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Abstract 
To reduce damage caused by insect pests, farmers use insecticides to protect produce from 
crop pests. This practice leads to high synthetic chemical usage because a large portion of 
the applied insecticide does not reach its intended target; instead, it may affect non-target 
organisms and pollute the environment. One approach to mitigating this is through the 
selective application of insecticides to only those crop plants (or patches of plants) where 
the insect pests are located, avoiding non-targets and beneficials. The first step to achieve 
this is the identification of insects on plants and discrimination between pests and beneficial 
non-targets. However, detecting small-sized individual insect pests is challenging using 
image-based machine-learning techniques, especially in natural field settings. This paper 
proposes a method based on explainable artificial intelligence feature selection and machine 
learning to detect pests and beneficial insects in field crops. An insect-plant dataset 
reflecting real field conditions was created. It comprises two pest insects—the Colorado 
potato beetle (CPB, Leptinotarsa decemlineata) and green peach aphid (Myzus persicae)—
and the beneficial seven-spot ladybird (Coccinella septempunctata). The specialist herbivore 
CPB was imaged only on potato plants (Solanum tuberosum) while green peach aphids and 
seven-spot ladybirds were imaged on three crops: potato, faba bean (Vicia faba), and sugar 
beet (Beta vulgaris subsp. vulgaris). This increased dataset diversity, broadening the 
potential application of the developed method for discriminating between pests and 
beneficial insects in several crops. The insects were imaged in both laboratory and outdoor 
settings. Using the GrabCut algorithm, regions of interest in the image were identified before 
shape, texture, and colour features were extracted from the segmented regions.  The 
concept of explainable artificial intelligence was adopted by incorporating permutation 
feature importance ranking and Shapley Additive explanations values to identify the feature 
set that optimised a model’s performance while reducing computational complexity.  The 
proposed explainable artificial intelligence feature selection method was compared to 
conventional feature selection techniques, including mutual information, chi-square 
coefficient, maximal information coefficient, Fisher separation criterion and variance 
thresholding. Results showed improved accuracy (92.62% Random forest, 90.16% Support 
vector machine, 83.61% K-nearest neighbours, and 81.97% Naïve Bayes) and a reduction in 
the number of model parameters and memory usage (7.22 x107 Random forest, 6.23 x103 
Support vector machine, 3.64 x104 K-nearest neighbours and 1.88 x102 Naïve Bayes) 
compared to using all features. Prediction and training times were also reduced by 
approximately half compared to conventional feature selection techniques. This 
demonstrates a simple machine learning algorithm combined with an ideal feature selection 
methodology can achieve robust performance comparable to other methods. With feature 
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selection, model performance can be maximised and hardware requirements reduced, 
which are essential for real-world applications with resource constraints. This research offers 
a reliable approach towards automatic detection and discrimination of pest and beneficial 
insects which will facilitate the development of alternative pest control approaches and 
other targeted pest removal methods that are less harmful to the environment than the 
broad-scale application of synthetic insecticides. 

Keywords: feature screening; explainable artificial intelligence; targeted pest control; 
sustainable agriculture
 

1. Introduction 

The Food and Agriculture Organisation (FAO, 2021) estimates that of the total $220 billion in 
annual economic losses attributed to plant diseases, at least 31.8% are caused by insect 
pests, including invasive species. The Colorado potato beetle (CPB, Leptinotarsa 
decemlineata) and green peach aphids (Myzus persicae) are two of the most damaging 
insect pests of potato crops due to direct feeding damage and disease transmission, 
respectively (Gao et al., 2024a). Larvae of the CPB can cause up to 100% defoliation of the 
leaves and infestation may reduce the yield of potato tubers by more than 50% (Sablon et 
al., 2013; Balaško et al., 2020; Bitkov & Lykov, 2024). Green peach aphids (Myzus persicae) 
cause even more damage; in Europe, viruses, particularly potato virus Y (PVY) transmitted by 
aphid feeding activity cause total annual losses of 180 million Euros (Dupuis et al., 2023). 
Environmentally sustainable solutions for insect pest control, particularly in arable crops, are 
therefore crucial for protecting yield and ensuring food security. However, current pest 
control methods, which usually involve the detection of pests in the field via scouting 
followed by the application of synthetic insecticides as blanket treatments across fields, 
negatively impact the environment, ecosystem, and biodiversity (Richard, 2010; Chaudhary 
et al., 2021; Beaumelle et al., 2023). Additionally, manual detection of insect pests via plant 
scouting is labour-intensive and time-consuming (Chen et al. 2021). Thus, there has been 
growing interest in automated insect detection and classification in recent years (Xia et al., 
2018; Kirkeby et al., 2021; Hasan et al., 2024, Suresh et al., 2025), which could help detect 
pest presence in the field quickly, easily and accurately, and enable the determination of 
their spatial distribution for more targeted applications (Bick et al., 2024).

