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Highlights

• Introduced a novel framework combining Cascade Mask R-CNN with the MViTv2.L backbone, significantly enhancing citrus fruit detection and segmenta-
tion accuracy.

• Implementing an innovative slicing strategy improved the model’s ability to manage dense foliage and overlapping fruits, leading to more precise fruit
counts.

• A custom dataset of high-resolution images of citrus orchards was created using two different image capture protocols to improve segmentation and counting
reliability in dense foliage.

• Our enhanced detection and segmentation capabilities offer practical applications in agricultural technology, providing a robust tool for accurate crop analysis
and management.
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Abstract

The detection and segmentation of tiny green citrus fruits in dense or-

chards play a vital role in modern farming, directly influencing yield pre-

diction, resource management, and timely decision-making. This research

presents a cutting-edge framework that combines Multiscale Vision Trans-

formers version 2 (MViTv2) with Cascade Mask R-CNN to tackle these chal-

lenges effectively. By extending the focus from close-up images to the novel

inclusion of full-tree images, the framework enables accurate early-stage de-

tection, segmentation, and counting of citrus fruits in practical orchard set-

tings. Unlike conventional methods, this approach uses a dual-image strat-

egy: close-up images for training and full-tree images—more complex due to

dense foliage and small fruits—for testing and real-world applications. To
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enhance detection accuracy in these detailed, full-tree images, the frame-

work employs an innovative image-slicing method, breaking high-resolution

images into smaller parts to capture finer details. The model was tested on

a unique dataset featuring citrus orchards of three varieties: Nules grafted

on Volka, Sidi Aissa grafted on Volka, and Orogrande grafted on sour or-

ange. Results showed that the MViTv2 L backbone outperformed alterna-

tives, achieving a mean Average Precision (mAP) of 72.97% for bounding

boxes and 84.40% for masks. The image-slicing technique further boosted

fruit detection in full-tree images, achieving an R2 value of up to 0.81 for

fruit counting. This dual-image method, paired with advanced segmentation

and detection technologies, marks a significant step forward for agricultural

robotics and precision farming, enabling accurate early-stage fruit detection

in real-world orchard environments.
Keywords:

Citrus, Deep Learning, Instance Segmentation, Cascade Mask R-CNN,

Transformers, Yield Prediction, Precision Agriculture

1. Introduction

Advancements in artificial intelligence (AI) and deep learning (DL) have

revolutionized computer vision, enabling the development of innovative so-

lutions for complex challenges across diverse domains. AI has facilitated

transformative applications in areas such as autonomous driving, medical

imaging, and precision agriculture (He et al., 2020a; Yang et al., 2020). Deep

learning, in particular, has enhanced the capabilities of computer vision by

enabling algorithms to process and interpret large-scale image data with re-
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markable accuracy (Garcia-Ruiz et al., 2015; Zhang et al., 2022; Su et al.,

2023; Azizi et al., 2024; Mhamed et al., 2025).

In the context of precision agriculture, these advancements have pro-

vided farmers with tools to improve productivity, optimize resource man-

agement, and minimize environmental impact (Li and Wang, 2017; Tianjing

and Mhamed, 2024). Precision agriculture integrates advanced technologies

to monitor and manage crop growth, enabling timely decision-making for ir-

rigation, pest control, and harvest planning (Jones and Roberts, 2018; Zhang

et al., 2021). Among its key applications is the detection and segmentation of

crops and fruits, tasks that are critical for yield forecasting and agricultural

interventions.

Citrus fruits, as a globally significant crop with over 143 million tons pro-

duced annually 1, present unique challenges for detection. Their small size,

unripe green coloration, and the dense foliage in orchards complicate auto-

mated recognition and segmentation (Brown, 2019). The ability to detect

and segment citrus fruits at an early stage is pivotal for optimizing resource

allocation and yield prediction (Seng et al., 2020; Rui et al., 2024). Despite

these challenges, early detection is critical to improving agricultural practices,

as it facilitates timely interventions, including irrigation scheduling and pest

management.

Traditional methods for citrus detection have employed image process-

ing and convolutional neural networks (CNNs). While these approaches

have demonstrated reasonable performance, they often struggle with real-

1https://www.fao.org/policy-support/tools-and-publications/resources-
details/en/c/1439010/
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world orchard environments, where fruit occlusion, varying light conditions,

and complex backgrounds dominate (Kamilaris and Prenafeta-Boldú, 2018;

Mhamed et al., 2024).(Choi et al., 2015) and (Dorj et al., 2017) both devel-

oped algorithms for citrus recognition and counting, with (Dorj et al., 2017)

achieving a high correlation coefficient of 0.93 and (Choi et al., 2015) achiev-

ing a 90% correct identification rate. (Qin et al., 2021) and (Lyu et al., 2022)

both proposed target detection models, with (Qin et al., 2021) achieving a

90% correct identification rate and (Lyu et al., 2022) achieving a 98.23%

mAP@.5 for green citrus. (Chen et al., 2023) focused on citrus recognition

in different growth periods, achieving a segmentation accuracy of 94.87% for

green citrus and 97.08% for yellow citrus. However, most existing methods

rely heavily on close-up images, neglecting the complexity of natural orchard

environments, where dense foliage and variable lighting conditions obscure

fruits. Moreover, the challenges posed by the small size of unripe fruits, their

tendency to blend with foliage, and orchard-level variability require more ad-

vanced methods capable of operating in real-world conditions (Kamilaris and

Prenafeta-Boldú, 2018).

