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1 | INTRODUCTION

Renji Remesan?

| Somsubhra Chakraborty? | Adrian L. Collins®

Abstract

The need to control soil erosion has received increasing attention, but quantitative
data on the sources of suspended sediment in many river-reservoir systems is still
lacking. The goal of this research was to compare the application of spectroscopic
[mid-infrared (MIR)] and mineralogical [X-ray diffraction (XRD)] fingerprints for
assessing relative sediment source contributions from different land use groups (agri-
cultural lands, forests and human settlements) in the Konar-Damodar river-reservoir
system in India. Source apportionment was estimated using partial least square (PLS)
regression for spectroscopic tracers (MIR) and the Bayesian MixSIAR model for min-
eralogical tracers. Both methods identified differences between the pre- and post-
monsoon sediment contributions of forests (overall contribution bounds of ~35-
43%). During monsoon seasons, both fingerprinting methods indicated agricultural
land use as the primary source of suspended sediment. Although there were some
temporal variations in the predicted contributions of the land use sources, the MIR-
PLS and mineralogical-MixSIAR methods produced comparable ranges. The respec-
tive variations in contributions, using MIR-PLS and mineralogical-MixSIAR, were
~31 to 66% compared with ~36 to 61% for agricultural lands, ~21 to 43% compared
with ~15 to 39% for forests and ~16 to 37% compared with ~19 to 32% for human

settlements.

KEYWORDS
mineralogical fingerprints, MIR-PLS regression, MixSIAR, river-reservoir, sediment source
tracing, spectroscopic fingerprints, uncertainty

Sediment can indeed be both a pollutant and a natural component of

the catchment system, serving essential ecological functions while

Accelerated soil erosion and sediment delivery are considered one of
the major concerns in all river basins globally due to adverse on-site
and off-site consequences (Das et al., 2022). The on-site conse-
quences include (i) decreased soil productivity due to removal of top-
soil, (i) reduction in the ability of soil to store water, (iii) exposure of
subsoil with poor physical and chemical properties, (iv) loss of newly
planted crops and (v) siltation in low lying areas (Schoorl &
Veldkamp, 2001). Suspended sediment is among the most common
pollutants in streams, rivers and lakes (lssaka & Ashraf, 2017).

also posing environmental challenges. The most adverse off-site
effects of sediment in water bodies include (i) damage to aquatic
biota, (ii) loss of reservoir storage capacity and (iii) degraded function-
ing of navigation routes and hydraulic structures. Therefore, reliable
quantitative information on suspended sediment sources is required
for implementing effective mitigation strategies (Collins et al., 2017).
The Chota Nagpur plateau is recognised as one of India's most
vulnerable areas to water-driven soil erosion due to its predominantly
water-eroded laterite soil. Soil degradation in this region is driven by
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geological formations of granite gneiss, underdeveloped soil profiles,
undulating plateau topography with occasional hills and anthropo-
genic factors such as ongoing agricultural expansion, excessive
groundwater extraction and irrigation (Mahala, 2017). Changes in land
use, deforestation and inadequate soil and land management practices
have further increased the region’s susceptibility to soil erosion
(Mahala, 2018). The study reported herein was conducted on a repre-
sentative catchment of the Chota Nagpur plateau (i.e. the Konar River
catchment).

Recently, significant attention has been directed towards using
physical models to address sedimentation issues. For example,
Das et al. (2019) discussed future directions for sediment distribution
and transport modelling in river-reservoir systems. Comprehensive
reviews in the literature highlight the growing application and scope
of sediment source fingerprinting (Collins et al, 2017, 2020;
Guan et al., 2017; Koiter et al., 2013; Owens et al., 2016;
Smith et al,, 2013). Although sediment distribution and transport
models, such as USLE and its modified versions, EROSION-3D, WEPP
and many others (Pandey et al., 20162016), are advancing, they often
lack the ability to evaluate the proportional yield contributed by vari-
ous sediment sources. Despite these technological advancements, the
literature increasingly emphasises the need for direct methods (Collins
et al., 2017). Few methods can directly identify, differentiate and
quantify unique sediment sources in a catchment with minimal prior
information, such as expert knowledge and semi-quantitative data
(Davis & Fox, 2009). Sediment fingerprinting is a powerful technique
used to identify and quantify the sources of sediment within a catch-
ment. This method is advantageous in terms of using prior knowledge
about catchment characteristics (i.e. land use, soil types, geology and
topography) and erosion sources to guide sampling and the interpreta-
tion of results. By analysing the unique properties of sediment from
various potential sources, source fingerprinting can be used to trace
the origins of sediment found at the catchment outlet (Collins et al.,
2020). Critically, sediment source fingerprinting links the sampled tar-
get sediment directly to the key sources without the need to explicitly
quantify the intervening parts of the fine sediment delivery cascade
and transportation to river channels (Collins et al., 2017).

The factors influencing soil erosion and sediment transport
include inherent controls such as geology, geomorphology and pedol-
ogy. In addition, sediment generation and transport are influenced by
extreme weather, runoff patterns and human-induced land use
change.

Discrimination of potential sediment sources has been accom-
plished using various combinations of properties or tracers. Tech-
niques such as spectroscopy have been utilised to distinguish
sediment sources based on their spectral characteristics. For instance,
studies by Ni et al. (2019) and Tiecher et al. (2017) demonstrated how
variations in spectral data can reveal differences in sediment origins.
Geochemical analysis identifies unique chemical signatures of sedi-
ments from different sources. This method, used by Bahadori et al.
(2019) and Nosrati and Collins (2019), leverages the distinct geochem-
ical fingerprints that different environments impart on sediments. The
mineral composition of sediments provides distinguishing features for
source discrimination. Research by Sisinggih, Sunada and QOishi (2006)
and Srivastava, Khare and Ingle (2011) highlighted how mineralogical
profiles can effectively differentiate sediment sources. Radiometric

tracers, such as isotopic signatures, have been used to trace sediment

origins. Studies by Kim et al. (2013) and Nauvratil et al. (2012) utilised
radiometric properties to provide insights into sediment provenance.
Biological markers, including DNA and other biological residues, have
the potential to differentiate sediment sources. Kraushaar et al.
(2021) explored how biological properties can offer unique identifiers
for sediments from various sources.

