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ABSTRACT

The presence of excess fine-grained matrix sediment in channel beds can exert an oxygen demand in this critical habitat for
fish spawning and invertebrates. Therefore, reducing the oxygen demand of channel bed sediment through targeted interven-
tion may deliver better cost-benefit from catchment management. To assess the potential for targeted interventions to deliver
benefits, sediment oxygen demand (SOD) was measured in pools, riffles, bars, and runs at nine sites along the River Taw in the
southwest of the UK. This river flows from upland semi-natural grassland, to lowland agriculture with sewage treatment work
discharges. SOD was measured for 5days on the <25 um fraction of the bed matrix sediment using a laboratory-based dissolved
oxygen probe. Samples of potential sediment sources were also analysed, and a colour-based method was used to determine the
provenance of the channel bed sediment. SOD did not vary significantly longitudinally or by riverine feature and was higher in
the river bed matrix sediment than its sources. Using settling to isolate the ultra-fine fraction of the sediment showed the highest
SOD was concentrated here. The entrapment of autochthonous algal material in this fraction is the probable source of this high
SOD. Since reducing within-stream productivity is likely to be challenging, a combined approach targeting sediment source pro-
tection to water erosion and in-channel measures to increase matrix sediment exfiltration is warranted. This would reduce the
reduction in pore spaces in the bed matrix by fine sediment ingress, thereby limiting the entrapment of the ultra-fine material
controlling SOD.

1 | Introduction mitigating pollutant losses to water through a range of pol-
icy instruments including, for example, regulation and agri-

A decline in the ecological status of fresh waterbodies has environment initiatives (McDowell et al. 2016; Environment

been observed worldwide, with modern agricultural prac-
tices, river modification, and industrial and residential expan-
sion being linked to increased sediment and nutrient losses
to water and their subsequent detrimental ecological impacts
(Quinton et al. 2010; Borrelli et al. 2017; McDowell et al. 2016).
Consequently, significant investment is being made towards

Agency 2019).

Globally, the often-limited attempts to detect improvements
within-stream after the implementation of mitigation measures
have rarely shown compelling positive benefits, resulting in high
uncertainties surrounding the expected or technically feasible

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is

properly cited.
© 2025 The Author(s). River Research and Applications published by John Wiley & Sons Ltd.

River Research and Applications, 2025; 0:1-12
https://doi.org/10.1002/rra.4444

1of 12


https://doi.org/10.1002/rra.4444
https://doi.org/10.1002/rra.4444
mailto:
https://orcid.org/0000-0001-8790-8473
mailto:simon.pulley@rothamsted.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Frra.4444&domain=pdf&date_stamp=2025-04-03

outcomes of any planned programmes of measures (Stalnacke
etal. 2003; Kayetal. 2009; Meals et al. 2010; Pastuszak et al. 2012;
Lloyd et al. 2014; McGonigle et al. 2014). Typically, the efficacy
of mitigation measures is quantified as a reduction in source-
specific contributions to riverine loads (tonnes transported)
which are important for reducing water treatment costs or im-
pacts on lakes and estuaries (Newell Price et al. 2011). However,
from the standpoint of improving waterbody ecological status,
a reduction of concentrations (mgl™) during ecologically sensi-
tive periods with high biological productivity may have greater
potential for delivering positive outcomes and require different
mitigation measures (Jarvie et al. 2006; Mellander et al. 2024).
Here, a range of potential pollutant sources might need to be
targeted, including, for example, proximal sources to river chan-
nels like riparian critical source areas, distributed sources such
as farmyards and tracks, and point sources of nutrient losses,
such as sewage treatment plants, which may release pollution
to watercourses during all flow conditions (Lloyd et al. 2019;
Jordan et al. 2007). However, high nutrient and sediment con-
centrations are not present in the water column of all rivers, es-
pecially in headwater streams. Jarvie et al. (2018), using monthly
samples retrieved from 249 river monitoring sites, reported that
23% of UK headwater streams were P-impaired, compared with
51% of UK rivers of all sizes. Yet, sediment and nutrients may
be a source of degraded habitat quality when concentrations in
overlying waters are low due to their accumulation in channel
bed gravels, which are critical habitats for fish spawning and
invertebrates (Kemp et al. 2011; Jones et al. 2012). For example,
Buendia et al. (2013) and Descloux et al. (2014) showed changes
in invertebrate assemblages in channel beds suffering excess
sedimentation. A review by Chapman (1988) found that salmo-
nid embryo survival in redds was usually negatively correlated
with the percentage of fine sediment present. Fine sediment
has been shown to infiltrate deeply into fish spawning gravels
during winter high flow events (Soulsby et al. 2001). Whilst se-
questered on and within the channel bed framework, deposited
fine-grained matrix sediment may also adsorb dissolved phos-
phorus during low flows, further increasing its potential for eco-
logical harm (McDowell et al. 2020).