This paper introduces a novel framework to address these challenges by

integrating Multiscale Vision Transformers version 2 (MViTv2) with Cascade

Mask R-CNN. This framework combines the robust feature extraction capa-

bilities of MViTv2 with the precision of Cascade Mask R-CNN for detection

and segmentation tasks. Cascade Mask R-CNN is a state-of-the-art instance

segmentation model that progressively refines predictions across multiple

stages, ensuring higher accuracy for challenging objects and complex environ-

ments (Cai and Vasconcelos, 2019; He et al., 2017). It has been successfully
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applied in fields such as autonomous driving and agricultural monitoring

(Hashmi et al., 2021; Oh et al., 2022). Coupled with vision transformers,

which excel at capturing fine-grained details and handling dense prediction

tasks, this framework significantly improves detecting and segmenting citrus

fruits in real-world conditions (Fan et al., 2021; Wu et al., 2020). MViTv2, a

multiscale variant of vision transformers, enhances feature recognition across

various scales, making it particularly effective in distinguishing small fruits

from foliage in cluttered images.

To enhance the detection of small citrus fruits in full-tree images, the

framework incorporates an image-slicing technique that divides high-resolution

images into smaller segments, allowing the model to process intricate details

more effectively and improve the detection of small fruits obscured by dense

foliage. Additionally, a dual-image strategy is introduced: close-up images

are used for training, while full-tree images, capturing the complexity of nat-

ural orchards, are employed for testing and application. The framework was

tested using different backbones and different slicing strategies, ensuring the

model is well-trained to handle real-world agricultural scenarios.

The paper is structured as follows: Section 2 describes the data used

in this research and offers a detailed account of the proposed framework,

including the specific architecture of MViTv2 and Cascade Mask R-CNN.

Section 3 presents the results, including an assessment of evaluation metrics,

while Section 4 discusses these findings and addresses certain limitations.

Finally, Section 5 concludes the paper by summarizing the discoveries and

providing suggestions for future work.
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2. Material and Methods

This study presents an innovative approach to detecting and segmenting

tiny green citrus fruits at an early stage. The following flowchart in Figure 1

comprehensively illustrates the activities integral to the study. The following

sections describe the processes in detail.

Figure 1: Overall process flowchart of small green citrus fruits detection and segmentation.
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2.1. Plant Materials

The experiment was conducted in a commercial orchard Cap agro (Jnane

Rhamna Farm), located 35 km north of Marrakech (Morocco, 52° 26’ 56.004”N,

9° 44’ 24”E). The study was carried out on 11-year-old trees of the three

clementine varieties:

1. Nules (Citrus clementina, Hort ex Tan) grafted on Volka (Citrus Volka-

meriana): characterized by the early flowering stage, which started on

March 1st, 2022, and harvested on November 1st, 2022.

2. Sidi Aissa (Citrus reticulata Blanco) grafted on Volka (Citrus Volkame-

riana): characterized by mid-early flowering, which started on March

15th, 2022, and harvested on November 15th, 2022.

3. ’Orogrande’ grafted on sour orange (Citrus aurantium L.): a late-

flowering variety that started flowering on April 1st, 2022 and harvested

on December 1st, 2022.

The trees have an estimated lifespan of around 25 years, displaying similar

growth dynamics, and their flowering phase persists for two months across all

varieties. The trees were planted at a spacing of 6 m × 3 m on ridges made

from the soil taken from the area between the rows to increase soil depth

and improve water drainage in the orchard. These ridges are approximately

30 cm in height and 1.5 m in width. The trees were ferti-irrigated using two

lines of drippers for each tree row, one on each side of the row placed 1.0 to

1.2 m away from the tree trunk. The drippers were 1 m apart on the line

and had a flow rate of 6 L h-1 dripper-1. Weeds, diseases, and pests were

controlled according to local criteria and regulations.
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2.2. Data Collection

The field measurements were conducted on 15th June 2022, and ground-

based images were captured for citrus tree phenotyping. The imaging equip-

ment consisted of a SONY ILCE-5100, a 24.3-megapixel digital camera (6000

× 4000 pixels), and a 35mm camera lens. In addition, the field imagery was

captured under natural lighting conditions using a color checker for accuracy.

Images were taken from both sides of each tree using two different protocols.

In the first protocol, a camera was placed close to the tree (between 50 cm

and 80 cm away) to capture small green citrus fruits. The camera settings

were as follows: Focal length: 35 mm, Aperture: f/10.0, ISO: AUTO, and

Exposure time: 1/400 s. The ground resolution of the images was approxi-

mately between 0.1784 and 0.179 mm per pixel.

For the second protocol, the goal was to capture the entire tree in a

single image. This would allow us to address the challenge of detecting and

segmenting small, unripe citrus fruits that blend with foliage in complex

agricultural environments. To achieve this, the camera was positioned 3

meters from the tree, and the following settings were used: Focal length of

18 mm, Aperture of f/10.0, ISO: AUTO, and Exposure time of 1/400 s. The

ground resolution of the images ranged from approximately 0.0348 to 0.0346

cm per pixel.

Figures 2 present an example of images taken using the two protocols.

Citrus fruits typically grow in clusters along branches, often partially oc-

cluded by dense foliage, and their spatial distribution is significantly variable.

The fruits’ size and visibility depend on their growth stage, with smaller,

unripe fruits often blending with the surrounding greenery. These growth
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(a) Example of the close image. (b) Example of the full tree image.

Figure 2: Examples of images collected: (a)Using the first protocol. (b) Using the second
protocol.

characteristics, combined with environmental factors such as varying light

intensities, shadows, and background complexity, make citrus fruit detection

particularly challenging in orchard environments.

The dataset used in this study was carefully designed to reflect these real-

world growth distributions and environmental conditions while also capturing

diversity in citrus varieties. It includes close-up and full-tree images from

three distinct citrus varieties. These varieties exhibit differences in fruit size

and canopy structure, comprehensively representing the variability found in

citrus orchards. This diversity ensures the algorithm is trained and tested

across various scenarios, improving its robustness and adaptability. Key

features of the dataset include:

• Variety-driven variability: By incorporating multiple citrus varieties,

the dataset reflects differences in fruit clustering, density, and canopy

complexity, allowing the framework to generalize across diverse orchard

setups.