Similarly, different mixing model structures have been used for
source apportionment studies for generating relative proportional
quantification of sediment sources. Research by Collins et al. (2017,
2020) and Habibi et al. (2019) applied these models to accurately
attribute sediment to its sources. Explicit estimation of uncertainties
associated with the results is crucial for robustness and reliability.
Gaspar et al. (2019) emphasised the importance of incorporating
uncertainty estimation to enhance the credibility of source apportion-
ment findings. By integrating these diverse properties and advanced
modelling approaches, researchers can effectively identify and quan-
tify sediment sources, providing valuable insights for catchment man-
agement and sediment control strategies.

Although most previous fingerprinting studies have used geo-
chemical fingerprints to determine sediment sources (Wadman
et al., 2017), the use of spectroscopic approaches has gained atten-
tion. Conversely, some initial studies showed that traditional finger-
prints give more reliable results than spectral fingerprints (Tiecher
et al., 2015), more successful spectroscopic fingerprinting studies
have been conducted focusing on aspects including discrimination of
land use classes, sub-catchments and lithological units in drainage
basins (Legout et al, 2013; Poulenard et al, 2012; Tiecher
etal., 2017).

The application of mineralogical fingerprints for tracing sediment
sources is a traditional qualitative method for sediment source appor-
tionment (Ramon et al, 2020; Rowntree, van der Waal, &
Pulley, 2017). Mineralogical fingerprints are based on a unique set of
mineralogical characteristics or profiles that can be used to identify
the origin of sediment. These fingerprints are based on the specific
minerals present in the sample, their relative abundances and their
physical and chemical properties. Soil erosion from different land use
types varies significantly due to their distinct physicochemical proper-
ties. Consequently, XRD analysis for mineralogical characteristics can
be utilised to differentiate the relative contributions of various land
use classes to sediment samples. Although the application of XRD
spectroscopy to understand land use-related sediment dynamics in
catchments is limited, this study aimed to investigate the influence of
major land use classes (Das et al., 2023). There is a huge potential pro-
vided by the spatial and profile variability of soil mineralogy for con-
ducting fingerprinting studies, as minerals constitute ~70% of river
sediments by weight (Hillier, 2001). Mineralogical fingerprinting stud-
ies using commonly found minerals in soil such as quartz, mica, feld-
spar and calcite have been conducted and established satisfactory
links between sources and target sediments (Eberl, 2004; Nath
et al., 2007). The Damodar River basin is one of the mineral-rich areas
of India, consisting of granites and granitic-gneisses of the Archeans,
sandstones and shales of the Gondwanas and recent alluvial deposits
(Singh et al, 2005). The Konar River catchment situated in the
upstream portion of the basin consists of granites comprising quartz,
mica and feldspar (Singh & Hasnain, 1999). The diversity of minerals
in this study catchment therefore justifies the application of mineral-

ogical fingerprinting to discriminate the sources of sediments therein.
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Here, reliable variations in soil mineralogical composition due to dif-
ferent land uses have been found (Jeong, 2001), which further sup-
ports its application in sediment source fingerprinting.

Although other researchers have employed spectroscopic and
mineralogical fingerprinting methods to establish relationships
between target suspended sediment samples and their sources, a
comparative study is still lacking in this context. Only a few studies
have used more conventional geochemical methods to assess the
results of spectroscopic analysis (Ni et al, 2019; Verheyen
et al., 2014). There are comparative studies conducted on land use
classes with both spectroscopic and conventional geochemical tracers,
which have reported some disparities in the results (viz. Ramon
et al., 2020; Verheyen et al., 2014), whereas studies including those
by Tiecher et al. (2017, 2016) found the two approaches to be in good
agreement. Here, explicit consideration of different mineralogical
groups (viz. bulk minerals, clay minerals and heavy minerals) for such
comparisons can also provide crucial information on sediment sources
(D’Haen, Verstraeten, & Degryse, 2012).

Based on the above context, our research herein aimed to deter-
mine whether the sediment fingerprinting technique can effectively
distinguish between different land uses that contribute to sedimenta-
tion. The major assumptions of our sediment fingerprinting study
were as follows: (1) potential sediment sources (i.e. the land use clas-
ses) can be discriminated based on composite spectral and mineralogi-
cal signatures obtained from MIR and XRD spectroscopy; (2) these
properties determined for both sources and target reservoir sediments

provide a robust basis for apportioning the contributions of the land
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use classes to the sampled target sediment; and (3) the spectral and
mineralogical tracers exhibit conservative behaviour because they
retain their unique signatures from their source areas without under-
going significant alteration during transport and deposition. This tracer
conservation is crucial for accurately identifying and differentiating
sediment sources in sediment fingerprinting studies.

An important aspect of any sediment fingerprinting study is the
selection of mixing models. The combination of partial least square
(PLS) regression with spectroscopic methods is very well established
(Legout et al., 2013; Poulenard et al., 2012, 2009) and the application
of Bayesian models for quantitative unmixing of sediment sources
using geochemical tracers has also received very wide attention in
recent decades (Cooper et al., 2015; Huangfu et al., 2020). Hence, the
specific objectives of this study were to explore (1) the applicability of
spectroscopic and mineralogical tracers for discriminating land use
classes based on sediment contributions and (2) the potential of PLS
and Bayesian modelling techniques combined with spectroscopic and
mineralogical tracers, respectively, to quantify land use source contri-
butions in different seasons.

