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Abstract
Insect populations are declining in many parts of the world, but a lack of long-term 
monitoring data is impeding our ability to understand and mitigate the causes of in-
sect biodiversity loss. Whilst high-throughput sequencing (HTS) approaches, such as 
DNA metabarcoding, have the potential to revolutionize insect biomonitoring through 
rapid scalable identification, it is unclear to what extent HTS can be applied to long-
term stored insect samples. Archived insect samples could inform forecasting and 
provide valuable information regarding past changes to biodiversity. Here, we assess 
the efficacy of DNA metabarcoding to identify archived samples from the longest 
passive monitoring scheme in the United Kingdom: the Rothamsted Insect Survey 
(RIS). With a focus on aphids as the target taxa of a national network of suction-
traps, we analyze a 16-year time-series of stored samples (2003–2018) using DNA 
metabarcoding from one of the RIS suction traps as an exemplar. We achieved this 
by using a non-destructive DNA extraction protocol, ensuring the integrity of archi-
val samples for further studies. We compared the identities of aphids determined by 
both metabarcoding (as inferred amplicon sequence variants [ASVs]) and morphologi-
cal identification and found that metabarcoding detected most genera with varying 
success (mean > 76%). When comparing the two methods objectively (i.e., including 
taxa not detected morphologically), however, congruence decreased (51%). We show 
that minimum sequence copy thresholds can minimize metabarcoding false positives, 
but at the expense of introducing false negatives, highlighting the need for careful 
data curation. Detectability of taxa identified morphologically and similarity between 
the two methods did not significantly vary over time, demonstrating the viability of 
metabarcoding for screening archival samples. We discuss the advantages and chal-
lenges of metabarcoding for insect biomonitoring, particularly from archival samples, 
including improvements to sample handling, processing, and archiving. We highlight 
the wider potential of HTS approaches for stored samples from insect monitoring 
schemes, unlocking the immense potential of global historical time series.
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1  |  INTRODUC TION

Recent studies have highlighted that insect populations are declining 
in many parts of the world (Dirzo et al., 2014; van Klink et al., 2020). 
In the largest global assessment to date, Outwaite et al. (2022) ex-
amined insect species abundance, presence and richness for a wide 
range of taxa and showed an overall reduction in the abundance 
(50%) and diversity (27%) of species. Whilst it is acknowledged that 
the conservation status of insects is nuanced, the lack of data on 
global diversity and population trends is clear (Cardoso et al., 2011). 
This dearth of data largely stems from the difficulties associated 
with monitoring insects coupled with declining taxonomic expertise 
(Drew,  2011). Recently, DNA-based methods have shown prom-
ise as a way to scale-up biodiversity monitoring (Bush et al., 2017; 
Ji et  al.,  2013) coining the term “next-generation biomonitoring” 
(Taberlet et al., 2012). Given the rapid effects of human influence 
on the environment, there is a clear need for faster, more efficient 
and comprehensive techniques for biodiversity monitoring (Makiola 
et al., 2020). High-throughput sequencing (HTS)-based biomonitor-
ing approaches like metabarcoding, mitogenomics, and metagenom-
ics offer the advance needed for both insect monitoring and the 
difficulties associated with surveillance in the context of insect de-
clines (Piper et al., 2019). Despite the recent success of DNA-based 
approaches, there is still no large-scale adoption for terrestrial sys-
tems as validation is needed to assess how accurate these methods 
are for routine monitoring.

HTS approaches have been extensively used for insect iden-
tifications (Sigut et  al.,  2017; Yu et  al.,  2012; Zhou et  al.,  2013). 
HTS-based DNA barcoding is an approach where DNA barcoding 
is coupled with HTS: a polymerase chain reaction (PCR) step is used 
to amplify a region of interest for a single target taxon and thou-
sands of insect specimens can be simultaneously loaded on a HTS 
platform (Srivathsan et al., 2021). This approach is well established 
and has increased dramatically the number of available barcodes 
in sequence databases (Shokralla et  al.,  2014). DNA metabarcod-
ing refers to a similar approach in which DNA barcodes are used 
to identify whole communities from mixed samples in parallel, in-
cluding bulk insect samples (such as a Malaise, pan or suction traps). 
DNA metabarcoding is still a developing tool yet it is routinely used 
for bulk species identification in large-scale studies as it facilitates 
higher throughput when compared with HTS barcoding or metag-
enomics (Gueuning et al., 2019). The most commonly used gene for 
insect identification is cytochrome c oxidase subunit I (COI) for both 
HTS barcoding and metabarcoding, although other markers are also 
gaining popularity (Marquina et al., 2019). Metabarcoding facilitates 
more comprehensive species identification than traditional morpho-
logical approaches and, importantly, it scales much more efficiently 
both in terms of costs and time (Ji et al., 2013). Metabarcoding costs 

are continuing to decline and manual sample sorting is typically not 
required, although it can have advantages (e.g., greater detectability 
of diversity; Majaneva et al., 2018). The scalability of the approach 
makes it an ideal tool for rapid biodiversity assessment but also a 
tool for rapid diagnostics of pests or non-native species of economic 
importance (Kitson et al., 2019; Piper et al., 2019).

