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A B S T R A C T

Plastic film mulching (PM) combined with irrigation is widely adopted to improve crop yields, water and ni
trogen efficiency, especially in arid farming areas. Despite its benefits, the effects of this method on soil quality 
and its subsequent impact on crop productivity and resource efficiency have not been thoroughly investigated. In 
this study, we formulated a soil quality indicator (SQI) from five years of field experiments in the Hetao Irrigation 
District (HID) of Northwestern China. The treatments included border irrigation as the control treatment (CK), 
CK combined with PM (BI_PM), and three water level drip irrigation treatments combined with PM. Three 
threshold values of soil matric potential for drip irrigation were − 10 kPa (HDI_PM), − 30 kPa (MDI_PM), and − 50 
kPa (LDI_PM). We then examined the SQI changes based on measured multiple soil properties and assessed their 
implications for maize yield, irrigation water productivity (IWP), and partial factor productivity of nitrogen 
(PFPN). We found: (1) from 2016 to 2020, HDI_PM achieved the highest average yield (15.77 t ha–1), IWP 
(3.73 kg m–3), and PFPN (63.18 kg kg–1), showing increases of 54.77 %, 84.90 %, and 96.93 % over the control 
treatment, respectively; (2) no significant variations in the SQI were observed for HDI_PM in 2020 in the topsoil 
(0–30 cm) and subsoil (30–60 cm) compared to the initial condition. However, CK, BI_PM, MDI_PM, and LDI_PM 
showed reductions in SQI in both soil layers, primarily due to decreased soil organic carbon (SOC) and structural 
stability, along with increased sand content and soil salinity; (3) according to the linear mixed-effects model, a 
low SQI (< 0.43), elevated temperatures, and drought indices negatively impact yield. Hence, we advocate for 
HDI_PM to maximize yield and PFPN. To enhance soil quality, identifying agronomic practices that increase SOC 
and reduce soil salinity in the HID is crucial.

1. Introduction

Soil plays a pivotal role in agricultural ecosystems, offering vital 
functions that support plant growth and productivity. These include 
nutrient and water cycling, decomposition of litter and residues, varia
tions in soil carbon, and greenhouse gas emissions (Seconda et al., 2021; 
Vasu et al., 2016). A healthy soil system is fundamental to ensuring 
global food security and plays a crucial role in mitigating global 
warming and reducing agricultural pollution (Foley et al., 2011; Qiao 

et al., 2022). Yet, over one-third of the world’s soils are currently facing 
moderate to severe degradation, a condition primarily attributed to 
intensive farming practices and a deficiency in conservation efforts 
(Rojas et al., 2016).

In the Hetao Irrigation District (HID) of China, the overuse of 
chemical fertilizers and irrigation water has been shown to deteriorate 
soil structure, induce secondary salinization at the surface, and 
contaminate groundwater (Wang et al., 2020b). Meanwhile, the high 
salinity of the soil in the HID region leads to a high concentration of soil 
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solution, reducing soil water potential and thereby inhibiting key 
physiological activities in crops, such as stomatal closure and photo
synthesis reduction (Munns and Tester, 2008). Soil salinization can also 
affect soil pore structure and hinder water infiltration (Feng et al., 2024; 
Salcedo et al., 2022). Additionally, the scarcity of organic material ap
plications has been linked to a gradual reduction in soil organic carbon 
(SOC) levels (Yang et al., 2020). The practice of combining film 
mulching with irrigation, widely recognized for its ability to improve 
soil moisture and boost crop yields (Guo et al., 2021; Zhang et al., 2021), 
is particularly valuable in arid irrigation areas for enhancing soil water 
and nutrient conditions, thus supporting stable crop production. How
ever, the long-term use of film mulching is associated with several 
negative impacts, including decreased soil porosity and pH (Wang et al., 
2017), salt accumulation at the soil surface (Li et al., 2019), and 
increased SOC mineralization risk, which hastens SOC depletion (Zhang 
et al., 2022a). After long-term use of plastic film, fragments enter and 
remain in the soil, where they are termed residual film. Residual film on 
the farm reduces nutrient supply to crops and microbial species, inhib
iting the activities of soil microorganisms (Qi et al., 2020). It also dis
rupts soil structure, reduces soil permeability, and inhibits root 
development (Gao et al., 2019; Jiang et al., 2017). Consequently, while 
film mulching meets immediate crop growth requirements, it also poses 
a significant risk of soil degradation, challenging its viability as a sus
tainable high-yield strategy. Therefore, analyzing soil property changes 
resulting from the combination of film mulching and irrigation is 
essential for evaluating soil quality and fostering sustainable practices in 
irrigated agriculture.

The soil quality indicator (SQI) is commonly utilized to evaluate 
changes in soil quality by integrating multiple indices (Zhang et al., 
2020). For instance, Nunes et al. (2020) employed soil management 
assessment framework scoring algorithms to derive a SQI, amalgam
ating essential soil data for evaluating soil health under various tillage 
practices. Similarly, Luo et al. (2017) determined SQI at different soil 
depths, revealing that higher SQI values are associated with increased 
yields. Despite such progress, comprehensive studies on the long-term 
effects of film mulching on soil quality, especially concerning the 
simultaneous analysis of diverse physical and chemical soil properties, 
remain scarce. Previous research has typically focused on assessing 
specific soil attributes in the context of film mulching (Yang et al., 2023; 
Zhao et al., 2023), leaving a significant gap in understanding its overall 
impact on soil quality during continuous maize cultivation. Addition
ally, although film mulching can potentially enhance soil nutrient 
availability by modifying soil moisture and temperature environment, 
thereby increasing yields (Quan et al., 2022), a quantitative correlation 
between SQI and yield, specifically within the context of film mulching, 
remains to be established.

Research methods to understand the dynamics between environ
mental factors (weather, crops, and soil) and crop yield have diversified. 
For example, Li et al. (2021) applied the random forest technique to 
predict yields using comprehensive datasets, including weather condi
tions, vegetation indices, and soil characteristics, highlighting the 
importance of radiation and soil moisture at key growth stages as yield 
determinants. De Cárcer et al. (2019) employed a multiple linear 
regression model, integrating canopy temperature, soil moisture, and 
drought-related indices to estimate yields. Similarly, Zhang et al. 
(2022b) investigated how soil properties such as organic matter and pH, 
along with crop growth metrics like leaf nitrogen content and height, 
influence maize biomass using machine learning to assess factor con
tributions. Despite these advances, comprehensive yield prediction 
considering a broad range of soil properties and climatic variables, 
especially under prolonged film mulching and irrigation regimes, is 
scarce. The comprehensive analysis of soil quality dynamics and the 
identification of yield-limiting factors under film mulching represent a 
research domain that has not been thoroughly investigated.