2 | MATERIALS AND METHODS

The key stages in the methodology adopted in this study are
summarised into six main steps in Figure 1. Both modelling techniques
(PLS regression for spectroscopic tracers and Bayesian mixing

modelling—MIixSIAR; Stock & Semmens, 2018) for mineralogical

Sediment
source
identification

’ Sediment
Composite sampling
sampling (soil) (water)

Oven drying Centrifuged

+ +
Sieving filtration
MIR- | . | X-Ray
Spectroscopy diffraction

5-fold method, 5-fold method,

Holdout Holdout
method method
(PCA-DA) (LDA)
Laboratory Kw :357
mixtures
S — ___DFA )
Selected
MIR- mineralogical
spectroscopy tracers
Bayesian
PLSR model Inference Mixing
development model with
and moderately
performance informative prior
\__evaluation / (MixSIAR)
Model
prediction and
comparison

8508017 SUOWIWIOD A 81D 8|edl|dde sy Ag peusenob a1 Sejoiie YO ‘8sn J0 Sa|nJ 10} Aeid 1T 8ulUO AB|IM UO (SUONIPUOI-PUR-SWIR)W00" A8 [ Ale.q 1 pul|uoy//:Sdny) SUoNIpUOD pue swie | 8y 8es *[7202/60/2T] Uo Arid18uluO A8|IM ‘Uolessay persweyioy Aq 2,65 dse/z00T 0T/I0p/wod" A8 m Aelq puljuo//:sdny wo.j pepeojumod ‘0 ‘2E86960T



DAS ET AL

* I WiILEY- I

tracers were evaluated using laboratory mixtures and informative

priors.

2.1 | Study area

This study was conducted in the Konar reservoir (990 km?) catchment
(23°51/23"N-24°8/26"N and 85°14'32"E-85°47'10"E) in Jharkhand,
India, which is upstream of the Damodar River. The sedimentation
rate in Konar has been estimated at 1.12M m3/year (Kumar,
Raghuwanshi, & Mishra, 2015). The terrain of the region is very
diverse in terms of topographical features, whereas the elevation and
the land use are shown in Figure 2. Land use (Figure 2b) can be classi-
fied into three major classes (agricultural lands 37%, forests and

shrubs 45% and human settlement areas 18%) and several minor
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FIGURE 2
sampling locations. (d) Soil map of the Konar catchment.

TABLE 1 Land use classes and their descriptions.

Land use class Description
Agricultural The land engaged in agriculture. It 37%
lands covers the rain-fed and irrigated
cultivated lands along with fallow lands.
Major crops grown are paddy maize,
cereal and wheat.
Forests These lands mainly consist of dense and  45%
light forests along with grasslands.
Forests are mostly tropical and
deciduous.
Human These lands consist of urban and rural 18%
settlements areas dominated by houses, mines,

paved roads, industrial areas and
transportation services.

classes (e.g. fallow lands and grasslands). The prevalence of agricul-
tural lands, forests and human settlements alongside minor categories
like fallow lands, channel banks and waste lands in this catchment
complicates the identification of sediment sources. In addition to the
minor land use classes like fallow lands and wastelands detailed in Das
et al. (2022), channel banks can represent significant sediment
sources, as supported by previous sediment fingerprinting studies
(Smith & Blake, 2014). However, the presence of forests and grass-
lands covering most of the channel banks in the study catchment
poses a challenge in distinguishing between sediment sources. To
tackle this challenge, all minor land use classes were merged into
major ones, streamlining the source discrimination process (Das
et al., 2023). The catchment comprises deciduous and tropical forests
and the farmers rely on rain-fed agriculture. Detailed descriptions of

the land use classes are provided in Table 1. The forest areas mainly
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Sub-classes information Soil class distribution

Around 50% of the agricultural lands
are rain-fed and 30% are irrigated. The
remainder of the lands in this class are
fallow lands, cultivated in certain
seasons and certain years.

Most of the agricultural
areas (~44%) are situated
on lithosols and ferric
luvisols (~31%).

Around 40% of the forests consist of
dense vegetation, and 30% of the land
is covered by light and scattered
vegetation. The remainder is covered
by grasslands.

Forests in the catchment
are mostly situated on
ferric luvisols (44%),
followed by lithosols
(34%).

Most of the human
settlement areas are
situated on eutric nitosols
(51%) followed by
lithosols (27%).

Nearly 45% of the human settlements
are rural, 30% of this class are urban
and the remainder are mining and
industrial areas.
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FIGURE 3 Images of agricultural and forest lands in the Konar study catchment. (a, b) Terrace farming practices in the region. (c, d) Dry and
mixed deciduous forests in the region. (e, f) Human settlements in urban and rural areas of the region.

consist of dry tropical and mixed deciduous forests (Figure 3c,d).
Recent land management practices in this region have resulted in a
declining deforestation rate (i.e. ~10% in 2001-2010 to ~3% in 2010
to 2020) (Das et al., 2022). Major crops include rice, groundnuts and
maize in the monsoon season and wheat, mustard and other vegeta-
bles in the non-monsoon period. Terrace farming is used in agricul-
tural areas due to the uneven and steep terrain (Figure 3a,b). This
region consists of human settlements with urban areas with dense
settlements and rural areas with sparse settlements (Figure 3e,f).
Although terrace farming practices reduce rain-induced soil erosion,
compared to agricultural fields on bare slopes, they can still generate
more sediment than other land use classes such as forests and human
settlements. Three types of soils are present, that is, lithosols (46%),
ferric luvisols (38%) and eutric nitosols (16%) (http://www.fao.org/
soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-

map-of-the-world) (Figure 2d). The presence of lithosols in the catch-
ment soil implies that the climate is humid to arid (de Medeiros
et al., 2019). Lithosols are not very suitable for agricultural practices
due to their rocky texture. However, ferric luvisols and eutric nitosols
have higher water-holding capacity and are more appropriate for agri-
culture. Ferric luvisols are rich in oxides of iron and alumina giving a
distinct red colour, which provided a basis for the mineralogical finger-
printing in this study. Humidity ranges from 40% to 95%, with a tem-

perature variation of 3°C to 44°C. The catchment receives an annual

rainfall of 1250 mm and 80% occurs from July to September. This wet

period delivers a considerable amount of sediment to the reservoir.

