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many parts of the world, driven by the goals of food 
security and economic benefit. Increased use of inor-
ganic fertilizer in the monoculture system has masked 
land degradation trends and avoided crop yield loss 
but there have been impacts on sustainability of farm-
ing systems.

Crop rotations support nutrient cycling (i.e., nutri-
ent recycling from subsoils, nutrient turnover from 
crop residue), enhance soil ecosystem services (e.g. 
maintain soil microbial diversity, use of residual 
moisture, improve soil hydrological properties), 
break weed, pest & disease transmission cycles and 
improve resource use efficiency (e.g. use of residual 
soil water) (Tilman et  al. 2002; Castellazzi et  al. 
2008; Bender et al. 2016; German et al. 2017). This 
practice offers several economic and environmental 
benefits and is helpful for long-term soil and farm 

Introduction

Crop rotation, which involves growing a sequence of 
different plant species on the same land (Karlen et al. 
1994), has been a valued farm practice for thousands 
of years. According to Parker (1920), crop rotation 
evolved primarily from experiential learning. This 
technique was developed by early farmers to improve 
soil productivity, as they had experienced low yields 
due to continuous cropping with a single species. 
However, monoculture, cultivating the same crop 
year after year on the same land, has re-emerged in 
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management (Malik et al. 2017; Sehgal et al. 2023). 
Furthermore, crop rotation adds market diversity and 
economic resilience to a farming system.

The crop rotation patterns vary depending on 
environmental and soil conditions. Agricultural pro-
duction in Asia, Africa, and Latin America is gener-
ally more diverse and labor-intensive, dominated by 
smallholder farmers with inherent rotation systems. 
However, there is a general trend in rotation sys-
tems. For example, the Midwest United States com-
monly uses the corn-soybean (Zea mays L.—Glycine 
max L.) rotation (Plourde et  al. 2013), while the 
rice–wheat (Oriza sativa L. – Triticum aestivum L.) 
rotation is more common in Asia (Mishra and Singh 
2012) and provides food for about 20% of the world’s 
population. In South America, soybean and corn sum-
mer crops are widely grown in rotation with Italian 
ryegrass (Lolium multiflorum Lam) (Neto et al. 2014), 
while in Europe, planting wheat after rapeseed (Bras-
sica  napus  L.) and small-grain cereals is common 
(Peyraud et al. 2014). Many of these rotational crop-
ping systems integrate legumes and cereals which 
supports arguments that this combination in a rotation 
is more sustainable for increasing food production 
(Preissel et al. 2015; Cernay et al. 2018). By contrast, 
continuous cropping with cassava (Manihot esculenta 
Crantz.) without any inputs is facing the challenge 
of yield reduction in Southeast Asia, Latin America, 
and Africa (Leihner and Lopez 1988; Howeler 1991; 
Nguyen et  al. 2002; Chua et  al. 2020). However, 
according to a review by Delaquis et al. (2018), 189 
cassava intercropping studies involving 330 instances 
with various companion crops showed positive effects 
on soil and water-related parameters.

Maintaining and improving soil quality in continu-
ous cropping systems is critical to sustaining agri-
cultural productivity. It has been reported that crops 
grown in rotation can produce higher yields for each 
crop than corresponding monoculture under the same 
nutrient conditions (Porter et  al. 1997) – this yield 
enhancement from rotation has been referred to as 
the “rotation effect” (Pierce and Rice, 1988). Fur-
thermore, the implementation of diverse cropping 
systems serves to mitigate soil erosion in vulnerable 
areas, ultimately fostering long-term soil health (Liu 
et al 2021).

Two of The United Nations sustainable develop-
ment goals (SDGs)are directly related to the topic of 
declining soil health caused by agricultural practices 

(SDGs 2-Zero Hunger and 6-Clean Water and Sani-
tation), and dependence on synthetic fertilizers and 
pesticides to maintain high productivity (SDG 2). As 
shown in the Special Issue, croprotation is an agricul-
tural approach that increases efficiencies in the use 
of inputs, decreases dependence on external inputs 
prioritizes practices supporting biodiversity and 
environmental services, and takes into consideration 
the social implications of production practices, mar-
ket dynamics, and product mixes. This shift towards 
sustainable agriculture is being encouraged by the 
emergence of payments for Ecosystem Services and 
multifunctional agriculture within rural landscapes 
(Bowman and Zilberman 2013).