DNA metabarcoding of insect samples is not without its prob-
lems though. It is susceptible to contamination and biases intro-
duced by PCR that can cause: (a) mis-identifications, (b) amplification 
of non-target taxa, and (c) primer-template mismatches that mini-
mize the potential for metabarcoding results to be quantitative (i.e., 
infer abundance information from reads; Krehenwinkel et al., 2017). 
Alternative PCR-free approaches such as metagenomics circumvent 
the PCR amplification step and its associated biases by instead se-
quencing whole genomes or large sections of them. Whilst metag-
enomic approaches are state-of-the-art, they require high-quality 
DNA (Ji et  al., 2020), which is likely to be difficult to obtain from 
highly degraded archive samples, and they are often prohibitively 
expensive (Gueuning et al., 2019), making them inaccessible to many 
monitoring schemes.

Currently, one of the greatest impediments to using metabarcod-
ing for biomonitoring is the destruction of samples in the DNA ex-
traction process, which is often necessary to yield high quality DNA. 
Advances in non-destructive sample processing, however, show 
that such approaches can be comparable to tissue homogenization 
(Carew et al., 2018). Methods can vary considerably from quick tis-
sue digestions to extraction of DNA from the preservative within the 
sample, but most of the approaches depend on tissue digestion for a 
minimal amount of time, whereas standard lysis of tissue takes place 
over minutes or hours (Batovska et al., 2021; Zizka et al., 2018). Non-
destructive extractions can introduce additional biases including the 
increased impact of morphological characteristics such as scleroti-
zation on the detection of taxa within samples (Martoni et al., 2022). 
Despite these biases, the benefits of such approaches can overcome 
the drawbacks where preservation of specimens is important (i.e., 
when the aim is establishment of a species inventory like in many 
long-term monitoring schemes).

Here, we develop and evaluate the application of DNA 
metabarcoding to a historic insect monitoring scheme in the 
United Kingdom: the Rothamsted Insect Survey (hereafter RIS; 
Harrington,  2013). RIS has been monitoring aphids and moths 
since the 1960s using national networks of suction and light 
traps. RIS aims to inform farmers of the timing and magnitude 
of aphid migrations to prevent heavy prophylactic use of insec-
ticides. We focus on the aphid fraction of suction trap samples 
over a 16-year time-series (2003–2018). Upon collection of RIS 
suction trap samples, aphids are morphologically identified to spe-
cies level and subsequently archived. Our aims are: (a) to establish 
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a non-destructive metabarcoding approach to process historical 
stored samples; (b) assess the potential of DNA metabarcoding to 
identify historical aphid samples; (c) compare data between mor-
phological identification and metabarcoding; (d) identify whether 
the age of samples and sequencing depth limit data quality when 
using metabarcoding; and (e) assess the added value that molec-
ular approaches offer to insect monitoring schemes by unlocking 
previously untapped resources of insect specimens.

2  |  MATERIAL S AND METHODS

2.1  |  The Rothamsted Insect Survey suction-trap 
samples

The suction trap network currently comprises 16 (12.2 m) tall traps 
(12 in England, 4 in Scotland, see Figure  1) that continuously col-
lect flying aphids to estimate their aerial density and provide daily 
records during the main aphid flying season (April–November), and 
weekly records year-round (https://​insec​tsurv​ey.​com/​). The net-
work has been continuously operational since 1964. Just over 400 
of the 600 recorded British aphid species have been recorded from 
these samples to date. Samples contain both aphids and “bycatch” 
(i.e., non-aphid taxa), and are archived and made available for further 
research. Only the aphid fraction of these samples has been con-
sistently identified to species level. Aphids from 1968 to 2002 have 
been cleared for identification purposes in a formalin solution that 
removed internal tissues, rendering these samples unviable for DNA 
analysis. From 2003 onwards, however, samples have been pre-
served in 95:5 ethanol:glycerol solution which effectively preserves 
DNA (Kagzi et al., 2022). All “bycatch” samples have been stored in 
the ethanol:glycerol solution across all of the years (1968-present). 
For this reason, we focused on a subsample (of the aphid samples) 
for a 16-year time-series (2003–2018) from a single suction trap at 
Cockle Park, Morpeth (Northumberland, England, UK) hereafter re-
ferred to as Cockle Park trap, where aphid samples have been stored 
at room temperature.

2.2  |  Sample collection

We selected two samples randomly from each month of material ar-
chived between May and October for the years 2003–2018, impos-
ing use-case criteria for the number of aphids within those samples. 
Specifically, sampled dates needed a total number of aphids within 
one standard deviation of the overall aphid mean count of the corre-
sponding month. This was stipulated for logistical reasons (i.e., load-
ing all samples in a single sequencing run with sufficient coverage) 
but also to avoid samples with extreme numbers of aphids within 
tubes (>300). Note that most samples within the Cockle Park trap 
had fewer than 100 individuals, with few exceptions (see Table A1 
in Appendix S1). This facilitated the use of similar reagent volumes 
across the whole experiment. The resulting time series includes 67% 

of the genera (68 genera, 98 species) found in the complete daily 
time series of the Cockle Park trap between 2003 and 2018, which 
included over 2500 samples (101 genera). This was deemed repre-
sentative in terms of species coverage across the series. A total of 
183 samples were used, equating to approximately 12 samples per 
year (split into two datasets to compare lysis protocols, described 
below).