2.2 | Source and target sediment sampling

A total of 63 sampling sites (Figure 2c) were selected to characterise
the potential sediment sources in different parts of the study catch-
ment [25, 22 and 16 from agricultural land, forests and human settle-
ment areas, respectively (Supplementary Table S1)]. Each sampling
site was selected to represent an area of nearly 12-18 km?. At each
sampling site, composite sampling was undertaken to account for the
variations in the erodible soil layer characteristics by mixing three to
four sub-samples in a radius of 100-500 m, depending on the acces-
sibility of the locations (Collins et al., 2017). The soil samples (0-5 cm
depth) from potential sources were collected using a non-metallic
trowel (Tiecher et al., 2017). The trowel was washed thoroughly after
each sampling to avoid contamination. The source soil sampling was
conducted in a single campaign, given that the lithological properties
of the area are conservative. For each season, three target
suspended sediment samples each of 2-L volume were collected from
a depth of 0-10 cm from the reservoir inlet (Wang et al., 2019), and
high-density polyethylene bottles were used to store the bulk sedi-

ment samples.
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The sediment samples were centrifuged and filtered to separate sedi-
ment for spectroscopic and mineralogical analysis. The soil samples
were oven-dried for 12 h (Tiecher et al., 2017) and sieved through a
63-um sieve to separate silt, clay and fine sand fractions (Bahadori
et al,, 2019). For assessing the accuracy of the MIR-PLS regression
models, 30 laboratory mixtures were prepared with different ratios of
source soil samples (Supplementary Figure S2). The MIR spectra
of the samples were measured on KBr pellets (comprising ~1 mg of
sample mixed with 200 mg of FTIR grade KBr) at wavelengths span-
ning 400-4000 cm™? using a NICOLET 6700 (Thermo Fisher Scien-
tific Instruments) FTIR spectrometer in reflection mode (2-cm™?!
resolutions for all the sediment and soil samples with 32 scans per
sample in triplicate). The spectra obtained from the pellets were
corrected with respect to the pure KBr pellets and ambient air. Three
spectral pre-treatments were used: Savitzky-Golay filter baseline cor-
rection, first derivative and multiplicative scatter correction (Ni
et al,, 2019).

All soil and sediment samples were also analysed using X-ray dif-
fraction. Here, the spectra were measured in triplicate in the range of
10 to 80 degrees using a Bruker D2 phaser XRD system. The spectra
obtained from XRD contain several peaks (~400 peaks) for different
minerals, which were further analysed using the Xpert Highscore soft-
ware to obtain the representative mineralogical composition by mass

of the samples.

24 | Discrimination potential of spectroscopic and
mineralogical tracers

The uncertainty due to the collection of a limited number of soil sam-
ples in representing the heterogeneity of the study catchment was
examined using ‘K-fold’, ‘Holdout’ and leave-one-out (LOO) cross-
validation methods. The K-fold cross-validation was executed using
five folds of the sample data, and the ‘Holdout’ method was per-
formed by partitioning 30% of the data for testing. The MIR spectral
variables of the 63 soil samples from the three land use classes were
analysed using PCA-DA to test the discrimination potential and obtain
the misclassification rate of the source samples (Equation 1):

X11 - Xin a1 2

o | f1—22 (1)

Xe31 -+ Xean hi-15

(a = agricultural samples, f = forest samples, h = human settle-
ment samples, n = 1869 spectral variables)

X3, 1 = variable 1 of spectral data of Sample 1.

For successful sediment source discrimination and apportion-
ment, the input tracer data need to be conservative (i.e. no substantial
change during transport between source and target sediment sam-
pling location) and informative (i.e. how well it can differentiate
between the individual sources) (Upadhayay et al., 2017). Mixing
models consider that the mixing of sediment from the potential
sources is homogeneous. Therefore, to differentiate between the indi-

vidual sampled sources, the tracers should fall in the range of

credibility. Considering the mineralogical composition of the source
soil samples for the respective classes (Equation 2), the samples were
cross-validated with all the tracers using linear discriminant analysis
(LDA). The misclassification rate was determined to evaluate the

source discrimination potential of the tracers:

Yie - Y a1-26
: .| fi—22 (2)
Ye31 -+ Yesp hi-1s

Y1, 1 = proportion of mineral 1 in Sample 1.
p = number of minerals used in the study.

2.5 | Source apportionment using mineralogy-
MixSIAR mixing model

Unmixing of sediment samples was carried out to determine the pro-
portional contribution of the individual sediment sources (i.e. land use

classes):

X=3"7 o (3)

X = tracer composition of the mixture.

as = tracer composition of sources.

s = proportional contribution of tracer in source s.

For multiple tracers, the generalised equation is formulated as
Equation 4:

X= Zfzian,s Prns 4)

n = number of tracers.

The MixSIAR R package was used for source apportionment
(Parnell et al., 2013) with the following values for our Markov chain
Monte Carlo settings: number of chains = 3,
chain length = 3,000,000, burn = 1,500,000, thin = 500. This open-
source R software package, MixSIAR was developed by researchers
taking into account some important considerations for source finger-
printing, including taking explicit account of (i) hierarchical structure,
(i) uncertainty in the means and variances of source data,
(iii) covariance in tracer values and (iv) covariates in the mixing model
(Stock & Semmens, 2018). The efficiency of Bayesian sediment finger-
printing models has been reported elsewhere (Cooper et al., 2015;
Gateuille et al., 2019; Gholami et al., 2017).

