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A B S T R A C T

Widespread and long-term shifts in weather patterns are contributing to further degradation of surface water 
quality. This challenge caused by the increasing frequency of extreme weather events requires appropriate 
adaptation of current mitigation strategies. But to confirm the need to redesign such strategies, an understanding 
of the impacts of increasing weather extremes on pollutant losses in different catchment types is required. With 
this in view, this study investigated the impact of changing weather patterns on the inter-seasonal and inter- 
annual dynamics of nutrient losses in six agricultural catchments in Ireland over 11 years. The high temporal 
resolution data (10-min) from these intensively managed catchments represented different characteristics and 
management practices. Mann-Kendall Trend Analysis and Generalised Additive Models were used to study 
nutrient concentration trends, and to investigate the significance of water discharge, precipitation, potential 
evapotranspiration, soil moisture deficit, air temperature, and soil temperature on the losses of nutrients, 
respectively. The analysis of historical data revealed changes in the trends of daily average nitrate (NO3-N), 
phosphorus (P), and suspended sediment (SS) concentrations in association with significant increasing trends in 
air temperature, soil temperature, and precipitation across the same month over 11 years of monitoring. While 
discharge was significantly contributing to the concentrations of NO3-N, P, and SS across different catchments, 
air and soil temperature were significantly correlated to NO3-N losses, and precipitation was the major 
contributor to regulating P (total P and total reactive P) concentrations. In short, air temperature, soil temper
ature, soil moisture deficit, and precipitation were the main climatic drivers regulating the nutrient concen
trations while the soil chemistry and drainage status were the non-climatically related drivers. The results 
revealed that the extent of the impact of climatic drivers depends on catchment characteristics. Therefore, 
expanding the application of this type of study would facilitate better understanding of current and future 
challenges to water management and provision of climate-resilient mitigation strategies for different catchment 
typologies.

1. Introduction

Excess nutrients (i.e. nitrogen (N) and phosphorus (P)) and sus
pended sediments coming from agriculture can be delivered into lakes, 
streams, estuaries, and coastal waters causing degradation of water 
quality (Maúre et al., 2021; Basu et al., 2022; Beusen et al., 2022). 
Current European Legislation requires the application of mitigation 
strategies to meet the goal of the Water Framework Directive (WFD) 
(2000/60/EC) to achieve ‘good ecological status’ in all waterbodies by 
2027. However, the overall ecological status of waterbodies has declined 

in some countries, including Ireland, which has reported increasing 
nutrient concentrations, mainly from agricultural sources, over the 
period 2016–2021 (EPA, 2021a). Hence, a key challenge is the need to 
balance agricultural intensification for food security with achieving 
‘good status’ in waterbodies (Moal et al., 2019). This is a global and 
growing issue which also impacts economic/social welfare as well as the 
sustainability of ecosystems and biodiversity (Weng et al., 2020).

To achieve an improvement in waterbody status, an understanding 
of both the nutrient sources (e.g., soils and farming practices), and 
climate drivers of water pollutant mobilisation/delivery are required. 
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Recent research has particularly highlighted the need for a compre
hensive analysis of the links between the weather patterns associated 
with changing climate and river pollutant concentrations (Mellander 
and Jordan, 2021). Climate change is exerting extra pressures on water 
quality as an increasing frequency of extreme weather events (drought 
and flood) is being observed (Gascuel-Odoux et al., 2023). For example, 
reduced discharge during drought conditions can lead to the reduced 
dilution of pollutant discharges from point-sources and therefore can 
increase fluvial nutrient concentrations (Hughes et al., 2021). Changes 
in soil and water temperature and soil water content can also modify 
water quality indirectly (Seyedhashemi et al., 2022). Drought can alter 
hydrological connectivity (Ehrhardt et al., 2021) and disconnect shallow 
flow pathways from the river network (Yang et al., 2018). Additionally, 
during the first heavy rain or so-called ‘first flush’ after drought condi
tions decreased denitrification and the subsequent flushing of accumu
lated nutrients have been observed (Outram et al., 2014; Strohmenger 
et al., 2020; Zhang et al., 2022a,b; Winter et al., 2023).