2.3  |  Non-destructive extraction

As RIS wishes to retain insect samples for future research, we 
aimed to extract the DNA non-destructively by reducing lysis di-
gestion durations. Damage to specimen tissue is dependent on the 
time that the tissue is digested for and the lysis buffer used (Carew 
et al., 2018). We used a magnetic bead-based protocol (Oberacker 
et al., 2019) with modifications to the lysis volume to adjust it for 

F I G U R E  1 The RIS suction trap network with 16 suction traps 
across the United Kingdom (trap locations denoted by base of 
traps). The one used in this study “Cockle Park trap” is highlighted 
in red with an “N” at its center.
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different sample volumes (in terms of numbers of aphids; Table A1 
in Appendix S1). To establish the minimum time required for the lysis 
digestion before damage to the tissue became visible, five additional 
samples were selected to test three different lysis digestion times: 
1, 2, and 6 h (See Table A2 in Appendix S1), with amplification suc-
cess confirmed via gel electrophoresis. Morphological damage was 
assessed via light microscopy in accordance with taxonomists at RIS. 
From those samples, the 1 h digestion did not amplify, but samples 
with 2 h digestion showed almost no morphological damage and am-
plification success was high. Finally, samples for 6 h showed slight 
tissue digestion damage and high amplification rates (Figure A1 in 
Appendix S1). For the remaining 183 samples of the time series, we 
split them randomly into two datasets using the “sample” function in 
base R (v.4.0.1, R Core Team, 2021): 92 samples were extracted with 
a 2 h digestion and 91 with a 6 h digestion. This was done to assess 
any influence of digestion time on overall results. Samples in each 
treatment therefore comprised approximately six dates per year, to-
gether representing each month of the sampled period (12 per year 
in total for both datasets, except for missing dates due to occasional 
trap inactivity). The initial digestions were carried out in 1.5-mL 
tubes, after which 62 μL of lysate was transferred to 96 well plates 
(irrespective of initial lysis volume) to standardize volumes for the 
remainder of the protocol, which followed Oberacker et al.  (2019) 
from that point. Finally, for each plate we included a DNA extraction 
positive and a DNA extraction negative. The DNA extraction posi-
tives was tissue from two ichneumonid parasitoid wasps belonging 
to the genera Acrolyta and Gelis. The DNA extraction negative in-
cluded all reagents used for the DNA extraction and molecular grade 
water in place of lysate. Following completion, the yield of all DNA 
extractions was quantified on a Qubit 4 (Thermo Fisher Scientific) 
with the 1× High Sensitivity dsDNA assay.

2.4  |  PCR amplification and library preparation

For DNA amplification, we followed the nested-tagging method of 
Kitson et  al.  (2019) which uses a combinatorial indexing approach 
to multiplex samples in a single sequencing run. We amplified a 
313-bp fragment of the COI gene with the primers mLCOintF and 
jgHCO2198 (Leray et  al., 2013). Primer sequences included mo-
lecular identification tags (8 bp), heterogeneity spacers (see Kitson 
et al., 2019 for details) and bridge sequences for indexing PCR prim-
ers. PCRs were carried out for 40 cycles (95°C for 45 s, 51°C for 15 s, 
and 72°C for 45 s) in 20 μL reactions using a high-fidelity Taq mas-
termix (MyFi Mix Bioline), 2 μL of template DNA, and each primer 
(final concentration at 0.5 μM). To prevent cross contamination, 
wells were sealed using a drop of mineral oil (~20 μL) before all other 
reagents and template DNA were added. Two PCR controls (in ad-
dition to the above DNA extraction controls) were used per plate: a 
PCR-positive control (DNA extracted from a moth belonging to the 
genus Operophtera) and a PCR-negative control which included all 
PCR reagents but substituted template DNA with molecular biology 
grade water.

PCR success was confirmed via gel electrophoresis using 5 μL of 
PCR product in 1.5% agarose gels. No bands were visible for PCR 
negatives nor DNA extraction negatives. We then conducted a mag-
netic bead-based normalization using 0.6:1 ratio of 0.1× Solid Phase 
Reversible Immobilizations (SPRI) beads (9 μL:15 μL beads:PCR prod-
uct). After purification and prior to library preparation, samples were 
pooled in groups of 16, for which 4 μL was taken from each sample 
to form each pre-library. This process generated 12 libraries (6 for 
each plate). This further increased sequencing diversity during the 
initial cycles of the sequencing run as suggested by the sequencing 
facility (Genomics Core Facility, Newcastle University). To prepare 
each of these libraries, we carried out a second PCR (PCR2) with 
12 cycles (95°C for 45 s, 51°C for 15 s, and 72°C for 30s) and a final 
extension step of 5 min at 72°C in 20-μL reactions using 5 μL of each 
pooled library, the same Taq (MyFi Mix Bioline) and each of the re-
spective Illumina N5 and N7 adapters (at a concentration of 1 μM). 
For each library, a PCR2 negative was also included which comprised 
the same reagents, but with DNA substituted with molecular biology 
grade water. All libraries and PCR2 negatives were checked via gel 
electrophoresis and no bands were visible for any of the negatives. 
We then purified the PCR2 products to remove fragments smaller 
than the target amplicon using 0.6:1 ratio of SPRI beads to template 
(9 μL:15 μL). After cleaning the libraries, successful amplification and 
purity was checked on an Agilent TapeStation 4200, and libraries 
pooled equimolarly at approximately 7.6 ng/μL. The pooled final li-
brary was then sequenced on an Illumina MiSeq using a V3 (2 × 300) 
kit with 500 cycles (2 × 250) and a control library PhiX (a control li-
brary derived from a well-characterized bacteriophage genome used 
to assess sequencing quality) at 10%. The sequencing took place at 
the Genomics Core Facility at Newcastle University.