The HID, located in northwest China, is a key arid irrigated region 
producing over 3.0 million tons of maize annually. However, the 

region’s agricultural development, marked by expanded cropland and 
intensive practices such as excessive irrigation and fertilization, has 
contributed to declining soil quality, adversely affecting spring maize 
production (Meng et al., 2017). In this study, we hypothesized that the 
combination of mulching and drip irrigation could alleviate the negative 
effects of soil quality decline on maize yield, as well as water and ni
trogen efficiency, due to the favorable soil water environment created by 
this combination. We aimed to: (1) determine the optimal combination 
of film mulching and irrigation techniques that maximizes yield, as well 
as water and nitrogen use efficiencies over a five-year continuous field 
experiment; (2) assess the impact of integrating film mulch with effec
tive irrigation methods on soil quality; and (3) establish the SQI 
threshold that affects maize yield by quantifying the correlation be
tween SQI and maize yield.

2. Materials and methods

2.1. Experimental site description

A field experiment spanning five years (2016–2020) was carried out 
at the Shuguang Irrigation Research Station, located in the HID, Inner 
Mongolia Autonomous Region, China (latitude 40◦43′N, longitude 
107◦13′E, altitude 1039 m). Shuguang site, characterized by an arid 
climate, experiences an average air temperature of 21.8◦C and an 
average annual precipitation of 90.8 mm during the maize cultivation 
season, according to data from a weather station located approximately 
200 m from the study site. The soil at the study site was classified as silt 
loam in the top layer (0–60 cm) and sandy loam in the 60–90 cm layer 
(USDA soil textural triangle). Detailed physicochemical properties of the 
soil at Shuguang are documented in Table 1. Initial soil conditions in 
2016 for the 0–60 cm layer reported average SOC at 4.31 g kg–1, total 
nitrogen (TN) levels of 110.5 mg kg–1, available phosphorus (AP) at 
52.8 mg kg–1, and available potassium (AK) at 132.6 mg kg–1.

Weather parameters such as rainfall, temperature, relative humidity, 
wind speed, and radiation were automatically logged on an hourly basis 
by an automated meteorological station (HOBO, Campbell Scientific 
Inc., USA), located approximately 500 m from the experiment near the 
field site and stored in a data logger for later extraction of daily mean 
values. The groundwater level from 2016–2020 ranged from 1.2–3.5 m.

2.2. Experimental design

The study was structured using a block split-plot design, incorpo
rating two primary irrigation methods (border irrigation and drip irri
gation) as the main blocks. The border irrigation subplots included 
border irrigation without film mulching, which served as the control 
(CK), while border irrigation combined with film mulching (BI_PM) 
served as a comparison. The drip irrigation subplots were determined by 
soil matric potential at a depth of 20 cm below the drip lines: –10 kPa 
(high soil matric potential under PM, HDI_PM), –30 kPa (medium soil 

Table 1 
Physicochemical properties at the experimental site before sowing in 2016.

Soil 
layers 
(cm)

Soil 
texture

Soil bulk 
density 
(g cm–3)

Field 
capacity 
(cm3 

cm–3)

Ks 
(cm 
h–1)

ECe 
(dS 
m–1)

pH SOC 
(g 
kg–1)

0–30 Silt 
loam

1.38 0.30 0.14 7.08 8.5 4.98

30–60 Silt 
loam

1.40 0.31 0.12 4.14 8.2 3.64

60–90 Sandy 
loam

1.50 0.22 25.14 2.80 8.3 3.78

90–120 Silt 
loam

1.42 0.29 4.70 2.33 8.1 3.58

Note: Ks, saturated hydraulic conductivity; ECe, electrical conductivity of satu
rated extract; SOC, soil organic carbon.
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matric potential under PM, MDI_PM), and –50 kPa (low soil matric po
tential under PM, LDI) with PM. Thus, our experiment included a total of 
five treatments: CK, BI_PM, HDI_PM, MDI_PM, and LDI_PM. Conse
quently, the experiment had five treatments with three replicates (15 
plots). The soil matric potential used to trigger drip irrigation was 
measured using a tensiometer, which was installed at a depth of 20 cm 
below the drip emitter and read daily at 8:00 am and 3:00 pm. Each plot 
(12 m × 4 m), comprising eight rows of maize, was surrounded by 15 cm 
high ridges to avoid runoff, with 2 m between plots to minimize lateral 
infiltration of irrigation water.

2.3. Field management practices

All treatments (except CK) utilized transparent film mulching 
(0.010 mm thick, with an albedo of 0.11), achieving a mulch area ratio 
of 0.7. For the drip irrigation treatments, the drip emitters, positioned 
beneath the transparent film, were arranged at intervals of 30 cm along a 
drip irrigation line, with an irrigation volume of 2.5 L h–1 and water 
pressure of 0.1 MPa. The spacing between drip lines is 1 m for drip 
irrigation treatments (Fig. S1).

Maize seeds of the variety ‘Ximeng 6’ were sown at a depth of 5 cm 
using a hole-sowing machine, subsequent to film application. Each 
plastic film sheet accommodated two maize rows, spaced 40 cm apart, 
with an inter-plant distance of 30 cm, achieving a planting density of 6.7 
plants m–2. Sowing dates spanned April 27, 2016; April 28, 2017; April 
29, 2018; April 28, 2019; and April 29, 2020, with corresponding har
vest dates of September 9, 2016, September 8, 2017, September 10, 
2018, September 8, 2019, and September 9, 2020. All fields were left 
fallow after the maize harvest. After the maize harvest, the residue was 
removed from the plot. After that, autumn irrigation was carried out 
each November in the studied field to reduce soil salinity.

The CK and BI_PM treatment adhered to established local irrigation 
practices, distributing the total irrigation volume equally across the four 
pivotal maize growth stages: 6-leaf (V6), 12-leaf (V12), tasseling (VT), 
and grain filling (R3). For the drip irrigation treatments, irrigation was 
applied whenever the soil matric potential reached predetermined 
threshold values. Detailed irrigation schedules are outlined in Table S1. 
Throughout the five-year study period, the irrigation water maintained a 
pH of 7.86 and soil electrical conductivity of the extracted solution (ECe) 
of 1.76 dS m–1.

Prior to sowing, a basal application of NPK fertilizer—comprising 
163 kg ha⁻1 of urea, 420 kg ha⁻1 of diammonium phosphate, and 
90 kg ha⁻1 of potassium sulfate—was evenly spread in each plot and 
incorporated into the soil through rotary tillage to a depth of 20 cm each 
season. For the CK and BI_PM treatments, topdressing with 326 kg ha− 1 

of urea was mixed with irrigation water at the R3 and subsequently 
irrigated. The drip irrigation treatments received topdressing through a 
combined irrigation and fertilization system during scheduled irrigation 
events (Table S2). These agronomic practices were consistently applied 
each year. Adhering to local agricultural standards, field management 
also involved regular weeding and pesticide application to control 
insects.