According to the Irish Environmental Protection Agency (EPA, 
2021b), starting from 1980 s, every decade has been warmer than the 
previous one and during the last ten-year decade (2010–2019), the 
average temperature was the warmest on record. An increase in the 
magnitude, frequency and duration of droughts is further expected 
during summer times (Meresa and Murphy, 2023). While the average 
annual precipitation in Ireland has increased approximately 5 % (60 
mm) during 1981–2010 compared to 1961–1900, substantial decreases 
in average annual spring and summer precipitation, and significant in
crease in frequency of extreme events in winter and autumn are ex
pected (EPA, 2021b). Weather extremes have been shown to have 
diverse impacts on nutrient loads within different agricultural land
scapes depending upon their specific characteristics (Mellander and 
Jordan, 2021; Ezzati et al., 2023) and boundary conditions (catchment 
boundaries) (Ehrhardt et al., 2021). These impacts generally correlate 
with changes in runoff volume (Coffey et al., 2018) and are therefore 
strongly controlled by precipitation and air temperature (Jordan et al., 
2014; Paul et al., 2019; Ezzati et al., 2023; Hadush and Conor, 2023). On 
the other hand, catchments, in a global scale, also have contrasting 
characteristics such as soil type and texture (including average clay 
content), land use (the fraction of arable land), management, and hy
drology (Sandström et al., 2020) which result in different responses to 
the same weather events. The differences between catchments are 
comprised of variations in the sensitivity of hydrological responses to 
climatic drivers (Sulis et al., 2011), and thus, variations in intrinsic 
controls relevant to nutrient mobilisation and delivery and differences in 
farming systems. Hence, nutrient dynamics in catchments, despite close 
geographic proximity but with different controls and mitigation strate
gies, have shown to respond differently to the same large-scale weather 
extremes (Mellander & Jordan, 2021).

Existing management efforts and mitigation strategies have not only 
failed to improve water quality in Ireland (EPA, 2023), but are also 
incapable of buffering the effects of weather extremes in the already- 
vulnerable agricultural sector at a global scale. This failure is of 
greater importance in countries where the agri-food sector is an integral 
part of the economy and society (Abbass et al., 2022). According to 
Samaniego et al. (2018), Europe may face a 40 (±24) % increase in 
drought affected areas in the absence of effective mitigation strategies 
during the 21st century (Caretta et al., 2022). Therefore, when consid
ering the more frequently occurring extreme weather events, more tar
geted approaches and resilient management strategies are required to 
deliver catchment-specific and climate-resilient adaptation. However, 
uncertainty remains regarding the causes and severity of water quality 
degradation due to changing climate (Refsgaard et al., 2013).

The modelling of water quality, which is often used to guide poli
cymakers in developing appropriate mitigation strategies, is facing new 
challenges in representing nutrient trends, legacies, delivery, and 
mobilization in view of current and projected climate change scenarios 
(Mellander et al., 2018; Mellander et al., 2022b). The impacts of the 

changing weather patterns have also been less considered in policy re
views (Mellander et al., 2018). According to Gascuel-Odoux et al. 
(2023), these challenges are due to three main reasons: 1. Lack of long 
time series data for water quality and chemical concentrations 
compared to hydrologic fluxes and storage measurements; 2. Lack of 
detailed understanding of climate-water quality relationships compared 
to well-developed, but highly generalised, climate-hydrology models at 
global and regional scales (Lintern et al., 2021); 3. Difficulty in dis
tinguishing climate effects from those due to changes in farming activ
ities (e.g. types of the crops) (Lungarska and Chakir, 2018). In addition, 
seasonality drives changes in nutrient concentrations as a consequence 
of changes in hydrologic flow pathways, climate change, and associated 
biological processes (Covino et al., 2021). However, understanding the 
seasonal dynamics of nutrients is highly complex and ensuring good 
water quality requires catchment-specific approaches (Warner et al., 
2021).

Changes in the nutrient concentrations are influenced by mobi
lisation and hydrological processes, driven by weather and agricultural 
management, and controlled by physical catchments characteristics (e. 
g. soil/bedrock drainage and chemistry) and can as such be subtle 
(Mellander et al., 2018). While nutrient concentrations can vary within 
any span of time, the impacts of extreme runoff events are typically more 
drastic and can be exhibited immediately. Changes in the nutrient loads, 
on the other hand, represent the cumulative quantity without capturing 
fluctuations, while hydrology may also override any processes in 
mobilisation (Mellander et al., 2022a).

This study used 11-years (2010–2021) of sub-hourly (10-min basis) 
water quality (i.e., concentration data) and climatic data from six hy
drologically contrasting agricultural catchments in Ireland. The objec
tives were to statistically assess the presence of seasonal and annual 
trends in nutrient and sediment concentrations using Mann-Kendall 
Trend Analysis, and to evaluate the impact of climatic data (i.e. pre
cipitation, air/soil temperature, soil moisture deficit), on nutrient source 
loading and in view of management practices, using Generalised Addi
tive Models. Such analysis may facilitate a better understanding to 
counter future challenges for water management and provision of 
climate-smart mitigation strategies.

2. Materials and Methods

In order to identify any existing trend in nutrient concentrations in 
view of recent extreme weather events in Ireland (prolonged draught 
periods and/or heavy precipitation), and in order to understand the 
importance of climatic variables in regulating nutrient losses throughout 
different months of the year, long-term high-resolution water quality 
data from agricultural catchments with contrasting physical and man
agement factors were studied using different statistical modelling 
techniques.