In addition to blocking physical space in channel bed frame-
work gravels, excess fine-grained matrix sediment prevents ox-
ygen diffusion, which is required for fish egg and invertebrate
respiration (Greig et al. 2005). Fine sediment also increases ox-
ygen consumption through microbial respiration, reducing ox-
ygen availability to aquatic biota (Cheng et al. 2024). Dissolved
oxygen in intra-gravel water has been shown to be positively
correlated with fish embryo survival (Chapman 1988). The oxy-
gen demand of deposited sediment may also be high enough to
impose a significant demand on the dissolved oxygen (DO) con-
tent of the overlying water (Butts 1974). A recent study by Jones
et al. (2023) compared hydro-chemical data obtained alongside
high-frequency invertebrate monitoring over 3years to repli-
cated biological data and found that all the stressor-specific in-
vertebrate indices tested were most strongly correlated with low
DO concentrations. As a result, a high SOD is associated with
changes in the structure and functioning of riverine ecology, es-
pecially in benthic habitats (Levin et al. 2009).

The number of investigations into SOD in gravel bed rivers has
been limited to date (Theurer and Theurer 1986; Greig 2004;

Sear et al. 2017) and has shown significant variability in the re-
sults, which may be due to the type and quantity of organic mat-
ter present (Lundkvist et al. 2007; Thomann and Mueller 1987)
or particle size effects (House 2003). The assessment of the
oxygen demand of channel bed sediments is often carried out
in situ (Coenen et al. 2019) with the data generated reflecting
the amount of sediment present, local hydrological conditions,
and the flows of sediments and water through the channel bed
matrix (Boudreau and Guinasso 1982; DiToro 2001). SOD is
strongly controlled by sediment-associated organic matter con-
tent, which can decay and oxidize, therefore competing with
aquatic ecology for the DO present (Chevalier et al. 1984; Greig
et al. 2005). Sediment from different sources has been shown to
exhibit varying oxygen demand and impacts on biota. For ex-
ample, highly organic sewage effluent and damaged road verge
sediments were found to be significantly more deleterious to the
mortality and fitness of alevin than sediment derived from erod-
ing channel banks or agricultural topsoils (Sear et al. 2016).

A targeted reduction in the oxygen demand of channel bed
sediment deposits therefore represents a key potential mecha-
nism for improving the ecological status of waterbodies where
bed deposition represents an important component of the fine-
grained sediment budget. However, to date, limited studies have
compared the oxygen demand of sediments in detail through a
single river system with the aim of establishing the practical-
ity of achieving this goal. This study therefore aimed to gain an
indication of how the oxygen demand of fine-grained matrix
sediment (mg O, g™') varies spatially within the River Taw, a
headwater river catchment, and if this can be linked to sediment
properties, sediment sources, catchment land use, or riverine
features.

The objectives of this study were:

1. To measure the longitudinal variability of channel bed fine
matrix sediment oxygen demand during a transition from
semi-natural peatland to intensive agriculture.

2. To compare the oxygen demand of channel bed fine matrix
sediment with its sources.

3. To identify the major factors controlling channel bed fine
matrix sediment oxygen demand.

2 | Methods
2.1 | Study Site

The study was conducted in the catchment of the Upper River
Taw (41.3km?) located in the Southwest of the UK (Figure 1).
This catchment was selected for study due to the high con-
trasts in land use between the upper and lower catchment
and therefore high potential longitudinal variability in SOD.
The river originates in the upland (>200-300ma.s.l.) semi-
natural grassland of Dartmoor, overlying peat and podzol
soils, which are used for rough grazing. It flows into a lowland
(<200ma.s.l.) agricultural landscape that supports dairy,
beef, and sheep production. Lowland soils are a combination
of poorly draining clay-rich gley soils and more freely draining
brown earths. Cereals and fodder maize are also produced,
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FIGURE 1 | Land use in the upper River Taw catchment and
the channel bed sediment sampling locations, field boundaries
from Ordinance Survey Mastermap and land cover from CROME
2020 (Rural Payments Agency 2023). [Color figure can be viewed at
wileyonlinelibrary.com]

particularly on the sandier, free-draining soils. The catch-
ment has a high mean annual rainfall of 1040 mm (measured
at North Wyke) which, when combined with the poorly drain-
ing soils, leads to a primarily ‘flashy’ surface water driven hy-
drology, although flow is maintained during dry periods by
throughflow and groundwater. The village of North Tawton

is in the lower catchment and contains a sewage treatment
works, from which discharge is released into the river down-
stream of the village.