• Fruit clustering and variability: The dataset contains images with fruits
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in dense clusters, isolated instances, and overlapping configurations,

testing the algorithm’s ability to handle varying spatial distributions.

• Foliage density and occlusion: Images with varying levels of foliage

density were included to assess the framework’s capability to detect

partially and fully occluded fruits.

• Environmental diversity: The dataset captures diverse environmental

conditions, including bright sunlight, shaded areas, and transitional

lighting, mimicking the variability seen in real-world orchards.

2.3. Dataset Preparation

The images taken in the first protocol were annotated using the tool

Roboflow 2. A total of 399 unique images representing all varieties were an-

notated using bounding boxes on each citrus fruit. The initial aim was to

develop a model for detecting citrus fruits in full tree images using object

detection techniques. However, the model failed to detect the fruits accu-

rately due to their size and color. To improve detection and segmentation,

Facebook’s ”Segment Anything” model (Kirillov et al., 2023) was adopted.

The SAM model is a groundbreaking tool that offers both versatility and

efficiency. It can accurately segment objects, even in complex scenes, signifi-

cantly reducing the manual effort and time required for annotation. A range

of studies have explored the Segment Anything Model (SAM) applications

in various fields. (Cheng et al., 2023) introduces SAM-Track, a framework

for precise object segmentation and tracking in videos, with applications in

2https://roboflow.com/

10



drone technology, autonomous driving, medical imaging, augmented reality,

and biological analysis. (Sun et al., 2023) demonstrates the potential of

SAM in weakly-supervised semantic segmentation, achieving impressive re-

sults on PASCAL VOC and MS-COCO datasets. Finally, the 399 images

were re-annotated using masks, as presented in Figure 3, segmenting over

1400 citrus fruits.

Figure 3: Annotated image of small green citrus fruits with yellow masks.

All images were thoughtfully combined into a unified dataset to train the

model on a broad spectrum of variations. This careful consolidation allowed

the model to learn a diverse range of features, thereby enhancing its overall

learning experience. The dataset was then organized into separate segments

for training, validation, and testing, ensuring a comprehensive framework for

effective model training. The resulting dataset was saved in COCO format.

A detailed overview of the data distribution is provided in Table 1:

The second protocol is designed to systematically capture full images of

trees, resulting in a comprehensive total of 48 images. For each variety, 16

unique high-resolution images are selected, ensuring a thorough representa-

tion by photographing both sides of each tree.
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Table 1: Description of the dataset created using the first image taking protocol

Total Number
of Images

Total Number
of Citrus Fruits

Average Citrus
Fruits per Image

Minimum Citrus
Fruits per Image

Maximum Citrus
Fruits per Image

Train
Dataset 300 1068 3 1 12

Validation
Dataset 69 247 3 1 15

Test
Dataset 30 94 3 1 10

2.4. Methodology

The proposed framework is designed to identify, segment, and count small

green citrus fruits in their early stage. It comprises two main modules: The

first module focuses on training a deep-learning model for detection and

segmentation, utilizing annotated images captured through the first image-

taking protocol to ensure maximum accuracy. The chosen model is the Cas-

cade Mask R-CNN with the MViTv2 L backbone. The second module is

responsible for identifying and counting small green citrus fruits in full tree

images, which are taken using the second image-taking protocol. This mod-

ule comprises three components: Slicing, Segmentation and counting, and

Joining. Figure 4 presents an overview of the proposed framework.

2.4.1. Model’s architecture

The framework is based on Cascade Mask R-CNN. With its multi-stage

refinement and combination of classification, localization, and segmentation

losses, the Cascade R-CNN framework ensures that the model progressively

improves its detection and segmentation capabilities. This comprehensive

approach allows for high-quality object detection and instance segmenta-

tion, addressing the challenges of precise localization and segmentation in

complex scenarios. Additionally, selecting the Transformers as the back-
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(a) First Module: Cascade Mask R-CNN with MViTv2 backbone model training module.

(b) Second module: Citrus fruits segmentation and counting module.

Figure 4: Overview of the proposed framework.

bone for this model presents a strategic enhancement. Transformers, known

for their exceptional performance in capturing long-range dependencies and

contextual information, complement the Cascade Mask R-CNN’s hierarchi-

cal structure. This combination leverages the strengths of both architectures:

the transformers provide a robust feature extraction mechanism, enhancing

the model’s understanding of spatial relationships, while the Cascade Mask

R-CNN excels in precise object detection and instance segmentation. The

choice was then a powerful transformer called MViTv2.

Multiscale Vision Transformers version 2 (MViTv2) represents a signifi-

cant advancement in computer vision, especially in tasks requiring nuanced

detail recognition. MViTv2, an extension of the initial Multiscale Vision
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Transformers (Fan et al., 2021), leverages a hierarchical transformer archi-

tecture designed to handle diverse image resolutions effectively. This design

enables the model to capture fine-grained details at multiple scales, making

it particularly suitable for complex tasks such as detecting and segmenting

small or densely packed objects in cluttered scenes (Li et al., 2022).

One of the key enhancements in MViTv2 is its improved efficiency in

processing high-dimensional data, achieved through optimizations in its at-

tention mechanisms and scaling strategies (Li et al., 2022). Due to the dense

coverage of the tree leaves, the MViTv2 L backbone was opted for using

stronger large-scale jittering training (Ghiasi et al., 2021). Figure 5 displays

the adopted model’s architecture.

Figure 5: Schematic diagram of Cascade Mask R-CNN model. “Backbone” is the
transformer-based backbone, “pool” is region-wise feature extraction, “H” is the network
head, “B” is the bounding box, and “C” is the classification. “B0” refers to proposals in
all architectures. “S” denotes a segmentation branch.

