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A B S T R A C T

Information about herbage availability and its nutritional value is fundamental to implementing efficient and 
precise grassland management. However, obtaining such information is time-consuming and expensive, repre
senting an important burden particularly when the herbage resources are scarce. The use of new technologies, 
such as remote sensing, has been proposed as a promising alternative. The objectives of this study were 1) to 
characterize the seasonal variation of herbage biomass and nutritional value of the naturalized grassland of the 
Mediterranean semi-arid zone, and 2) to develop regression models to predict the nutritional value of naturalized 
grasslands using vegetational indices (VIs) as predictive variables. The herbage growth and nutritional value of 
the grasslands were monitored. At the same time, multispectral images were captured, and VIs were generated. 
Results showed differences in botanical composition and nutritional values among sampling sites. The VIs that 
presented the best adequacy, based on values of R2 and RMSE, for determining dry matter, crude protein, neutral, 
and acid detergent fibers were NDVI, CLRG, CLRG and GNDVI, respectively. The quick estimation of the 
nutritional value of grasslands from VIs obtained through aerial images offers significant potential for improving 
planning processes.

1. Introduction

Efficient and precise grassland management and feed planning in 
extensive livestock farms require accurate information about herbage 
availability (Serrano et al., 2016). This information is crucial for 
determining sustainable livestock numbers based on herbage-carrying 
capacity (Barnetson et al., 2020) and for avoiding grassland and soil 
degradation caused by over- or under-grazing (Tang et al., 2019). In 
Central Chile, a large portion of the livestock production systems in the 
Mediterranean semi-arid zone relies on grasslands for feeding. However, 
during the summer there is a characteristic forage deficit that requires a 
tunned balance between the natural supply of fodder, its administration, 
and the need for supplementary feed. Unfortunately, the available in
formation regarding the nutritional value and its temporal evolution is 
outdated, spanning several decades (Ruiz, 1996). Furthermore, climate 
change, by delaying the onset of the rainy season, has postponed the 
start of grasslands’ growing period, which results in a shorter growing 

season (Liu et al., 2019), rendering the available information no longer 
representative. In this context, the use of aerial images to determine the 
availability and quality parameters of naturalized grasslands emerges as 
a viable and dynamic alternative with the potential for implementation 
in the Mediterranean semi-arid zone in Central Chile. However, there 
are challenges associated with obtaining estimation models, including 
the rapid seasonal changes in the phenological state of annual pastoral 
species, spatial location, the damage caused by wildfires, the variability 
and seasonal fluctuation of pastoral species present in the natural 
grassland, and the heterogeneous state of soil conservation (Liu et al., 
2019; Castillo et al., 2020; Espinoza et al., 2020). The last two aspects 
are of particular concern resulting from decades of intensive specialized 
monoculture crop production (mainly wheat) and historical misman
agement of grazing (both over and under-grazing) (Espinoza et al., 
2020).

Numerous techniques and instruments have been used to estimate 
herbage availability. Among the traditional techniques, the most 
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common and oldest method is the manual collection of herbage biomass 
along defined transects using quadrat harvests or estimations (Barnetson 
et al., 2020). This technique requires many samples of known areas to 
estimate grassland productivity. The plate meter and electronic capac
itance probe are commonly used instruments to estimate herbage 
availability, both of which necessitate the establishment of transects and 
multiple measurements (Serrano et al., 2016; Barnetson et al., 2020). As 
pastoral resources become scarce, the precision of estimates needs to 
increase, and planning around herbage availability is not enough; 
therefore, the need arises for nutritional assessments of resources to 
meet the nutrient requirements of grazing livestock. Molle et al. (2008)
describe the variation in the nutritive value of Mediterranean pastures 
and its impact on the nutrition of dairy sheep, primarily driven by the 
imbalance between crude protein and energy. These variations neces
sitate management interventions, including optimizing pasture fertil
ization and incorporating supplements. Similarly, Fenetahun et al. 
(2021) emphasize the importance of assessing forage nutritional value 
to adjust pasture rotation, develop adaptive strategies that ensure 
year-round feed availability for livestock, and formulate balanced diets 
more efficiently, thereby reducing dependence on costly supplements.

Proximal and Van Soest fiber analyses are standard methods used to 
estimate the nutritional value of pastures and forages (Van Soest et al., 
1991). Although these analyses are accurate, they are slow and expen
sive. Near-infrared reflectance spectroscopy (NIRS) technology has 
overcome these limitations with faster and more affordable analyses 
(Park et al., 1998; Thomson et al., 2018; Oliveira et al., 2020). However, 
the use of NIRS analysis requires a long calibration process and the use of 
uncommon feedstuffs can lead to misinterpretations. Moreover, both 
traditional analyses and NIRS, require the collection of numerous sam
ples in the field and subsequent processing, demanding significant labor 
and cost.

With advancements in technology, new methods for monitoring in 
situ availability and nutritional value of grass and forages have emerged, 
some of which are based on obtaining vegetation indices (VIs) using 
remote sensing images. VIs are derived by mathematically combining 
various spectral bands obtained from images taken with multispectral 
cameras. These cameras can be portable or installed in unmanned aerial 
vehicles (UAVs) and satellites (Paltsyn et al., 2017). VIs obtained from 
multispectral images have been investigated for more than three de
cades. However, the emergence of UAVs and easier access to satellite 
images has increased their use. For instance, VIs have been related to 
quantitative variables such as the height, availability, or covered area of 
arboreal and non-arboreal plant species (e.g., Fern et al., 2018; Lussem 
et al., 2018; Lussem et al., 2019; Dube et al., 2021). Spectral VIs 
represent unique signatures of green vegetation, and different types of 
vegetation often exhibit distinctive variability due to different parame
ters such as the shape and size of plants, water content, associated 
background, and phenological stage (Fajji et al., 2017). The assessment 
of relationships between forage nutritional parameters and wavelengths 
or VIs is more recent (Posada-Asprilla et al., 2019; Barnetson et al., 
2020). Forage nutritional parameters such as neutral detergent fiber 
(NDF), crude protein (CP), nitrogen (N), Carbon:Nitrogen ratio (C:N) 
have already been linked to wavelengths or VIs (Beeri et al., 2007). The 
use of UAVs to capture multispectral images for estimating VIs has been 
a focus of research in the past decade (Poley and McDermid, 2020). 
Wachendorf et al. (2018) point out that UAVs and hyperspectral imaging 
systems may play a major role in the rapid and non-destructive sampling 
of temperate grasslands’ properties and in improving agricultural use of 
grasslands.