2.4. Field data collection and relevant indexes calculation

2.4.1. Soil properties indexes
Soil samples, both disturbed and undisturbed, were collected annu

ally at the end of the experiment, from depths of 0–60 cm in 10 cm in
crements, with each treatment having five replicates. Composite 
samples for both topsoil (0–30 cm) and subsoil (30–60 cm) were pre
pared by homogenizing individual soil samples. These were then 
securely sealed in plastic bags for transport to the laboratory. The un
disturbed samples facilitated the calculation of dry soil bulk density (BD) 
and total porosity (SP) using formula (1) based on Teixeira et al. (2017). 
Soil water content (SWC) was assessed through the oven-drying method 
at 105◦C for 24 hours. Specifically, soil volumetric water content was 

calculated by multiplying the gravimetric water content by the bulk 
density (Ma et al., 2023). Field capacity (FMC) and saturated hydraulic 
conductivity (Ks) were evaluated using the standard method established 
by Klute and Dirksen (1986). Disturbed soil samples were used to 
determine soil particle size distribution as per Teixeira et al. (2017).

Soil basic chemical properties were analyzed following the meth
odologies described by Bao (2000). SOC values were assessed using the 
wet oxidation technique (Nelson and Sommers, 1982). TN concentra
tions were measured via the Kjeldahl method. The concentration of soil 
nitrate-nitrogen (NO3

–-N) and soil ammonium-nitrogen (NH4
+-N) in po

tassium chloride (KCl) extract samples were determined with a 
micro-flow AutoAnalyzer3 (AA3, SEAL Company, Germany). AP was 
quantified using the 0.5 M NaHCO3 extraction followed by the molyb
denum antimony sulfate colorimetric method, while AK was extracted 
with 1 M ammonium acetate (NH4OAc) and measured through flame 
photometry. The pH of the soil was evaluated with a 1:2.5 soil-to-water 
ratio (w/v) using a pH meter (PHS-3C, REX, Shanghai, China). Soil 
electrical conductivity (EC1:5) in the extract solution was recorded using 
a DDS-307A conductivity meter (Shanghai Rex Instrument, China) after 
a 1:5 soil-water mixture. ECe was calculated using formula (2) (Dong 
et al., 2018; Qi et al., 2018; Tong et al., 2015). Lastly, the structural 
stability index (SSI) was computed using formula (3) to evaluate the risk 
of soil degradation, according to Pieri (1992). 

SP = [1 − BD /soil particle gravity ] × 100 (1) 

where SP is total soil porosity (%), BD is soil bulk density (g cm–3), and 
soil particle gravity is the standard value of 2.65 g cm–3. 

ECe = 1.33+ 5.88 × EC1:5 (2) 

where EC1:5 is the electrical conductivity of the soil extract solution (dS 
m–1) and ECe is the electrical conductivity of the saturated extract (dS 
m–1). 

SSI =
[

SOM
Clay + Silt

]

× 100 (3) 

where SSI (%) is the structural stability index, SOM (%) is soil organic 
matter content, and Clay+Silt (%) is the combined silt and clay content 
of the soil.

2.4.2. Crop phenotype indexes and grain yield
At five critical growth stages (V6, V12, VT, R3, and maturity), three 

uniformly developed plants were destructively sampled from the center 
of each plot, minimizing edge effects. The leaf area was calculated using 
the formula: leaf length × maximal width × 0.75 (Montgomery, 1911), 
and the leaf area index (LAI) was subsequently derived by dividing the 
total leaf area by the plot’s surface area. Plant height (PH) was deter
mined using a ruler, whereas stem thickness (ST) was accurately 
measured with a digital vernier caliper to the nearest 0.001 mm. For 
aboveground biomass (AGB), the samples were initially dried at 105◦C 
for 30 minutes, followed by at 75◦C to constant. During harvest, 15 
grains from each of 15 randomly selected plants per plot were collected 
to evaluate maize harvest factors. These harvested samples were then 
sun-dried, threshed, and their weight recorded.

2.4.3. Drought indexes calculation
Plant Available Water (PAW) is recognized as a key indicator of plant 

water stress and is instrumental in assessing the impact of moisture 
stress on maize yields (Sadras and Milroy, 1996). Research indicates that 
when PAW falls below 60 % of the Plant Available Water Holding Ca
pacity (PAWC), critical functions such as stomatal conductance, leaf 
area expansion, and photosynthesis rates experience reductions at 
various growth stages of maize (Ma et al., 2018). This threshold marks 
the onset of drought conditions, defined when soil PAW within the root 
zone (0–100 cm depth) below 60 % PAWC. Drought events are 
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characterized by their frequency, duration, and intensity: Drought fre
quency (DF) calculates the total number of drought days across growth 
stages; drought duration (DD) identifies the longest continuous period of 
drought within these stages; and drought intensity (DI) measures the 
severity of soil PAW depletion beyond the drought threshold during 
these stages.

DF is calculated as follows: 

DF =

∑N

j=1
mj

Ge − Gs + 1
, j = 1, 2, …, N, N ≥ 1 (4) 

where Ge and Gs are the start and end of different growth stages (V6, 
V12, VT, R3, maturity, and the entire growth period), and mj is the 
duration of the jth drought event at the same growth stage.

DI is calculated as follows, according to (Li et al., 2023): 

DIij =
δ × PAWC − PAWij

δ × PAWC
, j = 1, 2, …, mj; j = 1, 2, …,N (5) 

DHj =

∑mj

i=1
DIij

mj
, j = 1, 2, …,N (6) 

DI =

∑N

j=1
DHj

N
, j = 1, 2, …, N,N ≥ 1 (7) 

where DIij is the drought intensity on the ith day of the jth drought event 
at different growth stages, δ×PAWC is the threshold to identify drought 
events, δ is the constant set at δ= 0.6 (Ma et al., 2018), PAWij is plant 
available water on the ith day of the jth drought event, and DHj is the 
drought intensity for the jth drought event at different growth stages.

2.4.4. Accumulated growth degree days, SOC storage, and water and 
nitrogen use efficiencies

Accumulated growth degree days (AccuTem, ◦C day) during the 
entire season was calculated as follows (Ding et al., 2019): 

AccuTem =
Tmax + Tmin

2
− Tbase (8) 

where Tmax and Tmin are the measured daily maximum and minimum air 
temperatures from the weather station, and Tbase is maize base temper
ature (10◦C). For Tmax > 30◦C, it was set to 30◦C and for Tmin < 10◦C, it 
was set to 10◦C.

The stocks of SOC at topsoil and subsoil were calculated as follows 
(Luo et al., 2015): 

SOCstorage = C × BD × H × 10 (9) 

where SOCstorage is the storage of SOC (t ha–1), C is the concentration of 
SOC (g kg− 1), BD is the soil bulk density (g cm− 3), H is the soil depth (m), 
and 10 is the unit conversion factor.