To check the potential of the tracers for discriminating the sedi-
ment sources, a range test followed by a Kruskal-Wallis (KW) test
(p < 0.01) was performed (Collins et al., 2017). As a result, a set of
minerals was selected to execute the mixing model. To analyse the
ability to discriminate between the source mineralogical signatures, a
discriminant function analysis (DFA) was carried out using the statisti-
cal 13.4 software. DFA is mainly performed to determine the ability of
the tracers to discriminate between two or more groups. Finally, the
selected tracers were applied in the Bayesian mixing model for

the apportionment of the sources (i.e. land use classes).
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TABLE 2 Results indicating variation (mean and standard deviation) of mineralogical tracers in the three land use classes in the Konar

catchment as obtained from XRD analysis.

Agricultural lands (%)

Minerals Mean SD
Quartz 34.88 7.66
Silica 29.63 7.12
Alumina 9.85 5.56
Halite 8.12 4.07
Calcite 7.82 521
Green cinnabar 6.85 3.36
Bornite 3.03 245
Fluorite 1.02 0.67
Silicon 0.92 0.4
Mica 0.69 0.32
Burnt ochre 0.09 0.13
Dolomite 0.07 0.019

Forests (%) Human settlements (%)

Mean SD Mean SD

29.88 4.85 34.36 8.16

31.11 9.85 24.85 12.8

11.23 4.88 7.63 5.25
6.89 5.88 7.12 4.12
5.63 5.01 5.03 4.23
5.67 2.67 6.1 4.8
3.65 1.68 3.22 1.25
0.87 0.53 2.01 1.27
0.45 0.48 0.81 0.23
0.51 0.37 0.46 0.11
0.49 0.1 0.03 0.06
0.48 0.03 0.025 0.06

TABLE 3 Variation of mineralogical tracers in the sediment samples collected from the reservoir.

Sampling Mean/ Quartz Silica Alumina Halite
timescale SD (%) (%) (%) (%)
July 2018 Mean 33.48 28.03 5.47 7.20
SD 2.21 1.32 0.55 231
August 2018 Mean 35.67 29.33 3.67 8.67
SD 4.51 1.53 1.53 2.08
October 2018 Mean 41.33 36.67 7.00 2.67
SD 1.53 2.08 4.36 2.52
December 2018  Mean 35.00 27.00 13.17 3.00
SD 6.24 3.46 0.76 1.00
March 2019 Mean 37.47 29.10 11.07 1.67
SD 3.14 4.75 2.90 0.58
June 2019 Mean 37.23 36.17 1.36 6.13
SD 0.75 0.76 0.21 0.06

Prior information about the study catchment was used with the
Bayesian mixing model framework. Here, the Dirichlet distribution is
most widely applied for informative priors (Stock & Semmens, 2018).
The proportion of area covered by the individual land use groups was
used as an informative prior vector (« = 45, 37 and 18 for agricultural
lands, forests and human settlements, respectively) in this analysis. To
avoid skewing the model results, the priors were scaled using

Equation 5:

am = k"k/z:,qk (5

m = respective source,

k = rescaling factor (considered 5 for this study).

ne = (%) area covered by respective land use classes.

Based on Equation 5, the improved moderate prior vectors were
estimated: 2.25 for agricultural lands (45%), 1.85 for forests (37%) and
0.9 (18%) for human settlements (Supplementary Figure S3).

Calcite Green cinnabar Mica Bornite Dolomite

(%) (%) (%) (%) (%)

11.97 371 2.63 10.01 6.19
1.90 3.74 2.66 0.39 1.99

15.00 2.33 1.65 3.67 7.46
3.00 2.52 1.79 3.06 1.79
7.00 433 3.07 0.00 2.30
5.57 0.58 0.41 0.00 217
8.33 5.67 4,03 4.67 2.58
2.52 2.08 1.48 1.53 0.86
3.33 12.07 8.57 2.33 1.44
1.15 1.05 0.75 321 0.50

11.69 1.79 1.27 4.29 5.27
0.50 0.06 0.04 0.18 0.05

2.6 | Source apportionment using spectroscopy-

PLS regression mixing model

In spectroscopic studies, PLS regression is applied as a multiple
regression approach for predicting a dependent variable from a set of
predictor variables. In this method, the scores of variables are selected
to maximise scores between the correlations within the variables. The
main difference between PCA and PLS regression is that the scores of
the variables are not selected based on preserving the maximum cor-
relation between the variables (Long, 2013). In this study, the PLS
regression model was used to predict the source contributions by
decomposing both the predictor and dependent variables.

Three PLS regression models were entrenched to predict the con-
tribution of the land use classes to the target sediment samples. The
number of PLS variables selected for model calibration and validation
was decided based on the lowest root mean square error of cross-
validation (RMSECV). The PLS regression method was used to analyse

the MIR spectra of the laboratory mixtures (x variate) and the

8508017 SUOWIWIOD A 81D 8|edl|dde sy Ag peusenob a1 Sejoiie YO ‘8sn J0 Sa|nJ 10} Aeid 1T 8ulUO AB|IM UO (SUONIPUOI-PUR-SWIR)W00" A8 [ Ale.q 1 pul|uoy//:Sdny) SUoNIpUOD pue swie | 8y 8es *[7202/60/2T] Uo Arid18uluO A8|IM ‘Uolessay persweyioy Aq 2,65 dse/z00T 0T/I0p/wod" A8 m Aelq puljuo//:sdny wo.j pepeojumod ‘0 ‘2E86960T



DAS ET AL

* IwiLEY-IZ3"

contribution from the land use classes (y variate). The model perfor-
mances were evaluated using statistical indicators: that is, RMSECV,
root mean square error of calibration (RMSEC), root mean square
error of prediction (RMSEP), coefficient of determination (R?) and
Nash-Sutcliffe efficiency (NSE) (Tiecher et al., 2017).