Advances in computer vision and machine learning have enabled researchers to develop 
object detection systems capable of detecting small objects with high accuracy   (Don et al., 
2023; Tan et al., 2023; Wan et al., 2023). These developments have made innovative 
processes such as selective weed control a reality and are now finding other practical 
applications in agriculture. For example, in plant disease detection and classification 
(Bhosale et al., 2023; Kini et al., 2023; Singh et al., 2023). These technologies have also been 
explored for insect detection and classification, where digital image processing techniques 
have demonstrated great potential (Espinoza et al., 2016). Improvements in high-resolution 
imaging technology have increased the capability of image processing techniques to extract 
detailed features from high-resolution images for accurate insect segmentation (Alkan & 
Aydın, 2023). Li et al. (2015) used multifractal analysis to segment whitefly images based on 
local singularity and global image characteristics, demonstrating superior performance over 
traditional image thresholding methods, achieving a true-positive detection rate of 86.9% 
and a false-positive rate of 8.2%. Using a different approach, Xia et al. (2015) used 
watershed segmentation and Mahalanobis distance to identify common greenhouse pests 
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on sticky traps; their method achieved a coefficient of determination of 0.945 for aphid 
counting. In contrast, Agrawal et al. (2018) used clustering and pseudo-colour image 
processing for pest region detection, including CPB in rice cultivation. Kasinathan et al. 
(2020) combined foreground segmentation and a GrabCut algorithm to segment different 
insect species in popular public datasets and achieved impressive results.  

Image processing techniques are often considered the pre-processing steps for targeted 
object detection and semantic segmentation in deep learning (Wang et al., 2019; Miranda et 
al., 2023; Sahin et al., 2023). While these techniques are computationally efficient and have 
excelled in simple image segmentation tasks such as distinguishing objects against simple 
backgrounds, their performance deteriorates with increasing lighting variations and object 
background complexity. This inconsistency is demonstrated by their excellent performance 
with certain images and poor performance in others, and this does not improve with 
additional data, as no supervised learning is involved (Cserni & Rovid, 2023; He et al., 2023).  
Given the unpredictable nature of the real field, these techniques cannot be relied upon for 
practical applications (Cuevas et al., 2023).

Machine learning has proved more effective than traditional image processing for insect 
detection and classification. The existing works based on machine learning can be broadly 
grouped into classical and deep learning. The concept of classical machine learning is to 
design hand-crafted features based on object descriptors such as shape, texture, colour, 
edges, and other relevant features. These features are either extracted from the whole 
image or the region of interest (ROI) in the segmented image and subsequently fed into the 
machine learning classifier for training and evaluation (Gao et al., 2024a). Liu et al. (2016) 
used a histogram of oriented gradients (HOG) features extracted from positive and negative 
sample images to train a support vector machine (SVM) classifier, then employed a 
maximally stable extremal region descriptor to detect aphids in the classified images, 
achieving identification and error rates of 86.81% and 8.91%, respectively. In a similar 
approach, Kasinathan et al. (2020) identified 9 and 24 insect classes in the Wang dataset and 
9 and 24 insect classes in Xie dataset by extracting the shape features and training machine 
learning techniques such as artificial neural networks (ANN), SVM, k-nearest neighbours 
(KNN), Naïve Bayes (NB), Random forest (RF) and CNN models, achieving the highest 
classification rate of 91.5%. Kasinathan & Uyyala (2021), combined different feature 
descriptors to train traditional and ensemble classifiers for insect classification. They 
experimented with various feature combinations and improved the classification accuracy by 
2.6% using majority voting. To count rice planthoppers (Sogatella furcifera) in paddy fields, 
Yao et al. (2014) proposed a three-layer detection method: the first layer used an AdaBoost 
classifier based on Haar features, an ensemble machine learning method that combines 
multiple decision trees into a stronger classifier. The second layer used an SVM classifier 
based on HOG features, and the third layer applied a threshold judgment of the three 
features. Their experimental results show an 85.2% detection rate and a 9.6% false detection 
rate. Others used a different approach; they first applied image segmentation to extract ROI 
in the image before extracting features for training machine learning classifiers. For example, 
Lucero et al. (2015) detected CPB with an 85% recognition rate by using a contour 
orientation histogram to extract features from the ROI and fed them as inputs to the random 
subspace classifier. Similarly, Remboski et al. (2018) developed an insect classification 
system by extracting ROIs and transforming them into feature vectors using a bag-of-words 
model. For the classification, they trained SVM, KNN, Decision Tree, and Gaussian Naïve 
Bayes, with SVM achieving the highest accuracy of 86.38%.  In contrast, deep learning uses 
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convolutional layers to automatically extract relevant features of the target object and fully 
connected layers for classification. With rapid developments in computing power, imaging 
equipment, and its superiority for instance-segmentation, deep learning has become popular 
for tasks such as aphid detection and counting   (Xu et al., 2023; Gao et al., 2024a), two-
spotted spider mite  (Tetranychus urticae Koch) detection, (Zhou et al., 2024), fall armyworm 
(Spodoptera frugiperda) detection in field crops (Kasinathan & Uyyala, 2023) and detection 
of brown marmorated stink bug (Halyomorpha halys) (Betti Sorbelli et al., 2023).  