Thereby, considering changes in precipitation and temperature pat
terns, the lack of updated information on the nutritional value of rainfed 
natural grasslands in Central Chile (Alignier et al., 2021), and the 
emergence of new technologies for rapid determination of forage 
nutritional value, this study aimed to address the following question: 
How effective are VIs in predicting the forage nutritional parameters of 
natural grasslands in Mediterranean semi-arid zones to support on-farm 

decision-making? To answer this question, the research focused on two 
main objectives: (1) to characterize the seasonal variation in the nutri
tional value of naturalized grasslands in the Mediterranean semi-arid 
zone, and (2) to develop regression models to predict the nutritional 
value of naturalized grasslands using vegetation indices (VIs) as pre
dictive variables.

2. Materials and methods

2.1. Study area

The study was carried out in the O’Higgins Region, part of Central 
Chile, located between 33◦00′ S and 35◦ 01′ S and between 70◦ 02′ W and 
the Pacific Ocean. Specifically, the study focused on the dryland areas of 
the communities of La Estrella (S1), Marchigüe (S2) and Pumanque (S3) 
(Fig. 1).

The prevailing climate in the study areas is a temperate Mediterra
nean semi-arid climate with annual mean temperature values around 
13.3 ◦C. Over the past decades, an increasing temperature trend has 
been observed. As shown in Fig. 2, the mean temperature has consis
tently exceeded the long-term average by more than 0.45 ◦C over the last 
two decades.

The annual precipitation is irregular, with June and July as the 
wettest months, with a historical average between 100 and 300 mm per 
month (Pizarro, 2007). Long-term annual average rainfall (1901–2021) 
ranges between 602 mm in northern study areas and 729 mm in the 
southern one although in the last decades, the annual precipitation has 
been decreasing (Harris et al., 2020). The most common Mediterranean 
semi-arid pastoral zone is characterized by a steppe where Vachellia 
caven dominates the arboretum strata and the main species observed 
(and its percentage presence) in the naturalized grasslands are Avena 
barbata, Vulpia dertonensis and Bromus mollis (between 11-65%), Lolium 
multiflorum (2–65%), Briza minor (25–40%), Medicago polymorpha 
(0–22%), Hordeum leporinum, Aira caryophyllea, Trifolium glomeratum, 
Trifolium striatum and Trifolium arvense (Ruiz, 1996).

As described by Allen et al. (2011), a naturalized grassland consists 
of species primarily introduced from other geographical regions that 
have become established and persisted under the prevailing environ
mental and management conditions over an extended period. These 
grasslands are typically utilized by cattle or sheep under continuous 
grazing or rotational grazing systems, often with a limited number of 
paddocks.

The soils in the O’Higgins Region are mainly classified as Luvisols 
and, secondly, as Calcisols, according to the Harmonized World Soil 
Database (HWSD) (FAO, 2012). Generally, the texture of the topsoil can 
be considered sandy clay loam, while at deeper depths, as clay loam. The 
study areas show the properties summarized in Appendix A.

A study area was selected in each of three communities (La Estrella 
(S1), Marchigüe (S2), and Pumanque (S3), Fig. 1). Sheep flock man
agement is common in this region, with stocking rates ranging from 0.2 
to 0.6 livestock units (LU) per hectare (Toro-Mujica and García, 2025; 
Ruiz, 1996).

Multispectral images were captured and sampling was conducted at 
the three sites. The linear distances between S1 and S2 were 14.14 km, 
between S2 and S3 were 29.5 km, and between S1 and S3 were 29.4 km. 
Each site had three 10 × 10 m exclusion plots located at varying dis
tances of 65–170 m from each other. The fence height was approxi
mately 1.5 m constructed with 4-inch idlers, sheep mesh, and barbed 
wire (Appendix B). Each exclusion plot was considered a replication to 
explore site variability and reduce bias. The localization of the plots 
within each site is shown in Fig. 1. The geographic coordinates of each 
exclusion plot are detailed in Appendix C.

Meteorological stations (Decagon Weather Station model EM50G) 
(Appendix B) were installed at two of the study sites (S1 and S3) to relate 
the beginning of the growing season with the meteorological conditions. 
Meteorological data included temperature, precipitation, relative 
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humidity, wind speed and direction, and soil temperature and moisture 
(at a depth of 20 cm) recorded every hour.

2.2. Grass sampling

Grass samples were obtained twice a month from August to 
December 2018 at each site and each exclusion plot when the com
pressed herbage height exceeded 3 cm. For the estimation of compressed 
herbage height a Jenquip® forage plate meter (NZ Agriworks Ltd, 
Feilding, New Zealand) was used following a similar protocol as for 
Enriquez-Hidalgo et al. (2016). At least ten herbage heights were taken 
by following an imaginary W shape within each exclusion plot. Mea
surements were taken at a distance of at least 0.5 m away from the plot 
fences to minimize edge confounding effects. Electric hand shears 
(Makita UM603DWY) were used to clip vegetation at a height of 3 cm 
above ground level. Three randomly placed subsamples of 0.5 × 0.5 m 
per exclusion plot were used. The sample consisted of all standing 

herbaceous vegetative material available in an area of 0.75 m2 (0.5 m ×
0.5 m x 3 squares). The samples were collected into paper bags and taken 
to the food and feed analysis laboratory of the Pontificia Universidad 
Católica de Chile for further processing. The samples were weighed and 
then oven-dried at 60 ◦C for 48 h to determine dry matter concentration 
(DM) and used to estimate DM biomass per hectare. Dry samples were 
milled (1 mm), placed in sealed plastic bags, and stored at room tem
perature in a low-humidity cabinet for chemical analysis, including 
crude protein (CP), neutral detergent fiber (NDF), and acid detergent 
fiber (ADF) concentrations. AOAC (2005) methods were used to esti
mate DM (method 2001.12) and CP (nitrogen concentration x 6.25; 
method 2001.11) concentrations. The NDF and ADF were determined 
using the Van Soest et al. (1991) method.

2.2.1. Botanical composition characterization
The botanical composition of the experimental sites was determined 

in November 2018 using an adaptation of the Ecological Outcome 

Fig. 1. Location of the study sites in the O’Higgins Region. S1, S2, S3 = Sampling area 1, 2 and 3, respectively and grass growth in sites 1, 2, and 3.
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Verification (EOV) program (Savory Institute, 2018). Briefly, two 10 m 
transects were marked within each exclusion plot from each experi
mental site. Every plant species encountered every 25 cm along the 
transect (400 points for each transect) was identified and then the per
centage of individuals encountered was calculated.