3 | RESULTS

31 |
tracers

MixSIAR model based on mineralogical

The main minerals detected in the source and target sediment sam-
ples were quartz, silica, alumina, halite, calcite, green cinnabar, bornite,
fluorite, silicon, mica, dolomite and burnt ochre. The variation of the
minerals in the soil samples is depicted in Table 2 and sediment sam-
ples in Table 3. Based on the range test (Figure S4), dolomite and mica
were rejected as tracers for the analysis due to the lack of

conservation.

TABLE 4 Results of the Kruskal-Wallis (KW) test to identify
significant mineralogical tracers in the Konar study catchment.

H-value (>28.13)

From the KW test results in Table 4, it can be seen that fluo-
rite, silicon and burnt ochre failed to provide robust source discrimi-
nation. The results of DFA illustrated that minerals present in the
source soil samples discriminated the land use classes more effi-
ciently than spectroscopic variables (Figure 4). From the posterior
distributions of sediment source contributions for July, August and
March (Figure 5a,b,e), it can be observed that the major contributor
of sampled sediment was agricultural lands. In contrast, the contri-
bution of forests was dominant in June (Figure 5f). Moreover, we
checked the applicability of the MixSIAR with the artificial mixtures
(Figure S5).

3.2 | PLS regression models based on MIR spectra

The sediment samples collected from the reservoir were subjected to
particle size analysis and based on the mean particle size distribution
of the sediment samples (shown in Figure S1), 95% of the particles
were found to be silt and clay (i.e. particle size range of <63 um). The
MIR reflectance spectrum of soil depicts the presence of minerals and
organic compounds in different forms. The detailed information of dif-
ferent bonds corresponding to different peaks has been reported in
several publications (Ni et al., 2019; Tiecher et al., 2017). Figure 6
shows pronounced variations in the spectral features of soil from the
different land use classes, including in the characteristics peaks of C-
H stretch (3500-3000, 3000-2800, 2250 and 2133 cm™?), O-H
stretch (3694, 3620, 1628 and 915 cm 1), mixture of C-H, O-H and
N-H stretch and Si-O stretch (1975, 1872, 1158, 1110, 810, 790
and 698 cm™Y) (Tiecher et al., 2017). The variations in carbonate
peaks in the soil samples depict the presence of loess. The carbonate
peaks are stronger in forest soil than the other two classes of land use
in the Konar River reservoir system. The peaks in the range of the
non-organic range are comparatively lower in the forest source sam-
ples than in the other two classes of land use. The discrimination
potential of the MIR spectra for the soil samples collected from differ-
ent land uses was determined based on the results of PCA-DA. The

>

3e¥ |

Tracers *(test static) p-value (<0.01)
Quartz 38.530 0.0001
Silica 31.980 0.0003
Alumina 32.950 0.0009
Halite 28.290 0.0028
Calcite 29.776 0.0056
Green cinnabar 30.757 0.0004
Bornite 34.029 0.0002
Fluorite 17.160 0.0098
Silicon 3.788 0.1532
Burnt ochre 9.060 0.1270
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O
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FIGURE 4 Results of DFA conducted on the mineralogical composition of the source samples collected to represent the land use classes in

the Konar study catchment.
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PCA analysis indicates five principal components explained ~90% of
the variance in the data (Figure S6). LDA was performed on these five
principal components for the three land use classes (Figure 7).

Although, from Figure 7, it can be seen clearly that there are some

2890 2390 1890
wavenumbers (cml) 1618

overlaps between the forest and agricultural soil spectra, discrimina-
tion between the three land uses is still evident. One possible reason
for this overlapping of forest and agricultural source samples could be

the presence of light vegetation and the merging of minor classes
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FIGURE 7 Results of PCA-DA analysis conducted on the MIR spectra of the land use classes using the first five principal components.

TABLE 5 Performance evaluation of the MIR-PLSR models based on spectroscopic variables.

Sources PLS components RMSECV (%) RMSEC (%) RMSEV (%) R? NSE
Agricultural lands 5 421 2.86 2.72 0.89 0.76
Forests 5 3.89 2.14 2.93 0.87 0.74
Human settlements 5 4.26 3.71 3.79 0.82 0.71
0.7 T 0.7 T 0.7

o |@ (b) (c)
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FIGURE 8 Results of the MIR-PLSR modelling showing the agreement between the actual (i.e. known using artificial mixtures) and predicted
proportions of the land use sources sampled in the Konar study catchment: (a) agricultural lands, (b) forests and (c) human settlements.

including fallow lands or grasslands into the agricultural and forest
classes, respectively.

The set of 30 artificial mixtures created in the laboratory was
used to examine the performance of the MIR-PLS regression models
(Poulenard et al., 2012; Tiecher et al., 2017). Based on the lowest
RMSECYV values, five PLS components were selected for the agricul-
tural, forest and human settlement models (Table 5). Figure 8 shows
the agreement between the actual and the predicted contributions of
the land use classes based on the set of 30 artificial laboratory mix-
tures. The variations between observed and predicted source contri-
butions in the calibration and validation datasets, based on RMSEP
and RMSEV, were consistently less than ~4%, with an R? exceeding
~0.8 and NSE values ranging between 0.71 to 0.76. The correlations

(Table 5) between actual and predicted proportions were higher for

the agriculture and forest sources (R? of 0.89 and 0.87, respectively)

but weaker for the human settlement source (R? of 0.82).

3.3 | Comparative inspection of the modelled
source proportions

The predicted contributions of the land use classes from both models
are compared in Figure 9a. The results indicate that agricultural land
use is predicted to be the largest contributor of sediment (~41% to
~60%) during monsoon months (July-August) by both models. How-
ever, there are disparities in the estimated contributions of forests
and human settlement areas. During the post-monsoon months

(October-December), the results reveal a sudden increase in the
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FIGURE 9 (a) Box plots, with 95% confidence intervals, showing the comparison of spectroscopic and mineralogical tracing results in the

Konar study catchment using MIR-PLSR and mineralogy-MixSIAR modelling. (b) Sum of predicted contributions for the MIR-PLSR and

mineralogy-MixSIAR modelling.