2.1. Site study description

Six agriculturally-dominated catchments (one karst spring contri
bution zone and five river catchments) monitored by the Irish Agricul
tural Catchments Programme (Mellander et al., 2022a,b) were 
investigated (Fig. 1 and Table 1). The catchments are all intensive 
agriculture areas and comprise a varying mix of grassland (pasture) and 
arable land use. They all have different physical characteristics, i.e., 
slopes, soil types, drainage, and areas ranging from 3 to 31 km2. The 
base-flow (Bfi) indices and detailed fertiliser applications rates have 
been assessed in Mellander et al., 2022a.

Ballycanew (11.9 km2-Co. Wexford) is in the southeast of Ireland. 
This catchment has mostly poorly drained soil with land use dominated 
by grasslands (77 %) grazed by dairy cows. There was a 30 % increase in 
stocking rate (livestock per area) between 2010–2018. Grazing intensity 
is highest in May and fertilisers are mostly N-based. December and 
January are a “closed period” as defined by Nitrate Action Programme in 
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Ireland (NAP) (DAFM, 2017), during which grazing and the spreading of 
fertilisers are prohibited. Excess slurry stored in tanks is typically spread 
on silage fields at the end of March. The hydrology is flashy (base-flow 
index (Bfi) of 0.63) with dominating surface/near surface pathways 
(Mellander et al., 2015).

Castledockrell (11.2 km2-Co. Wexford) is also located in southeast 
Ireland. This catchment has mostly well-drained soils with 72 % of the 
catchment under arable land use (66 % of the total area is under tillage 
which is the highest of the catchments studied). Hydrological pathways 
are primarily subsurface (Mellander et al., 2016) with Bfi of 0.78.

Corduff (3.3 km2-Co. Monaghan) is in northeast Ireland. This poorly 
drained catchment has no tillage, has low chemical fertiliser application 
rates (as detailed in Mellander et al., 2022a), and is dominated by 
grassland for sheep and suckler cows. The catchment has a flashy hy
drology (Bfi of 0.57) dominated by surface/near surface pathways.

Cregduff (31.2 km2-Co. Mayo) is a mainly permanent grassland karst 
spring contribution zone, located in west Ireland. Sheep are primarily 
grazed and have a longer grazing period than cattle. The soil is well 
drained and relatively thin. Hydrological pathways are dominantly 
subsurface (Mellander et al., 2013) and Bfi is 0.82. The rate of N- 
application in this catchment is low relative to other catchments.

Dunleer (9.5 km2-Co. Louth) is in northeast Ireland. Farm types in 
this catchment are mixed at approximately 40 % grassland, half of which 
is grazed by dairy and half by beef cattle. This catchment has moderately 
drained soils with flashy hydrology (Bfi of 0.66) and mostly surface/near 
surface pathways (Mellander et al., 2012). Chemical N fertilisers are 
spread in April/March but available soil P has been notably increasing 
during the recent years. The ploughing/sowing take place during 
October and November.

Timoleague (7.6 km2-Co. Cork) is in southwest Ireland, is well- 
drained and dominated by grassland and subsurface hydrological 
pathways (Mellander et al., 2016) with Bfi of 0.73. There has been an 
increase in livestock grazing intensity and the percentage of land under 
derogation (allowance to farm at livestock above the limit of 170 kg N 

ha− 1 under the EU Nitrates Directive). The P-index (soil fertility) is also 
increasing more than expected. Maize is one of the dominant crops 
which requires substantial slurry spreading typically between mid- 
January and October.

The management practices for a typical farming calendar in each 
catchment were collated from discussion with the local farm advisor and 
knowledge transfer expert (Fig. 2).

2.1.1. Hydrochemistry data collection
Bankside P analysers (Hach-Lange Sigmatax-Phosphax) (Melland 

et al., 2012) were located at the catchments outlets which measure total 
digested P (TP) and total reactive phosphorus (TRP) concentrations on 
unfiltered samples. The measuring range is 0.010 mg L− 1 to 5.000 mg 
L− 1, and the detection limit is 0.010 mg L− 1. Total oxidized N (TON) was 
monitored using Hach-Lange Nitratax SC-Plus UV instruments (co- 
located at the outlets). The measuring range is 0.1–50 mg L− 1 and 
assuming a low NO2-N concentration (Melland et al., 2012), TON is 
considered equivalent to NO3-N. The measuring of all nutrients was 
carried out based on a 10-min basis.

Stage-discharge rating curves on Corbett flat-v non-standard weirs 
have been established at the individual catchment outlets. The ratings 
are based on the velocity-area method with an OTT Acoustic Doppler 
Current meter (in WISKI-SKED software). An OTT Orpheus Mini vented 
pressure instrument installed in a stilling well adjacent to the weirs re
cords the water level every 10 min. The river discharge is calculated by 
converting the water level to flow. In Cregduff, the discharge is calcu
lated using an ultrasonic sensor (Thermo-Fisher time-of-flight area ve
locity) which is placed in an engineered uniform cross-section.