2.2.2. Capturing of multispectral imaging
Multispectral images were captured with a single DJI INSPIRE 2 UAV 

equipped with Parrot Sequoia® multispectral camera (Parrot, Paris, 
France) and a sunshine sensor. The Parrot Sequoia® camera had four 
single-band cameras in the green (550 nm ± 40 nm), red (660 nm ± 40 
nm), red-edge (735 nm ± 10 nm), and near-infrared (NIR) (790 nm ±
40 nm) bands. The sunshine sensor measured the incoming radiation. 
Pix4D capture software (Pix4D, San Francisco, CA, USA) was used for 
flight planning and capturing aerial images. The UAV data were 
collected during the grassland growing season (June–December 2018) 
twice a month immediately before the herbage measurements were 
taken. All images were taken between 12:00 and 14:00 in clear or semi- 
clear sky conditions. The flight altitude above the ground level was 100 
m, the front overlap and side were 80%, and the image ground sample 
distance was 9.42 cm/px.

2.2.3. Image processing and obtaining VIs
Agisoft Photoscan Professional (Agisoft LLC, St. Petersburg, Russia) 

was used to preprocess the multispectral images for alignment and 
reflectance calibration. The information from the sunshine sensor was 
used for reflectance calibration. Complete orthogonal rasters were made 
with each band for the three sites.

Subsequently, the following eight VIs were calculated using the QGis 
software (QGIS, QGIS Development Team, 2022): simple ratio vegeta
tion index (RVI), normalized difference vegetation index (NDVI), green 
chlorophyll index (GCI), red edge normalized difference vegetation 

index (RNDVI), red edge chlorophyll index (CLRG), soil-adjusted vege
tation index (SAVI) and plant senescence reflectance index (PSRI) 
(Appendix D). The selection of indices was based on their ability to 
detect changes in the physiological state, color (consequence of pigment 
content), coverage, and biomass availability (Villoslada Peciña et al., 
2021). Additionally, the selection considered the availability of spectral 
bands and the results of previous studies on the capacity of these indices 
to estimate the nutritional composition of grasslands. The selected 
indices combine the red, red-edge, near-infrared, and green bands. The 
red band indicates the chlorophyll concentration; the near-infrared band 
is strongly associated with the leaf cellular structures, being sensitive to 
green vegetation (Bannari et al., 1995). Combining these two bands 
through the RVI, NDVI, and SAVI indices allows to differentiate vege
tation from soils. It determines photosynthetically active biomass 
related to the quantity, quality, and development of vegetation cover 
and its vigor (Dusseux et al., 2022). By incorporating a constant of soil, 
SAVI reduces the influence of light and dark soil on the index, which is 
suitable for semi-arid areas such as the study area (Vani and Mandla, 
2017; Munyati, 2022). The red-edge band has been used to estimate the 
chlorophyll content (Gitelson et al., 2003a, 2005; Clevers and Gitelson, 
2013) and foliar nitrogen (Ramoelo et al., 2012). Both RNDVI and CLRG 
use the red-edge band, incorporating themselves in searching for CP 
estimation models. PSRI is sensitive to the ratio of chlorophylls (Chl) to 
carotenoids (Car) content and, therefore, a good indicator of the matu
ration processes of plants (Zhou et al., 2019); which considering the 
shortening of the vegetative phase of the species in the grassland under 
study deserves to be evaluated. The GCI and GNDVI indices, when 
incorporating the green band, help monitor the physiological state of the 
plants and their relationship with climatic variables. GCI and GNDVI are 
more sensitive to chlorophyll variation in the crop than NDVI. This made 
their use more appropriate in crops with dense canopies or in more 
advanced stages of development than NDVI (Mangewa et al., 2022). On 

Fig. 2. Mean annual temperature (A) and annual precipitation in the study areas from 1901 to 2016. S1, S2, S3 = Sampling area 1, 2 and 3, respectively. Avg and SD 
= Average and Standard Deviation, respectively, obtained by monthly data (1901–2016) from Harris et al. (2020).

T.-M. P et al.                                                                                                                                                                                                                                    



Journal of Arid Environments 228 (2025) 105344

5

the other hand, as Asrar et al. (1984) pointed out, the VIs have shown 
better sensitivity than individual spectral bands for detecting biomass 
and their nutritional compositions. For the calculation of each index, 
one hundred measurement points were randomly selected within the 
area corresponding to each exclusion plot (Fig. 3b). The measurement 
points were taken at a distance of at least 0.5 m away from the plot 
fences to minimize the edge confounding effects. For each point, the 
eight vegetation indices were obtained (Fig. 3c), and then, an average 
per plot was obtained.

2.3. Statistical analysis

2.3.1. Data processing
Monthly averages were calculated for the variables under study: 

Herbage biomass (Ton DM/ha), Dry matter (%), CP (%), NDF (%), and 
ADF (%) to characterize the change of the nutritional value and herbage 
biomass of the naturalized grassland throughout the growing season.

The eight VIs indices were matched with the respective nutritional 
value (DM, CP, NDF, and ADF). These data were then stored in a data
base along with information on acquisition frequency (twice a month), 
study site, and plot details.

Firstly, the normal distribution of each variable data was tested. The 
outliers (more than 1.5 times the interquartile range above the third 
quartile or below the first quartile) were identified using box plot 
graphics for their subsequent elimination. Then, the homoscedasticity of 
the variances was evaluated. As there were fewer than 50 samples for 
each variable, the Shapiro Wilks analysis was used to check for 
normality. The Levene test was used to evaluate the homoscedasticity of 
the variances, utilizing the mean or median as the centrality statistic 
depending on the normality of the data. The ANOVA test was used for 
the variables with normal distribution while the Kruskal-Wallis test was 
used for the remaining variables. Multiple comparisons of means anal
ysis were conducted with the DMS test to compare between months.

Data for each variable were used according to the following statis
tical model: 

Yijk = μ + αj + βk + (αβ)jk + εijk 

Where Yijk: Dependent variable; μ: Overall mean; αj: Effect of month; βk: 
Effect of community, (αβ)jk: Interaction month/study site; εijk: Experi
mental error; j: 7–12, k:1–3, i:1-3.

2.4. Development and verification of estimation models

Initially, the relationships between each independent variable 
(Vegetation index, VI) and the dependent variable were graphed to 

preview the existing functional relationships, such as linear, exponen
tial, or logarithmic. The two most apparent functional relationships 
were selected to further develop regression models. The regression 
models were developed under the internal validation method called 
“Data-splitting”. The total samples were divided into two groups: one 
group containing 75% of the samples used for model development, and 
the other group containing 25% of the samples used to assess the 
model’s performance (Picard and Berk, 1990). Afterward, the fit sta
tistics for each parameter and VI were compared. The statistics included 
the coefficient of determination (R2), root mean square error (RMSE), 
mean absolute error (MAE), and relative root mean square error 
(rRMSE) (Ren and Zhou, 2014; Gao et al., 2019; Xu et al., 2021). Sta
tistical analysis was performed using R programming language version 
March 1, 1073 (R Core Team, 2021), the car (Fox and Weisberg, 2019), 
carData (Fox et al., 2020), caret (Kuhn, 2021), and tidyverse (Wickham 
et al., 2019) packages.