Methods based on digital image processing are ideal for insect detection in simple scenarios 
but fail in complex situations because they are sensitive to lighting, colour, and other 
variations in the object background (Gao et al., 2024a). In contrast, methods based on deep 
learning may achieve high accuracy. However, these depend on large amounts of data and 
huge computational resources, making them computationally expensive and difficult to 
implement on affordable hardware for real-world applications (Cserni & Rovid, 2023). Due to 
the rapid advancements in deep learning, researchers have not fully explored the potential 
of classical machine learning. Despite dependence on manual feature design, classical 
machine learning techniques have the potential to achieve acceptable insect detection and 
classification accuracy (Gao et al., 2024b) with a small amount of data, a short training time, 
and less computational power compared to deep learning methodologies. Owing to their 
less computational resource requirements, they can easily be implemented with low-cost 
hardware and deployed for practical applications. Using an optimal feature set, these 
methods can achieve results comparable to deep learning methods while maintaining lower 
computational complexity. However, no single feature is suitable for all tasks and challenges 
remain in identifying the feature subset that optimises model performance while reducing 
complexity (Ye et al., 2023). To our knowledge, no study has yet assessed the impact of 
feature selection techniques on colour, shape, texture, and HOG features on a model’s 
performance in insect detection tasks. This gap is significant because including irrelevant 
features can result in multidimensionality and redundancy among features (Sumesh et al., 
2021), which increases computational time and reduces the model’s generalisation ability 
and classification accuracy (El-Kenawy et al., 2024). Explainable artificial intelligence (XAI) 
offers an alternative approach to addressing this. XAI refers to machine learning models that 
are transparent and easily interpretable, which is essential for building confidence, 
acceptability and trust, especially in settings where understanding the reasoning behind a 
model’s decision-making process holds equal importance to its prediction accuracy  (Dave et 
al., 2020; Zhang et al., 2021). This approach has also been used to interpret machine learning 
models for agricultural data analysis (Ryo,2022). The XAI incorporate the concept of 
permutation feature importance (PFI) to assess the impact of permuting each feature on the 
model’s prediction outcomes and Shapley Additive explanations (SHAP) values to explain the 
contributions of individual features to a model’s prediction results (Lundberg et al., 2020).  
Therefore, a method based on XAI to determine the optimal combination of features for 
training machine algorithms, such as SVM, RF, KNN, and NB, was proposed for the current 
study. Unlike conventional feature selection methods, this approach integrates PFI ranking 
and SHAP values to identify the most relevant features in the dataset, thereby reducing 
redundancy, optimising performance and decreasing computational overload associated 
with machine learning. The proposed method was evaluated and compared to conventional 
feature selection techniques.  This method was designed for efficient implementation on 
low-cost hardware to detect harmful insects (CPB and aphids) and beneficial insects 
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(ladybirds) in arable crops. The main objective was to balance computational efficiency with 
detection accuracy while limiting computational complexity through feature selection.  

2. Materials and methods 
 

2.1 Data collection and pre-processing 
Two insect pests (the Colorado potato beetle (CPB, Leptinotarsa decemlineata) and green 
peach aphids, Myzus persicae), one beneficial insect (seven-spot ladybird, Coccinella 
septempunctata), and three crops (potato, Solanum tuberosum; faba bean, Vicia faba; and 
sugar beet, Beta vulgaris subsp. vulgaris) were selected for this study. The crop plants were 
grown in the greenhouse of the University of Kassel, Germany, while the insects were 
collected from three experimental farms, all located in the Kassel region. Four stages of CPB 
and seven-spot ladybird (eggs, larva, pupa and adults) and adult aphids were collected from 
the focus crops and kept in a greenhouse, with each species maintained separately inside 33 
x 33 x 5 cm; 570 g ventilated plant insect net cages. CPBs were maintained on potato plants, 
and aphids on the three species; ladybirds were supplied with aphids as food. All insects 
were provided with water using moistened filter paper. The greenhouse temperature ranged 
between 14-31°C and insects were maintained for 1-3 weeks before being replaced with 
freshly collected individuals. Data collection occurred from April to July, with insects being 
transferred from the greenhouse maintenance cages to our laboratory setup for image 
acquisition. 