Suspended sediment (SS) concentrations were estimated using 
turbidity reading and corresponding concentration-turbidity conversion 
relationships (excluding the Cregduff catchment given its karst geology) 
(Sherriff et al., 2016).

Fig. 1. Location of the six catchments monitored by the Agricultural Catchments Programme. The time series plots show daily average nitrate-N (NO3-N) and total 
phosphorus (TP) concentrations (mg L-1) for the time period of 2010–2021. The values on the y-axis represent maximum concentration detected in the catchments.
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2.1.2. Weather data collection
Precipitation, air temperature (Tair), soil temperature (Tsoil), rela

tive air humidity, solar radiation, wind speed and wind direction are 
measured at ten-minute intervals by a weather station (BWS200, 
Campbell Scientific, https://www.acpmet.ie) located in the central 
valley floor within each study catchment. The effective rainfall was 
calculated by subtracting potential evapotranspiration (derived from the 
Penman-Monteith equation (Monteith, 1965)) from measured rainfall.

The soil moisture deficit (SMD), which responds to changes in air 
temperature and rainfall, was calculated as the amount of rain needed to 
bring the soil back to field capacity using a SMD model (Schulte et al., 
2005).

2.2. Data analysis

2.2.1. Monthly trend analysis
To investigate the seasonality that may be hidden in inter-annual 

trends, and compare the nutrient concentrations dynamics in each 
month across different years, the temporal trends in average daily values 
of climatic-related explanatory drivers and nutrient concentrations were 
calculated using the non-parametric rank-based Mann-Kendall test 
(Kendall, 1948). The analysis was carried out over 11 years of the 
monitoring period. This test accounts for non-normality of hydrological 
(Yue et al., 2002) and climatological data (Partal and Kahya, 2006). 
Hence, the method provided accurate estimation and enabled compar
ison of any increasing or decreasing trends of variables in each particular 
month over more than a decade. The null hypothesis assumed that the 
data (x1, …,xn) consist of n independent and identically distributed 
random variables and P < 0.05 was considered as a significant trend for 
calculating slopes of time series (Sen, 1968). The intercept (α) was 
calculated as followed: 

α = x 0.5 − s*y0.5 (1) 

where x0.5 and y0.5 are median values of variables.

2.2.2. GAM analysis of significance of drivers
Generalised Additive Models (GAMs) (Hastie and Tibshirani, 1990) 

were fitted to the daily average time series data, in order to evaluate the 
significance of the impact of different climate variables on regulating 
water pollutant losses over different months of the year (on condition 
that an increasing/decreasing trend existed, see section 2.3.1). GAMs, as 
an extension to generalized linear models with smoothing functions, are 
becoming a widely applied statistical test for evaluation of changes in 
water quality at large scales (Murphy et al., 2019) with multiple vari
ables (Wood, 2006) and consider uncertainty and random effects of both 
parametric and non-parametric variables. Hence, GAMs add flexibility 
to the modelling of complex non-linear relationships between response 
and explanatory variables. This is especially useful since water chem
istry variables are influenced by each other or by the climatic drivers 
(von Brömssen et al., 2021, Ezzati et al., 2023). 

F(E(y) ) = f(x1,⋯, xn) = β+ s1(x1)+ s2(x2)+⋯+ sn(xn) (2) 

where yi is the response variable for i = 1,…,n and x1, …, xn are inde
pendent variables. E(y) is the expected value of y [as an alternative for 
the response distribution apart from the normal distribution], β is the 
model intercept, and si=1-n (x) is a smooth function wrapping the inde
pendent variable.

The resulting accuracy in capturing the relationships between 
response variables (water quality dynamics, i.e. nutrient losses) and 
explanatory data (climatic drivers of Tair, Tsoil, Precipitation, and 
discharge) was checked based on the flexibility of the curve fitting to 
multiple variables (Ezzati et al., 2023). A low p-value indicated that 
residuals were not randomly distributed (hence there is enough data to 
capture subtle non-linear linkage between variables and showing sig
nificance of explanatory variables), and a significant downward or Ta
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Fig. 2. Summary of the typical farming calendar for each of the six catchments monitored by the Irish Agricultural Catchments Programme. In order to assist 
visualisation, similar bar colour are used for similar activity across different catchments.
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upward trend was identified if the entire confidence band of the derivate 
of the trend smoothness was below or above zero, respectively (von 
Brömssen et al., 2021). Here, the “mgcv” package in the R statistical 
software (Wood, 2017) was applied while “gam.check” (as a tool pro
vided by “mgcv”) was used to check model assumptions and assess 
effective degrees of freedom for the model terms.