3. Results

3.1. Weather data

The average temperature and precipitation patterns recorded in the 
year of study (2018) for the two weather stations are presented in Fig. 4.

The weather patterns across the two weather stations were similar in 
terms of the average temperatures but differed in the distribution of 
precipitation. The notable distinction was the occurrence of delayed 
rainfall events recorded at the Pumanque weather station that contrib
uted more than 10 mm to the accumulated precipitation.

3.2. Grass sampling

During June, the stored soil moisture allowed the beginning of 
germination; however, the low temperatures prevented to maintain the 
growth of the seedlings until September. The compressed herbage height 
increased notably from September until November, going from 2 to 5 cm 
(Fig. 5).

Subsequently, the compressed herbage height began to decrease due 
to senescence but this decrease was not significant. Due to the low 
precipitation observed during the autumn months (March–April) and 
the low temperatures in the winter months (May–July), the naturalized 
pasture only reached the compressed herbage height cutting target (>3 
cm) in October (Fig. 5). Consequently, values for the variables of 
herbage biomass and nutritional value were only obtainable for October, 
November and December. Nonetheless, in some of the exclusion plots, 
the cutting height was not even reached during the first or second visit in 

Fig. 3. Stages for obtaining vegetation indices.
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October, resulting in a total of only 39 samples.

3.3. Seasonal variation in forage nutritional and botanical composition

The average values of the nutritional parameters evaluated are 

presented in Table 1.
The herbage biomass reached an average maximum of 1.16 Ton DM/ 

ha, showing an increase of more than 40% between October and 
December, reflecting the highest growth rate of 11.7 kg DM/ha/day 
observed in October. Seasonal rates of change in DM, CP, NDF and ADF 

Fig. 4. Weather patterns at two study sites a) Site 1: La Estrella (Annual precipitation: 304.2 mm) and b) Site 3: Pumanque (Annual precipitation: 319 mm) in 2018.

Fig. 5. Kruskal-Wallis’s test and multiple comparison of means for compressed height in the months of study.
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performed as expected. The maximum DM was 96%, with an accelerated 
change from 28.8 to 96% between October and December, which reveals 
the shortening of the growing season. The maximum value of crude 
protein was 14.6% during October. NDF was similar between the three 
months and ADF did not show significant differences between 
November and December, when reached its maximum value (32.4%). 
No outliers were detected for herbage biomass, NDF, and ADF. However, 
DM had one outlier in December, and CP had two outliers in November, 
which were subsequently excluded from the dataset analysis.

The study site at Marchigüe (S2) was mainly dominated by Hordeum 
murinum (29.9%) and Briza minor (6.9%), while Leontodon saxatilis (23.5 
and 21.1%, respectively) and Briza minor (14.9 and 20.8%, respectively) 
were the dominant species for the study sites of La Estrella (S1) and 
Pumanque (S3). The following species were identified with a minor 
participation (<6%) in all the study sites: Lolium multiflorum (5.4%), 
Chenopodium album (4.1%), Cynosurus cristatus (3.9%), Avena fatua 
(3.2%), Bellardia trixago(3%), Hypochaeris radicata (2.2%), Trifolium 
aureum (1.9%), Cirsium arvense (1.5%), Bromus hordeaceus (1.2%), 
Chamaemelum nobile (1.1%) and Erodium cicutarium (1.1%) and Pasithea 
coerulea (0.8%).

3.4. Model construction and performance evaluation

The first stage in model construction was image capturing, which 
could be carried out from June to December; however, due to the lack of 
nutritional value data from the pasture, only the images obtained from 
October to December were finally considered. The monthly average 
values of the eight VIs are shown in Table 2. In all VIs the values ob
tained in October differed significantly from the other two months 
evaluated.

The computed VIs displayed different functional forms and trends as 

pasture maturation advanced (Fig. 6). Significant correlations were 
observed between all the VIs (p < 0.05) (Appendix E). Only PSRI had 
negative correlations with the rest of the IVs.

The functional relationships between forage nutritional parameters 
and VIs were linear, exponential, and logarithmic. Examples of the 
developed bidimensional graphs are presented in Fig. 6. The regression 
models that presented the best fit for each relationship between the 
forage nutritional parameters and VIs are shown in Table 3 4, 5 and 6. 
The linear relationship was the most common, found in more than 94% 
of the relationships evaluated. Despite only three herbage samples being 
taken to represent the entire plot at each sampling time, all the linear 
regression models were significant (p < 0.05), and more than 85% 
presented R2 greater than 0.5. The VI that showed the best adequacy for 
estimating the percentage of DM content was NDVI. The functional form 
that yielded the highest R2 was the exponential (R2 = 0.923). However, 
considering that the values of RMSE, rRMSE, and MAE in the linear 
model are considerably lower than for the exponential model, the linear 
estimation constitutes the most appropriate model. The values of RMSE 
in the linear models varied from 12.94 to 24.04% for DM, from 3.48 to 
5.25% for CP, from 3.96 to 7.25% for NDF, and from 1.91 to 2.9% for 
ADF.

4. Discussion

4.1. Weather data

The rainiest months in both available meteorological stations were 
May, June and July, representing 73% and 60.3% of the annual pre
cipitation in La Estrella and Pumanque, respectively. The weather pat
terns observed across the two weather stations align with the observed 
trends of declining precipitation and rising temperatures over the past 
few decades reported by Garreaud et al. (2020). Chile has been 
mentioned as susceptible to various effects of climate change, including 
heat, fires, floods, coastal deterioration, and a projected decrease in 
precipitation that in 2050 could reach a maximum of 9.3 mm per month 
(Cortina and Madeira, 2023). This situation can be observed by 
comparing the average annual precipitation over the last 20 years in the 
communes of La Estrella (640.2 mm) and Pumanque (477.1 mm) with 
the 304.2 mm and 319 mm recorded, respectively, in 2018 (CR2, 2025).