TABLE 6 Results of cross-validation for the spectroscopic and mineralogical tracers.

Misclassification rate

Type of No. of Model K-fold cross-validation
variables variables used (K=5)

Spectral (MIR) 1869 PCA-DA 0.23

Mineralogical 10 LDA 0.19

sediment contribution from forest areas (~35% to ~43%) and a
decrease in agricultural lands. The results of both modelling
approaches, in general, showed good agreement. The sum of predic-
tions of the models varies between 94% and 102% for MIR-PLSR and
96% and 111% for mineralogy-MixSIAR model (Figure 9b). In most
seasons, the sum of predictions from both models is close to 100%.
However, in the post-monsoon month of December, the MixSIAR
model sum of prediction is 111% but exhibits better accuracy for the

remaining seasons.

3.4 | Source discrimination
The cross-validation tests executed on the MIR spectra and mineral-
ogical composition of the source samples revealed the uncertainty in

the discrimination potential of the variables (Table 6). The

Holdout cross-validation Leave out cross-validation

(p=10.3) (n=1)
0.22 0.20
0.16 0.17

misclassification rates of the source samples for the MIR spectral vari-
ables using K-fold, holdout and LOO methods were 0.23, 0.22 and
0.20, respectively. The corresponding misclassification rates for the

mineralogical variables were 0.19, 0.16 and 0.17, respectively.

3.5 | Geological insights on the source
discrimination results

In view of the high erodibility of ferric luvisols and the fact that agri-
cultural lands were found to be the primary source of sampled sedi-
ment in this study, it can be deduced that more than half of the
agricultural lands are located on the ferric luvisol, which is most critical
in terms of soil erosion and sediment yield (Figure 10). Our results are
consistent with the findings of Kuhn et al. (2009). Considering that

roughly half of the forest is located on lithosols with a low propensity
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FIGURE 10 Proportion of soil classes in the land use classes of
the Konar catchment.

for erosion, this section of forest can be expected to contribute the
least sediment in the study region (Elliot, Page-Dumroese, &
Robichaud, 2018). Studies that analysed soil erosion using regional
geology and soil classifications including lithosols, nitosols and luvisols

also reported similar conclusions (Bekele & Gemi, 2021).

4 | DISCUSSION

4.1 | Sediment sourcing using spectroscopic
fingerprints

As spectral data are highly correlated and noisy with the presence of
more variables than samples, the PLS regression model is the most
effective tool for processing such data (Karaman et al., 2013;
Vercruysse & Grabowski, 2018). Variation in reflectance of the spec-
tra signifies the influence of particle size, organic compounds and min-
erals in the soils of the study area and similar factors have been
discussed in other studies (Brosinsky et al., 2014; Ni et al., 2019). The
results of PCA-DA performed on the spectroscopic variables revealed
an overlap between forest and agricultural soils, whereas the human
settlement samples were very well distinguished. This probably
reflects the presence of organic matter and finer particles in both for-
est and agricultural soils. As the Konar catchment is situated in one of
the mineral-rich valleys (Damodar valley) of India, soil organic matter
(SOM) and mineral-associated (high-density) SOM-based tracing could
provide some extra important information on soil erosion manage-
ment as organo-mineral associations are very prominent in different
land uses, especially forests (Ludwig et al., 2015). Nevertheless, huge
challenges remain for this SOM research theme because of (i) the
unstable nature of and other uncertainties associated with biomarkers
and (ii) high degrees of environmental and analytical uncertainty
(Li et al., 2020).

A study by Ni et al. (2019) performed PCA-DA analysis for sam-
ples collected from topsoil and channel sediments and found promis-
ing results. However, in our case, the overall reflectance of forest soil
spectra showed greater variation, which most likely reflects the higher
contents of finer particles compared with the other land use classes,

which are more prone to water erosion (Figure S7).

Previous work has reported successful application of spectral fin-
gerprints using PLS regression models (e.g. Tiecher et al., 2015; Uber
et al., 20192019). One limitation associated with the use of spectral
fingerprints includes sediment-bound organic matter, which is non-
conservative, making spectral fingerprints unsuitable for suspended
sediment source tracing (Collins et al., 2014). Stevens et al. (2008)
highlighted one limitation of PLS regression associated with its site-

specific nature.

4.2 | Sediment sourcing using mineralogical
fingerprints

The results of DFA performed on the mineralogical variables in this
study showed that the discrimination of the land use classes is feasi-
ble without any overlapping of the samples. Previous sediment finger-
printing studies have employed mineralogy for the (i) development of
effective beneficial best management practices (BMPs) and under-
standing of the connectivity of sediment delivery and land uses
(Koiter et al., 2013) and (ii) determination of the provenance of flood-
plain deposits (D’Haen et al., 2013) and many more applications. In
our case, although, the mineralogical and spectroscopic tracers gener-
ated similar results, the 95% confidence intervals of the mineralogical
method were more precise (Figure 9a). Laceby et al. (2015) highlighted
the importance of including meaningful mineralogical elements and
their geological basis for use as tracers and discussed the uncertainty
of merely relying on statistical techniques alone. Batista et al. (2019)
argued that statistical methods using geochemical element finger-
prints can yield very similar results to the use of any knowledge-based
(i.e. of pedogenetic processes) tracers in the case of finer particle size
fractions but that greater disparities can occur in the case of coarser

sediment particles.