To create a working dataset reflecting the real field conditions, images of insects on the crop 
plants were collected from an imaging tent in the laboratory and from fields on three 
commercial farms. The imaging tent (120 × 120 × 200 cm) was made from black Mylar fabric, 
and was artificially lit using light-emitting diodes (LED-LE1200-E03L-1S) with a spectrum of 
450 nm +470 nm, 660 nm, 730 nm, 6500 K, providing various illumination levels and lighting 
intensities.  In each imaging session, 3-5 aphid-infested plants were transferred to the 
imaging tent, and individual CPBs and ladybirds were placed by hand on specific areas of the 
plants to simulate natural infestations.  Approximately, 300 individual CPBs, 250 ladybirds 
and the same number of aphid colonies were used. CPB was imaged only on potato plants 
because it does not infest faba bean and sugar beet. Individual insects on plants were 

Figure 1:  Sample images from our insect plant dataset- a and e: Seven-spot ladybird (Coccinella septempunctata) 
on sugar beet (Beta vulgaris subsp. vulgaris) and potato (Solanum tuberosum) plants, respectively; b and f: 

Colorado potato beetle (Leptinotarsa decemlineata) on potato plant; c and g: green Aphids (Myzus persicae) on 
potato and sugar beet plants; d and h: faba bean (Vicia faba) and potato plant leaves without insects. 

 

                      a                                                 b                                                   c                                               d 

                         e                                           f                                                g                                                  h 
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imaged more than once; however, to ensure data diversity, they were regularly replaced. 
This approach combined with images of insects on crop plants captured from real farm fields 
improved the quality and diversity of our dataset. Images of CPB on potato, and aphids and 
ladybirds on potato, faba bean and sugarbeet crops were collected at three different times 
of the day (morning, afternoon, and evening). A total of 2000 images were captured, with 
1000 images taken in laboratory settings and 1000 in the field. These include 500 images of 
individual CPB on potato plants, 500 seven-spot ladybirds, 500 green aphids on a mixture of 
the three crop plants, and 500 leaves without insects across three crops. For ladybirds and 
aphids, images were evenly distributed across the three crop types, with approximately 167 
samples per crop per insect. Two cameras were used for data acquisition: The Canon EOS 
2000D and Sony α6400, collecting 1000 images each. This dual-camera approach enhanced 
dataset diversity, ensuring reliability for model training, evaluation and generalisation. 
Samples of insect plant images in our dataset are shown in Figure 1.  

The original image resolution of 6000 × 4000 pixels acquired from the two cameras was 
converted to a lower resolution of 800 × 500 pixels because training models with high-
resolution images is time-consuming and requires substantial computing power. Unwanted 
image backgrounds were cropped using the crop-and-select, method adopted from (Gao et 
al., 2024a). This involves manually dividing the original image into 4 smaller parts and 
carefully selecting the portion containing the insects and background leaf while discarding 
portions that do not have insects or leaves. The final insect-plant dataset has 1000 images: 
250 CPB on potato plants, 250 for both ladybirds and aphids, divided approximately equally 
between the three crop plants, and 250 of the three crop plant leaves without insects, 
equally distributed across crop types. Images of plant leaves without insects were included 
because the model’s ability to detect the absence of insects in the image holds equal 
importance to a farmer as positive detection of insects, as this means no treatment is 
needed. The complete workflow of the insect-plant dataset pre-processing and labelling is 
given in Figure 2.  The labelImg annotation tool, an open-source software designed for image 
labelling, was used to annotate the images. This enabled the labelling of insects by drawing 
rectangular bounding boxes around them and saving the annotations in extensible markup 
language file format (Figure 3). The images and labels are inputs to the machine learning 
algorithms.  
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Figure 2: Workflow of image pre-processing and labelling for insect-plant dataset- The right end shows the zoom-out 
labelled Colorado potato beetle image with the insect inside the bounding box. Image pre-processing is an important step 

in machine learning. 

Our final dataset combined images collected in real field conditions with laboratory-captured 
images under varied lighting conditions to enhance generalisation. Field data captured at 
different times of the day account for natural field variations, while laboratory data acquired 
under varied lighting wavelengths simulate diverse environmental conditions. This ensures 
that the proposed method generalises well across different real-world scenarios, mitigating 
the impact of lighting variations on detection performance. 

 

 

 

 

 

 

 

 

 

             

 

 

Figure 3: Images of green peach aphids,Myzus persicae on potato, Solanum tuberosum  leaf- with manually annotated 
bounding boxes (red rectangles) 
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2.2 Overview of the framework 
This study combined image segmentation, feature selection, and classical machine learning 
to detect and identify pests and beneficial insects. In the first step, a GrabCut algorithm was 
developed in Python to segment the potential ROI in the image, which are areas likely to 
contain the target insects. In the second step, features such as shape descriptors (e.g. area, 
compactness, elongation and aspect ratio), texture features (e.g. correlation, entropy and 
contrast), colour features (e.g. skewness, energy and standard deviation derived from colour 
histogram) and multiple HOG features are extracted from the segmented ROIs for feature 
selection. These handcrafted features capture critical information about texture patterns, 
colour distributions and morphology in the image, which are key factors for discriminating 
objects. Incorporating feature selection in our methodology helps improve model 
performance by retaining the most relevant features and reducing computational time by 
removing redundant features in our image dataset. In step three, the performance of seven 
feature selection techniques based on standard performance metrics and model 
computational complexity was evaluated. To improve the feature selection process, an 
optimised feature selection method was developed using XAI feature importance ranking to 
identify top-performing features. In the final step, four machine learning algorithms (SVM, 
RF, KNN and NB) were trained using our new feature selection method, and then a 
performance comparison was conducted. 