4.2. Seasonal variation in forage nutrient content and botanical 
composition

While on one hand, at least 8% soil moisture (Olivares et al., 1997) or 
20 mm of precipitation (Johnston et al., 1998) are required to initiate 
plant’s germination and emergence process; on the other hand, the 
minimum temperatures for the germination process would be around 
4 ◦C for poaceae and − 1 ◦C for geraniaceae (Olivares et al., 1999). 
Almost no herbage height increase was observed from June to August 
but then rose rapidly until November (Fig. 5). Subsequently, a 
non-significant decrease in the herbage height was observed in 
December. The senescence process could explain the decrease in herb
age height, while the lignification of the herbage could explain the 
non-significance of this decrease. Moreover, both process are confirmed 
by the high DM content values observed in the November and December. 
Concerning nutritional value, the expected trend to increase DM, ADF, 
and decrease CP as the maturation of the pasture increases was observed 
after the herbage initiated its seasonal growth (Table 1). October had the 
lowest DM and ADF concentration and the highest CP concentration 
than the following months. Riveros et al. (1978) reported that the 
highest CP content reached in a natural semi-arid prairie was 14% in 
September, while Squella (1999) indicated a CP range of 12.1 to 4.3% 
from the vegetative stage (July/August) to seed maturation (November).

Overall, the herbage accumulation observed at the end of the grazing 
season was low compared to previous values reported for the region (3.5 
Ton DM/ha; Castellaro and Squella, 2006), and the herbage nutritional 

Table 1 
Monthly evolution of herbage biomass and nutritional composition variables of 
the naturalized pasture during the 2018 growing season across three sites (Mean 
± SD).

Variable October 
2nd and 19th (n 
= 15)

November 
5th and 19th (n 
= 16)

December 
12th (n = 8)

p value

Herbage 
biomass 
(Ton DM/ 
ha)

0.67 ± 0.33a 1.05 ± 0.55b 1.16 ± 0.50c 0.031

DM (%) 28.75 ± 8.59a 66.45 ± 23.95b 95.99 ± 0.73c <0.001
CP (%) 14.63 ± 3.99a 8.22 ± 1.18b 5.85 ± 1.9b <0.001
NDF (%) 50.09 ± 10.17 55.73 ± 6.14 55.59 ± 4.68 0.105
ADF (%) 25.22 ± 4.77a 31.0 ± 2.88b 33.69 ± 1.46b <0.001

*Within row, averages with different superscript differ significantly (p < 0.05).

Table 2 
Monthly means and descriptive statistics of the vegetation indices evaluated 
(Mean ± SD) (N = 1800 points).

Vegetation indexes October November December p value

RVI 5.31 ± 3.57a 1.17 ± 0.11b 1.06 ± 0.08b <0.001
NDVI 0.57 ± 0.2a 0.1 ± 0.08b 0.03 ± 0.04b <0.001
GNDVI 0.65 ± 0.09a 0.49 ± 0.03b 0.47 ± 0.04b <0.001
GCI 4.18 ± 1.6a* 1.98 ± 0.26b 1.84 ± 0.29b <0.001
RNDVI 0.03 ± 0.03a 0.01 ± 0.01b 0.01 ± 0.02b <0.001
CLRG 0.07 ± 0.06a 0.01 ± 0.02b 0.02 ± 0.04b <0.001
SAVI 0.85 ± 0.3a 0.14 ± 0.11b 0.04 ± 0.06b <0.001
PSRI 0.09 ± 0.1a 0.49 ± 0.1b 0.59 ± 0.04b <0.001

RVI = ratio vegetation index, NDVI = normalized difference vegetation index, 
GNDVI = green normalized difference vegetation index, GCI = green chloro
phyll index, RNDVI = red normalized difference vegetation index, CLRG = red 
edge chlorophyll index, SAVI = soil-adjusted vegetation index, PSRI = plant 
senescence reflectance index.
*Within row, averages with different superscript differ significantly (p < 0.05).
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value was low, and it is likely that these effects may be related to the 
mega drought experienced in the region since 2010 (Garreaud et al., 
2020; Fuentealba et al., 2021) as observed in Fig. 2. This event has 
caused two effects on the pastures: a delay in the start of the growing 
season and a shortened growing period, which has led to a rapid decline 
in the nutritional value of the forage.

The botanical composition differed among the analyzed sites; this 
situation is expected when considering the diversity of species in the 
naturalized grassland; for example, De Miguel et al. (2016), describe 
more than 40 species present in two sites near the study area. However, 
the absence of pioneer species such as Amsinckia hispida, Raphanus sat
ivus, or Brassicas spp., and the presence of Hordeum murinum, indicate 
that the pastures in the analyzed sites were likely in a medium succes
sion stage, ranging from 5 to 10 years (Olivares, 2017).

4.3. Model construction and performance evaluation

The functional forms and trends of the vegetation indices (VIs) were 
similar to the findings of Almeida-Ñauñay et al. (2022), thus, the NDVI 
increased during the period of greatest grassland growth and reached 
minimum values during the senescence stage. As noted by Hill (2013), 
NDVI represents a wide range of variants sensitive to chlorophyll and 
photosynthetic vegetation. Therefore, as grass availability and vigor 
increase, the NDVI value also increases. The positive relationship be
tween NDVI, SAVI, and grass availability has led to their popular use in 
determining forage biomass in grasslands (Théau et al., 2021; Munyati, 
2022). The similarity between NDVI and SAVI is not surprising, as SAVI 
compensates for the effect of soil in sparsely vegetated areas (Ren et al., 
2011; Vani and Mandla, 2017), which is a limitation of NDVI. NDVI, 
SAVI, and GCI exhibited similar trends during the evaluated months. 
However, the difference in the values of NDVI and SAVI decreased as the 
growing season progressed due to the high herbage cover, which 

Table 3 
Dry matter (%) prediction models.

Variable Equation 1 R2 RMSE (%) rRMSE MAE (%) Equation 2 R2 RMSE (%) rRMSE MAE (%)

GCI y = − 51.09 ln(x) + 103.54 0.835** 13.94 0.540 12.10 y = 111.81e− 0.302 0.769** 62.18 123.67 54.83
CLRG y = − 353.18x + 64.47 0.602** 18.32 0.671 16.13 y = 55.63e− 7.169 0.388** 63.67 183.42 56.27
GNDVI y = − 221.04x + 177.78 0.830** 14.11 0.554 11.84 y = 659.59e− 4.762 0.830** 62.15 113.34 54.83
NDVI y = − 91.04x + 80.54 0.897** 13.49 0.486 11.65 y = 79.52e− 1.86 0.923** 64.13 128.76 56.69
PSRI y = 117.08x + 16.79 0.823** 12.94 0.441 9.03 y = 21.78e− 2.34 0.823** 63.44 108.04 55.79
RNDVI y = − 668.20x + 62.03 0.665** 18.83 0.929 15.29 y = 55.03e− 14.87 0.665** 62.21 137.87 54.82
RVI y = − 32.90 ln(x) + 84.64 0.479** 24.04 1.239 20.61 y = 82.76e− 0.155 0.35** 60.31 222.13 53.22
SAVI y = − 61.849x + 82.927 0.759** 15.46 0.563 12.64 y = 81.98e− 1.27 0.759** 63.49 110.9 55.84

RMSE: Root mean square error (RMSE), MAE: Mean absolute error rRMSE: Relative root mean square error.