Irrigation water productivity (IWP, kg m–3) was expressed as 
(Rodrigues, Pereira, 2009; Fernández et al., 2020): 

IWP =
Y

I × 10
(10) 

where Y is yield (kg ha–1) and I is irrigation amount (mm).
The partial factor productivity of nitrogen (PFPN) was calculated 

(Quan et al., 2022): 

PFPN =
Y
F
× 100% (11) 

where Y is yield (kg ha–1) and F is applied nitrogen fertilizer amount (kg 
ha–1).

2.5. Soil quality indicator calculation

The calculation of the SQI unfolded in three stages. Initially, the 
Minimum Data Set (MDS) selection was based on its significance in 
influencing crop yield, soil health, and water availability (Amgain et al., 
2022; Gan et al., 2024). Principal Component Analysis (PCA) served to 
pinpoint relevant indicators within the comprehensive soil property 
dataset, focusing on variables with significant eigenvalues (≥1) and 
which represented at least 5 % of the variance in the data. Subsequently, 
Pearson’s correlation analysis aimed to eliminate redundant variables; 
in instances where multiple variables within a PC were highly correlated 
(r > 0.7), only the variable with the highest factor loading was retained.

The second step used a linear scoring formula to eliminate the effect 
of measurement and variable units for soil property indexes. The ‘less is 
better’ function (Eq. (12)) (Amgain et al., 2022) was used for the sand 
property, while the ‘more is better’ function (Eq. (13)) was used for the 
other indexes. 

Y = (X − L)/(H − L) (12) 

Y = 1 − (X − L)/(H − L) (13) 

where Y indicates the linear score within the range of 0–1, X indicates 
the soil quality value, L indicates the minimum value, and H indicates 
the maximum value.

The third step integrated the soil property characteristics into the SQI 
calculation using the weighted-additive method (Eq. (14)) described by 
Karlen et al. (1998). In this method, each soil property index within the 
MDS was calculated through multi-linear regression (MLR) analysis. 
Within the MLR framework, maize yield was the dependent variable, 
whereas the soil property indices acted as independent variables. The 
weight assigned to each index was computed based on the proportion of 
its standardized regression coefficient relative to the aggregate of stan
dardized regression coefficients for all indices within the MDS.

The chosen soil property indexes in the MDS were used to calculate 
the weighted-additive SQI (Amgain et al., 2022): 

SQI =
∑n

i=1
WiSi (14) 

where n is the number of indicators integrated into the MDS, Wi is the 
weighting factor for soil indexes based on the standardized regression 
coefficient of each soil property index/the sum of the standardized 
regression coefficients of all property indexes in MDS, and Si is the SQI 
score of ith soil property indices in MDS.

2.6. Model development

2.6.1. Feature selection
To estimate crop AGB and yield, we utilized 17 variables listed in 

Table 2 as potential predictors. A nonlinear genetic algorithm (GA) 
approach, as detailed by Welikala et al. (2015), was employed to select 
the most informative predictors. This method initiates with generating a 
random initial population, followed by the selection of new individuals 
to generate solutions (offspring) according to predetermined fitness 
functions. These offspring then replace the previous generation, aiming 
to enhance the model’s accuracy by reducing the root mean square error 
through key genetic operations: crossover and mutation. The iterative 
evolutionary process persists until the search procedure concludes. 
Following Welikala et al.’s (2015) guidelines, we set the GA parameters 
to a population size of 50, a crossover rate of 0.8, and a mutation rate of 
0.1. The ‘Caret’ package in R software facilitated the specific feature 
selection process, targeting crop AGB and yield, with additional vari
ables serving as inputs.

2.6.2. Linear mixed-effects model (LMM)
The LMM for estimating crop AGB and yield incorporated variables 
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related to weather, crop phenotypes, management practices, and SQIs. 
The methodology is depicted in Fig. 1. Initially, a Pearson’s correlation 
analysis was employed to identify predictor variables that exhibited a 
significant correlation with the target variables (|r| > 0.3 and p < 0.05). 
Subsequently, a Variable Inflation Factor (VIF) analysis was conducted 
to evaluate potential multi-collinearity among the predictors. All pre
dictor variables in the LMM model were statistically independent of each 
other (VIF < 10).

One-way ANOVA was conducted at a significance level of 5 % 
(p < 0.05) using the LMM of the lme4 package through restricted 
maximum likelihood estimation (REML) in R software. Tukey’s post hoc 
test was used to determine the significance between treatments. The 
LMM was fitted using the ‘lmer’ function from the ‘lme4’ package to 
evaluate the influence of climate, soil, and crop phenotype on maize 
aboveground biomass and yield.

The specific predictor variable response formula was as follows: 

y = Xβ+Zu+ ε (15) 

where y is the AGB (yield) vector (t ha–1), X and β are the design matrix 
and vectors of fixed effects, respectively, Z and u are the design matrix 
and vectors of random effects, respectively, and ε is the vector experi
ment error. The experimental year was the random effect factor. The GA 
algorithm selected the fixed effects, including weather, crop phenotypes, 
drought indexes, and SQI. The Relaimpo package in R version 4.1.3 was 
used to compute relatively important variables and the proportional 

contribution of predictor variables to explain the variance in the LMM 
model.

2.6.3. Variable importance based on random forest model
Recognized for its widespread application in agricultural research, 

the random forest (RF) model excels in tasks ranging from estimating 
crop evapotranspiration to yield prediction (Li et al., 2021). Introduced 
by Breiman (2001), the RF model operates as a tree-based machine 
learning technique that consolidates multiple decision trees to enhance 
the accuracy of predictions. To gauge the significance of each predictor 
within the RF framework, the ‘%IncMSE’ metric was utilized, assessing 
the relative impact of predictor variables on model performance. 
Furthermore, Partial Dependence Plots (PDP) were applied to elucidate 
the specific influence of predictor variables on the target outcome within 
the RF model. These plots reveal the nature of the relationship—whether 
linear, monotonic, or complex—between predictor and response vari
ables. The analysis involving PDP and variable importance was executed 
in R, leveraging the capabilities of the ‘randomForest’ and ‘pdp’ 
packages.

2.6.4. Model evaluation
The performance of the LMM model was evaluated using two sta

tistical indicators—root mean square error (RMSE) and coefficient of 
determination (R2). R2 indicates the fitness of the LMM model for pre
dicting yield, and RMSE measures the distance between the predicted 
and observed values. A high R2 value and low RMSE value indicate 
better estimation accuracies of the model. The formulas used were as 
follows: 

R2 =

[∑n
i=1(Oi − O) × (Si − S)

]2

∑n
i=1(Oi − O)

2
×
∑n

i=1(Si − S)2 (16) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(Si − Oi)

2

√

(17) 

where Si and Qi are simulated and measured yields, respectively, and S 
and O are mean simulated and measured yields, respectively.