An overview of our framework is shown in Figure 4; the algorithm first inputs the image into 
the GrabCut algorithm to segment potential insect regions, which are areas likely to contain 
insects in the image. It then extracts all relevant features from segmented insects and stores 
them as a feature vector. Our optimised feature selection technique identifies the optimal 
features from the created feature vector and feeds them to the machine learning algorithm 
for training. The model identifies if the leaf has insects before classifying the insects into 
three classes (Ladybirds, CPB, and aphids). If the classification result is a ladybird, it is 
considered a beneficial insect. On the contrary, if the classification result is CPB or aphids, 
the identified insect is pest-CPB or pest-aphids. Lastly, if the leaf has no insect the model 
detects that at the initial classification stage. The steps to determine the optimal features 
are explained in detail in Section 2.2.5. 
 

 

 

 

 

 

 

 

 

Figure 4: Framework for the improved feature selection technique- extracted region of interest (ROI), shape, texture, edges 
and colour features.  
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2.2.1 Region of interest segmentation 
Image segmentation is a fundamental step in computer vision and machine learning tasks, 
essential for partitioning an image into distinct regions or scenes based on pixel similarities. 
In this work, the GrabCut algorithm was used to segment insects from the backgrounds in 
the dataset. The GrabCut algorithm was originally introduced by Rother et al. (2004) and 
remains the most widely used lightweight image segmentation method because of its 
computational efficiency and ability to produce results comparable to deep-learning-based 
approaches without requiring extensive computational resources (Zhang et al., 2017; Liang & 
Palaoag, 2024). Since this study aims to introduce a novel method that balances 
computational efficiency with practical applicability, the GrabCut algorithm was 
incorporated into the machine learning pipeline due to its lightweight processing advantages 
over deep learning-based segmentation, which typically requires specialised hardware and 
extensive training. The GrabCut image segmentation process consists of three key steps:   

(a) Bounding box initialisation:  

 A bounding box is manually or automatically placed around the region of 
interest (ROI), defining the area containing the object to be segmented in 
the image. 

 Everything outside the bounding box is initially considered the background. 
(b)  Gaussian Mixture Models (GMM) clustering:  

 The GMM clusters pixel values into foreground and background 
distributions based on probability models. Initially, the image is classified 
using a trimap model (T) with three-pixel groups: 
i. TB (Background pixels): pixels outside the bounding box, initially 

labelled as background. 
ii. TU (Unknown pixels): pixels within the bounding box, requiring further 

classification. 
iii. TF (Foreground pixels): initially empty (TF = ∅), representing the object 

region to be segmented.   

  Alpha values (αn) are introduced to optimise the classification into the 
background (αn = 0) and foreground (αn = 1) GMM models. 

(c)  Iterative segmentation and energy minimisation:  

 The segmentation is refined iteratively using an energy minimisation 
framework, optimising the Gibbs energy function described in equation (1) 

               𝐸(𝐺𝑖𝑏𝑏𝑠) = 𝑈(𝑑𝑎𝑡𝑎) + 𝑉(𝑠𝑚𝑜𝑜𝑡ℎ)                                                      (1)                                

Where the data term (U(data)) measures how well the segmentation fits the observed image 
data and the smoothness term (V(smooth)) identifies unexpected changes in segmentation 
labels across neighbouring pixels. The GrabCut algorithm being an iterative method has 
advantages over traditional image segmentation algorithms, such as thresholding methods, 
template matching and watershed segmentation, particularly in refining object boundaries 
and handling complex image backgrounds.  

2.2.2 Features extraction 
Features are unique characteristics or attributes that discriminate different objects in the 
same image or environment. Machine learning algorithms are generally trained on features 
and labels to predict output; their performance depends on how well features are extracted 
and prepared before training. Therefore, feature extraction is a critical step in data pre-
processing and forms the basis of machine learning training. The goal is to extract relevant 
information from the data, suitable for the classifier to distinguish between the different 
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classes in the dataset.  Features previously used in the literature and proven effective for 
insect classification tasks were considered in this study. The histogram of oriented gradient 
(HOG) features has achieved excellent results in extracting shape and edge features for 
insect pest classification and identification (Kasinathan & Uyyala, 2021). The extraction of 
HOG feature vectors from our image data includes dividing the image into cells, histogram 
generation, gradient calculation, and block normalisation (equations 2, 3 and 4). 