Historically, crop rotations were adopted to 
increase the yield of cash crops (Bullock, 1992). 
However, the benefits of crop rotations are still mostly 
framed in generalized benefits such as increased soil 
fertility. This Special Issue aims to explore more spe-
cific processes altered by crop rotations. Here we dis-
cuss the benefits of rotation systems and their mech-
anisms, as well as highlighting how underutilized 
rotational systems can contribute to the well-being 
of millions of smallholder farmers who are striving 
for sustainable agricultural growth and food security, 
particularly in challenging environments.

Nutrient cycling and soil management

The productivity, nutrient loading and nutrient use 
efficiency in rotation systems, can vary depending on 
specific management practices and overall farm inten-
sity. Moreover, seasonal variation affects soil nitro-
gen mineralization, and the potential synchronization 
of soil available nitrogen supply with crop demand. 
For example, when legumes such as mungbean are 
incorporated into cereal rotations like maize-wheat, 
it boosts the absorption of nitrogen (by 34%), phos-
phorus (46%), potassium (36%), and sulfur (56%) in 
maize, whereas, when chickpeas are included in the 
rotation every other year, it increased the uptake of 
these nutrients by 18%, 19%, 22%, and 32%, respec-
tively (Venkatesh et  al. 2017). In a wheat/pasture 
rotation, accumulation of soil P was evident (2 kg 
ha−1 year−1), but no accumulation was evident under 
continuous cropping (Bünemann et  al. 2012). Fur-
thermore, in the same legume pasture system, soil P 
availability was augmented for the subsequent crop 
(Damon et al. 2014).
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Long-term studies have consistently shown that 
crop rotation, adequate fertilization, and the use of 
manures help maintain agronomic productivity by 
increasing carbon inputs into the soil. For instance, 
a 5-year cropping sequence that included a cover 
crop increased soil organic carbon (SOC) at shallow 
depths compared to continuous mono-cropping of 
wheat for 5 years (Feng et al. 2020). Long-term appli-
cation (36 years) of green manure can enhance SOC 
sequestration in paddy soils by altering the clay min-
eral composition and aggregate size, which has impli-
cations for soil fertility and carbon storage strategies 
in agricultural systems (Huang et al. 2023). A global 
meta-analysis by Oldfield et  al. (2019) concluded 
that there were potential yield increases of 10 ± 11% 
for maize and 23 ± 37% for wheat with increased 
soil organic matter. Increases in soil organic matter 
up to 2% appeared to increase crop yield, but further 
increases had minimal effects. However, there are still 
very few studies that quantify how much increase in 
yield can be attributed to increased soil organic mat-
ter (Kätterer and Bolinder 2024). In a 20-year study 
in Sweden with various soil organic amendments, 
Kätterer and Bolinder (2024) determined that maize 
yields increased by 14–16% for every 1% increase in 
soil organic matter (0–20 cm depth). Two-thirds of 
the increase was attributable to improved soil physi-
cal properties, in this case mostly due to increases 
plant-available water content with increased organic 
matter. The difficulty of raising soil organic matter 
levels by 1%, especially in dryland cropping envi-
ronments, should not be underestimated (Hoyle et al. 
2013). Indeed, the greatest potential for increased soil 
organic matter storage appears to be in the subsoil.

Residue resistance level and the C:N ratio are also 
important factors in crop residue decomposition and 
their effectiveness in improving soil health. Both of 
these factors are influenced in rotations by residue 
mass, diversity, quality, and crop photosynthetic path-
way (Omonode et  al. 2006; Six et  al. 2006). There-
fore, the composition and mass of the substrate deter-
mine not only the decomposition rates but also the 
proportion and duration of C stored in soils.

Pulido et al. (2023) found that specific cover crop 
species, rather than just functional groups, play a cru-
cial role in nitrogen uptake and minimizing nitrogen 
losses. This suggests that selecting cover crops for 
crop rotations based on traits that increase biomass 
can effectively manage nitrogen. Ma et  al. (2023) 

demonstrated that incorporating winter cover crops, 
such as hairy vetch, into the agricultural system of 
the North China Plain can reduce reliance on nitro-
gen fertilizers and enhance nitrogen use efficiency. 
Additionally, Baxter et al. (2023) revealed that apply-
ing manure can significantly increase SOC and nutri-
ent levels. Furthermore, including winter triticale in 
a crop rotation can improve forage production and 
the utilization of manure-supplied nutrients, offering 
a sustainable nutrient management approach in dairy 
farming.