3. Results

3.1. Soil properties variation over five years

Most soil samples were alkaline, with a mean pH of 8.60 (range 
7.73–9.56) and coefficient of variation (CV) of 4.41 (Table 3). The SOC 
ranged from 0.32–0.46 %, likely due to the practice of continuous 
cropping without the addition of organic materials. NO3

–-N and AP had 
mean values of 5.99 mg kg–1 and 4.73 mg kg–1, marking them as the soil 
properties with the highest CV values (Table 3). In addition, the soil had 
a high silt content (66.81 %) and salinity content (mean ECe 6.90 dS 
m− 1).

PCA identified nine critical soil indices—clay content, sand content, 
BD, SOC, SWC, ECe, pH, NH4

+-N, and SSI—in both topsoil and subsoil as 
integral to the MDS (Tables S3–S7). Analysis revealed several soil 
properties decreased across all treatments. Topsoil clay content, BD, 
SOC, SWC, NH4

+-N, and SSI decreased by 4.31 %, 4.65 %, 3.92 %, 
4.41 %, 6.19 %, and 12.51 % respectively, with similar decreases 
observed in subsoil (Fig. 2a, c–e, h, i). Conversely, increases were 
observed in sand content, ECe, and pH by 11.33 %, 16.43 %, and 3.70 % 
in the topsoil and 18.05 %, 14.87 %, and 8.76 % in the subsoil, 
respectively (Fig. 2b, f, g). In conclusion, five consecutive years of 
cultivation have led to a decline in soil fertility for CK, as indicated by 
reductions in SOC, NH4

+-N and SSI, alongside an increase in pH, sand 
content and soil salinity (higher ECe). However, the HDI_PM treatment 
showed notable reductions in topsoil sand content and ECe compared to 
CK, suggesting that intensive irrigation under film mulching can 

Table 2 
Seventeen variables were used to predict aboveground biomass and yield in this 
study.

Variables Definition Unit

Climate ​ ​
AveTmax/ 
AveTmin

Average maximum/minimum daily air temperature 
at different growth stages/entire growth period

℃

AveTem Average daily air temperature at different growth 
stages/entire growth period

℃

AveWind Average daily wind speed at different growth 
stages/entire growth period

m s–1

AveRH Average daily relative humidity at different growth 
stages/entire growth period

%

AccuPre Accumulative daily precipitation from sowing to 
different growth stages/total accumulation values 
during the entire growth period

mm

AccuRad Accumulative daily input radiation from sowing to 
different growth stages/total accumulation values 
during the entire growth period

MJ m–2 

day–1

T30 Accumulative high-temperature days (>30℃) at 
different growth stages/total accumulation values 
during the entire growth period

day

Crop ​ ​
AccuTem Accumulative growth degree days from sowing to 

different growth stages/total accumulation values 
during the entire growth period

℃ day

LAI Plant leaf area index at different growth stages/ 
maximum value during the entire growth period

–

PH Plant height at different growth stages/maximum 
value during the entire growth period

cm

ST Plant stem thickness at different growth stages/ 
maximum value during the entire growth period

mm

Management ​ ​
DF Drought event frequency at the different growth 

stages/total accumulation values during the entire 
growth period

–

DD Drought event duration at the different growth 
stages/total accumulation values during the entire 
growth period

day

DI Drought event intensity at the different growth 
stages/maximum value during the entire growth 
period

–

Soil quality ​ ​
SQITOP/ 
SQISUB

Soil quality indicator in topsoil/subsoil –
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mitigate certain aspects of soil degradation.
Excluding the HDI_PM treatment in topsoil, the SQI for both topsoil 

(SQITOP) and subsoil (SQISUB) across all treatments showed a 
decreasing trend over the years, as depicted in Fig. 3. Compared to initial 
values in 2016, by 2020, SQITOP decreased by 69.49 % for the CK, 
24.24 % for BI_PM, 3.54 % for HDI_PM, 34.30 % for MDI_PM, and 
53.14 % for LDI_PM treatments. Concurrently, SQISUB experienced re
ductions of 37.70 % for CK, 19.91 % for BI_PM, 7.70 % for HDI_PM, 
22.64 % for MDI_PM, and 45.12 % for LDI_PM within the same period.

3.2. Final AGB, yield, IWP, and PFPN variation

Throughout the five-year periods, both the average crop yield and 
final AGB across all treatments showed a declining trend (Fig. 4a, b). The 
BI_PM treatment consistently outperformed the CK in terms of final AGB 
and yield annually (Fig. 4). Specifically, compared with CK, the BI_PM 
treatment showed increases of 30.94 % in mean yields and 76.41 % in 
final AGB. Furthermore, as the volume of irrigation increased, the 
average yield and final AGB from the drip irrigation treatments signif
icantly improved. Compared to CK, HDI_PM increased average yield by 
53.84 % and final AGB by 105.56 %; MDI_PM increased average yield by 
43.85 % and final AGB by 92.52 %, while LDI_PM increased average 
yield by 3.19 % and final AGB by 59.54 %. IWP and PFPN trends also 
decreased over time (Fig. 4c and d). The average IWP and PFPN over 
multiple years increased significantly for BI_PM, HDI_PM, MDI_PM, and 
LDI_PM treatments by 26.28 % and 57.75 %, 85.11 % and 96.63 %, 
156.18 % and 83.86 %, 268.54 % and 32.43 %, respectively, compared 
to CK, despite overall declines in IWP and PFPN from 2016 to 2020.

3.3. Grain yields, IWP, PFPN as affected by soil quality

The analysis revealed that as soil quality diminished, the efficacy of 
mulching in improving yield, IWP and PFPN also declined (Fig. 5a). The 
regression analysis showed slopes of 4.42 t ha–1 for CK, 7.75 t ha–1 for 
BI_PM, 34.13 t ha–1 for HDI_PM, 49.51 t ha–1 for MDI_PM, and 6.15 t 
ha–1 for LDI_PM (Fig. 5a). Additionally, both IWP and PFPN 

Fig. 1. Overview of the workflow to develop soil quality indicator (SQI) and the linear mixed-effects model (LMM) to estimate maize aboveground biomass and yield 
based on weather, crop, and soil characteristics. GA: genetic algorithm, R2: coefficient of determination, RMSE: root mean squared error.

Table 3 
Descriptive statistics of soil property variables during the five-year experiment.