Fig. 6. Functional relationships between forage nutritional parameters (DM, CP, NDF and ADF) and VIs selected (Linear regression model).
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minimized bare soil areas (Table 2). RVI showed little variability in 
November and December, indicating a similarity in reflectance between 
NIR and red bands in mature grasses with values close to one. In contrast 
to RVI, GNDVI uses the green band instead of the red band, making it 
more sensitive to changes in tonality as the pasture rapidly advances to 
the senescence stage. Thus, a sharp drop in the value of GNDVI was 
observed in November, remaining relatively constant in December. 
RNDVI and CLRG showed similar distributions, with greater variability 
observed in December compared to the other months for these two VIs 
(Table 2). The increased variability in December can be attributed to the 
incorporation of the red edge band in the calculation of these VIs. The 
red edge band, located between red absorption and NIR reflection, 
provides greater sensitivity to chlorophyll content and reflects different 
vitality levels of the pasture (Clevers, 1994).

In this study, all the VIs, except for PSRI, decreased as the growing 
season progressed. The negative correlation between PSRI and NDVI 
(Appendix E) aligns with the findings of Hill (2013). The decrease in the 
value of NDVI as the growing season progressed was described by Di 
Bella et al. (2004), who associated the senescent cover fraction with 
NDVI. The increase in PSRI as the growing season progressed was ex
pected, as this VI is based on the chlorophyll/carotenoid ratio, which 
undergoes significant changes due to the differential breakdown rates of 
these pigments during early senescence (Anderegg et al., 2020). On the 
other hand, in GCI, the red band is replaced by the green band, mini
mizing the importance of color changes to yellow, orange, tan, and 
brown resulting from pigment breakdown (carotenoids and others) that 
manifests as chlorophyll breakdown (Proctor et al., 2017). In the study 
area, chlorophyll breakdown commonly begins in early November, 
marking the onset of the senescence process, and extends to full pasture 
senescence in December–January (Ruiz, 1996).

4.4. Model building

Gao et al. (2019) proposed a linear estimation model between RVI 
(NIR/RED) and herbage DM percentage, while Adrien et al. (2020) used 
single and multiple linear regression to relate herbage mass with VIs. 
NDVI and GNDVI have shown high correlations with grassland biomass 
in previous studies (Jin et al., 2014; Naidoo et al., 2019). The linear 
relationship between herbage parameters and VIs has been reported by 
several authors (Jin et al., 2014; Gao et al., 2019; Adrien et al., 2020). 
Wang et al. (2024) used four vegetation indices (SAVI, RVI, NDVI, and 
TCI, the Triangular Chlorophyll Index) to define nonlinear prediction 
models for biomass in the Inner Mongolia Typical Grasslands. The 
vegetation index that provided the best fit was SAVI, with an R2 of 0.461 
and RMSE values of 104.63. Pan et al. (2024) obtained R2 values ranging 
from 0.46 to 0.86, with RMSE values ranging from 109.7 g/m2 to 226.4 
g/m2 in aboveground biomass (AGB) prediction models. Adrien et al. 
(2020) reported a mean (± standard deviation) dry above-ground 
biomass of 5494 ± 929 kg/ha in a Timothy pasture. They obtained 
maximum R2 values of 0.54, 0.84, and 0.82 for models estimating CP, 
NDF, and ADF, respectively. However, the authors did not specify the 
vegetation indices (VIs) associated with these values. Regarding the 
prediction of DM, the VI that yielded the best R2 (0.923) was NDVI when 
the exponential regression model was used. Nevertheless, lineal 
regression model exhibited a lower RMSE (13.49%)(Table 3).This was 
similar to what was observed in CP predicting models, where the RMSE, 
rRMSE, and MAE values were lower in the linear model. Considering the 
RMSE values of the linear models and the low CP content of the herbage 
at the end of the growing season (5.9%), an improvement in the preci
sion of the estimation of this parameter is required. Raab et al. (2020)
obtained RMSE values of 1.7% using eight predictor variables selected 
from a collective of 102 optical-and radar-based predictor variables 
from the Sentinel-1 and Sentinel-2 satellites to predict herbage CP 
content. The linear models for NDF and ADF had the best performance, 
based on the lower RMSE, rRMSE, and MAE and high R2 values. CLRG 
had the best fit (R2 = 0.832) for NDF, while for ADF the most adequate 

VI was GNDVI (R2 = 0.922). Barnetson et al. (2020), who studied the 
quality of Queensland’s rangelands (dry tropical to subtropical) through 
the use of hyperspectral images, indicated that the visible red (651 nm) 
and red-edge (759 nm) regions were highly correlated with the CP and 
ADF concentratios of the pasture. The indicator with the best perfor
mance for ADF (GNDVI) considered the NIR and green bands, whereas 
the selected VI (CLRG) for CP considered the NIR and red-edge bands. In 
general, the non-linear models showed higher RMSE, rRMSE, and MAE 
values than the linear models. Since the RMSE value indicates the 
standard deviation of the unexplained variance in the same unit of 
measurement of the parameter, the models would not be able to explain 
much of the error in the estimates of DM and CP. Geipel et al. (2021)
developed prediction models of DM, CP, and NDF, among others, for 
grass-legume mixtures in Southeast and Central Norway, obtaining 
RMSE of 15.2, 11.7 and 4.8%, respectively, values that do not differ 
substantially from those obtained in the present study (Tables 3–6).

Secondly, the model with the best MAE (the mean absolute differ
ence between the true value and the predicted value) for DM had a value 
of 9 for the VI PSRI. The predominance of different species in each study 
site as consequence of the state of erosion/conservation of the pasture, 
could be responsible for this phenomenon since, each species had 
different nutrient concentrations at the same phenological stage. 
Furthermore, the phenological state varied depending on the soil con
tents of organic matter, density, moisture retention capacity, and envi
ronmental conditions and exposure (Appendix F). Jin et al. (2014)
developed specific models for different steppe regions due to the vari
ability of the vegetation present in the grassland types, finding differ
ences in the VIs that provided better predictions according to the study 
region. Considering these aspects, the use of machine learning algorithm 
models such as random forest, emerges as an alternative that should be 
explored (Viljanen et al., 2018). For instance, De Rosa et al. (2021) and 
Nevavuori et al. (2019) developed statistical models and/or used ma
chine learning algorithms for the prediction of biomass of pastures and 
crops (wheat and barley). Some of these approaches raise the possibility 
of using new spectral bands, such as individual bands in red absorption 
pit to estimate biophysical and biochemical variables in grasslands 
(Schlerf et al., 2010; Ren and Zhou, 2014).