𝐺𝑥(𝑥, 𝑦) = 𝐻(𝑥, 𝑦 + 1) − 𝐻(𝑥, 𝑦 − 1)                                    (2) 

                                    𝐺(𝑥, 𝑦) = √𝐺𝑥(𝑥, 𝑦)
2  + 𝐺𝑦(𝑥, 𝑦)

2                                           (3)    

                                    𝛼(𝑥, 𝑦) = 𝑡𝑎𝑛−1 (
𝐺𝑦(𝑥,𝑦)

𝐺𝑥(𝑥,𝑦)
)                                                           (4)                        

Where 𝑥, 𝑦 are pixel coordinates and 𝐻(𝑥, 𝑦) are pixel values at this location and 𝐺(𝑥, 𝑦) 
represents the gradient magnitude. 𝐺𝑦(𝑥, 𝑦) and 𝐺𝑥(𝑥, 𝑦) are the vertical and horizontal 

gradients, respectively, and 𝛼(𝑥, 𝑦) denotes the gradient orientation. 

The next important feature for insect classification is the texture feature. Texture describes 
patterns, pixel arrangements and spatial distributions of tones within specific images or 
bands in satellite images. This important pictorial information about the structural 
arrangement of image surfaces and their relationships with neighbouring pixels can help to 
discriminate objects or regions of interest in digital, aerial and satellite images (Haralick et 
al., 1973). Statistical texture features such as contrast, correlation, entropy, variance and 
angular moment, calculated in the spatial domain were used in this study. These descriptors 
can effectively quantify texture information in digital and aerial photos. Alkan & Aydın, 
(2023) found Grey level co-occurrence matrix (GLCM) to be effective for extracting statistical 
texture features from digital and unmanned aerial vehicle images, respectively. GLCM 
extracts texture features by using statistical measures to analyse the spatial relationship of 
pixels in an image. The first four basic and eight advanced GLCM components that quantify 
texture features in our data were extracted, and the corresponding mathematical equations 
of these descriptors, as described in Haralick et al., (1973) are as follows: 

  𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑠𝑒𝑐.𝑚𝑜𝑚𝑒𝑛𝑡 =∑∑{𝑝(𝑖, 𝑗)}2

𝑗𝑖

                                    (5) 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑𝑛2

𝑁𝑔

𝑛=0

  

{
 

 

∑ ∑𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
|𝑖−𝑗=𝑛| }

 

 

                                       (6) 

  𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = −∑∑𝑝(𝑖, 𝑗) log ( 𝑝(𝑖, 𝑗)

𝑗𝑖

)                                 (7) 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =
∑ ∑ (𝑖𝑗)𝑝(𝑖, 𝑗) − 𝜇𝑥𝜇𝑦𝑗𝑖

𝜎𝑥𝜎𝑦
                                              (8) 

  𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =∑∑(1 − 𝜇)2𝑝(𝑖, 𝑗)

𝑗𝑖

                                            (9) 

𝑆𝑢𝑚 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = ∑𝑖𝑝𝑥+𝑦(𝑖)

2𝑁𝑔

𝑖=2

                                                   (10) 
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𝑆𝑢𝑚 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = ∑(𝑖 − 𝑠𝑢𝑚 𝑒𝑛𝑡𝑟𝑜𝑝𝑦)2𝑝𝑥+𝑦

2𝑁𝑔

𝑖=2

(𝑖)          (11) 

𝑆𝑢𝑚 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ∑𝑝𝑥+𝑦(𝑖) log(𝑝(𝑖, 𝑗))

2𝑁𝑔

𝑖=2

                           (12) 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑝𝑥+𝑦∗            (13) 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ 𝑝𝑥−𝑦(𝑖) log{𝑝𝑥−𝑦(𝑖)}

𝑁𝑔−1

𝑖=0

  (14) 

𝑀𝑎𝑥. 𝑐𝑜𝑟𝑟𝑒𝑙𝑒𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓.= (2𝑛𝑑 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑒𝑖𝑔𝑒𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑄)
1
2⁄       (15) 

𝑊ℎ𝑒𝑟𝑒 𝑄 =∑
𝑝(𝑖, 𝑗)𝑝(𝑗, 𝑘)

𝑝𝑥(𝑗)𝑝𝑦(𝑘)
𝑘

 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =   
𝐻𝑋𝑌 − 𝐻𝑋𝑌1

𝑚𝑎𝑥{𝐻𝑋,𝐻𝑌}
                     (16) 

Note:  𝑖, 𝑗 Is pixel location and 𝑝(𝑖, 𝑗) is pixel value at this location and 𝑁𝑔 represents number 

of grey levels in the image. 𝜇𝑥, 𝜇𝑦, 𝜎𝑥, 𝑎𝑛𝑑 𝜎𝑦  are the means and standard deviations at 

𝑝𝑥 𝑎𝑛𝑑  𝑝𝑦, and HX, HY are entropies of (i)px
and (i)py , respectively.  