Unit Mean Minimum Maximum Standard 
deviation

Coefficient 
of variation

Clay % 23.14 19.89 27.13 1.48 6.39
Silt % 66.81 58.45 75.17 4.87 7.29
Sand % 14.04 6.02 20.53 2.38 16.93
BD g 

cm–3
1.37 1.23 1.54 0.06 4.51

FMC cm3 

cm–3
0.31 0.28 0.37 0.02 6.20

Ks cm 
h–1

0.14 0.11 0.17 0.01 9.89

SWC cm3 

cm–3
0.23 0.19 0.29 0.02 8.42

ECe dS 
m–1

6.90 4.28 9.64 1.38 20.06

pH – 8.60 7.73 9.56 0.36 4.41
NO3

–- 
N

mg 
kg–1

5.99 3.02 9.71 2.32 38.82

NH4
+- 

N
mg 
kg–1

8.67 6.98 11.25 0.88 9.42

SOC g 
kg–1

3.89 3.27 4.56 0.42 10.83

SP % 48.09 41.89 53.28 2.27 4.71
TN g 

kg–1
0.72 0.56 0.93 0.09 12.85

AP mg 
kg–1

4.73 2.44 7.24 1.67 35.31

AK mg 
kg–1

74.47 58.92 93.76 8.58 11.52

SSI % 0.74 0.51 0.95 0.13 17.53

Note: bulk density (BD); field capacity (FMC); saturated hydraulic conductivity 
(Ks); soil water content before sowing (SWC); electrical conductivity of satu
rated extract (ECe); soil acidity (pH); soil nitrate-nitrogen (NO3

–-N); soil 
ammonium-nitrogen (NH4

+-N); soil organic carbon (SOC); soil porosity (SP); 
total nitrogen (TN); available phosphorus (AP); available potassium (AK); 
structural stability index (SSI).
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demonstrated significant positive associations with SQI (Fig. 5b and c). 
Film mulching treatments, in particular, contributed to a faster decline 
in IWP and PFPN than the CK treatment, as indicated by their relatively 
steep slopes.

3.4. Linear mixed-effects model

The model identified fixed effects—AccuRad, AccuPre, AveRH, T30, 
LAI, ST, DF, DI, and SQITOP—which accounted for at least 72 % (Rm

2 =

0.72) of the variability in AGB, with the overall model explaining up to 
91 % of the variance (Rc

2 = 0.91), as shown in Table 4. Analysis revealed 
positive correlations of AccuRad, AccuPre, LAI, and SQITOP with AGB, 
whereas AveRH, T30, ST, DF, and DI were negatively correlated, as 
detailed in Table 4. Notably, AccuRad and AccuPre were significant 
contributors to AGB variance (Table 5). SQIs accounted for less than 5 % 
of AGB variation, with yearly random effects contributing between 
0.2 % and 21.0 %. For yield estimation, both fixed (Rm

2 ) and total effects 
(Rc

2) demonstrated robustness, with values exceeding 75 %. Only the LAI 
and SQITOP exhibited positive correlations with yield in the LMM model 
(Table 4). Table 5 highlights LAI as the most crucial variable (impor
tance ranging from 12.5–59.4 %), followed by SQITOP (6.4–32.1 %), 
and others.

3.5. Nonlinear relationships between maize yield and covariates

Fig. 6 elucidates the differential impact of six key variables on maize 
yield, as identified by the RF model. DI emerged as the paramount 
factor, contributing to 41.0 % of the yield variability, succeeded by LAI 
at 29.3 %, SQITOP at 17.9 %, AveTmax at 7.1 %, DF at 3.4 %, and T30 
at 1.3 %. The model indicated a gradual decline in yield with the esca
lation of DI, AveTmax, DF, and T30 values (Fig. 6a, d, e, f). Conversely, a 
positive correlation was observed between LAI and yield (Fig. 6b), 
showcasing a notable yield enhancement when LAI surpassed 3, with 
yields stabilizing upon reaching an LAI of 4.5. Additionally, yields 
demonstrated a continuous decline with diminishing SQITOP values 
below 0.43, yet stabilized for SQITOP values above this threshold 
(Fig. 6c.

4. Discussion

4.1. Effects of film mulching and irrigation practices on soil quality

Continuous cultivation without incorporating external organic mat
ter has been shown to compromise soil structure, diminish soil fertility, 
and ultimately lead to decreased crop yields, as evidenced by Raiesi and 
Beheshti (2022) and Sione et al. (2017). Independent of the specific 

Fig. 2. Nine soil property indices were selected as the minimum soil dataset for the soil quality index, based on different irrigation treatments from 2016 (initial 
condition) to 2020 in topsoil (0–30 cm depth) and subsoil (30–60 cm depth). Lowercase letters denote comparisons of soil properties within 2020 and initial values, 
with no significant differences between means sharing the same letter (p < 0.05). BD is soil bulk density; SOC is soil organic carbon; SWC is soil water content; ECe is 
the electrical conductivity of saturated extract; pH is soil acidity; NH4

+-N, soil ammonium-nitrogen; SSI is soil structural stability index. Treatments include border 
irrigation without mulching (CK); border irrigation with mulching (BI_PM); high irrigation level drip irrigation (HDI_PM); medium irrigation level drip irrigation 
(MDI_PM); low irrigation level drip irrigation (LDI_PM).
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mulching and irrigation techniques applied, a marked increase in sand 
content, pH, and ECe was observed in both the topsoil and subsoil layers 
from 2016 to 2020 (see Fig. 2b, f, g and Table 3). This trend is mainly 

attributable to the accumulation of sand and salts from irrigation water, 
corroborating findings from Zhang et al. (2021). Over five years, notable 
declines in clay content, BD, NH4

+, SSI, and SOC storage were recorded 
across all treatment groups (Fig. 2, Table S8), illustrating the adverse 
impacts of continuous cropping. Specifically, (1) the reduction in SOC 
undermines soil structure by impairing clay mineral flocculation, lead
ing to decreases in clay content, BD, and SSI (Zhang et al., 2014; 2008), 
and (2) excessive irrigation promotes nutrient leaching, diminishing 
NH4

+ levels (Dong et al., 2018). However, plastic film mulching was 
found to enhance SWC and NH4

+ concentrations, as well as SSI in the 
subsoil, by the experiment’s conclusion, aligning with the outcomes of 
similar studies (Wang et al., 2023; Zhang et al., 2008). Moreover, 
HDI_PM was observed to alleviate the rising trends of sand content and 
salinity associated with film mulching (Fig. 2b and f). The concluding 
measurements of topsoil and subsoil AP and AK in 2020 fell below the 
optimal thresholds for maize growth, as Li et al. (2020) indicated, sug
gesting a need for targeted fertilizer application. Consequently, mulch
ing not only mitigates the depletion of SOC and nutrients but also 
contributes positively to soil structural integrity and stability. Further
more, employing irrigation water with low salinity and sand content, 
supplemented with potassium and phosphorus fertilizers, emerges as a 
viable approach for enhancing soil quality and fulfilling the nutritional 
demands of crops, as supported by Zhu et al. (2022).

Recent research highlights the significant influence of soil depth on 
SQI, aligning with the outcomes observed in our investigation (Li et al., 
2022; Zhang et al., 2022b). Except the HDI_PM, subsoil consistently 
exhibited higher average SQI values compared to topsoil (Fig. 3). This 
distinction is mainly attributable to the sustained effects of irrigation 
and fertilizer management on the topsoil’s water and nutrient 

Fig. 3. Soil quality indicator values for topsoil and subsoil weighted by nine 
soil property indices from 2016 (initial) to 2020. Lowercase letters denote 
comparisons of soil properties within 2020 and initial values, with no signifi
cant differences between means sharing the same letter (p < 0.05). Topsoil is 
0–30 cm soil depth; subsoil is 30–60 cm soil depth; border irrigation without 
mulching (CK); border irrigation with mulching (BI_PM); high irrigation level 
drip irrigation (HDI_PM); medium irrigation level drip irrigation (MDI_PM); low 
irrigation level drip irrigation (LDI_PM).