2.2 | Sampling Strategy

Nine sampling sites were identified based upon roughly even
spacing along the river network and ease of accessibility. Two
sites were sampled each week between the 31st May and the
26th June 2024, as incubator capacity limited sample through-
put (Table S1; objective 1). This period is the end of the Salmonid,
Escoidae, and Petromyzontidate fish spawning seasons (ending
late May) and during Cyprindae, Cottidae, and Percidae spawn-
ing (Kemp et al. 2011). At each site, a sample of fine-grained
sediment stored within the channel bed framework gravels
was obtained from riffles, pools, runs, and gravel bars. A hand-
operated dredge was used to collect gravels and matrix sediment
from the river bed in approximately 5 locations within 2 m of the
sampling point assigned to the approximate centre of each of the
four in-stream features. The gravels and associated matrix sedi-
ment were transferred into a 15 L plastic bucket until it was full,
sampling to a maximum depth of approximately 20 cm, which
is a depth where fish eggs are likely to develop (DeVries 1997).
Gravel depth was significantly shallower in riffles, runs, and
pools than in gravel bars. The gravels within the bucket were re-
moved by hand, and the water containing sands, silts, and clays
was allowed to settle until clear. Excess water was then decanted
and the sediment transferred to 1L nalgene bottles. In addition,
samples of channel bank at each sampling site were retrieved
from the bottom two-thirds of the bank profile, and a sample of
the nearby topsoil was taken from the top 2cm of the soil pro-
file using a metal trowel. These topsoil sources comprised cul-
tivated fields, woodland, grassland, and damaged road verges/
fords. Seventeen additional samples of topsoils were retrieved
from across the catchment for sediment source tracing only. For
laboratory SOD measurements, native river water was required,
which was collected in a 50L plastic container. The water was
collected by submerging the bottle in an area of high flow whilst
taking care not to disturb any sequestered channel bed sedi-
ments. After filling, the bottle was left to settle for 10 min, and
the top 25% of the water was poured off to minimise the amount
of low-density organic matter present. The water was then left
to settle for an hour before the top two-thirds were decanted off
into a plastic bucket through a 25um sieve for use, discarding
the bottom third where most of the low amounts of suspended
material had settled.

2.3 | Laboratory Analysis

There currently is no widely accepted standardized mea-
surement method for SOD (Miskewitz et al. 2010). Collins
et al. (2017) incubated 200 mL of sediment slurry in 1L flasks
whilst continuously measuring the oxygen concentration in
the bottles. Whilst this method was effective, it requires indi-
vidual oxygen meters for each sample, which was beyond the
budget of this study given the need to replicate measurements.
Instead, an alternative method based upon the measurement
of the BOD of water was used (Cross and Summerfelt 1987,
Delzer and McKenzie 2003). Five-day SOD was measured as
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longer periods would not allow for a complete longitudinal
survey of the study river before seasonal changes might im-
pact sediment deposition, retention, and composition as well
as the composition of river water biota. SOD was measured
using the following steps:

1. Matrix sediment and source sampling and collection of na-
tive river water

2. Fractionation of samples to <25um, settling and removal
of excess water to form a slurry

3. Filling of BOD bottles with homogenised river water and
addition of 1, 2, and 3 spatulas of the sediment slurry creat-
ing three replicates per sample.

4. Initial measurement of the water and fine matrix sediment
DO concentrations using a benchtop meter.

5. Incubation in an orbital shaker at 20°C for 5days.

6. Re-measurement of water and fine matrix sediment dis-
solved oxygen concentration.

7. Isolation, drying, and weighing of the sediment contained
in each bottle.

8. Calculation of oxygen consumption per unit mass of fine
matrix sediment

Within 3 h of sample collection, the sediment and source mate-
rial samples were passed through a 25um stainless steel sieve
and the <25um fraction isolated for analysis. This fraction
was selected to minimise the potential for sediment particle
size to impact its oxygen demand. The sieved sediment was al-
lowed to settle for at least 1h until excess water could be de-
canted off, leaving a slurry. Clean 270mL glass BOD bottles
were submerged into the bucket of prepared river water to fill
them whilst stirring continuously to ensure that the water was
homogenous. Three replicates of the prepared slurry from each
sediment and source material sample were added to the filled
bottles using a plastic spatula whilst continuously stirring to en-
sure it remained homogenous. The replicates consisted of one,
two, and three spatula scoops of the slurry to allow for repeti-
tion and to maximise the probability that the results of at least
one sample fell into the acceptable range of values for accurate
measurement after incubation (>2mg O, 171). The mean mass
of sediment added to the bottles was 0.24g. Three samples of
river water containing no sediment were also analysed so that
the river water oxygen demand could be separated from that of
the fine-grained sediment.