2.5  |  Bioinformatic analysis

Sample demultiplexing within individual libraries was carried out 
using the software MetaBEAT (https://​github.​com/​HullU​ni-​bioin​
forma​tics/​metaBEAT). Only reads with used tag combinations 
were retained. Other analyses were conducted in R (v.4.0.1, R 
Core Team,  2021) except if stated otherwise. The demultiplexed 
data were processed using package DADA2 (Callahan et al., 2016), 
removing primers using cutadapt v1.18 (Martin, 2011). DADA2 fil-
tered and trimmed sequences based on read quality, removing any 
reads with ambiguous “N” bases with the “filterandtrim” function. 
We then merged paired-end reads and removed chimeras with the 
“removeBimeraDenovo” function. Finally, we inferred amplicon 
sequence variants (ASVs) within DADA2. ASVs are single DNA se-
quences and can also be considered as haplotypes. They provide a 
finer resolution for species distinction and include intraspecific vari-
ance unlike other approaches. ASVs offer certain advantages against 
operational taxonomic units (OTUs) particularly when it comes to 
reproducibility between studies (Callahan et al., 2017). All functions 
within DADA2 were used with default arguments. Taxonomy was 
assigned using the blastn program via the command line (Camacho 
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et  al., 2009) with a curated database for all Metazoa downloaded 
from the MIDORI database (MIDORI2_UNIQ_NUC_GB259_CO1_
BLAST) (Leray et al., 2022). To validate the completeness of the ref-
erence database for the taxa in question, we checked whether all the 
species and genera found in the morphological dataset were present 
in the MIDORI2 database. To assign taxonomy we kept only the top 
hit for each ASV and only those with a uniquely assigned taxonomy 
for each ASV as the top hit (ASVs with more than one taxon assigned 
were discarded). More specifically, we kept only hits that had more 
or equal 95% query cover and 97% identity. For ASVs which could 
not be assigned at the species level, only genus level information was 
kept. Helper functions from the packages Taxreturn (Piper, 2023) and 
Biostrings (Pagès et  al., 2023) were used for processing and pars-
ing the output from DADA2 and blastn (see the associated Github 
page for details: https://​github.​com/​DimiP​etsop/​​Archi​val_​aphid_​
metabar).

2.6  |  Statistical analyses

Statistical analysis was conducted in package vegan (Oksanen et al., 
2022). To assess whether the non-destructive DNA-extraction 
method yielded similar data to the destructive method, we per-
formed two ANOVAs with the “aov” function in R. The number of 
sequencing reads for each sample from the two treatments were 
compared via ANOVA with the reads log-transformed using the “log” 
function in R. Congruence (percentage of common species detected 
and Jaccard's similarity see below) was compared between the two 
treatments in separate ANOVAs.

To assess the sensitivity and accuracy of DNA metabarcoding, we 
assessed congruence between the morphological (hereafter MOTA) 
and the metabarcoding (hereafter META) datasets. Congruence was 
calculated using two methods: congruence as detectability (subjec-
tive: % taxa identified morphologically that were detected by me-
tabarcoding) and congruence as similarity (objective: % taxa shared 
by both methods irrespective of morphological identification). We 
used base set functions in R (“intersect,” “setdiff”) to identify the 
frequency of shared taxa (and what percentage of total detections 
these comprised) for two taxonomic levels: genus and species. 
Since these functions use character strings, we first standardized 
taxonomic annotations across the two datasets using the tidyverse 
package (Wickham et al., 2019). To visualize the differences, we plot-
ted Venn diagrams with the eulerr package (Larsson, 2022) in R, for 
distribution plots we used the ggdist package (Kay, 2023). To assess 
whether the reference database completeness had any influence on 
congruence, we also calculated it after removing taxa not found in 
the database. To compare congruence as similarity of the two meth-
ods (i.e., based on shared detections including taxa not morpholog-
ically identified), we calculated Jaccard similarity in R and visualized 
the extent of difference via non-metric multi-dimensional scaling 
(NMDS) using the “metaMDS” command in the package vegan.

We applied minimum sequence copy thresholds to the read 
counts of each sample to remove potential false positives (e.g., cross 

contamination, tag jumping, and sequencing errors) that might have 
resulted from RIS sample handling, laboratory contamination, and/
or sequencing/bioinformatic errors (Drake et al., 2022). Read counts 
below the percentage threshold applied of the total reads for each 
sample were discarded, with thresholds of 0.2%, 0.5%, and 1% of 
sample read counts used and compared. The same thresholds were 
used for both the species and genus level data. Congruence as simi-
larity based on the Jaccard index was calculated for both pre-filtered 
and filtered datasets. To identify the number of false positives and 
negatives within the pre-filtered and filtered datasets we counted 
species mismatches between MOTA and META. Aphid taxa within 
each sample that were identified by META but not MOTA were 
treated as false positives, whereas false negatives were aphid taxa 
not found by META. “Bycatch” taxa (i.e., non-aphid taxa) were ex-
cluded. To assess whether sequencing reads were correlated with 
the abundance captured in the traps according to the morphological 
dataset, we performed a linear regression between these two vari-
ables in R after log-transforming both read and aphid counts. Finally, 
to understand which of the factors influenced congruence we used 
a binomial generalized linear model (GLM) with congruence as a 
response variable and year (both congruence as detectability and 
similarity), sequencing depth (log-transformed reads) as predictor 
variables using the “glm” function in R accounting for possible in-
teractions between the year and sequencing depth (model formula: 
Congruence ~ year + sequencing depth + year:sequencing depth, 
family = “binomial”).