Fig. 4. Spring maize yield, aboveground biomass, irrigation water productivity (IWP), and partial factor productivity of nitrogen (PFPN) from 2016 to 2020 under 
different treatments. Uppercase letters denote comparisons of average yields of different treatments between multiple years. Lowercase letters denote comparisons of 
yields within a specific year. Means with the same letters do not significantly differ (p < 0.05). Border irrigation without mulching (CK); border irrigation with 
mulching (BI_PM); high irrigation level drip irrigation (HDI_PM); medium irrigation level drip irrigation (MDI_PM); low irrigation level drip irrigation (LDI_PM).
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availability, its physical structure, and overall soil health, including is
sues such as salinization and loss of SOC (Gong et al., 2015; Molaeinasab 
et al., 2018). The decline in SQI noted in our study primarily resulted 
from reductions in SOC and the SSI (Fig. 2). Improvements in subsoil SQI 
were linked to two primary factors: (1) an increase in sand content, 
which bolsters soil permeability and facilitates the downward move
ment of irrigation water and nutrients (Zhang et al., 2021), and (2) 
enhanced SWC, which optimizes the water environment in the root 
zone, thereby supporting crop development (Chen et al., 2022). Notably, 
our analysis revealed no significant changes in SQI for the HDI_PM 
treatment in both topsoil and subsoil. This suggests that the strategic 
application of HDI_PM irrigation does not compromise soil quality for 
the sake of yield enhancement, offering a viable alternative to conven
tional local management approaches. However, even with the optimal 
HDI_PM treatment, yield, IWP, PFPN and SOC showed a decreasing 
trend over multiple years. This may be attributed to: (1) successive years 
of monoculture, which increase maize’s susceptibility to disease 

pressure and limit biomass accumulation (Gentry et al., 2013); (2) the 
combination of high temperatures and sufficient water supply from drip 
irrigation in the study area, which created conditions conducive to SOC 
decomposition, leading to reduced soil SOC content without the addi
tion of exogenous organic materials (Feng et al., 2024); and (3) 
increased ECe, which hinders crop absorption of water and nutrients, 
ultimately lowering yields (Zhang et al., 2021). In general, we recom
mend the adoption of drip irrigation in similar arid irrigation areas 
worldwide to achieve high yields and enhance water and fertilizer use 
efficiency. Additionally, exploring diversified cropping patterns, such as 
fallow and crop rotation, can promote land restoration. It is also 
important to investigate the use of green manure and organic matter to 
maintain and potentially improve soil quality, thereby ensuring 
high-yield and sustainable agriculture.

Fig. 5. Regression between the soil quality indicators and yield, irrigation water productivity (IWP), and partial factor productivity of nitrogen (PFPN) in all the 
treatments in the topsoil across five years. Border irrigation without mulching (CK); border irrigation with mulching (BI_PM); high irrigation level drip irrigation 
(HDI_PM); medium irrigation level drip irrigation (MDI_PM); low irrigation level drip irrigation (LDI_PM).

Table 4 
Estimate of coefficients (β) and p-values in the linear mixed-effects model for predicting biomass and yield with selected variables.

Model source Aboveground biomass Model source Yield

Estimated 
(β, t ha–1)

SE p-value Estimated 
(β, t ha–1)

SE p-value

Fixed effects ​ ​ ​ Fixed effects ​ ​ ​
Intercept 9.376 × 10–16 0.224 – Intercept 2.942 × 10–16 0.0581 –
AccuRad 0.928 0.0726 *** AveTmax –0.3737 0.143 *
AccuPre 0.0662 0.0714 * T30 –0.101 0.120 *
AveRH –0.130 0.0903 * LAI 0.353 0.114 *
T30 –0.141 0.0433 ** DF –0.218 0.0949 *
LAI 0.126 0.0543 * DI –0.192 0.0907 *
ST –0.0993 0.0909 * SQITOP 0.0827 0.0956 *
DF –0.0877 0.0363 * ​ ​ ​ ​
DI –0.1136 0.0363 *** ​ ​ ​ ​
SQITOP 0.0804 0.0324 * ​ ​ ​ ​
Rm

2 0.72 – – Rm
2 0.76 – –

Random effects Variance SD ​ Random effects Variance SD ​
Year 0.247 0.498 – Year 0.0535 0.248 –
Residual 0.0898 0.299 – Residual 0.284 0.533 –
Deviance 64.3 – – Deviance 31.3 – –
Rc

2 0.91 – – Rc
2 0.82 – –

Note:
*** p < 0.001;
** p < 0.01;
* p < 0.05; ns = p > 0.05; Rm

2 : marginal coefficient of determination for fixed factors alone; Rc
2: conditional coefficient of determination for fixed and random factors; 

SD: standard deviation. AccuRad: accumulative daily input radiation at different growth stages; AccuPre: accumulative daily precipitation at different growth stages; 
AveRH: average daily relative humidity at different growth stages; AveTmax: average maximum daily air temperature during the entire growth period; T30: accu
mulative high-temperature days (> 30 ℃) at different growth stages/entire growth period; LAI: plant leaf area index at different growth stages/maximum values 
during the entire growth period; ST: plant stem thickness at different growth stages; DF: drought event frequency at different growth stages/total accumulation values 
during the entire growth period; DI, drought event intensity at the different growth stages/maximum value during the entire growth period; SQITOP: soil quality 
indicator in topsoil.
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4.2. Maize yield change in response to SQI

Our analysis revealed that over five growing seasons, mean yields 
experienced significant increases for mulching treatments, compared to 
the CK (Fig. 4). And, yields for BI_PM were outpaced by HDI_PM, sug
gesting that drip irrigation more effectively satisfies crop water needs 
and fosters a conducive root environment by enhancing root growth and 

soil nutrient accessibility, thereby potentially boosting yield (Chen et al., 
2021). Additionally, drip irrigation treatments demonstrated superior 
IWP and PFPN relative to CK, aligning with observations by Zhang et al. 
(2021). These treatments minimize water evaporation, optimize the 
evaporation-transpiration ratio, encourage root proliferation, and in
fluence soil nutrient distribution (Wang et al., 2018, 2020a), making 
drip irrigation a more efficient alternative to extensive border irrigation 

Table 5 
Variable importance derived from linear mixed-effect models for maize aboveground biomass and yield.