2.4.2. Model training and evaluation

This study was implemented using Python 3.9 and Pytorch 2.0 frame-

work. All the models were trained in Google Colab A100-SXM4-40GB GPU.
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The Cascade Mask R-CNN model is implemented using Detectron2, a pow-

erful software system developed by Facebook AI Research (FAIR) (Wu et al.,

2019). Detectron2 is an upgraded version of Detectron, coded in PyTorch

with a more modular design. It can implement advanced algorithms such

as Faster R-CNN, Mask R-CNN, RetinaNet, and DensePose. Its heightened

flexibility and extensibility have made it FAIR’s most popular open-source

project. After several trials and errors, the model was trained for 2000 iter-

ations.

Due to the limited availability of datasets, transfer learning has become

a popular approach to train deep learning models more efficiently and stably

(Szegedy et al., 2015). By leveraging pre-trained MViTv2 features from Im-

ageNet21k, which consists of 21,843 object categories and 14 million images

at resolution 224x224, state-of-the-art results have been achieved in various

image processing tasks, ranging from image classification to image caption-

ing. Fine-tuning the pre-trained model’s layers with the labeled citrus fruits

image is necessary.

Data augmentation is necessary to improve the dataset for training, as it

increases the number of images while maintaining quality (Perez and Wang,

2017). Data augmentation was applied using the defined functions:

• RandomFlip: Flip the image horizontally or vertically with the given

probability.

• ResizeScale: Takes target size as input and randomly scales the target

size between min scale of 0.1 and max scale of 2.0. It then scales the

input image to fit inside the scaled target box, keeping the aspect ratio

constant.
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• FixedSizeCrop: Crop a region out of an image with a fixed crop size of

[1024, 1024].

Hyperparameters play a pivotal role in the training and performance of

deep learning models, and Cascade Mask R-CNN is no exception. In Cascade

Mask R-CNN, hyperparameters, such as learning rate, batch size, weight

decay, and anchor scales, significantly influence the network’s convergence

rate, adaptability to the dataset, and detection and segmentation accuracy.

Several hyperparameters were fine-tuned in the experiments to better align

with this study’s dataset characteristics. The learning rate was set to 0.0001,

with a weight decay 0.0001 and AdamW (Loshchilov and Hutter, 2019) as

the optimization method.

The loss calculation for Cascade Mask R-CNN is derived from the Faster

R-CNN architecture’s multi-stage extension, Cascade R-CNN (Li and Zhou,

2020). The main objective of Cascade R-CNN is to enhance object detection

by progressively refining bounding box predictions through multiple stages.

Each stage in the cascade is trained to handle progressively higher Intersec-

tion over Union (IoU) thresholds, which helps achieve better object localiza-

tion.

For each stage t, the total loss is a combination of the classification loss

Lcls and the localization loss Lloc:

Lt = Lcls(ht(xt), yt) + λ[yt ≥ 1]Lloc(ft(xt, bt), g), (1)

where ht is the classifier, ft is the regressor, xt represents the input, yt is

the label under the IoU threshold ut, bt is the predicted bounding box, and g is
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the ground truth bounding box. The indicator function [yt ≥ 1] ensures that

the localization loss is only applied to positive samples. The classification loss

Lcls is typically computed using cross-entropy loss, while the localization loss

Lloc is computed using the smooth L1 loss on the bounding box coordinates.

In the Cascade Mask R-CNN, an additional segmentation loss Lseg is

introduced for instance segmentation:

Lseg(mt, st), (2)

where mt is the predicted mask and st is the ground truth segmenta-

tion mask. This segmentation loss is typically computed using binary cross-

entropy or a similar pixel-wise loss function. The segmentation branch can

be added at the first stage, at the last stage, or each stage of the Cascade R-

CNN, and the final mask prediction is obtained from the single or ensemble

segmentation branches, depending on the architecture.

The losses from different stages are combined using schemes such as ”av-

erage” (average) and ”decay.” In the ”average” scheme, the loss of each stage

receives an equal weight, whereas, in the ”decay” scheme, the loss of each

stage is weighted, giving more importance to earlier stages in training. The

total loss across all stages is combined to optimize the model progressively.

The average scheme for loss combinations was adopted, as originally used in

the Detectron2 implementation of Cascade Mask R-CNN.

The predicted segmentation masks in the output images were obtained

from the trained Cascade Mask R-CNN and put for further analysis. The

aim was to evaluate the effect of the different backbone parts in the Cascade

Mask R-CNN mask. This analysis used two metrics: average precision (AP)
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and IoU. IoU is a crucial metric used to assess segmentation models (Zhou

et al., 2019), commonly referred to as Jaccard’s Index. This metric quantifies

how effectively the model can distinguish objects from their backgrounds in

an image.

The Intersection over Union (IoU) between the ground-truth fruit region,

Agt, and the predicted fruit region, Ap, was calculated as follows:

IoU(Agt,Ap) = Agt ∩ Ap

Agt ∪ Ap

(3)

One of the most crucial evaluation indicators for measuring the object

detection model’s performance is mean average precision (mAP), which can

effectively evaluate the locating performance of the model. In order to as-

sess the performance of the model, the official COCO evaluation metrics in

Python were employed, including AP50 and AP75, defined as follows:

1. AP at IoU = 0.5 (AP50)This version of the AP metric evaluates average

precision when the Intersection over Union (IoU) threshold is set at 0.5.

A higher IoU threshold means stricter evaluation criteria and an IoU

of 0.5 is commonly used for many detection tasks.

2. AP at IoU = 0.75 (AP75): This is similar to AP50 but uses a more strin-

gent IoU threshold of 0.75, focusing on tighter bounding box matches.

All experiment results were obtained at a threshold of IoU = 0.5. These

metrics offer a thorough evaluation of bounding box and mask annotations.