After filling the bottles, their dissolved oxygen concentration
was measured using an Orion Star A213 Dissolved Oxygen
Benchtop Meter whilst continuously stirring using a mag-
netic stir bar. To confirm that the river water used for incu-
bation was homogenous, one of the three replicates of every
sediment and source material sample was also measured.
The samples were incubated for 5days in the dark at 20°C
whilst being agitated at 130rpm in an orbital shaker (New
Brunswick Scientific Innova 44 incubator shaker series) and
subsequently re-measured for DO concentration. After mea-
surement, the weight of the bottle with added water was re-
corded and the sediment in the bottles was allowed to settle.

The clear overlying water was decanted off and disposed of,
and the bottle was weighed to calculate the volume of water it
contained. The bottom ~20% of the water and sediment were
decanted into foil trays and oven dried at 50°C. The mass of
sediment contained in the trays was then recorded.

SOD was calculated by multiplying the DO concentration (mg
0, 1Y) of the river water before and after incubation by the vol-
ume of water contained in each bottle and subtracting the two
values to calculate the mass of oxygen consumed (mg). This
was then divided by the mass of sediment incubated to calcu-
late total five-day sample oxygen demand (SOD,; mg O, 1™!). The
mean oxygen demand of three river water samples measured
without the addition of sediment was then subtracted. Any mea-
surements where the oxygen concentration fell below 2mg O, 1™
after incubation were discarded as sediment oxygen consump-
tion is only independent above this threshold (Edwards and
Rolley 1965; Chevalier and Murphy 1985).

The sources of the channel bed fine matrix sediment samples
(objective 2) were determined by comparing their colour to
that of potential sources within the study catchment (Pulley
and Collins 2021). A total of 34 source samples were collected
from road verges and fords (3), cultivated topsoils (7), grass-
land topsoils (11), woodland topsoils (4) and channel banks
(9). Topsoil sources were sampled to a depth of 2cm, and chan-
nel bank samples were collected from the bottom two-thirds
of the bank profile using a stainless steel knife. The remaining
sediment after subsampling for SOD measurement was used in
this analysis. All source and sediment samples were fraction-
ated to <25um by wet sieving through a stainless steel sieve.
Hydrogen peroxide sample treatment was used to remove or-
ganic matter from the samples. 80 mL of 30% hydrogen perox-
ide was added to ~0.2 g of sediment and heated at 80°C for 4 h
(Pulley and Collins 2022). This sample treatment reduces the
potential uncertainties associated with changes in sediment
colour during its erosion, transport, and within-stream stor-
age. A~0.2g subsample of each source and sediment sample
was transferred to a 50mL centrifuge tube, and 8 mL of 30%
hydrogen peroxide was added. The samples were left to stand
overnight to reduce effervescence before being heated at 70°C
for 4 h and then 90°C until dry. The treated sediment samples
were packed into transparent polythene bags, and images of
them were captured using a Ricoh MP colour scanner. The
red, green, and blue values in the RGB colour space were cap-
tured on a scale of 0-255 in Gimp 2 open-source image editing
software.

To identify the major factors (excluding source) controlling SOD
variability in SOD based upon its settling velocity, which will be
controlled by its organic matter content and particle size, was
examined (objective 3). Here, sieved matrix sediment collected
from a gravel bar at the NWFP sampling site was placed into a
50mL burette with the prepared river water and shaken for 30s.
The sample was then allowed to settle, and the bottom 5mL was
transferred to a filled BOD bottle at 1-min intervals for a total
of 10 min.

A second trial was conducted wherein dried sediment from a
combination of riverine and agricultural sediment sources was
sterilised by oven drying at 105°C for 24 h. This sediment was
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added to the BOD bottles with the prepared river water and
SOD was measured using the methods outlined above. This trial
aimed to determine how much of the SOD was caused by mi-
croorganisms in the fine-grained matrix sediment, which may
have originated from terrestrial agricultural sources, when com-
pared to those present in the river water oxidising the sediment-
associated organic carbon.

2.4 | Data Analysis

To measure the longitudinal variability of channel bed fine
matrix sediment oxygen demand (objective 1) the mean and
standard deviation SOD, of the replicates from each sam-
pling site and riverine feature were plotted longitudinally
from upstream in the peat area to the downstream area of in-
tensive farming. It was observed if there was an increase in
SOD, associated with this downstream transition in land use.
Additionally, a Kruskal-Wallis test was used to determine if
there was a significant difference between the SOD; of the
four riverine features (runs, riffles, bars, and pools) across the
entire dataset.