3  |  RESULTS

3.1  |  PCR success and sequencing results

Overall, 173/183 samples produced a visible band on a gel (i.e., 96% 
PCR success). The run produced 23,616,958 reads (including unas-
signed reads from PhiX), which we reduced to 16,701,112 reads 
after demultiplexing, and 9,069,035 reads after filtering, denoising, 
merging, and chimera removal. Variability between samples was 
high with 484–256,126 reads per sample with a median of 32,979 
(1st quartile: 16,466, 3rd quartile: 71,739) and a mean of 48,498 
(± 44,958). Unsurprisingly, the samples with the lowest number of 
reads were the ones for which amplification was not evident on an 
agarose gel (10 samples with reads less than 4000). Additionally, no 
reads from the DNA extraction or PCR negatives passed any initial 
filters, and taxa used as PCR positives were not found in any of the 
other samples, suggesting minimal cross contamination. There was 
no significant difference in the number of reads between digestion 
treatments (ANOVA: F1,181 = 0.47, p = 0.49).

3.2  |  Morphology versus metabarcoding

The MIDORI2 database used included sequences for all genera but 
two (out of 68): Tubaphis and Mimeuria, whilst, for species, 16 (out 
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of 98) did not have sequences in the database. To ensure that the 
lack of species sequences did not affect the number of detections 
considered to be false positives and negatives, we also calculated 
these by removing those species from the morphological dataset 
(see Tables A7 and A8 in Appendix  S1). In total, 8,577,970 (94%) 
reads were assigned to genus or species level. Reads that were dis-
carded (~6%) belonged to ASVs that were either not assigned at all 
(~0.3%), discarded during filtering (~4.7%) or had multiple taxonomic 
matches for the top ASV (118,657 reads or ~1%). Out of all assigned 
reads 8,450,770 (98.5% of total assigned reads) reads were assigned 
to Hemiptera (families: Adelgidae, Anoeciidae, Pemphigidae, and 
Thexalidae) with BLAST: 8,450,753 were assigned to genus level 
and from those 2,900,789 (34%) were assigned to species level and 
only 127,200 (1%) reads were assigned to non-target taxa. META 
detected 56 unique genera and 94 unique species. In comparison, 
MOTA included 68 unique genera and 98 unique species (76% 
congruence for genera and 54% for species, see Figure 2). Of the 
16 genera not identified by META, only two had more than three 

individuals across the time series: Rhopalosiphoninus and Mindarus 
with six and four individuals, respectively. The remaining genera 
unidentified by META had less than three individuals across the 
time series, with half having less than two individuals (Table A3 in 
Appendix S1). Most of the genera (11 out of 16) were present in the 
blastn output file, but these were either not selected as the top hit 
(Illinoia and Nasonovia) or were filtered out due to having values (per-
cent identity and query cover) lower than the thresholds set (see 
Table A3 in Appendix S1). The two dominant genera in the metabar-
coding dataset were Drepanosiphum and Rhopalosiphum comprising 
57% and 13% of total reads, respectively, which resembled the mor-
phological dataset. However, Drepanosiphum (13% of the total aphid 
counts) were most abundant in the metabarcoding dataset whilst 
Rhopalosiphum (41% of the total aphid counts) were most abundant 
in the morphological dataset (Table A4 in Appendix S1). There was 
no significant difference in congruence for either of the metrics 
used at the 0.05 significance level between the destructive and non-
destructive extraction protocols (see Table A5 in Appendix S1).

F I G U R E  2 Top: Venn diagrams for RIS data generated by morphology and metabarcoding at the genus level (left) and species level 
(right). Values represent the number of taxa detected by each method or by both. Bottom: Congruence, given as a percentage, based on 
detectability of taxa identified morphologically across years.
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    |  7 of 13PETSOPOULOS et al.

3.3  |  Congruence between metabarcoding and 
morphology: Detectability and similarity

The percentage of congruence based on detectability between 
both datasets showed high variability with a mean of 76.7% 
(± 19.9) for genera. Between years the average percent of congru-
ence varied from 66% in 2004 to 85% in 2011 (Figure 2; Table A6 
in Appendix S1). For species-level analyses the mean was only 47% 
across all years (Figure A2 in Appendix S1). Based on congruence 
as similarity, mean congruence was 46% at the genus level and 
28% at the species level. After applying minimum sequence copy 
thresholds at the genus level, congruence as detectability changed 
drastically from a mean of 76% to 52% for the most stringent 
threshold of 1% (Figure 3). At the species level, a similar pattern 
was observed with congruence as detectability falling from 47% 
to around 30% for the 1% threshold. Congruence as similarity re-
mained largely unchanged after applying the thresholds (Figure 3), 
with a slight increase at genus level at the 0.2% threshold, from 
46% to 50% (Figure 3). After removing the species not found in 
the reference database, patterns remained largely unchanged 
with congruence as detectability at 49% when no filtering was ap-
plied and 31% for the 1% threshold, whilst for similarity the mean 
remained at 28% when no filtering was applied. NMDS showed 
that morphological and metabarcoding detections were more 
similar in some years than others, but no clear interannual pattern 
emerged (Figure  4). The mean number of taxa considered to be 
false positive in META was 3.6 whilst there was a mean of 1.8 false 
negatives. Using minimum sequence copy thresholds, the mean 
number of false positives fell to 0.6 with a 1% threshold and 1.4 
with a 0.2% threshold. The number of false negatives increased to 
2.7–3.7 depending on the threshold (Figure A3 in Appendix S1). At 
the species level, there were 4.3 false positives and 3.7 false nega-
tives on average, and minimum sequence copy thresholds elicited 
similar overall patterns as for the genus-level data (Figure A3 in 
Appendix S1). The exclusion of the 16 taxa not found in the refer-
ence database made no apparent changes to the mean number of 
false positives and negatives before and after applying the thresh-
olds (see Tables A7 and A8 in Appendix S1).