3. Results

3.1. Hydrochemistry

Timoleague and Corduff had the highest annual average water 
discharge with 643 and 616 mm yr− 1

, respectively. Cregduff outlet is in 
an estimated spring contribution zone which explains its very low 
discharge compared to the rest. However, among the other remaining 
five catchments, Dunleer had the lowest mean annual discharge (402 
mm yr− 1) (Fig. 3). The values of the other response variables varied 
significantly among the six study catchments due to their diverse 

Fig. 3. Box and whisker plots of daily concentrations of SS, NO3-N, TP and TRP, and the average annual total discharge leaving the catchment outlets for the period 
2010– 2021. Cregduff is a karst spring contribution zone and therefore does not have SS data. The line in the boxplots marks the median point of the data. Whiskers 
show the upper and lower quartiles (75th and 25th percentiles, respectively). Outliers are shown as circles. The dotted horizontal line shows environmental quality 
standards (EQS) for NO3-N and TRP.
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characteristics and management. Ballycanew had the largest mean SS 
concentration with a negatively skewed observed concentrations. 
Cregduff and Corduff had the lowest middle quartile in all water 
pollutant variables, while the ranges of TP and TRP in Castledockrell 
were as low as in those two catchments, but the NO3-N range was the 
highest among all catchments. Dunleer and Timoleague had normally 
distributed observed concentrations in NO3-N and TP and TRP concen
trations, and a positively skewed SS with outliers.

According to the farming calendar and local catchment advisors, 
slurry spread during spring/summer time is more common in grassland 
areas where as ploughing and fertiliser application take place during 
spring on arable land (Fig. 2). For example, in Castledockrell, in which 
the NO3-N concentration was highest among all the study catchments 
(Fig. 3), the significant increase of this nutrient in April coincided with 
chemical fertiliser application and ploughing/sowing (Fig. 2).

3.2. Monthly trend analysis

The poorly drained catchments of Ballycanew and Corduff and the 
moderately-drained Dunleer had more frequently occurring monthly 
trend changes in the concentrations of NO3-N and P compared to the 
other study catchments (Fig. 4). The increase in monthly trends of 
nutrient losses in Ballycanew occurred during January, May, and 
September, while in Dunleer, the increase occurred during October- 
April. Corduff experienced an increase in monthly trend in nutrient 
losses throughout the year except in April and December (Fig. 4).

The monthly trend analysis of climatic drivers in Ballycanew and 
Corduff also showed more fluctuations compared to the other study 
catchments (Fig. 4). The air and soil temperature increased during 
summer in Ballycanew and Castledockrell. These two catchments are 
geographically close, yet, the changes in weather pattern were not 
identical.

There was a highly significant increase in TP and TRP concentrations 
leaving the Timoleague catchment during September; however, it does 

Fig. 4. The average monthly trend analysis of NO3-N, TP, TRP concentrations, and explanatory variables during 2010–2021 using Mann-Kendall tests. The red colour 
indicates increasing trends and the green colour indicates decreasing trends. The level of significance is presented by the different shades of any individual colour.
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not coincide with a significant increase in the corresponding monthly 
trends of any of the climatic variables (Fig. 4).

Changes in monthly trends in climatic drivers were observed more 
frequently in Corduff compared to the other study catchments (Fig. 4). 
Dunleer experienced significant changes in potential evapotranspiration 
during September-March. There was also overlaps of the changes in 
monthly trends in nutrient concentrations with monthly trends in cli
matic drivers in Dunleer (during January, March, November, 
December).

3.3. Significance of drivers from GAMs

None of the climatic drivers were significant in regulating NO3-N 
losses during January-March, September, and December. Similarly, 
none of the drivers were significant in regulating TP/TRP concentration 
trends during April-May, and October, in any of the study catchments 
(Table 2 and 3). However, May-August and October-January were 
generally the time windows when significant changes in monthly trends 
occurred.

Discharge appeared to be one of the main regulators of NO3-N losses 
during months in which, a significant increase of NO3-N concentrations 
was observed. The significance of discharge occurred alongside its cli
matic drivers of Tair, Tsoil, and Precipitation. Tair was more associated 
with increases in NO3-N and Precipitation with P. Summer time 
appeared to be the period in which most of the trend changes in the 
concentrations of both nutrients (Fig. 4) and the drivers of concentra
tions including climatic drivers (Tables 2 and 3) took place.

In terms of NO3-N losses, Corduff was mostly influenced by climatic 
drivers followed by Dunleer, Castledockrell, and Timoleague (Table 2). 
In terms of P (TP and/or TRP) losses, Dunleer and Corduff, followed by 
Timoleague and Ballycanew exhibited more susceptibility to changes in 
weather patterns manifested in the 11 year long time series (Table 3).