To compare the oxygen demand of channel bed fine matrix
sediment with its sources (objective 2) the colour-based tracing
method was used. The hydrogen peroxide treated red and blue
values of the sediment and source samples were included in a
scatter plot, which was used to qualitatively interpret sediment
sources (Pulley and Collins 2021). The mean and standard de-
viation SOD; of the channel bed sediment SOD, and that of the
major sediment source groups (road verges and fords, cultivated
topsoils, grassland topsoils, woodland topsoils, and channel
banks) were compared, and a Kruskal-Wallis test was used to
determine if significant differences are present between the sed-
iment and its sources.

To identify the major factors controlling fine matrix bed sed-
iment oxygen demand (objective 3) SOD, was plotted against
its settling time in the burette to identify if a lower setting
velocity (finer particle size) was associated with an increased

oxygen demand. Additionally, the mean and standard de-
viation of SOD, of the source and sediment samples were
compared before and after heating at 105°C to identify if the
sterilisation of sediment-associated microorganisms, which
may originate from terrestrial agricultural sources, caused
its reduction. Should a reduction in SOD, not be observed, it
suggests that the metabolism of sediment-associated organic
carbon by aquatic organisms is the most important contribu-
tor to overall SOD..

3 | Results

3.1 | To Measure the Longitudinal Variability
of Channel Bed Matrix Sediment Oxygen Demand

When compared to the river water, the channel bed sedi-
ment had a much higher 5-day oxygen demand per unit mass
(river water mean 2.64mg O, 171; channel bed sediment mean
6.24mg O, g™!). There was significant variability between
the extremes in SOD; of the channel bed sediment samples,
with a pool at Sticklepath having a mean of 27.34mg O, g™
compared to the lowest value of 1.95mg O, g™! in a run sec-
tion at Upper Tawton (Figure 2). However, outside of these
extremes, variability was lower, with the 25th, 50th and 75th
percentiles for all channel bed sediment samples being calcu-
lated at 3.83, 5.21, and 6.65mg O, g™' respectively. Moderate
variability was found between the three repeats for many of
the individual samples, with a mean coefficient of variation of
0.44mg O, g~'. There was no indication of increased SOD; in
a downstream direction where the catchment becomes more
intensively farmed and a greater number of arable fields are
present. There was also not a significantly higher SOD, in the
Lower Tawton sampling site, which is just downstream of the
sewage treatment works outlet. There was no statistically sig-
nificant difference (Kruskal-Wallis Test, p>0.05; Figure 3)
between the oxygen demand of the channel bed sediment re-
trieved from the different within-channel features. Variability
in the pools was much higher, however, than in the other in-
channel features sampled, suggesting that in some pools, such
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FIGURE2 | Mean and standard deviation five-day source material and sediment oxygen demand for the successfully measured replicates (max-

imum 3) from each feature at each site. [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 3 | Hydrogen peroxide treated channel bed sediment and
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[Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 4 | 5th, 25th, 50th, 75th, and 95th percentile SOD; in the
different riverine features and source material sample categories.

as that sampled at Sticklepath, sediment with a high SOD; is
present.

3.2 | To Compare the Oxygen Demand of Channel
Bed Fine Matrix Sediment With Its Sources

Comparing the colour of the channel bed sediment to its po-
tential sources after organic matter removal using hydrogen
peroxide suggested that the sediment originates from chan-
nel banks and topsoils which had a generally lower red and
blue value than the other sources (Figure 3). The SOD; of the
source material samples (mean 1.35mg O, g™ for channel
banks and 2.59 mg O, g~ for cultivated and grassland topsoils)
was significantly lower than that of the channel bed sediment
(Figure 4). An exception was material collected from a ditch at
Taw Green where road runoff accumulated which exhibited a
similar SOD; of 5.59 mg O, g.”! Therefore, most of the oxygen
demand of the channel bed matrix sediment likely originates
from within-stream sources or enrichment processes rather
than being controlled by the properties of its original source
materials.

12 7
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FIGURES5 | SOD, with settling time in a burette.

TABLE 1 | Mean oxygen demand of the untreated channel bed
sediment and source material samples compared to samples sterilized
by heating at 105°C.

Untreated Sterilised using heat
Bed sediment 6.38 9.09
Channel banks 1.35 3.00
Cultivated 1.28 4.48
Grassland 1.33 8.11
Woodland 0.05 7.74

3.3 | To Identify the Major Factors Controlling
Channel Bed Fine Matrix Sediment Oxygen Demand

As variability in SOD; was not found to be related to either
upstream land use or sediment source settling velocity, which
reflects particle size and density, it was examined as a poten-
tial causal factor. After settling in the burette, the SOD, of the
heaviest sediment fractions, which settled in 6 min or less, var-
ied little from a mean of 2.64mg O, g~! (Figure 5). This is close
to double the mean of the sediment source material samples, but
significantly lower than the mean SOD; of the channel bed sedi-
ment of 6.38mg O, g'. At between 7 and 10 min of settling, SOD
consistently increased. By the time the final two samples were
extracted (after 9 and 10min of settling), all visible sediment
aggregates had been extracted, and only the ultra-fine material
with a clayey colloidal appearance left in suspension remained.
This material had the highest oxygen demand of 10.8 mg O, g,~!
which was higher than that found in all but three of the channel
bed sediment samples.