However, to guarantee the accuracy of the predicted count, it was cross-

referenced with the count determined by an expert. By utilizing both ap-

proaches, the models may then be assessed more accurately.
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2.4.3. Segmentation and counting module

Due to the size and color of the citrus fruits, the model trained may

not be able to detect and segment all fruits. The challenge of diminished

model accuracy when analyzing full-tree images for citrus fruit detection was

addressed using the slicing strategy. When slicing the image into many parts,

the model will treat and analyze each slice as one large single image and try

to detect all citrus in it.

In addition, another advantage of the slicing approach is the slice size:

the full image will have a large size and may consume more time and energy

for detection and counting; however, when slicing, the new image fragments

will have reduced size, making it quicker and easier for the model to detect

and count the fruits. This division is crucial as it counteracts the issues

related to scale and complexity inherent in full-tree images, which often lead

to reduced detection accuracy.

By focusing on smaller sections of the image, the model can more ef-

fectively apply its detection capabilities, as each segment presents the fruits

and foliage in greater detail and less cluttered contexts. This strategy ensures

that the vast and varied background of full-tree images does not overshadow

the nuances and characteristics of tiny citrus fruits.

When analyzing the literature, the SAHI (Slicing Aided Hyper Inference)

framework Akyon et al. (2022) was first adopted. This approach is centered

around image slicing, where large images of entire trees are methodically di-

vided into smaller, more manageable segments. The SAHI framework relies

on slicing the images for analysis based on some parameters that need to

be defined to adjust the inference. The concept of sliced inference is basi-
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cally performing inference over smaller slices of the original image and then

merging the sliced predictions on the original image.

SAHI (Slicing Aided Hyper Inference) Akyon et al. (2022) is a technology

known for its precision in detecting small objects with high accuracy. How-

ever, two primary challenges must be addressed: inference time and instance

segmentation.

For inference time, SAHI’s performance slows significantly when process-

ing high-resolution images, primarily due to the size of the image. The

inference time can be substantial, with some reports indicating it can take

up to 30 minutes to process a single image. This prolonged processing time is

influenced by the need to determine the optimal size for image splits. Larger

images require more computational resources and time, making real-time

application impractical in its current form.

The second challenge pertains to instance segmentation. SAHI aims to

extract comprehensive information and features from detected objects, such

as citrus fruits. However, achieving high-quality instance segmentation with

SAHI can be difficult. The technology struggles to provide detailed feature

extraction, which is crucial for applications requiring precise object identifi-

cation and classification.

The proposed segmentation and counting module is meticulously designed

to deliver accurate results while significantly reducing processing time. This

advanced module comprises several integral components, each contributing

to the efficiency and precision of the overall process.

The first component is a slicing mechanism that divides the input image

into uniformly sized tiles. This tiling approach ensures that each segment is
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manageable for more precise detection and segmentation. Once the image is

divided, the model trained in the previous module is employed to process each

tile individually. The segmentation and counting component of the module

performs two critical tasks. Initially, it detects and segments the citrus fruits

within each tile, drawing masks over each detected fruit to visually delineate

them. This visual segmentation is crucial for accurate counting and further

feature extraction. Following the segmentation, the module extracts essential

features from each detection. These features include the size of each mask,

the location coordinates of each detected citrus fruit, and a unique ID for

each fruit. All this detailed information is systematically exported into a

CSV file, creating a comprehensive dataset for further analysis.

The final step of the module is the ’joining’ process. All the tiles, now

drawn with masks, are reassembled to form a complete image. This step is

crucial for maintaining the visual integrity of the original image, which is now

enhanced with detailed segmentation data. The module’s tasks culminate in

recording the total count of citrus fruits detected in each processed image.

This count is then saved into another CSV file, providing an easily accessible

record of the fruit count for each image.

3. Results

This study evaluates the proposed framework using two distinct image

protocols. The first module focuses on close-up images, where the model is

trained to detect and segment citrus fruits with high precision, capturing fine-

grained details despite challenges like occlusions and complex textures. The

second module evaluates the framework on full-tree images, leveraging the
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dual-image strategy and image-slicing techniques to address challenges such

as dense foliage, overlapping fruits, and varying environmental conditions.

The results highlight the framework’s robustness and adaptability across

both protocols, showcasing its ability to perform effectively under diverse sce-

narios. The following subsection, Model Training Module Results, provides

a detailed analysis of the framework’s performance on close-up images.

3.1. Model training module results

At the completion of 2,000 iterations, the detection training accuracy was

determined to be 98.8%, 99.0%, and 99.3% for stages 1, 2, and 3, respectively.

The segmentation training accuracy was 96.7%. The total loss was 0.75.

A comparative analysis of various backbone models was then performed to

assess the performance and robustness of the MViTv2 model. This analysis is

essential for determining which backbone provides the highest accuracy and

efficiency for object detection and segmentation tasks. Table 2 presents the

Average Precision (AP) metrics on a testing dataset for different backbone

models used in object detection and segmentation tasks. The backbones eval-

uated are Swin L, ViTDet L, and MViTv2 L, with the metrics divided into

three categories: mAP, AP50, and AP75, each further split into bounding

box (Bbox) and mask results.

Table 2: Results of AP metrics on the testing dataset using different backbones.

Backbone mAP AP50 AP75
Bbox % Mask % Bbox % Mask % Bbox % Mask %

Swin L 55.863 64.869 88.283 86.203 65.247 73.078
ViTDet L 68.515 83.849 93.797 92.566 87.399 91.767
MViTv2 L 72.97 84.40 98.60 96.18 93.13 95.175
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From the table, MViTv2 L demonstrates superior performance across all

metrics compared to the other backbones. For instance, it achieves the high-

est mAP scores for both bounding box (72.97%) and mask (84.40%) cat-

egories. Similarly, it records the highest values for AP50 with 98.60% for

bounding box and 96.18% for mask, as well as for AP75 with 93.13% for

bounding box and 95.175% for mask. In contrast, Swin L performs low-

est in all categories, indicating that MViTv2 L is the most effective back-

bone among those tested for object detection and segmentation tasks in this

dataset, consolidating the choice for the detection and segmentation model.