4. Discussion

Discharge, in relation to its fluctuations with weather changes, was 
one of the most significant drivers of regulating concentrations of both N 
and P. Investigation of the dynamics between discharge and nutrient 
concentrations under changing climate (and different hydrometeoro
logical conditions) is gaining more interest (D’Amario et al., 2021; 
Pettersen et al., 2021). It is now understood that NO3-N and TP con
centration patterns in relation to discharge tend to vary for different 
geographical settings and be influenced by other drivers e.g., anthro
pogenic activities (D’Amario et al., 2021; Vystavna et al., 2023), or 

changes in weather (Ramos et al., 2022; Ezzati et al., 2023). Studies on 
the efficiency of management practices under climate change scenarios 
have shown that depending on the influential catchment characteristics, 
some watersheds would be more resilient in face of increased intensity of 
rainfall (Yuan and Koropeckyj-Cox, 2022). Extreme rainfall events and 
rainfall outside the growing season are known to not only influence 
agricultural production by prolonging the growing season, but they are 
also strongly correlated to discharge, N concentration (Øygarden et al., 
2014), and P concentration (Ramos et al., 2022). For example a year 
with normal precipitation has shown strong chemodynamic behaviour 
in terms of N concentration-discharge while a year with above normal 
precipitation suggested chemoststiatic behaviour (Miller and Lyon, 
2021). Chemostatic behaviour is hydrologically controlled in the 
catchment (Pohle et al., 2021), hence, the concentrations remain stable 
over a wide range of flows in a concentration-discharge (c-q) pattern due 
to transport limitation (Bieroza et al., 2018). On the contrary, the rate of 
change in pollutant concentration in a chemodynamic c-q pattern, is 
larger than the flow change suggesting a source-limitation mechanism 
(Basu et al., 2010). Precipitation can change the quantity of discharge as 
well, which would consequently impact the nutrient fluxes (Grusson 
et al., 2021). This impact would show itself as either a sudden increase in 
concentrations due to washing out of diffuse sources of nutrients and 
sediments (Delkash et al., 2018), e.g. increasing the average P loads by 9 
% (Ockenden et al., 2016), or gradual decreases due to dilution by the 
water flow (Zhao et al., 2018).

Significant increases in Tair and Tsoil were observed in both Bally
canew and Castledockrell study catchments during summer months 
(June, July, August). These drivers suggested to have significant impacts 
on nutrient concentrations in all catchments. The impact of higher 
temperature on NO3-N concentrations in diverse geographical locations 
has also been observed in other studies (Bučienė et al., 2019; Ezzati 
et al., 2023). Higher temperatures (warmer summer or winter) will 
create large N pools in soils and increase mineralisation and nitrification 
rates (Wang et al., 2016) which leads to an increased risk of concen
trations at the start of any ensuing wet period (Melander & Jordan, 
2021). Rising temperatures would not only increase the risk of droughts 
and fluctuating quantities of discharge (Vystavna et al., 2023), but will 
also change soil shear strength (Zhang et al., 2022a,b), which would 
consequently cause decreases in multi-year flow and mean active water 
storage capacity in catchments (Vystavna et al., 2023). On the other 
hand, water limitation in summer droughts affects grass growth by 
reducing uptake from spring N fertilizers. In order to compensate for 
that, higher mineral N fertilizers may in some cases be applied (Kundel 
et al., 2021) which would increase the risk of concentrations during 

Table 2 
The significance of climatic drivers in regulating NO3N concentrations with a significant monthly trend during water years spanning 2010–2021.

Catchments Apr May Jun Jul Aug Oct Nov

Castledockrell NO3N Discharge * 
Tair * 
SMD * 
Prcp.

​ ​ ​ ​ ​ Discharge * 
SMD * 
Tair * 
Prcp.

Corduff NO3N ​ Discharge * 
Precp.

Discharge*** 
Prcp*** 
Tair*** 
Tsoil*** 
PET***

Discharge* 
Prcp** 
Tair** 
Tsoil** 
PET*

Tsoil ** 
Precp.

Tsoil ** 
Tair * 
Discharge.

Discharge ** 
Precp * 
Tair * 
PET *

Cregduff NO3N ​ ​ ​ Discharge. 

Prcp. 

Tair.

​ ​ ​

Dunleer NO3N Discharge * 
Prcp * 
PET * 
Tair. 
Tsoil.

​ ​ Prcp * 
Tsoil * 
SS *

​ ​ ​

Timoleague NO3N Tair * 
Prcp.

​ ​ ​ ​ ​ Discharge *

Prcp stands for Precipitation. The asterisks show the significance of each variable: p ≤ 0.001 “***”;p ≤ 0.01 “**”;p ≤ 0.05 “*”;p ≤ 0,1 “*”.
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winter time. Also, as a large pool of excessive N has been built up, a 
higher water discharge will increase losses with the first rain after a 
prolonged summer period (Ulén and Johansson, 2009; Outram et al., 
2014; Mellander and Jordan, 2021). However, if the groundwater has a 
high storage potential or long residence time (Fenton et al., 2011), or the 
ditches have low equilibrium phosphorus concentration (Ezzati et al., 
2021), the excess N and P, respectively, will be naturally attenuated 
before leaving the catchment.