To examine if the metabolism of sediment-associated or-
ganic matter by aquatic microbes, or the action of sediment-
associated microbial life, was a greater control on SOD,, the
sediment and source materials were sterilised by heating at
105°C for 24 h. After heating, SOD, increased when compared
to the samples analysed without heating (Table 1; Figure 6).
The increase was highest in the grassland and woodland
source material samples and lowest in the channel bed sed-
iment and channel bank samples. Sheep manures and cattle
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FIGURE 6 | Mean and standard deviation of five-day oxygen de-
mand of sediment and source material samples after drying at 105°C for
24h and incubation in native river water. [Color figure can be viewed at
wileyonlinelibrary.com]

slurry had too high an oxygen demand to be measured when
samples were untreated and still had a SOD, over 10x higher
than the other source material and sediment samples after
sterilisation.

4 | Discussion

The oxygen demand of the channel bed fine matrix sediment
did not vary according to riverine feature or change in a down-
stream direction (objective 1). Given that the upper part of the
study catchment is predominantly moorland and low grazing
intensity semi-natural grassland, and the lower catchment is in-
tensive agriculture with sewage treatment work discharges, this
finding again suggests a disconnect between catchment sources
and channel bed SOD..

The SOD; of the sediment sources was significantly lower than
that of the channel bed sediment deposits, again showing a dis-
connect between catchment sources and channel bed SOD; (ob-
jective 2). Sear et al. (2017) suggested that SOD, was associated
with a higher organic content and more intensive land use when
comparing SOD in different UK rivers. In that specific study,
20-day SOD was more associated with arable farming and a
high proportion of silt in the sediment. Therefore, when com-
paring different rivers, SOD, could be expected to vary based
on land use characteristics, but within the River Taw studied
herein, such variation with changing land use downstream
was not found. As a significant downstream transition in land
use is present in the River Taw study catchment, it is unlikely
that a lack of variability here is contributing to the lack of vari-
ation in SOD.. Further work in different seasons could identify
if variability changes more in the late summer season where a
greater time has passed since flood events able to cause sedi-
ment ingress into the gravel framework. However, this time will

not correspond to fish spawning and therefore may be of lesser
ecological importance.

The high SOD; values measured have significant potential
for ecological harm. In a study of 54 aquatic invertebrate spe-
cies, respiration rates were halved by a DO concentration of
6.44mgl~!, with reproductive rates halved at 3.66 mg1~!, growth
at 1.77mgl,~! and feeding rates at 0.77mgl™! (Galic et al. 2019).
At a DO concentration of 2.3mg 171, Brown Trout egg survival
was shown to decrease (Einum et al. 2002). Therefore, the mean
SOD; of the sediment in the River Taw of 6.24mg O, g~ could
rapidly reduce the mean oxygen concentration of the river water
(9.5mgl™) to a level able to cause adverse ecological impacts,
provided that a significant mass of sediment was present, and
throughflows of water in benthic gravels were low. The im-
pacts of SOD compared to the oxygen demand of fish eggs are
likely to be variable, with a demand of 0.0156 to 0.036mg O,
per chum salmon egg in 5days if scaled up from hourly rates
(Wickett 1954). Higher rates of 0.1116 to 0.6252mg for chum
salmon were found by Alderdice et al. (1958) with demand in-
creasing with embryo size. Therefore, the oxygen demand of a
single egg is low when compared to the fine matrix sediment,
but a high density of eggs may exert a significant collective ox-
ygen demand.

The SOD, in the River Taw (mean 6.38 mg O, g™') was relatively
high compared to that measured in many UK rivers, with values
of 1mg O, g™! found in the Rivers Lod, Lugg, and Blackwater,
2mg O, g! in the Ithon, 3mg O, g™! in the Test, 4mg O, g in
the Axe and Aran, 5mg O, g™" in the Frome and Tywi, and 15mg
0, g™! in the Camel Valley (Collins et al. 2017). However, frac-
tionating the sediment to <25um in the River Taw may have
resulted in a higher oxygen demand than was measured on the
<63um fraction in the other catchments listed above, as SOD
can be particle size dependent (Bateman 2012).