The figures 6 illustrate the difference in detection for the three backbones.

The images provided compare actual instances of fruit detection with pre-

dictions made using three different backbone models: MViTv2, Swin, and

ViTDet. Each set of images includes an actual instance on the left and a

predicted instance on the right.

In the first pair of images (Figure 6a), derived from the Swin backbone,

the predicted instance identifies multiple objects as fruits with varying con-

fidence levels, illustrating the model’s ability to detect multiple instances.

However, some detections have lower confidence percentages, suggesting po-

tential inaccuracies and false positives.

The second pair of images (Figure 6b), related to the ViTDet backbone,

the actual instance again shows a fruit among the leaves. The predicted

instance identifies multiple fruits with bounding boxes and masks of different

colors. This indicates that the ViTDet model can detect multiple objects,

but some detections are less confident and may not be entirely accurate,

similar to the Swin backbone.
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(a) Detection and segmentation results using Swin L model.

(b) Detection and segmentation results using ViTDet L model.

(c) Detection and segmentation results using MViTv2 L model.

Figure 6: Results of Model Training Module using Cascade Mask R-CNN with (a) Swin
backbone, (b) ViTDet backbone, and (c) MViTv2 backbone.

In the third pair of images (Figure 6c), generated using the MViTv2

backbone, the actual instance shows a single fruit among the leaves. The

predicted instance correctly identifies and highlights the fruit with a bound-
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ing box and a mask, indicating high confidence (100%). This demonstrates

MViTv2’s strong capability in accurately detecting the fruit. Moreover, the

MViTv2 model’s strength is shown by the ability to detect and segment fruits

not annotated in the testing dataset.

3.2. Segmentation and counting module

The proposed model’s performance was compared to the manual counting

of citrus fruits within visible images. The accuracy of the citrus counting was

measured using the coefficient of determination (R2), the root mean squared

error (RMSE), the relative RMSE (rRMSE), and the bias:

RMSE =
√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (4)

rRMSE =
(

RMSE
y

)
× 100 (5)

Bias = 1
n

n∑
i=1

(ŷi − yi) (6)

where n is the number of observations, yi is the actual value, ŷi is the

predicted value, and y is the mean of the actual values.

To assess this module thoroughly, the model’s detection performance on

complete tree images was first examined with and without the slicing tech-

nique. The first step is applying the detection model trained in the previous

module to the full tree images without slicing them. Figure 7 presents the

accuracy metrics’ results.

Based on the results shown in the figure, there is a low correlation between
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Figure 7: Comparison of the number of citrus fruits visually counted on the full tree
image with the number of fruits detected by the proposed model for all varieties: red dots
represent Nules grafted on Volka, blue cross represent Sidi Aissa grafted on Volka, and
green squares for Orogrande grafted on sour orange.

the manual count and the predicted count when applying the model to full

tree images (R2 = 0.51). Moreover, the Bias is significantly high, with a

value of -46.58, explaining the high underestimation of the citrus count when

using the model. This proves the low accuracy of detection and segmentation

of the model when used on full tree images.

The slicing strategy proposed in the module is then tested. For the first

trial, the number of slices is set to 4 tiles per image. Figure 8 illustrates the

linear regression between the proposed model and the manual count tested

on the 48 full trees images. The results showed a high correlation between the

proposed framework’s counting and the manual image-based counting. The

model trained in the first module has a higher coefficient of determination and

lower RMSE and rRMSE (R2 = 0.80, RMSE = 12.24, rRMSE = 15.62%),
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indicating that the model was closer to the visual observation. In addition,

the bias value of -6.75 shows a slight underestimation of the number of citrus

fruits compared to the visual assessment.

Figure 8: Comparison of the total number of citrus fruits visually counted on the image
with the number of fruits detected by the proposed slicing technique for all varieties: red
dots represent Nules grafted on Volka, blue cross for Sidi Aissa grafted on Volka, and
green squares for Orogrande grafted on sour orange.

In order to gain a better understanding of the model’s performance, the

metrics for each variety were analyzed using the same number of slices (4S),

which are illustrated in figure 9. Significant variations were observed in all

metrics for each variety, with R-squared ranging from 0.58 to 0.81. Addition-

ally, differences in Bias were noted, specifically an underestimation of count

in both Nules grafted on Volka and Sidi Aissa grafted on Volka, as opposed

to an overestimated count in Orogrande grafted on sour orange.

In this study on how different numbers of slices affect the module’s perfor-

mance, tests with various slicing values were conducted. Table 3 summarizes
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Figure 9: Comparison of visually counted citrus fruits with detected fruits for each variety:
NsV represents Nules grafted on Volka, SIsV for Sidi Aissa grafted on Volka, and OsB for
Orogrande grafted on sour orange.

the impact of the number of slices on the framework performance, where NS

presents the N number of slices per image, NsV represents Nules grafted on

Volka, SIsV for Sidi Aissa grafted on Volka, and OsB for Orogrande grafted

on sour orange.

Table 3: Comparison of manually counted citrus per image and the number estimated by
the proposed framework for three varieties with different numbers of slices.