The three groundwater-fed catchments (Castledockrell, Cregduff, 
and Timoleague with dominant soil types of Al-rich, Al and Ca rich, and 
Fe-rich, respectively) showed a chemostatic behaviour for P which was 
not affected by changes in the weather patterns (Mellander et al., 
2022b). Catchment characteristics can significantly change the re
lationships between discharge and stream water nutrient concentrations 
by changing the strength and nature of stream flows (Gao et al., 2021) or 
provide a natural attenuation function due to soil chemistry (Ezzati 
et al., 2021). The biogeochemical properties of soils in these catchments 
are also indicative of soil high affinity to bind P as long as the soil has not 
become P-saturated to act as a P-source rather than a P-sink (Ezzati et al., 
2020). In Castledockrell, the significant increase in NO3-N concentra
tions in April over the 11 years coincided with chemical fertiliser 
application and ploughing/sowing (Fig. 2). This catchment is not hy
drologically risky (i.e., extreme hydrological events do not create a shift 
in nutrient dynamics), and was categorised as chemostatic in terms of P 
(i.e., higher flow will not lead to higher nutrient losses (Bieroza et al., 
2018)). According to Mellander & Jordan (2021), the groundwater-fed 
well drained “N loss risky” Castledockrell catchment, becomes “P loss 
risky” during winter storms. This transition happens when SMD has been 
0 mm for two or more consecutive days, and the effective rain exceeded 
15 mm/day (Mellander and Jordan, 2021). Timoleague catchment 
experienced a significant (P < 0.001) increase in P-concentrations dur
ing September and a first-level significant increase (P < 0.1) in NO3-N 
concentrations in January, April, and November, over the 11 year study 

period. Spring barley, wheat, and maize were the dominant crops, with 
the latter requiring a large amount of slurry spreading which starts from 
mid-January and continues until October (inclusive). Chemical fertil
isers were applied in April. The maize fields are also closer to the 
catchment outlet, which may contribute to the high concentrations in 
the outlet.

In the Ballycanew catchment, the increases in TP and TRP concen
trations occurred during January, May, and September; yet, no partic
ular farming practice could be associated with increases in P flux during 
January. Grazing (which occurs February-November) coincided with 
cutting grasses in May. However, slurry spreading in September coin
cided with a significant increase in the trend of monthly Tair values. 
Assessment of the high-resolution data revealed that precipitation 
exceeding 10 mm per day consistently caused a sharp increase in P 
concentrations. The elevated level of concentration returned to back
ground values after few days when the nutrient sources were exhausted 
or not hydrologically connected. In addition, continuous rainfall over 
several days caused an increase in TP concentrations, regardless of the 
amount of rainfall as more source areas were connected. Remarkably, an 
extreme hydrological event can turn the P-risky catchment of Ballyca
new to N-risky as well. Ireland experienced a series of extreme weather 
events including a severe summer drought in 2018 (Falzoi et al., 2019). 
Following the rainfalls in September in the same year, the daily average 
concentration of NO3-N reached about 6 times larger than the Envi
ronmental quality Standard (EQS) in Ballycanew and it remained high 
throughout the year (Mellander and Jordan, 2021).

Corduff exhibited the highest chemodynamic behaviour among the 
studied catchments. According to Mellander et al. (2018), the average 
annual runoff coefficients (fraction of rainfall that appears as runoff) 
between 2009–2015, in descending order, were Corduff (0.57), Tim
oleague (0.55), Castledockrell (0.54), Dunleer (0.48), and Ballycanew 
(0.48), (Cregduff is a spring contribution zone). This explains the high 
chemodynamic behaviour (Bieroza et al., 2018) of Corduff (highly 

Table 3 
The significance of climatic drivers in regulating TP and/or TRP concentrations with a significant monthly trend during water years spanning 2010–2021.

Catchments Jan Feb Mar Jun Jul Aug Sep Nov Dec

Ballycanew TRP ​ ​ ​ ​ ​ ​ Tsoil ** 
SMD * 
Tair * 
Discharge.

​ ​

TP Precp * ​ ​ ​ ​ ​ Tsoil * 
SMD. 

Discharge.

​ ​

Corduff TRP ​ Precp * 
Discharge. 

SS.

SS * Discharge* 
Precp * 
Tair * 
Tsoil.

Tsoil * 
Tair.

SS * 
Discharge. 

Precp.

​ ​ ​

TP ​ ​ ​ ​ Discharge* 
Tsoil * 
Tair *

​ ​ ​ ​

Cregduff TRP ​ Tsoil. 