After the sterilisation of the channel bed sediment by heating,
its oxygen demand increased, suggesting that organic matter
content rather than microorganism abundance in the sediment
is the major control on its SOD, (objective 3). Organic matter is
the primary nutrient input for respiration within streams (Jones
et al. 1994). As such, differences in fish embryo survival and
Alevin fitness characteristics when exposed to fine-grained sed-
iment sampled from different sources have been explained by its
organic matter content (Sear et al. 2016). However, rather than
the oxygen demand of the channel bed sediment in the River
Taw being primarily controlled by its source materials and their
organic matter content, the ultra-fine colloidal fraction of the
sediment exerts a disproportional effect on its overall oxygen de-
mand. In the settling experiment, the SOD; of the most rapidly
settling sediment was approximately double that of the dom-
inant channel bank source and similar to that of agricultural
topsoils, whilst that of the ultra-fine fraction was approximately
eight times higher than that of channel bank material. This
fraction may be composed of a significant proportion of algal
material and other fine-grained seston which is continuously
deposited onto the channel bed (Cushing et al. 1993; Wanner
and Pusch 2000). Dissolved and particulate organic carbon can
be classified into labile and refractory components, with the
former being more available for microbial decay (Inekkot 1988).
Phytoplankton can contribute towards both components (Jewell
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and McCarty 1971; Otsuki and Hanya 1972; Otten et al. 1992)
and has been identified as an important source of dissolved or-
ganic matter in rivers and lakes (Song et al. 2019). Positive re-
lationships have been found between oxygen demand, algae,
and chlorophyll-a concentration (Heiskary and Markus 2001;
MacPherson et al. 2007), although in some rivers this relation-
ship is not present (Fallon and Brock 1979). In the Klamath
River, USA, labile organic matter mostly associated with par-
ticulate algal material contributed most to BOD, (Sullivan
et al. 2010), although in this specific case, the refractory compo-
nent contributed more towards BOD over longer time periods.
Against this background, it is likely that the ultra-fine fraction
of the channel bed sediment identified as having a high oxygen
demand in the River Taw study catchment contains much of this
labile nano-plankton (2-20 um) derived material.

Evidence suggests that most dissolved organic carbon in non-
urbanised watersheds originates from terrestrial, rather than
autochthonous, sources (Palmer et al. 2001; Hood et al. 2005;
Cartwright 2010; Wilkinson et al. 2013). Additionally, research
in the River Taw catchment by Upadhayay et al. (2022) used
multiple biotracers to show a change in sediment source from
channel banks to agricultural topsoils with extreme winter rain-
fall, also suggesting sediment-associated organic matter mostly
originates from terrestrial sources. Most of such organic matter
is, however, more likely to be transported out of the river catch-
ment than to be broken down by biological processes (Webster
et al. 1999). The ultra-fine fraction of the sediment may also have
a higher autochthonous algal component than when examining
a wider particle size range. The hypothesis that algae contribute
significantly to SOD; is further supported by the lack of change
in SOD, throughout the length of the River Taw despite signif-
icant change in potential catchment sediment sources (e.g., a
change in the intensity of land use) suggesting the SOD; origi-
nates from a within-stream source that is largely independent of
the catchment slope-to-channel sediment delivery cascade.

The ultra-fine fraction of sediment has a large mass-specific
surface area which is subject to decomposition, increasing its
SOD (House 2003), although some studies have shown reduced
rates of bacterial respiration with decreasing particle size of or-
ganic matter derived from tree leaves (Yoshimura et al. 2008;
Yoshimura et al. 2010; Wurzbacher et al. 2016). This may be
linked to an increasing proportion of refractory material re-
maining by the time that the seston is reduced to a fine particle
size (Amon and Benner 1996). Therefore, it is unclear how parti-
cle size effects might contribute to the increased oxygen demand
in the ultra-fine fraction.

Some of the increased SOD; of the river channel bed fine matrix
sediment, compared with its source materials, may also be a re-
sult of the preferential transport of organic matter rather than
mineral sediment to the river channel. Whilst mineral sediment
is likely to often originate from channel bank sources in UK
streams (Pulley and Collins 2024), the organic fraction of sed-
iments may come from alternative sources. For example, work-
ing in the River Taw, Upadhayay et al. (2022) found that, using
biotracers, there was a substantial shift in contributions, from
stream banks dominating (70% + 5%) in the winter of 2018-19
to arable land dominating (52% + 7%) in the extreme wet winter
of 2019-20. However, a study on the North Wyke Farm Platform

in the River Taw catchment by Upadhayay et al. (2021) did not
show an enrichment in total carbon concentration when com-
paring the top 5cm of the soil in grassland fields to sediment
transported out of the field by runoff. Therefore, the effects of
the preferential delivery of organic matter are probably unlikely
to be of sufficient magnitude to explain the increased SOD; of
the channel bed sediment, relative to source material samples,
in the River Taw study catchment.