4.3 | Comparison between mineralogical and
spectroscopic source apportionment

There are very few studies comparing spectroscopic and geochemical
analysis (Tiecher et al., 2016; Verheyen et al., 2014). The existing
studies suggest that both methods can deliver source discrimination
but that some disparities can exist between the results because of the
nature of the specific variables selected or mixing models applied.
Evrard et al. (2013), for example, used diffuse reflectance infrared
Fourier transform spectroscopy and showed that its results were con-
sistent with the conventional geochemical approach but emphasised
the need to consider the organic carbon content of soils as the results
were influenced by the presence of organic matter. Our study herein
also advocates the possibility of combining both mineralogical compo-
sition and spectroscopic information for robust estimation of sedi-
ment sources. In the post-monsoon season, the mineralogy-MixSIAR
model predicts the contribution of forests to be closer to that of the
agricultural land use class, whereas the results are different in the case
of the MIR-PLS regression model. Artificial mixtures of known source
contributions provided an efficient opportunity to assess the accuracy
of the sediment fingerprinting methods (Cooper et al., 2014; D’Haen
et al., 2013).
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44 | Catchment land use properties

Our study catchment includes forests as a major land use class and a
large proportion of the forest areas are located very near to the reser-
voir with reasonable sediment connectivity as reported by Das et al.
(2022). This is most likely justification for the estimated contribution
of forests in both the monsoon and non-monsoon seasons. The
appearance of sediment from forests in post-monsoon seasons could
be connected to the time lag and residence time of suspended sedi-
ment and the nature of monsoon-driven erosion patterns in the study
catchment. Another possible reason for the increase in sediment
inputs from forests could be the fragmented forest cover and mixed
forests resulting in a reduction in infiltration and concomitant increase
in runoff as reported by Rajbanshi and Bhattacharya (2020). However,
most of the rainfall in this region (~80%) takes place in the monsoon
season. From this irregular pattern of sediment generation, it can be
inferred that the high predicted contribution of sediment (~35% and
43% by the PLSR and MixSIAR models, respectively) from forests in
the post-monsoon season is not illogical. Moreover, the explanation
for these seasonal differences could also be associated with seasonal
cropping patterns and agricultural management practices, as well as
the influence of pre-monsoon showers. Seasonal patterns in the den-
sity of crop cover generate a seasonal control on sediment delivery in
our study area (Kretz et al., 2021; Loaiza, 2008).

4.5 | Limitations and uncertainties

The source apportionment reported in this study inevitably has some
limitations. A common limitation of the sediment fingerprinting
method concerns difficulty in validating the source proportions in the
absence of independent monitoring data (Collins et al, 2017).
The total number of samples collected from the potential sources
inevitably depends on some practical constraints such as research
budget, accessibility of the locations and the requirements of any
tests used for statistical source discrimination. The findings of this
study are specific to the studied catchment and might not be directly
applicable to larger or different river basins with varying geomorpho-
logical and land use characteristics. In some catchments, channel
banks may serve as significant source groups, contributing to a more
comprehensive understanding of sediment dynamics. This aspect was
not considered in our study. However, recent studies by Pulley and
Collins (2024) and Pulley and Foster (2017) have emphasised the
importance of channel banks as potentially substantial sources of sed-
iment. To enhance the robustness and accuracy of our results, future
research should include sampling from channel banks. The merging of
minor land use classes into major categories could oversimplify the
complex interactions between different land uses and sediment pro-
duction. The precision and accuracy of the XRD and MIR analytical
techniques used for tracer identification might introduce uncertainties
in the results. Moreover, the non-linearities in modelled outcomes
compared to laboratory mixtures arises probably due to complex sedi-
ment transport processes, spatial and temporal variations in sources,
mixing and transformation of sediments, non-conservative behaviour
and simplified modelling assumptions. Addressing these challenges
highlights the need for advanced modelling techniques. Other poten-

tial uncertainties could be associated with the spatial heterogeneity of

rainfall, slope and lithological characteristics of the catchment. To
explore temporal uncertainty, sediment sampling was performed for a
water year (Nosrati, 2017). Our study was conducted during 2018-
2019, which can be considered as a typical, rather than atypical, water
year (Bahadur et al., 2020).

We performed limited interpretation of the effect of geo-
morphologic events [(e.g. landslides as mentioned in Pickup and Marks
(2000) and Fathabadi and Jansen (2022)]. Future research could
investigate sediment provenance by focusing on processes like rock
deterioration (Pola et al., 2014), other environmental stresses
(Collins et al., 2020) and geomorphological events such as landslides
(Pickup & Marks, 2000). As mentioned in Jacq et al. (2019), sediment
fingerprinting has much more potential for deriving new knowledge
if there are proper collaborations between palaeo-climatologists,
geomorphologists and hydrologists. A better understanding of
sediment sources within gully systems and the quantification of gully
sediment transport at the catchment scale are essential for effective
management and control policies (Lin et al., 2015). However, this
aspect is not considered in our study. Thus, future sediment sourcing
work in the Konar drainage basin should acknowledge that sediment
transport processes are rather complex in nature and can be triggered
by various factors including channel morphology or channel properties
and landslides (Xiong et al., 2022) as well as by conventional fluvial
and hydrological dynamics. Although we recognise the importance of
economic considerations and the transferability of methods, as
discussed in Pulley and Collins (2021), this study has not considered
the cost-benefit evaluations of multiple tracer and data processing
analyses. For future research, we recommend incorporating
cost-benefit evaluations and exploring the broader applicability and
economic feasibility of various methods, such as sampling strategies
of MIR spectroscopy and XRD with MixSIAR modelling, to enhance

the transferability of our findings.

5 | CONCLUSIONS

Our work illustrated a reasonable agreement between both source
tracing techniques in the Konar study catchment for the monsoon and
post-monsoon seasons. The findings suggested that agricultural land
use was the major sediment source, especially during the monsoon
season, whereas forests deliver a greater proportion of the target sedi-
ment in the post-monsoon months. These results are critical for priori-
tizing the implementation of land use and erosion control measures.
Our study illustrates how a detailed evaluation of sediment sources
with different tracer sets, fingerprinting techniques and mixing models,

is advisable to help confirm management targets more robustly.
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