After the GLCM computation, the next feature extractor is a colour histogram, commonly 
used for computing colour features. For an RGB image, the histogram is the plot of intensity 
values of each colour component against the frequency of pixels at that value, with the bins 
providing information about the colour distribution in the image, which might correspond to 
different objects or regions in the image. For example, a narrow bin indicates a low contrast 
image while a wider bin signifies a high contrast image. Colour feature has been used 
previously for insect classification  (Espinoza et al., 2016; Kasinathan & Uyyala, 2021). From 
the GrabCut segmented images, the mean, standard deviation, skew, energy and entropy 
statistical-based histogram features were extracted. These statistics-based features give a 
better estimation of colour features, especially for greyscale or segmented images. They 
provide information about the general intensity distribution in the image and help in 
extracting important characteristics such as brightness, contrast, asymmetry, energy levels 
and data quality from the image. considering the probability distribution P(g), grey level pixel 
locations g and total number of intensity levels in image L, Sergyán, (2008) summarises the 
five statistical-based colour feature descriptors as follows:  

𝑔̅ = ∑ 𝑔𝑃(𝑔)

𝐿−1

𝑔=0

                                                                       (17) 

𝜎𝑔 = √∑(𝑔 − 𝑔̅)2𝑃(𝑔)

𝐿−1

𝑔=0

                                                  (18) 

𝛼3 =
1

𝜎𝑔
3   ∑(𝑔 − 𝑔̅)3𝑃(𝑔)

𝐿−1

𝑔=0

                                             (19) 
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𝐸𝑛𝑒𝑟𝑔𝑦 = ∑[𝑃(𝑔)]2
𝐿−1

𝑔=0

                                                   (20) 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ∑𝑃(𝑔)

𝐿−1

𝑔=0

 log2[𝑃(𝑔)]                            (21) 

Where ,g  g    and 3  are mean, standard deviation and skew, respectively.  

The next widely used feature in the literature for object detection is the shape feature, 
which has demonstrated a high success rate for weed detection and insect classification 
(Kasinathan et al., 2020; Pathak et al., 2023). Geometric-based shape information such as 
area, circularity, elongation and many advanced shape descriptors can distinguish objects in 
digital images. For example, in digital and aerial images area can help discriminate small 
objects from large ones while circularity can distinguish round objects from irregular ones. 
Contour detection is one of the most efficient methods of extracting geometric shape 
features from digital images (Figueiredo et al., 2016). However, basic shape features such as 
area, perimeter, minor and major axis depend on image dimensions and their values change 
with image resolution. Due to this limitation, these parameters are ineffective for image 
classification but can be used to derive advanced features independent of image dimension 
changes (Pathak et al., 2023). The Contour method was used to compute 21 advanced 
geometric shape descriptors applied by Pathak et al. (2023)   in their work on weed 
detection (Table 1). 
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Table 1: Geometric shape feature descriptors used for image analysis and object detection tasks. These features quantify 
various aspects of the object’s geometry and are essential for accurate object detection and classification.  

Shape feature descriptors Shape feature descriptors 

𝐶𝑜𝑛𝑣𝑒𝑥 𝑎𝑟𝑒𝑎 𝑓𝑒𝑟𝑟𝑒𝑡 𝑟𝑎𝑡𝑖𝑜 =
𝐶𝑜𝑛𝑣𝑒𝑥 𝑎𝑟𝑒𝑎

𝐹𝑒𝑟𝑟𝑒𝑡 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟2
 𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 =

4𝜋 × 𝐴𝑟𝑒𝑎

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2
 

 

𝐿𝑜𝑔 ℎ𝑒𝑖𝑔ℎ𝑡 𝑤𝑖𝑑𝑡ℎ 𝑟𝑎𝑡𝑖𝑜 = 𝑙𝑜𝑔 [
𝐻𝑒𝑖𝑔ℎ𝑡

𝑊𝑖𝑑𝑡ℎ
] 

 

𝐴𝑠𝑝𝑒𝑐𝑡 𝑟𝑎𝑡𝑖𝑜 =
𝑀𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠

𝑚𝑖𝑛𝑜𝑟 𝑎𝑥𝑖𝑠
 

𝐸𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 =
𝑀𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠 −𝑀𝑖𝑛𝑜𝑟 𝑎𝑥𝑖𝑠

𝑀𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠 +𝑀𝑖𝑛𝑜𝑟 𝑎𝑥𝑖𝑠
 

 