Overall, there was a significant positive correlation between the 
number of individuals in MOTA with the reads from META (R2 = 0.64, 
p = 9.9−13; Table 1; Figure A4 in Appendix S1). Yet, neither measure of 
congruence significantly differed over time, sequencing depth, nor 
the interaction between time and sequencing depth (Table 2).

3.4  |  Non-aphid taxa in sequences

BLAST assigned 8,450,770 (94% of total reads) reads to Hemiptera 
which comprised the target taxa (excluding families: Lygidae and 
Myridae). A total of 126,100 (~1%) reads were assigned to other 
Arthropoda taxa, and 1100 reads were assigned to Chordata and 
Ascomycota. Reads that were assigned to non-target taxa included 
possible contaminants from RIS (Human and bird DNA) and other 

arthropod taxa commonly found within the samples before aphids 
are separated. The most abundant non-aphid orders were Diptera 
(64 samples), Hymenoptera (61), and Diplostraca (10). In the case of 
Hymenoptera, over 30% of our samples had reads of aphid parasi-
toids. Certain samples were inspected for the presence of non-aphid 
taxa such as Diplostraca (Daphnia magna) due to the high number of 
reads attributed to these spurious non-target taxa deemed unlikely 
to occur within RIS suction traps. These taxa were not found and 
therefore it is uncertain if this is environmental, handling, or labora-
tory contamination. The trap, however, is situated near water bod-
ies. Of the 10 samples that had Daphnia manga reads, one contained 
97% (24,333) D. manga reads. Whilst other arthropods including 
Diptera, Thysanoptera, and Araneae are likely to be legitimate de-
tections from the suctions traps, this study was concerned with the 
identified target aphid taxa and the congruence between morphol-
ogy and metabarcoding in detecting these aphids.

4  |  DISCUSSION

In this study, we have demonstrated that DNA metabarcoding can 
successfully identify insect species from long-term monitoring ar-
chive samples, and that this can be achieved non-destructively. We 
identified aphids (and other species) that have been archived for 
more than 18 years (albeit with varying success between years and 
taxonomic levels) despite the suboptimal storage conditions of the 
RIS collection which were not primarily intended for DNA preser-
vation (see below). Morphological identification fared slightly bet-
ter than DNA metabarcoding when assessing the congruence of 
metabarcoding with morphological identifications, which highlights 
the benefit of corroborating and combining data across the two ap-
proaches (Keck et al., 2022). We do, however, demonstrate that it is 
possible to recover over 76% of genera and 54% of species within 
our time series with DNA metabarcoding alone, with reduced reli-
ance on taxonomic knowledge and expedited processing times. Our 
study further highlights the added value of non-destructive DNA-
based approaches for analyzing archival samples from insect moni-
toring schemes and the importance of such collections, but also their 
limitations.

4.1  |  A non-destructive approach for collections

To obtain high-quality DNA, destructive methods are usually ap-
plied, which has often prohibited processing of monitoring scheme 
collection samples (Raxworthy & Smith, 2021). This is especially true 
for older specimens in which the DNA has degraded for many years 
after sampling, even under optimal preservation conditions. RIS 
samples are stored in 95:5 ethanol:glycerol solution at room temper-
ature, which, while cost-effective, is not ideal for DNA-preservation. 
We do, however, show that a non-destructive DNA extraction ap-
proach can still be accurately used for sample identification irre-
spective of sample age with no observed detriments compared to a 
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8 of 13  |     PETSOPOULOS et al.

destructive approach. This is in line with other research advocating 
non-destructive methods as an alternative for DNA metabarcoding 
(Martoni et al., 2022).

The approach used here relies on “quick” digestion of samples 
without noticeable external morphological damage. The yield of 
DNA extracted is typically influenced by the time of digestion and 
sclerotization of the specimens themselves (Carew et  al.,  2018). 
Aphids are soft-bodied insects and we found that a 2-h digestion 
was sufficient for species detection and reduces sample processing 
time. For more complex communities such as RIS “bycatch” samples, 
where insect sclerotization will vary greatly, longer digestions might 
be needed. Reducing the time needed from collection to identifica-
tion can be vital for DNA-based monitoring; for example, in the case 
of invasive species (Piper et al., 2019). It also importantly safeguards 
the continuity and reusability of archival samples and allows reten-
tion of voucher specimens for post-hoc morphological confirma-
tion of molecular identifications or collection of morphological trait 
data. There are other approaches that are even faster (see Batovska 

et  al.,  2021) than that presented here, but their efficacy with de-
graded samples is unknown without further validation.

4.2  |  Looking back in time: Taxonomy versus 
metabarcoding

There was no clear relationship between the congruence of taxon-
omy and metabarcoding and time (Figure 2), with relationships dif-
fering markedly between years and the lack of pattern being true 
for both congruence metrics used. This is important for collections-
based research and particularly for RIS which has been archiving 
samples since the 1960s. Here, we successfully analyzed samples 
from one trap across a 16-year period. The aphid fraction had al-
ready been identified as is the case for all of the aphid fractions in 
the RIS archive. The daily catches of aerial insects from all 16 traps 
are collected and archived, and most of the insects archived re-
main unidentified due to the huge effort morphological identifica-
tion would require. Since long-term data are lacking despite urgent 
need to monitor biodiversity loss in the wake of major global change, 
unlocking the potential of those samples via DNA metabarcoding 
would open new avenues for insect decline research (Petsopoulos 
et al., 2021) and fill gaps in insect species population and distribution 
records that remain unknown.