LMM Aboveground biomass LMM Yield

Predictors RIV Lower Upper Predictors RIV Lower Upper

Fixed effects ​ ​ ​ Fixed effects ​ ​ ​
AccuRad 39.3 11.5 76.1 AveTmax 5.1 1.7 10.3
AccuPre 20.1 3.2 40.5 T30 6.6 2.4 12.4
AveRH 9.2 1.2 25.1 LAI 42.3 12.5 59.4
T30 4.1 2.5 5.2 DF 10.1 2.7 15.0
LAI 6.3 0.9 18.2 DI 15.1 1.9 30.9
ST 7.3 0.3 24.4 SQITOP 20.8 6.4 32.1
DF 8.2 0.2 28.0 ​ ​ ​ ​
DI 1.4 0.0 4.3 ​ ​ ​ ​
SQITOP 4.1 1.3 6.5 ​ ​ ​ ​
Random effects ​ ​ ​ Random effects ​ ​ ​
Year 6.0 0.2 21.0 Year 7.3 2.7 15.0
Statistical indicators ​ ​ ​ Statistical indicators ​ ​ ​
R2 0.91 ​ – R2 0.82 – –
RMSE 0.23 – – RMSE 0.45 – –

Note: RIV: relatively important variables, R2: coefficients of determination, RMSE: root mean square error. AccuRad: accumulative daily input radiation at different 
growth stages; AccuPre: accumulative daily precipitation at different growth stages; AveRH: average daily relative humidity at different growth stages; AveTmax: 
average maximum daily air temperature during the entire growth period; T30: accumulative high-temperature days (> 30 ℃) at different growth stages/entire growth 
period; LAI: plant leaf area index at different growth stages/maximum values during the entire growth period; ST: plant stem thickness at different growth stages; DF: 
drought event frequency at different growth stages/total accumulation values during the entire growth period; DI, drought event intensity at the different growth 
stages/maximum value during the entire growth period; SQITOP: soil quality indicator in topsoil.

Fig. 6. Partial dependence of crop yield on six explanatory variables. (a) maximum drought event intensity during the entire growth period, DI; (b) maximum plant 
leaf area index during the entire period, LAI; (c) soil quality indicator in topsoil, SQITOP; (d) average daily maximum temperature during the entire period, AveTmax; 
(e) total accumulation of drought event frequency during the entire period, DF; (f) total accumulation of accumulative high-temperature days (> 30℃) during the 
entire period, T30. The percentage value in each plot represents the relative importance of each predictor variable based on the random forest model. Gray shaded 
areas indicate the 95 % confidence intervals.
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practices. Furthermore, regression analyses confirmed positive correla
tions between grain yields, IWP, PFPN, and SQITOP (Fig. 5). The dete
rioration in yield alongside declining soil quality was linked to 
diminished water and nitrogen use efficiencies (Fig. 2). Moreover, in
cremental increases in irrigation water inputs over the years could lead 
to enhanced water leakage and nutrient leaching (Table S1), thereby 
restricting nutrient availability in the soil (Singh et al., 2020), which 
emerged as an additional yield limiting factor.

4.3. Nonlinear relationship between dominant factors and maize yield

The RF model identified DI as the paramount variable impacting 
maize yield, with LAI and SQITOP following in importance, as depicted 
in Fig. 6. DI and DF exerted a negative influence on yield, underscoring 
their critical role in the formation of yield and the variable susceptibility 
of crops to drought at different stages of growth (Monteleone et al., 
2022). In particular, drought events during critical periods such as 
flowering and grain-filling were found to be significantly detrimental to 
crop yield (Yu et al., 2018a, 2018b). Additionally, the analysis showed 
that extreme temperature metrics, including AveTmax and T30, 
adversely affected maize yield (Figs. 6d and 6f). SQITOP, contributing 
17.9 % to the model’s importance (Fig. 6), underscored the potential of 
adequate irrigation strategies to mitigate adverse effects of reduced soil 
quality, especially concerning water retention, on yield. Furthermore, 
the application of high fertilizer inputs was demonstrated to alleviate 
the limitations posed by soil fertility in irrigated conditions (Zhang et al., 
2020).

The RF model’s partial dependence plots identified critical threshold 
values for variables impacting maize yield. Notably, the yield appeared 
to stabilize when the LAI exceeded 4.5. Furthermore, yield stability was 
observed when the SQITOP was higher than 0.43, as illustrated in 
Fig. 6c. This stability is likely due to the high-quality soil’s ability to 
maintain a consistently moist environment, attributable to its superior 
water retention capacity (Fan et al., 2022). Conversely, a SQITOP below 
0.43 led to a proportional decrease in yield, associated with an increase 
in sand content and a deterioration of soil structure (Fig. 2b and i), 
which enhances water conductivity and potentially facilitates ground
water recharge to the topsoil. However, this process also elevates soil 
salinity (as evidenced by increased ECe in Fig. 2f), promoting soil sali
nization (Zhang et al., 2021). Considering the significant role of drought 
as a yield-limiting factor, we advocate for the adoption of drip irrigation 
at a soil matric potential of –10 kPa. This approach aims to optimize soil 
moisture levels, mitigate drought stress, and ultimately enhance maize 
yield.

4.4. Research limitations

This investigation encountered several limitations. Primarily, the 
dataset was confined to observations from a single site over five years, 
potentially limiting our findings’ generalizability across diverse agri
cultural contexts. Future research should extend to multiple locations to 
assess the broader impacts of climate change and soil property variations 
on crop productivity over extended periods. Secondly, soil property 
measurements were conducted solely at harvest each year, necessitating 
more frequent assessments throughout critical maize growth phases to 
capture SQI dynamics better. Thirdly, the study employed linear scoring 
and multiple linear regression techniques to assess and calculate the SQI 
within the MDS. Recent advancements suggest that nonlinear scoring 
functions and innovative network analysis approaches may offer more 
accurate depictions of the interplay between plant growth and soil 
conditions (Chen et al., 2023; Martín-Sanz et al., 2022). Hence, there is a 
pressing need to explore alternative weighting methodologies further to 
more precisely ascertain soil quality fluctuations across varied agricul
tural areas.

5. Conclusions

We found that the SQI in both topsoil and subsoil decreased after five 
years, except for the HDI_PM treatment, in the arid irrigation region. 
This decline was primarily due to a decrease in SOC and structural 
stability, as well as an increase in sand content and soil salinity. Addi
tionally, LMM incorporating weather, drought, and soil properties were 
developed to predict maize biomass and yield. The RF model also 
indicated SQITOP as an important variable affecting yield, with a 
threshold was 0.43. Overall, we recommend using drip irrigation based 
on a soil matric potential of –10 kPa to maximize maize yield and PFPN, 
while also mitigating the decline in the SQI in the Hetao irrigation re
gion. Given the declining trend in soil quality observed over five years of 
continuous experiments, it is imperative to investigate the potential of 
alternative agronomic practices for future agricultural production. Such 
practices may include the incorporation of green manure and organic 
matter combined with drip irrigation to achieve high yields and main
tain soil fertility for sustainable agriculture, while avoiding drought 
stress and soil quality limitations.
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