Tair.
​ ​ ​ ​ ​ ​ ​

TP ​ ​ Discharge*** 
Tair *** 
Tsoil** 
Precp *

​ ​ ​ ​ ​ ​

Dunleer TRP ​ ​ Precp ** 
Discharge* 
Tair. 

Tsoil.

​ ​ ​ ​ Precp ** 
Tair * 
Tsoil * 
Discharge * 
SS.

Precp.

TP ​ ​ Precp ** 
Discharge* 
Tair. 

Tsoil.

​ ​ ​ ​ Precp * 
Discharge.

Precp * 
Discharge.

Timoleague TP Discharge*** 
Precp *** 
SS ***

​ ​ ​ ​ ​ Precp * 
Discharge.

​ ​

Prcp stands for Precipitation. The asterisks show significance of each variables: p ≤ 0.001 “***”;p ≤ 0.01 “**”;p ≤ 0.05 “*”;p ≤ 0.1 “*”.
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affected by changes in the climate due to hydrological characteristics). 
The slurry spread during July seemed to have a significant impact on the 
concentrations of all nutrients. Corduff is mainly permanent grassland 
with sheep being the main grazing animal from March-November. 
Increasing trends in P (TP and TRP) and NO3-N concentrations in 
Dunleer were observed in six months and one month, respectively. This 
increase in monthly losses occurred almost as frequently as in Corduff, 
during October-January, and March-April. However, potential evapo
transpiration seemed to be the only driver with an increasing trend (i.e. 
less precipitation), which may lead to slurry spreading as the weather 
condition is good. According to local knowledge transfer expert, the 
ploughing/sowing in Dunleer take place during October and November, 
potatoes are harvested during November, and beets are harvested during 
November/December. Hence, further farm-scale investigation is 
required to understand the changes in nutrient concentrations leaving 
the Dunleer catchment outlet as it is the most complex catchment among 
all those included herein.

The results of analysing high temporal resolution historical weather 
and water quality data of the past 11 years suggested a relationship 
between increasing trends in climatic drivers and trends in within- 
stream nutrient concentrations. However, the significance of the corre
lation between nutrient concentrations and changes in weather patterns 
was defined by the catchment characteristics including the drainage 
status and soil chemistry. The present study showed that the non- 
climatic indices, such as discharge and SS, which are also affected by 
the changing weather patterns, were significant drivers of nutrient 
concentrations mostly during the warmer time period of the study years. 
Hence, current mitigation strategies require explicit consideration of the 
more frequent occurrence of extreme weather events and their impacts 
on water pollutant concentrations. It is important to note that there may 
be inter-seasonal trends that are not identified when assessing inter- 
annual trends. For example, in the arable Castledockrell catchment, it 
is recommended to focus on improving N mitigation measures and/or 
changes in management decisions during April and November. How
ever, in the other grassland catchments of Corduff and Timoleague, the 
summer period (May-August) plus October-November; and January, 
April, and November are important, respectively. Meanwhile, an 
improved focus on P mitigation and management is required in Bally
canew during January, May, and September; in Dunleer during March, 
July, October-January, and in Timoleague during September and 
December.

5. Conclusions

This study used long-term and high temporal resolution data (10- 
min) to investigate the N, P, and SS concentration trends in relation to 
the changing hydro-meteorological patterns in six agricultural catch
ments during 2010–2021. The results of historical data analysis showed 
that some of the catchments exhibited changes in the daily average 
trends of NO3-N, TP, TRP, and/or SS concentrations with an associated 
significant increasing trend of climatic drivers, i.e. air temperature, soil 
temperature, and precipitation across the same months over the 11 years 
of monitoring period. The soil chemistry and drainage status of the study 
catchments are the non-climatically related drivers of nutrients con
centrations while changes in air and soil temperature, SMD, and pre
cipitation are the main climatic drivers regulating the nutrient 
concentrations. The extent of the impact of these climatic drivers highly 
depend on unique catchment characteristics. Discharge had a significant 
impact on the concentrations of NO3-N, TP, TRP, and SS; air and soil 
temperature were significantly correlated to NO3-N losses; and precip
itation was the major contributor to regulating TP and TRP concentra
tions across the different catchments.

The inter-seasonal and inter-annual trends of losses revealed that the 
climatically driven changes during the same month over the 11 years are 
manifested differently in different catchments due to their individual 
hydroclimatological characteristics and management practices. Hence, 

catchment specific mitigation strategies are required to overcome future 
challenges to water quality management and the selection of climate- 
resilient mitigation measures in view of more frequently occurring 
extreme weather events and projected climate change scenarios.

Hence, building upon the results of the current study herein, we 
recommend that further studies are needed to investigate possible in
creases of nutrient concentrations into water bodies from agricultural 
catchments, using the current projected climate change scenarios in 
Ireland. This would eventually lead to developing future climate- 
resilient mitigation strategies.
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