If the ultra-fine fraction of the sediment has a major algal or bac-
terial component which is contributing significantly to channel
bed SOD., then improving river hydrological status through
targeted catchment management may be challenging. Reducing
the nutrient content of overlying waters and therefore growth of
algae which can enter channel bed gravels may, however, deliver
benefits (Carpenter 2008). An alternative approach is reducing
the accumulation and storage of this material on the bed.

Channel bed sedimentation is controlled by the suspended sedi-
ment concentration of overlying waters, particle density, and the
erosion/transport capacity of the stream (Vercruysse et al. 2017;
Wilkesetal. 2019). Thissedimentingress and egressisalso highly
dependent on the gravel framework of the riverbed, which deter-
mines the amount of fine sediment it can sequester, dependent
on the availability of framework pore space and ease of infiltra-
tion (Wooster et al. 2008; Gibson et al. 2009). Reducing the over-
all deposition of silts on the channel bed through reduced loads
is one potential route towards achieving this, as a channel bed
framework composed of a range of particle sizes is required to
provide a matrix in which ultra-fine material can be entrapped.
Measures for reducing sediment deposition on channel beds in-
clude improving peak river velocities, which may remobilise de-
posited sediments and increase oxygen infiltration into the bed
gravels (Stuart 1953; Olsson and Persson 1988; Sear et al. 2008;
Pulley et al. 2016). However, high velocities have been shown
to be an important mechanism for the infiltration of matrix
sediments into deeper layers of the channel bed framework, so
benefits of this approach are uncertain (Casas-Mulet et al. 2017).
An additional complication is that very fine particulate organic
material has been shown to have very short residence times on
the channel bed. For example, Webster et al. (1999) calculated
the standing stock of deposited organic matter in a woodland
stream was replaced in 19h. Only 1% of seston deposited in an
Idaho stream was able to be recovered after 24h had passed,
by Cushing et al. (1993), and weighted mean residence times of
very fine particulate organic matter were 2.2 days in a mountain
stream in Idaho, US (Newbold et al. 2005). Therefore, increas-
ing flows to exfiltrate fine-grained sediment from the channel
bed is likely to deliver most benefits through increasing oxygen
diffusion rather than removing the ultra-fine sediment with a
high SOD, which may be quickly replenished. Fine sediment
exfiltration will increase pore space in the channel bed frame-
work, thereby limiting opportunities for ultra-fine material to be
sequestered at all.

A range of interventions can be used to increase channel trans-
port capacity for sediment to encourage fine matrix sediment ex-
filtration. These include, for example, the careful management
of instream vegetation or the installation of woody material,
which can be used to create reaches with higher flow velocity
for increasing bed shear stress and bed sediment remobilisation
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(Gurnell et al. 2006; Osei et al. 2015; Parker et al. 2017). The
removal of river channel obstructions including weirs can also
increase localised water velocities (Lenders et al. 2016). Such
management techniques are more self-sustaining than previous
remedial approaches such as gravel washing, which provides a
very short-term solution to fine matrix sediment ingress and re-
tention at the treatment site.

5 | Conclusions

At a first glance, a reduction in channel bed fine matrix sedi-
ment SOD, appears as a potentially valuable aim for catchment
management to target, which could help in the drive towards
improving river ecological status. However, in systems such
as the River Taw studied herein, SOD, does not significantly
vary spatially in response to changing land use and agricul-
tural practices despite a significant longitudinal transition in
land use and intensity. Instead, the largest potential cause of
increased SOD; is the accumulation of the ultra-fine fraction
of the sediment, which is likely to originate from the entrap-
ment of autochthonous algal material. Mitigating this source of
SOD; could theoretically be achieved through reducing the nu-
trient concentration and productivity of overlying waters; how-
ever, a lack of significant difference in SOD between upland
semi-natural areas and downstream of agriculture and sewage
treatment works in the River Taw suggests this approach has
limited potential. Instead, rather than reducing the SOD; of the
sediment deposited, reducing the overall mass of fine matrix
sediment entrapped within the channel bed to increase oxygen
diffusion and increase pore space in the bed framework, thereby
limiting the retention of ultra-fine sediment, is likely to deliver
greater benefits. Given that the efficacy of many interventions
for reducing sediment delivery to rivers is reasonably limited
and changing climate is resulting in extreme weather patterns
capable of compromising that efficacy even further, a combi-
nation of source control and in-channel measures is required.
In-channel measures focusing on increasing the exfiltration of
fine matrix sediment would be priority here. Our findings serve
as a timely reminder that mitigation of the sediment problem re-
quires consideration of both the inorganic and organic fractions
of fine-grained sediment.
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