The morphological dataset contained 16 genera unidentified by 
metabarcoding. This could be due to database coverage and tech-
nical limitations such as PCR bias and primer-template mismatches 
(Alberdi et al., 2018). In this study, most genera (66 out of 68) were 
present in the database used and 11 of those unidentified by me-
tabarcoding were discarded during the assignment due to the con-
straints imposed or, in most cases, the taxa were not selected as 
the top hit. Although our study did not check barcode quality, the 
MIDORI2 database is an already curated database with strict qual-
ity controls that updates regularly (Leray et al., 2022). PCR bias and 

F I G U R E  3 Congruence as detectability (top) and as similarity 
(bottom) with different minimum sequence copy thresholds 
applied. Both density and boxplots are shown with jittered 
individual sample points.

F I G U R E  4 NMDS plot showing the difference in taxonomic 
composition (at genus level) of samples for each year for 
metabarcoding (META) and morphological (MOTA) datasets. The 
difference between methods varied in magnitude across time.

 26374943, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/edn3.542 by R

otham
sted R

esearch, W
iley O

nline L
ibrary on [09/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  9 of 13PETSOPOULOS et al.

primer-template mismatches are known to be problematic for aphids 
using many conventional PCR primers (Batovska et al., 2021) but a 
full pairwise PCR primer comparison was beyond the scope of this 
study and various aphid-specific primer pairs are already available 
(Ammann et  al., 2020). Unidentified genera in the metabarcoding 
dataset mostly included rare taxa (in abundance of 1–2 individuals in 
samples found, with 0.4% of total aphid counts throughout the sam-
pled time series) which can be difficult to detect when the samples 
are dominated by other species. At the species level, congruence was 
lower with both of the metrics used. However, congruence remained 
largely unchanged after removing all species from the morphological 
dataset that were not found in the database, suggesting that, at least 
for this study, database coverage is unlikely to be a significant factor 
affecting congruence. We must note, however, that the resolution 
of the barcode region chosen here has not been thoroughly inves-
tigated for aphids with in silico validation, but it is considered to be 
one of the most common regions for identifying European aphids 
(Coeur d'acier et  al., 2014). To validate further if this is due to bi-
ases in the metabarcoding workflow or simply misidentifications in 
the morphological dataset, comparison of the methods along with 
single-specimen DNA barcoding is needed.

Surprisingly, sequencing depth and year were not found to affect 
congruence significantly, meaning other factors not assessed in this 
study are more influential. Approaches that partition bias through-
out protocol steps (Martoni et al., 2022) could potentially identify 
influential factors such as primer mismatch, biomass or insect scle-
rotization. Our study was not, however, designed to address this. 
Finally, there was a strong correlation between sequencing reads 
and counts when compared across the whole dataset, with the two 
dominant taxa (Drepanosiphum and Rhopalosiphum) representing the 
most abundant taxa in both the metabarcoding and morphological 
dataset. We did show however that Drepanosiphum was the most 
abundant in META whilst Rhopalosipum most abundant in MOTA. 
This might have been a result of differences in body size or amplifi-
cation biases which are known to affect the quantitative potential of 
metabarcoding datasets (Lamb et al., 2019) and might be even more 
apparent for the “bycatch” available at RIS (Petsopoulos et al., 2021). 

Overall, however, our study demonstrates that metabarcoding ar-
chived bulked samples shows considerable potential for unlocking 
insect time-series data.

4.3  |  False positives versus false negatives

The sample handling process at RIS, which pre-dates the advent of 
molecular ecology, means that some cross contamination is inevi-
table. Given its sensitivity due to the PCR amplification step, meta-
barcoding is usually very prone to this type of contamination. Since 
aphids were physically separated from other taxa, theoretically this 
should also have limited the detectability of non-target taxa. Even 
with this treatment, however, reads were assigned to other arthro-
pod taxa and common laboratory contaminants (e.g., human). No 
reads were found in our negative controls, likely due to the strin-
gent measures employed to prevent contamination during the me-
tabarcoding workflow; therefore, we believe that this contamination 
arose prior to DNA-based analysis and can likely be attributed to 
sample handling in RIS. Some taxa found in our study besides aphids 
include commonly trapped insects in RIS and, in rare cases, after re-
examination of the samples under a microscope, detected insects 
like chiromonids and thrips were found in the aphid samples.

Of particular interest were braconid parasitoids, of which 
seven aphid parasitoid genera had reads in more than 30% of the 
samples. This could either be contamination from the “by-catch” 
fraction of the samples before the aphids were separated into dif-
ferent tubes, or may represent detection of parasitism of flying 
aphids which is known to occur (Walton et al., 2011). If parasitized 
aphids are present within the tubes then there is a unique oppor-
tunity to construct long-term host–parasitoid interaction networks 
(Petsopoulos et al., 2021). There are opportunities to identify likely 
interactions based on probabilistic species co-occurrence analysis, 
but co-occurrence is not strictly evidence of interaction (Blanchet 
et  al.,  2020). Confident validation of these interactions would re-
quire a different approach to that presented here, with single 
aphid individuals processed via high-throughput DNA barcoding 

Coefficients Estimate Standard error t-Value Pr (>t)

Intercept −5.86 0.38 −15.27 <2e-16***

Counts morphology 1.01 0.10 9.46 9.95e-13***

***Significance at the 0.0001 level. Adjusted R2: 0.64.

TA B L E  1 Results for the linear 
regression between morphological counts 
and read counts from metabarcoding 
(both after log-transformed).

TA B L E  2 Results from the binomial generalized linear model for factors explaining congruence for detectability and Jaccard's similarity in 
parentheses.