Metric 4S 6S 9S 12S 16S

NsV

R2 0.81 0.81 0.92 0.93 0.87
RMSE 10.48 11.33 6.41 6.27 8.25
rRMSE 11.69% 12.64% 7.15% 7.00% 9.20%

Bias -8.44 -6.06 -14.25 -12.38 -13.38

SIsV

R2 0.79 0.76 0.83 0.81 0.82
RMSE 12.18 13.29 12.47 13.58 13.50
rRMSE 12.86% 14.04% 13.17% 14.34% 14.26%

Bias -13.50 -13.19 -18.00 -16.00 -16.38

OsB

R2 0.58 0.63 0.81 0.80 0.74
RMSE 12.78 12.64 7.60 8.21 8.51
rRMSE 25.15% 24.88% 14.96% 16.15% 16.75%

Bias 1.69 2.00 -11.12 -10.25 -12.12
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The last step in this module involves Joining. During this step, the

process of splitting the image is reversed to recombine the tiles into a single

image complete with drawn segmentation, along with a CSV file containing

the final count. Figure 11 displays an example of the resulting combined

image from the processed tiles presented in figure 10.

Figure 10: Example of 9 tiles processed before joining.

Figure 11: Example of a resulting composite image after joining tiles.
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4. Discussion

This study proposed a novel framework integrating MViTv2 and Cascade

Mask R-CNN to enhance citrus fruit detection and segmentation in dense

orchard environments. The research made several key assumptions: The

dataset, comprising close-up and full-tree images of three citrus varieties, was

assumed to represent real-world orchard conditions sufficiently. This included

light variations, dense foliage, and occlusions, although extreme scenarios

such as harsh weather or significant spatial differences between orchards were

not comprehensively covered. Additionally, the dual-image strategy assumed

that features learned from close-up images could generalize effectively to full-

tree images, enabling robust performance during testing. These assumptions

provided a practical foundation for the study but highlighted the importance

of expanding datasets and testing conditions for future work.

Several lessons were learned throughout the development and evaluation

process. Integrating MViTv2 improved the framework’s ability to capture

fine-grained details, enabling accurate detection of small fruits obscured by

foliage. The image-slicing technique further enhanced segmentation by focus-

ing on localized image regions, significantly improving precision in challeng-

ing conditions. These innovations ensure that the framework can effectively

adapt to the variability of citrus growth, environmental conditions, and va-

rietal differences.

An important aspect of this framework is its design for practical, easy-

to-use applications, such as deployment on smartphones or devices with sim-

ple setups, making it accessible for orchard managers, farmers, and citrus

producers. By enabling early and accurate detection of citrus fruits using
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affordable and portable devices, this framework addresses a critical need in

precision agriculture for scalable and cost-effective solutions. Using a dual-

image strategy and image-slicing ensures the model is lightweight enough to

be integrated into applications suitable for on-site use, making it a practi-

cal tool for real-time decision-making, including yield forecasting, without

requiring expensive or complex equipment.

Building upon the assumptions and lessons learned, a detailed analysis

of the framework’s performance, along with its strengths and limitations,

provides deeper insights into its applicability and areas for improvement. The

following subsections comprehensively evaluate the framework and discuss

the challenges and opportunities for further development.

4.1. Framework Analysis

Throughout this paper, an AI-based framework was proposed that helps

detect and segment small green citrus fruits in dense foliage at a very early

stage. In the framework’s first module, different backbones were compared to

understand their influence on the performance of the Cascade Mask R-CNN

model. As presented in Table 2, MViTv2 L achieved the highest performance

compared to Swin L and ViTDet L across all metrics. This outcome points

to the unique architectural design and training strategy as the key factors in

the model’s performance.

The chosen model demonstrated high performance with exceptional AP

values during the evaluation. Nevertheless, a discrepancy between the actual

and predicted counts was observed when the model on full tree images was

tested. The correlation between the estimated and actual count was rela-

tively poor, as presented in Figure 7. Thus, the proposed slicing technique
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significantly improves the detection of green citrus fruits in full tree images

(Figure 8).

Furthermore, the variations in R2 and other evaluation metrics among

the three varieties can be attributed to their size and growth stage factors.

Notably, the Nules grafted on the Volka variety exhibits the highest R2 com-

pared to the other varieties. This can be attributed to the fact that the

Nules grafted on Volka variety entered the flowering stage earlier, on March

1st, 2022, while Sidi Aissa grafted on Volka, began flowering 15 days later,

and Orogrande grafted on sour orange, started flowering on April 1st. These

differences in flowering dates significantly impacted the citrus fruit size, re-

sulting in noticeable variation in the detection, as shown in Figure 9, making

the model growth stage sensitive.

After assessing the impact of different slicing numbers on the module’s

performance (Table 3), it was observed that using 9 slices improved the

detection and counting of citrus for both Sidi Aissa grafted on Volka and

Orogrande grafted on sour orange, with R2 values of 0.83 and 0.81, respec-

tively. However, for Nules grafted on Volka, the findings showed that 12 slices

per image slightly outperformed 9 slices. Upon visual inspection, the detec-

tions were inaccurate despite the higher estimated number of citrus using 12

slices. Increased slicing led to overlapping, resulting in repeated counting, as

illustrated in the figure 12.

These observations revealed that while 12 slices exhibited higher metric

values compared to 9 slices, the latter demonstrated superior accuracy in

detecting citrus fruits. In contrast, 12 slices resulted in significantly more

false positives. Figure 13 provides an example of the difference in detec-
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Figure 12: Example of two tiles of image using the 12S. The red arrows point to the citrus
detected repeatedly in both tiles.

tion between 9 slices and 12 slices, where two citrus fruits were accurately

detected using the 9 slices strategy, resulting in the high performance of 9

slices techniques compared to the other slices numbers.

Figure 13: Example of two tiles of the image with drawn citrus detection: (a) presents
the detection in 9 slices, (b) presents the detection in 12 slices. The red circles show the
difference in detection.