Greenhouse gas emissions

Crop rotations with legumes reduce greenhouse gas 
emissions compared to cereal monocultures. This 
reduction in greenhouse gas emissions becomes sig-
nificant over a long rotation period, highlighting the 
effectiveness of this approach (Barton et  al. 2013; 
Lötjönen and Ollikainen 2017). Another six-year field 
experiment conducted in the North China Plain has 
suggested the potential benefits of diversifying tradi-
tional cereal monoculture (wheat–maize) with cash 
crops like sweet potato, and legumes such as peanut 
and soybean (Yang et al. 2024). The diversified rota-
tions while increasing equivalent yield by up to 38%, 
decreased N2O emissions by 39%, and a decrease of 
up to 88% in the system’s greenhouse gas balance. 
Furthermore, Yang et al (2023) found a direct corre-
lation between increased SOC stocks and a reduction 
in carbon footprints, along with an increase in crop 
yield. Their analysis revealed that the most effective 
treatment for promoting soil organic carbon seques-
tration and reducing greenhouse gas emissions, while 
still maintaining a relatively high yield, is the culti-
vation of winter wheat-summer maize-spring maize 
with irrigation. This suggests that more intensive crop 
rotations leading to increased aboveground biomass 
growth are more likely to effectively reduce carbon 
footprints and contribute significantly to achiev-
ing emissions reduction targets. Indeed, Ladha et al. 
(2016) reported that cropping systems intensification 
including best management practices, Conservation 
Agriculture, and crop diversification in the rice–wheat 
system in the Indo-Gangetic Plain achieved 54% more 
grain energy yield, a 104% increase in economic 
returns, 35% lower total water input and a 43% lower 
global warming potential per unit of grain produced.



	 Plant Soil

Vol:. (1234567890)

Root foraging, rhizosphere modification and biopores

By employing diverse root growth strategies, a feature 
of crop rotations, cropping systems can optimize the 
use of nutrients and mitigate abiotic stresses, thereby 
enhancing crop productivity (Zhang et al. 2024). For 
example, in soils with high salt concentrations or 
metal contamination, integrating hyperaccumulator 
plants or halophytes with traditional crops through 
intercropping has been identified as a promising 
approach (Liang et al. 2020; Liu et al 2023). To fully 
realize the potential of diversified cropping systems, 
it is essential to explore and implement innovative 
methods and technologies for studying root systems.

Cover crops play a pivotal role in creating biopores 
within compacted soils, which in turn allows for bet-
ter root penetration of subsequent crops and overall 
improvement of soil structure. For example, Zhang 
et al. (2022) demonstrated that using cover crops such 
as alfalfa (Medicago sativa L), oilseed rape (Brassica 
napus L.), and a mixture of radish (Raphanus sati-
vus L.) and hairy vetch (Vicia villosa Roth) did not 
change the bulk density of the soil, but did reduce soil 
water content in both compacted and non-compacted 
soils compared to the control treatment where maize 
(Zea mays L.) was grown as the succeeding crop 
in compacted soil. All three cover crop treatments 
resulted in increased maize root growth and density 
in the compacted soil. Furthermore, the mixture of 
radish and hairy vetch, and the oilseed rape treat-
ment significantly increased maize production in the 
compacted soil. This indicates that these cover crops 
could help ameliorate the effects of soil compaction 
on root elongation.

Breaking weed, pest & disease transmission cycles

The diverse range of crops in farm rotations can 
effectively mitigate the damage caused by pests and 
diseases in multiple ways. Firstly, this approach 
diminishes the available resources for pests, thereby 
inhibiting their ability to thrive. Secondly, it can 
influence pest behavior, disrupt their life cycles, and 
enhance the natural resistance of crops to pest infes-
tations. Moreover, the crop diversity in rotations can 
bolster the population of natural pest predators and 
induce physical transformations in the environment 
that deter pests. Long-term crop rotation in dry-
lands increases soil multifunctionality, particularly 

enhancing the carbon cycle, and alters the soil fun-
gal community composition by reducing the propor-
tion of pathotrophs, with saprotrophs being more 
influenced by soil variables (Wang et al. 2023). Crop 
rotation practices play a significant role in shaping 
soil microbial communities (Bai et  al. 2024), which 
in turn have the potential to improve soil health and 
functionality in agricultural systems.