Coefficients Estimates (Jaccard) Standard error (Jaccard) z-Value (Jaccard) Pr (>z) (Jaccard)

Intercept 583.56 (451.92) 837.89 (751.65) 0.69 (0.60) 0.48 (0.54)

Year −0.29 (−0.22) 0.41 (0.37) −0.69 (−0.60) 0.49 (0.54)

Sequence depth −59.58 (−42.83) 80.56 (71.44) −0.74 (−0.59) 0.46 (0.54)

Year:Sequence depth 0.02 (0.02) 0.04 (0.03) 0.74 (0.60) 0.45 (0.54)
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to validate whether parasitism is detectable within individuals, or if 
these detections are simply contamination.

Perhaps the most limiting factor in this study is cross contam-
ination between aphid species themselves. The DNA metabar-
coding dataset generated did, in some cases, detect more aphid 
species than the morphological identification, or identified com-
pletely different species. In 125 samples, for example, DNA me-
tabarcoding detected more unique genera than the morphological 
identification. Examples of genera not identified morphologically 
include: Pachypappa, Pineus, Hyalopteroides, and Adelges. Some of 
which have been found at traps in RIS like Adelges but have not 
been identified from the samples analyzed here. In our case, when 
the samples have already been identified, we can inform our deci-
sion to categorize detections as false positives. By then applying 
minimum sequence copy thresholds (here applied as a percentage 
of reads within a sample), the prevalence of these false positives 
can be minimized (Drake et al., 2022). This process did reduce the 
taxa identified only by metabarcoding (likely false positives), but 
also significantly reduced congruence between the datasets as 
rare true positive taxa were also lost (false negatives, Figure A3 
in Appendix S1). False negatives are a significant issue when ap-
plying filtering thresholds to metabarcoding datasets and can be 
just as problematic as false positives for ecological interpretation 
(Littleford-Colquhoun et  al., 2022). Given this need for nuanced 
approaches to data filtration, measured approaches are emerging, 
the most important requirement of which is inclusion of stringent 
experimental controls (González et  al., 2023). Identifying robust 
standardized methods for data filtration with an appropriate bal-
ancing of false positives and negatives is an urgent need for the 
establishment of rapid, repeatable and robust metabarcoding-
based biomonitoring.

Further research could validate whether the presumed false 
positives detected in this study are actual contamination or if they 
represent true incongruence between morphological and metabar-
coding datasets by processing individual aphids within samples. 
Although there are approaches that can further minimize or identify 
contamination, such as including technical replicates (e.g., PCR rep-
licates; Yang et al., 2021), the contamination in RIS has likely been 
introduced during sample processing. This is a significant challenge 
in the application of metabarcoding to archival samples which have 
not been processed or stored with this application in mind. Another 
potential solution to this problem would be avoiding the PCR step 
altogether. Metagenomics, by circumventing the PCR amplification 
step, can achieve multi-taxon identification based on whole-genome 
sequencing. Ji et  al.  (2020) apply a metagenomic approach to an-
other insect monitoring scheme that also “suffers” from the same 
type of contamination within archival samples. Whilst metagenomic 
approaches are state-of-the-art, they require high-quality DNA, 
which, although difficult to obtain from highly degraded archive 
samples, we have shown to be amplifiable from even the oldest sam-
ples in this study (with a 313 bp amplicon) and therefore metage-
nomics could be possible for RIS samples and other archival material. 
This study highlights the overall potential of using HTS approaches 

on insect archival samples, with considerable applications for under-
standing insect responses to environmental change (Petsopoulos 
et al., 2021). RIS represents an archive of tens of thousands of daily 
bulk insect samples (with all “bycatch” samples stored in the same 
ethanol:glycerol solution) and therefore an unprecedented poten-
tial to construct time series for thousands of insect species. Whilst 
metagenomics may currently be prohibitively expensive to apply 
at that scale, the value of such data would be unquestionably high. 
With decreasing sequencing costs, these approaches could ulti-
mately become a viable alternative with unprecedented potential for 
less biased and contamination-prone molecular identification with 
vast improvements to taxonomic resolution.

5  |  CONCLUSIONS

Our study is the first attempt to assess the efficacy of DNA meta-
barcoding for determining species identities of mixed samples from 
long-term stored aerial suction-trapped insects. We showed high 
congruence between metabarcoding and morphological identifica-
tion across years using non-destructive methods, demonstrating the 
massive potential of metabarcoding for enhancing our understand-
ing of long-term insect trends using archival samples such as those of 
RIS. The greatest limitation of this approach is sensitivity to histori-
cal contamination which likely arises from handling and processing 
of samples prior to widespread adoption of molecular methodolo-
gies. With this understanding, we can better inform such processes 
and reduce contamination of future samples by applying best prac-
tices. The archival collection of RIS includes thousands of unidenti-
fied insect bulk samples (“bycatch”) that could be processed using 
metabarcoding, unlocking decades of unobserved insect population 
trend data. The temporal (50+ years of daily samples) and spatial (16 
locations across the entire United Kingdom) characteristics of this 
archive make RIS a treasure vault for insect research. Perhaps RIS 
is unique in that sense, but other insect monitoring schemes exist 
globally. Our study highlights how samples from such schemes can 
be explored in greater depth and breadth via non-destructive DNA 
metabarcoding. In this pursuit, however, we must remain cognizant 
of the persistent need for morphological identification data to main-
tain contextual information not available via molecular analyses, 
prevent data loss to overly stringent filtering thresholds and ground-
truth molecular data for rapid, robust, and repeatable biomonitoring.
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