Overall, the 9 slices performed significantly better in accurately detect-

ing and counting all varieties, despite differences in citrus’ growth stages

and sizes. This improvement demonstrates the effectiveness of the slicing

technique in enhancing the model’s counting accuracy.
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The literature shows diverse research on green citrus detection and count-

ing in the expansive agricultural research and technology realm. He et al.

(2020b) proposed a green fruit detection method named deep bounding box

regression forest (DBBRF) for detecting green citrus fruits in natural envi-

ronments and achieved a mAP of 87.60%, while Zheng et al. (2021) proposed

a method of green citrus detection using a deep convolutional neural net-

work, combining the strength of multi-scale convolutional neural network

and YOLO, and achieved a mAP of 91.55%. Lyu et al. (2022) proposed

a YOLOv5-CS model combined with an AI edge system for detecting and

counting green citrus fruits. Their model achieved an mAP of 91.55%, ac-

curacy of 86%, and recall of 91%. In addition, Lu et al. (2023) presented

a lightweight green citrus fruit detection model suitable for edge smart de-

vices, achieving a mAP of 93.6%. These results exhibit the strength and

high performance of the detection models. However, the images used for

testing are very similar to the trained data, where the models detect and

count citrus fruits in a close view of the tree, where citrus can be visible

and easily detected. In addition, the models used are mainly based on object

detection, unlike this study’s framework, in which instance segmentation was

incorporated.

In the proposed framework, the tested images differ significantly from

the training data, posing a considerable challenge for detection and count-

ing, even to the human eye. The proposed framework aims to count the citrus

fruits on the tree accurately and includes instance segmentation, which pro-

vides additional details such as the pixel size and precise location of each

detected citrus fruit in the image. These noteworthy results represent an
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innovative approach to early-stage detection, segmentation, and counting of

citrus fruits.

4.2. Limitations and future perspectives

While the framework proposed in this paper demonstrates significant

advancements in citrus fruit detection and segmentation, it is not without

limitations. One of the primary challenges lies in accurately detecting and

counting citrus fruits of varying sizes, especially when the size difference is

substantial. Smaller fruits can be particularly difficult to detect, leading to

undercounting, while larger fruits may be counted multiple times if they over-

lap with other elements in the image. Additionally, shadows cast by foliage

and branches create regions of low visibility, obscuring fruits and causing

false negatives or false positives.

Another notable limitation is the handling of overlapped slices and the

issue of sliced citrus fruits leading to incomplete information or repeated

counting. When images are divided into slices to facilitate detection, there is

a risk of counting the same fruit multiple times if it appears in more than one

slice. This overlap can result in an overestimation of fruit counts. Conversely,

if a fruit is partially visible in multiple slices but not fully captured in any

single slice, it might not be counted, leading to underestimation. These chal-

lenges necessitate the development of more sophisticated algorithms capable

of recognizing and reconciling these overlaps to ensure accurate counting.

Furthermore, increasing the number of slices enhances the accuracy of

detection but also significantly increases the processing time, making the

system less efficient. This trade-off between accuracy and processing speed

is a critical limitation, especially for real-time applications. Future solu-
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tions could involve optimizing the slicing strategy to balance accuracy and

efficiency, possibly through adaptive slicing techniques that vary based on

image complexity.

Future research should focus on several key areas to address these limita-

tions. First, enhancing the model’s ability to differentiate between individual

fruits and their segments by integrating more advanced image-slicing tech-

niques can mitigate issues related to overlapped slices. In addition, future

work will focus on augmenting the dataset with more diverse environmental

conditions, such as varying light intensities and weather scenarios. Finally,

exploring the potential of other machine learning architectures may also of-

fer new insights and improvements in fruit detection and counting accuracy.

These advancements will pave the way for more reliable and accurate fruit

detection systems in real-world agricultural applications.

5. Conclusion

In modern agricultural research, instance segmentation is a vital tool for

enhancing the accuracy and precision of crop analysis. This is particularly

important for citrus fruits, where detailed information about each fruit’s size,

location, and segmentation is crucial for assessing health, growth, and yield

estimations.

The Cascade Mask R-CNN algorithm, paired with the MViTv2.L back-

bone, has proven highly effective. It excels in detecting and segmenting indi-

vidual citrus fruits, providing precise masks invaluable for detailed phenotyp-

ing analyses and identifying potential anomalies or diseases. The backbone

networks in Cascade Mask R-CNN are essential for feature extraction, which
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is critical for the model’s overall performance. The choice of the MViTv2.L

backbone enhances the quality of features extracted from images, improving

the accuracy and speed of the region proposal and segmentation processes.

Given the unique characteristics of citrus fruits, such as their size, shape,

and varying light conditions, selecting an appropriate backbone is vital for

optimizing segmentation accuracy.

However, the intricate nature of citrus orchards presents challenges for the

Cascade Mask R-CNN model. The varying sizes, shapes, and overlapping of

fruits, along with shadows from foliage, can impede accurate segmentation.

Additionally, slicing the images to improve detection can lead to incomplete

information or repeated counts, necessitating further model refinement and

preprocessing techniques to enhance detection robustness.

This research introduced a novel framework using the MViTv2.L back-

bone and a slicing strategy. This approach significantly improved detection

and segmentation accuracy by enabling the model to handle dense foliage

and varying fruit orientations better. The slicing strategy divides images

into smaller sections, reducing the complexity of each segment and allowing

for more precise identification and counting of fruits. This method effectively

mitigates the challenges posed by overlapping fruits and shadows, resulting

in higher accuracy and more reliable segmentation.

In conclusion, integrating Cascade Mask R-CNN with the MViTv2.L

backbone and a strategic slicing technique has shown promising results in

citrus fruit detection and segmentation. Despite the challenges, these inno-

vations represent a significant step forward in agricultural technology, pro-

viding a robust tool for precise crop analysis. Future work will further refine
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these techniques and explore additional improvements to enhance model per-

formance and applicability in various agricultural contexts.
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