Although the present study constitutes an advance in using VIs to 
estimate the quality of pastures in the semi-arid zone of Chile, it has 
some limitations that must be addressed in future research. The first one 
is that considering the natural variability of species between and within 
large farms, the number of samples and sampling sites needs to be larger. 
One of the reasons for the low number of samples in the study was the 
cutting protocol given that reaching 3 cm of compressed height delayed 
the collection of samples until October due to the lower than expected 
precipitation. Increasing the number of samples and sampling sites 
would enable the development of more complex models incorporating 
variables such as seasonality and/or the phenological stage of grass
lands. Including these variables is expected to enhance the accuracy of 
estimates, given the strong correlation between the maturity stage of 
plants and their nutritional value.

Additionally, although UAV images have high resolution and every 
day the UAVs increase their flight authonomy time, it is advisable to use 
images with more coverage and without the need for an operator for 
large surface areas, such as satellite images. However, satellite images 
are not free of limitations, including resolution, temporality, band’s 
availability, cost, and the presence of clouds (restricted availability in 
the winter months) (Fisher et al., 2018; Xu et al., 2018).

In summary, given that both UAV images and satellite images have 
advantages and disadvantages, a machine learning methodology is 
required that allows scaling between nutritional quality parameters 
derived from VIs obtained from UAV multispectral images, with models 
that relate the information of these images with satellite images of larger 
coverage, thus allowing the estimation of forage nutritional parameters 
in larger grasslands areas. Guo et al. (2019) used this approach and 
developed a drone-based sensing system to collect training data for rice 
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mapping and monitoring in Australia. Given that planning is a critical 
task in grassland management, it is essential to predict changes in forage 
availability and quality of grassland over time and in a timely fashion. 
Thus, in addition to acquiring these variables in real time, it is highly 
desirable to be able to predict their values in the short and medium term. 
Under these circumstances, the development of predictive mathematical 
models based on pasture current information and the climatic variables 
that determine forage quality is an aspect that deserves to be further 
studied.

5. Conclusion and implications

The Mediterranean semi-arid rainfed natural grasslands analyzed in 
this study exhibited a short growing season of only three months, 
characterized by a typical rise and rapid increase in herbage biomass, 
DM, ADF, and NDF contents, along with a decline in CP content. Climate 
factors, such as precipitation and air temperature, have a significant 
influence on biomass yields and CP content. Therefore, developing more 
complex and definitive models requires additional years of replication 
and a more comprehensive treatment of the data. However, the models 
selected in this study represent initial approximations that highlight the 
potential for obtaining more accurate estimates of the nutritional quality 
parameters of naturalized grasslands in Mediterranean semi-arid re
gions. Under the conditions of this research, the NDVI, CLRG, CLRG, and 
RNDVI vegetation indices provided the best-fitting linear models for 
predicting DM, CP, NDF, and ADF, respectively. Developing predictive 
models based on different VIs, and therefore dependent on different 
spectral bands, underscores the need to propose new VIs or relationships 
between more than two bands to better model seasonal changes in 

grassland quality.
This study highlights the significant potential for linking detailed 

local data with remote sensing information to model the nutritional 
value of grasslands over large areas. By integrating VIs derived from 
multispectral images with field measurements of forage quality, the 
study provides a scalable and cost-effective approach to assess forage 
nutritional quality. This is particularly important for sustainable grass
land management, as it enables the continuous monitoring of large and 
heterogeneous areas while reducing the need for labor-intensive and 
expensive field sampling. The use of UAVs and satellite data offers the 
flexibility to capture seasonal and spatial variations, which are crucial 
for understanding and managing the dynamics of grasslands in semi-arid 
Mediterranean regions. Our findings suggest the importance of inte
grating various tools, such as precision agriculture technologies and 
machine learning methods, to support farmers in making informed de
cisions about the management of extensive grasslands.
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Table 4 
Crude protein (%) prediction models.

Variable Equation 1 R2 RMSE (%) rRMSE MAE (%) Equation 2 R2 RMSE (%) rRMSE MAE (%)

GCI Y = 0.88x+7.75 0.93** 4.91 9.972 3.71 y = 7.04e0.10 0.934** 9.67 172.8 8.12
CLRG Y = 26.04x+9.69 0.728** 4.39 3.217 3.39 y = 8.82e2.79 0.728** 9.635 65.78 8.14
GNDVI Y = 15.83x+1.56 0.875** 4.54 4.581 3.42 Y = 3.54e1.77 0.876** 9.645 87.09 8.12
NDVI Y = 8.67x+8.02 0.448** 4.11 1.394 3.39 Y = 7.42e0.89 0.448** 9.807 33.22 8.32
PSRI Y = − 12.47x+14.69 0.598** 3.48 0.869 2.82 Y = 14.63e− 1.26 0.598** 9.773 24.19 8.34
RNDVI Y = 54.82x+9.75 0.719** 4.34 2.990 3.37 Y = 8.88e5.91 0.719** 9.646 61.59 8.14
RVI Y = 0.51x+9.046 0.051** 5.25 4.150 4.65 Y = 2.93ln(x)+8.57 0.193** 4.860 1.86 4.30
SAVI Y = 5.78x+8.02 0.448** 4.11 1.390 3.39 Y = 7.42e0.59 0.448** 9.807 32.22 8.33

Table 5 
Neutral detergent fiber (%) prediction models.

Variable Equation 1 R2 RMSE (%) rRMSE MAE (%) Equation 2 R2 RMSE (%) rRMSE MAE (%)

GCI y = − 4.07x + 64.50 0.765** 4.28 0.623 3.669 y = 67.27e− 0.09 0.764** 49.84 329.27 49.26
CLRG y = − 97.96x + 55.15 0.832** 3.96 0.685 3.709 y = 54.73e− 2.14 0.832** 49.84 395.34 49.25
GNDVI y = − 57.66x + 84.76 0.740** 4.49 0.661 3.78 y = 103.95e− 1.25 0.740** 49.85 338.97 49.26
NDVI y = − 18.34x + 58.49 0.592** 5.22 1.333 6.99 y = 58.88e− 0.51 0.475** 49.70 336.33 49.13
PSRI y = 22.22x + 44.80 0.431** 7.25 1.396 6.09 y = 43.64e− 0.48 0.431** 49.68 438.48 49.09
RNDVI y = − 203.64x+59.94 0.826** 4.01 0.703 3.75 y = 54.48e− 4.43 0.826** 49.84 401.30 49.25
RVI y = − 1.86x+58.69 0.677** 6.52 0.858 5.38 y = 58.98e− 0.03 0.677** 50.09 314.21 50.09
SAVI y = − 15.35x+58.49 0.475** 8.08 1.204 6.03 y = 58.88e− 0.34 0.475** 49.71 336.33 49.13

Table 6 
Acid detergent fiber (%) prediction models.

