 50 65 69 95 Awnless

6 63 89 93 119 Awnless

12 72 75 79 104 Awned

8 64 106 110 136 Awnless

6 56 69 72 99 Awned

7 67 72 66 103 Awned

3 57 81 85 111 Awnless

6 55 68 72 98 Awned

6 63 81 85 111
segments, 4T segments only, and 7T segments only. Eleven

Malawian wheat/T. urartu BC1F3 introgression lines with the 5Au

segment were also generated. The availability of high-throughput

genotyping technologies has enabled the process of tracking wild

chromosome segments in a wheat genetic background. Through a

combination of whole genome sequencing, KASP genotyping with

chromosome specific markers and GISH, a clear picture of the

genetic make-up of the donor parents was revealed. This made it

easier to track the chromosome segments though the

breeding pedigree.

The BC1F3 introgression lines carrying Am. muticum and T.

urartu chromosome segments in the three Malawian wheat genetic

backgrounds were phenotyped for grain Zn and Fe concentrations,

and related agronomic traits under field conditions in Malawi. Soil

samples collected at the trial site showed that the soils could be

classified as Zn-deficient (Noulas et al., 2018; De Groote et al.,

2021). Grain Zn concentration varied widely among the
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introgression lines, with 98% (47) of the lines showing a grain Zn

concentration above Chinese Spring, Paragon (the wheats in the

background of DH-348), and the three recurrent parents/Malawian

checks (Kenya nyati, Kadzibonga and Nduna), and 80% (38) of

these improved in grain Zn concentration up to 50% above

Kadzibonga and Nduna . Although 10% of the BC1F3

introgression lines had grain Zn between 70-80 mg kg -1, all of

them had lower yields than the potential yield of the three Malawian

checks (~3000 kg ha-1). However, one line (BC1F3-10) had a grain

yield only slightly lower (2889 kg ha-1) than the Malawian checks,

with a good combination of increased grain Zn and Fe

concentrations. The number of crosses could have affected total

grain yield of the introgression lines. Due to limited time, the two

DH lines had only been crossed twice to the Malawian genotypes.

Therefore, a quarter of the background of the introgression lines

was still Chinese spring/Paragon, which are not adapted to

Malawian conditions. Crossing the most promising lines four

more times with the Malawian wheat varieties to remove all

Chinese Spring/Paragon from the background will likely improve

their yields/agronomic performance. Previous studies have also

shown trade-offs between grain yield and grain Zn concentration

(Liu et al., 2014; Gashu et al., 2021; Velu et al., 2022; Hasheminasab

et al., 2023). Xia et al. (2023) suggested that improving agronomic

management, including appropriate N fertilization and rotation can

achieve high yield while ameliorating the dilution of grain Zn

density in wheat. A global meta-analysis of the effects of nitrogen

fertilization effects on grain Zn and Fe of major cereal crops also

revealed that trade-offs between grain Zn and Fe and grain yield

were higher at lower N application compared to higher N

application (Zhao et al., 2022). 23% of the introgression lines

(BC1F3-34, BC1F3-36, BC1F3-38, BC1F3-40, BC1F3-31, BC1F3-37,

BC1F3-15, BC1F3-46, BC1F3-19, BC1F3-9 and BC1F3-6) showed a

good combination of grain Zn concentration and grain yield. Grain

yield of these lines was similar or exceeded most of the local checks,

ranging from 3037 to 4630 kg ha-1, with Zn concentration ranging

from 53-67 mg kg-1, which represents a 16-30 mg kg-1 improvement

in grain Zn from Nduna and Kadzibonga and 11-25 mg kg-1 from

Kenya nyati, Paragon and Chinese Spring. Interestingly, 10 of the 11

lines were awned, with a maturity period between 97-120 days,

making them more suited to the SSA environments. Ten of the 11

lines carry either the 4T or 7T segments from Am. muticum, and

only one carries the 5Au segment from T. urartu. Although most of

the lines with the T. urartu had increased grain Zn concentrations,

most of them were long duration with yields much lower than the

Malawian checks. This could be an effect of the size of the 5Au

segment, carrying along genes that negatively affect the

performance of the introgression lines. During the period of

crossing, the T. urartu donor parent (DH-254) was shown to

have longer days to heading and flowering, which affected the

number of crosses made, as the heading and anthesis did not

coincide with that of the early maturing recurrent parents.

Among the 23% (11) high Zn, high yield introgression lines, 64%

(7) lines also had an 8-12 mg kg -1 higher Fe concentration than the

recurrent parents Nduna and Kenya nyati, although they did not hit

the HarvestPlus target for Fe biofortification in wheat (60 mg kg -1).

Of the 48 BC1F3 introgression lines, only nine lines reached ~60 mg

kg -1. However, the yields of the lines were much lower (< 2000 kg

ha-1) than the yields of the Malawian checks. Although previous

studies in wheat and other cereals have shown very low positive or a

negative correlation between grain Zn and Fe (Morgounov et al.,

2007; Joshi et al., 2010; Kanatti et al., 2014), this study showed a

significant positive correlation between the two variables implying

that the two can be improved simultaneously. Similar findings were

previously reported (Velu et al., 2011; Crespo-Herrera et al., 2016;

Velu et al., 2019; Thapa et al., 2022; Velu et al., 2022). The

significant negative correlations between grain Zn and TKW/yield

and Fe and TKW/yield implies that an increase in Zn and Fe

concentration is associated with decreased TKW and yields. Similar

results were reported previously (Velu et al., 2011; Liu et al., 2014;

Velu et al., 2019; Thapa et al., 2022; Velu et al., 2022). Liu et al.

(2014) showed that for every 1000 kg ha−1 increase in grain yield, Fe

concentration decreased by 2.1 mg kg−1 for spring wheat, and Zn

concentration decreased by 0.9 mg kg−1 due to dilution effects. The

positive weak correlation between grain Fe and Zn concentration

with crop phenological traits (days to heading, anthesis and

maturity) tends to be weak, suggesting near-independence of

these traits.

5 Conclusion

The results in this study show the possible significant impact of

the 4T and 7T introgressions from Am. muticum and the 5Au

introgression from T. urartu on the genetic biofortification of

Malawian wheat varieties particularly with higher grain Zn and

Fe concentration. Identifying candidate genes associated with the

high accumulation of grain Zn and Fe will be useful for future work.

Currently, sequencing of Am. muticum accessions and hexaploid

wheat/Am. muticum introgressions lines are being undertaken at

FIGURE 6

Q14 Correlation coefficients for grain mineral-elements and phenotypic
and phenological data of 37 Malawian wheat/Am. muticum and 11
Malawian wheat/T. urartu BC1F3 introgression lines grown in 2022
winter season. G Zn, grain zinc; G Fe, grain iron; NT, number of
tillers; DH, days to heading; DF, days to flowering; PH, plant heigh;
TKW, thousand kernel weight; GY, grain yield.
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the University of Nottingham WRC. These will play a major role in

gene identification. Further testing of introgression lines in

replicated and multi-location trials will also be useful to measure

stability, heritability, yields and other important agronomic traits.

To date, early trait analyses of a small selection of lines carrying

different Am. muticum and T. urartu introgressions have already

revealed critical genetic variation for a range of traits. These include

resistances to a range of diseases including all three wheat rusts in

Am. muticum (Fellers et al., 2020), Septoria resistance and powdery

mildew resistance, flowering morphology, and increased yield.

These initial pilot experiments indicate the significant potential of

the genetic variation that is carried by these wild relatives for future

wheat improvement.
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