Soil microbial community including disease 
suppression

The composition of microorganisms in the soil is 
highly influenced by changes in plant diversity. As a 
result, crop rotation systems show greater microbial 
diversity, enzymatic activities, and soil respiration 
compared to monoculture or fallow fields (Woo et al. 
2022). Crop rotation involving cereals with legumes 
has a positive impact on microbial diversity, mainly 
due to the presence of nitrogen-fixing bacteria. Fur-
thermore, Wang et  al. (2023) found compelling evi-
dence to suggest that the practice of crop rotation has 
a multifaceted impact on soil health. Not only does 
crop rotation enhance soil multifunctionality, but it 
also brings about notable changes in the composition 
of the soil fungal community.

In Argentina, the inclusion of cover crops such as 
oat, vetch, and radish in a crop rotation was found to 
enhance microbial biomass and soil enzyme activi-
ties (Chavarria et al. 2016). Two cover crop mixtures 
were tested: oat/radish and oat/radish/vetch, along-
side soybean monoculture and soybean/corn as cash 
crops. The inclusion of cover crop mixtures led to an 
increase in bacterial phospholipid fatty acid biomark-
ers, particularly Gram-positive bacteria, in the short 
term. These changes were associated with increases 
in soil enzyme activities and the availability of essen-
tial nutrients such as nitrogen and phosphorus.

In a long-term field experiment conducted in 
Michigan, USA the most diverse cropping systems, 
including cover crops and fallow periods, resulted in 
different bacterial communities compared to systems 
with lower crop diversity (1–3 crop species) (Peralta 
et  al. 2018). The soil bacterial diversity was about 
4% lower in the most diverse crop rotation (corn-soy-
bean-wheat + 2 cover crops) compared to monocrop 
corn, while an increase in disease-suppressive bacte-
ria (prnD gene) abundance of about 9% was observed 
in the more diverse rotation compared to monocrop 
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systems. Additionally, it was reported that the dis-
ease-suppressive potential was significantly reduced 
in the non-crop fallow treatment compared to the 
most diverse crop rotation treatments.

Crop rotation was found to be beneficial for banana 
farming. According to Fan et  al. (2020), rotating 
bananas with other crops such as pepper, sugarcane, 
wax gourd, and pumpkin reduced Fusarium wilt and 
increased yields compared to growing bananas as a 
mono crop. The study also found that the soil con-
tained Proteobacteria (25%), Acidobacteria (21%), 
and Gemmatimonadetes (13%) as the main bacte-
rial phyla, while Ascomycota (73%) was the domi-
nant fungal phylum. These crop rotation practices 
increased the diversity of bacteria in the soil, with 
some types of bacteria becoming more abundant and 
others decreasing. Furthermore, the study identified 
soil pH, organic matter, and available phosphorus as 
the main factors influencing the composition of bacte-
rial and fungal communities.

Asghar and Kataoka (2023) demonstrated that vol-
atile organic compounds emitted by fungi associated 
with green manure can promote the growth of lettuce 
and enhance antifungal properties. This can be par-
ticularly beneficial in combating soil-borne pathogens 
such as Fusarium oxysporum, highlighting the signifi-
cant impact of microbial interactions on plant health.

Crop rotations in conservation agriculture

Diverse crop rotations is one of the three pillars of 
Conservation Agriculture (CA), which is now prac-
ticed on over 204 million hectares or 15% of crop land 
globally (Kassam et al. 2022). The effects of diverse 
crop rotations where CA is practiced warrant further 
consideration due to the potential additional impacts 
of minimal soil disturbance and increased crop resi-
due retention on crop productivity and soil processes. 
When there is a switch to CA, even without a change 
in crop rotation, a range of effects on crop yield, prof-
itability and on soil properties progressively emerge 
over time (Bell et  al. 2019). While the benefits of 
CA practices on yield can occur in the first crop after 
switching from conventional tillage and low crop resi-
due retention (e.g. Kader et al. 2022), in other cases it 
takes 2 or more years before yields responded to CA 
(Islam et al. 2022a). In intensive triple-cropping rota-
tions in the Eastern Gangetic Plain, the yield of rice 
did not respond until year 7 (Kader et al. 2022). Yield 

increases in the CA crops were attributed to improved 
soil physical properties, notably to positive changes in 
soil water content, bulk density and penetration resist-
ance (Salahin et al. 2021a; Islam et al. 2022a, b).