Variable Equation 1 R2 RMSE (%) rRMSE MAE (%) Equation 2 R2 RMSE (%) rRMSE MAE (%)

GCI y = − 2.81x + 36.95 0.886** 1.91 0.434 1.51 y = − 9.59 ln(x) + 37.89 0.918** 1.86 0.425 1.39
CLRG y = − 70.39x+30.45 0.303** 3.69 1.062 3.12 y = 30.17e− 2.76 0.302** 27.39 200.44 27.39
GNDVI y = − 41.49x+51.80 0.922** 1.91 0.439 1.48 y = 69.04e− 1.61 0.922** 26.87 159.45 26.54
NDVI y = − 16.81x+33.50 0.805** 2.90 0.493 1.97 y = 33.89e− 0.64 0.805** 26.67 117.19 26.37
PSRI y = 18.38x+22.67 0.792** 2.39 0.455 1.51 y = 22.42e0.69 0.792** 26.65 133.91 26.34
RNDVI y = − 137.46x+30.10 0.895** 2.72 0.862 2.03 y = 29.75e.− 5.43 0.895** 26.89 215.99 26.57
RVI y = − 1.39x+33.26 0.772** 2.90 0.489 2.19 y = 33.57e.− 0.05 0.773** 25.61 112.68 24.97
SAVI y = − 11.20x+33.50 0.805** 2.90 0.493 1.97 y = 33.89e.− 0.43 0.805** 26.67 117.19 26.37
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Appendices. 

Appendix A 
Soil properties of the study areas. OC = Organic carbon (% by weight); BD = Bulk density.

Study Areas Depth (cm) % Sand % Silt % Clay OC BD (kg/dm3)

S1 0–30 46 21 33 0.66 1.45
30–100 36 33 31 0.28 1.33

S2 0–30 45 27 28 0.70 1.39
30–100 41 32 27 0.30 1.36

S3 0–30 51 22 27 0.63 1.45
30–100 45 21 34 0.35 1.5

Source: Harmonized World Soil Database V1.2

Appendix B. Exclusion plot and meteorological station

Appendix C 
Geographical locations of each exclusor

Sites Exclusor Latitude Length

S1: La Estrella 1 34◦ 16′34.334′′S 71◦34′44.098′′W
2 34◦16′37.942′′S 71◦34′44.454′′W
3 34◦16′36.106′′S 71◦34′47.323′′W

S2: Marchigüe 1 34◦17′35.192′′S 71◦43′47.352′′W
2 34◦17′33.367′′S 71◦43′44.242′′W
3 34◦17′38.656′′S 71◦43′43.277′′W

S3: Pumanque 1 34◦32′26.614′′S 71◦36′40.507′′W
2 34◦32′23.716′′S 71◦36′40.406′′W
3 34◦32′22.927′′S 71◦36′42.775′′W
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Appendix D 
Vegetation Indices Information

Name Acronyms Calculation formula Sources

Ratio Vegetation Index RVI RVI =
NIR
RED

Pearson and Miller (1972)

Normalized Difference Vegetation Index NDVI NDVI =
NIR − RED
NIR + RED

Rouse et al. (1974)

Green Normalized Difference Vegetation Index GNDVI GNDVI =
NIR − GREEN
NIR + GREEN

Gitelson et al. (1996)

Green Chlorophyll Index GCI GCI =
NIR

GREEN
-1 Gitelson et al. (2003a)

Red Edge Normalized Difference Vegetation Index RNDVI RNDVI =
NIR − RED EDGE
NIR + RED EDGE

Gitelson and Merzlyak (1994)

Red Edge Chlorophyll Index CLRG
CLRG =

(
NIR

RED EDGE

)

− 1
Gitelson et al. (2003b)

Soil-Adjusted Vegetation Index SAVI
SAVI =

(
NIR − RED

NIR + RED + L

)

*(1 + L)

L = 0.5

Huete (1988)

Plant Senescence Reflectance Index PSRI PSRI =
RED − GREEN

NIR
Merzlyak et al. (1999)

Appendix E 
Correlations between IVs

GNDVI NDVI PSRI RNDVI RVI SAVI CLG

CLRG 0.9557 0.8991 − 0.8311 0.9990 0.8879 0.8991 0.9463
GNDVI ​ 0.9709 − 0.9165 0.9539 0.9107 0.9709 0.9766
NDVI ​ ​ − 0.9759 0.8939 0.9087 1.0000 0.9503
PSRI ​ ​ ​ − 0.8291 − 0.8121 − 0.9759 − 0.8658
RNDVI ​ ​ ​ ​ 0.8735 0.8939 0.9371
RVI ​ ​ ​ ​ ​ 0.9087 0.9673
SAVI ​ ​ ​ ​ ​ ​ 0.9503
CLG ​ ​ ​ ​ ​ ​ ​

Appendix F. Monthly variation of the composition (DM = Dry Matter, CP = Crude Protein, ADF=Acid Detergent Fiber, NDF = Neutral Detergent Fiber) of the 
grassland in the study sites (Site 1 = La Estrella, Site 2 = Marchigüe and Site 3 = Pumanque.

Data availability

Data will be made available on request.
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Adrien, M., Lejeune, P., David, K., Crémer, S., Christian, D., Bindelle, J., 2020. Can low- 
cost unmanned aerial systems describe the forage quality Heterogeneity? Insight 
from a Timothy pasture Case study in southern Belgium. Remote Sens. 12, 1650. 
https://doi.org/10.3390/rs12101650.

Allen, V.G., Batello, C., Berretta, EJ., Hodgson, J., Kothmann, M., Li, X., McIvor, J., 
Milne, J., Morris, C., Peeters, A., Sanderson, M., 2011. An international terminology 
for grazing lands and grazing animals. Grass Forage Sci. 66, 2–28. https://doi.org/ 
10.1111/j.1365-2494.2010.00780.x.
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Castillo, M., Plaza, Á., Garfias, R., 2020. A recent review of fire behavior and fire effects 
on native vegetation in Central Chile. Global Ecology and Conservation 24, e01210. 
https://doi.org/10.1016/j.gecco.2020.e01210.

Clevers, J., 1994. Imaging Spectrometry in Agriculture - Plant Vitality and Yield 
Indicators, pp. 193–219.

Clevers, J., Gitelson, A., 2013. Remote estimation of crop and grass chlorophyll and 
nitrogen content using red-edge bands on Sentinel-2 and -3. Int. J. Appl. Earth Obs. 
Geoinf. 23, 344–351. https://doi.org/10.1016/j.jag.2012.10.008.

CR2, 2025. Center for climate and resilience research. Explorador Climático. 
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