Apart from soil physical changes in diverse rota-
tions under CA compared to conventional tillage and 
low crop residue retention, large increases in SOC 
and in C stock have been reported particularly after 
2–3 years (Islam et  al. 2022a, b; Alam et  al. 2018; 
Salahin et al. 2021a; Kader et al. 2022). In a cereal-
dominant rotation (wheat- mungbean-rice), after 7 
consecutive crops there was a net increase in SOC 
stock under CA, but a decline in the conventional 
practice (Islam et  al. 2022a, b). By contrast, on a 
legume-dominated rotation (lentil-mung bean- rice) 
neither the CA nor conventional practice increased 
SOC stocks possibly because of lower overall C input 
in retained crop residue, but CA slowed the decline 
in SOC. With prolonged practice of CA in diverse 
crop rotations, a 65% increase in SOC was reported 
in the 0–30 cm layer after 5 years (Alam et al. 2018). 
Similarly, Kader et  al. (2022) reported SOC stocks 
increased after 8 continuous years of CA in a wheat- 
mungbean-rice rotation from 21.5 to 30.5 t/ha.

Under CA in diverse rice-based crop rotations, 
there was an increase in total N (Alam and Bell 2020; 
Salahin et al. 2021b; Islam et al. 2022a, b) and total 
S (Kumar et al. 2022). There was also an increase in 
stratification of extractable P and Zn under CA with 
higher levels accumulating in the surface soil layers 
(0–5 cm) (Salahin et  al. 2021b). The mineralisation 
pattern on N under CA in a number of diverse rice-
based crop rotations in the EGP has changed under 
CA. The rate of N release is slowed during the early 
crop growth (Alam and Bell 2020; Salahin et  al. 
2021b). Alam et  al. (2018) suggests that the miner-
alization pattern under CA is more likely to match 
the pattern of crop demand during the growing sea-
son resulting in increased N use efficiency(e.g. Kader 
et al. 2022), and possibly decreased losses of soil N. 
Decreases in the weed seed bank by about 30% were 
also reported from 3–5 years of continuous CA prac-
tice in diverse rice-based crop rotations (Hossain 
et al. 2021).

Kumar et al. (2023) reported that the combination 
of incorporating legumes, applying appropriate ferti-
lizers, and incorporating crop residues are essential 
practices for enhancing productivity and soil carbon 
and nitrogen sequestration in intensive rice-based 
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cropping systems in the Indo-Gangetic plain. Further-
more, Zhang et al. (2023) have shown that vegetable-
rice production systems in subtropical China can 
improve soil fertility (e.g. enhance alkaline N, Olsen 
P, and Olsen K during the vegetable growth period), 
and rice yields.

Rotation studies on CA in intensive rice-based 
cropping systems are an unique opportunity because 
within 3–5 years the effects of 9–15 crops and large 
inputs of crop residue (10 + t/ha/yr; Islam et al. 2022a, 
b) can accelerate changes in soils that in dryland crop-
ping systems, growing only one crop per year, may 
take a decade or more to be expressed. However, even 
in these rotations, effects on soils and crop yield were 
still emerging after 6 years (i.e. 18 continuous crops: 
Kader et al. 2022) emphasizing the need for long term 
studies on the effects of rotations.

Conclusions

The present collection of 10 papers on crop rotations 
covers a diverse array of topics, reflecting the broad 
scope of research in this field. The interdisciplinary 
approach taken in studying the advantages of crop 
rotation is particularly intriguing. It is well-estab-
lished that crop rotation plays a crucial role in main-
taining soil health and enhancing productivity. Apart 
from this collection, other recent papers shed light on 
the substantial benefits of crop rotation, especially in 
arid and high-intensity agricultural settings.

In summary, the present collection of studies 
underscore the importance of crop rotation, green 
manure use, and the integration of legume crops in 
improving soil health, productivity, and economic 
outcomes for farmers. They offer evidence-based 
strategies that contribute to sustainable agricultural 
development and food security in the face of increas-
ing global food demands. We are optimistic about the 
future of research on crop rotation and the underly-
ing mechanisms that enhance agricultural production. 
The growing recognition of the significance of crop 
rotation in cropping systems will lead to more sus-
tainable crop production and help achieve the zero-
hunger goal, which is one of the major Sustainable 
Development Goals (SDGs).
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