𝑅𝑜𝑢𝑛𝑑𝑛𝑒𝑠 =
4 × 𝐴𝑟𝑒𝑎

𝜋 ×𝑀𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠2
 

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑏𝑟𝑜𝑎𝑑𝑛𝑒𝑠𝑠 𝑟𝑎𝑡𝑖𝑜

=
𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟

2 × 𝜋(𝑊𝑖𝑑𝑡ℎ + 𝐻𝑒𝑖𝑔ℎ𝑡
 

 

𝑆𝑜𝑙𝑖𝑑𝑖𝑡𝑦 =
𝐴𝑟𝑒𝑎

𝐶𝑜𝑛𝑣𝑒𝑥 𝑎𝑟𝑒𝑎
 

𝐿𝑒𝑛𝑔𝑡ℎ 𝑝𝑒𝑟𝑖𝑚𝑡𝑒𝑟 𝑟𝑎𝑡𝑖𝑜 =
𝑀𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟
 

 

𝐶𝑜𝑛𝑣𝑒𝑥 𝑎𝑟𝑒𝑎 =
𝐴𝑟𝑒𝑎

𝑆𝑜𝑙𝑖𝑑𝑖𝑡𝑦
 

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦

=
4 × 𝑎𝑟𝑒𝑎

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 × 𝑓𝑒𝑟𝑟𝑒𝑡 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟
 

 

𝐶𝑜𝑛𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 =
𝐴𝑟𝑒𝑎

𝐹𝑒𝑟𝑟𝑒𝑡 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟
 

𝐺𝑟𝑢𝑚 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 =
16 × 𝐴𝑟𝑒𝑎2

4𝜋 × 𝑝𝑒𝑟𝑖𝑚𝑡𝑒𝑟 × 𝑓𝑒𝑟𝑟𝑒𝑡3
 

 

𝐴𝑟𝑒𝑎 𝑙𝑒𝑛𝑔ℎ𝑡 𝑟𝑎𝑡𝑖𝑜 =
𝐴𝑟𝑒𝑎

𝑀𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠2
 

𝑅𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦 =
𝐴𝑟𝑒𝑎

𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒 𝑎𝑟𝑒𝑎
 

 

𝐻𝑜𝑙𝑙𝑜𝑤𝑒𝑛𝑒𝑠 =
𝐶𝑜𝑛𝑣𝑒𝑥 𝑎𝑟𝑒𝑎 − 𝐴𝑟𝑒𝑎

𝐶𝑜𝑛𝑣𝑒𝑥 𝑎𝑟𝑒𝑎
 

𝐹𝑒𝑟𝑟𝑒𝑡 𝑚𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠 𝑟𝑎𝑡𝑖𝑜 =
𝐹𝑒𝑟𝑟𝑒𝑡 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟

𝑀𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠
 

 

𝐴𝑟𝑒𝑎 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 =
4 × 𝐴𝑟𝑒𝑎

𝜋𝐹𝑒𝑟𝑟𝑒𝑡  𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟2
 

𝐹𝑒𝑟𝑟𝑒𝑡 𝑚𝑖𝑛𝑜𝑟 𝑎𝑥𝑖𝑠 𝑟𝑎𝑡𝑖𝑜 =
𝐹𝑒𝑟𝑟𝑒𝑡 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟

𝑀𝑖𝑛𝑜𝑟 𝑎𝑥𝑖𝑠
 

 

𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑎𝑠𝑝𝑒𝑐𝑡 𝑟𝑎𝑡𝑖𝑜 =
1

𝑎𝑠𝑝𝑒𝑐𝑡 𝑟𝑎𝑡𝑖𝑜
 

𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑟𝑎𝑡𝑖𝑜

=
𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟

𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟
 

𝑤ℎ𝑒𝑟𝑒, 
𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟

= 2.0 × √𝜋 × 𝐴𝑟𝑒𝑎 

Note: the dimensions for calculating area and perimeter are measured in pixel2 and pixels, 
respectively. 

2.2.3 Techniques for features selection 
 Selecting suitable features is crucial for optimising the performance of machine learning 
classifiers and reducing computational complexity. Often, most extracted features do not 
contribute to model improvement. Therefore, exploratory data analysis was applied to 
thoroughly analyse all features to uncover hidden patterns, relationships, anomalies and 
redundancy by checking their statistical summaries, and univariate, bivariate, and 
multivariate interactions. The correlation matrix shows the relationship and strength of 
features with target classes in our dataset “CPB, ladybird and aphids” (Figure 5). A similar 
plot for GLCM features highlighted that differences in variance and difference in entropy 
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features are outliers and therefore dropped. No issue is observed for colour histogram and 
HOG features and thus all are included in the feature selection process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Correlation matrix of extracted sample features with three labelled insect classes- showing relationships among 
different (a) shape features and (b) texture features and their correlation with labelled insect classes. Positively correlated 

features like circularity, roundness and solidarity show potential for discriminating between insect classes. While negatively 
correlated features such as aspect ratio, and elongation may contribute less to improving classification performance 

Feature selection aims to automatically identify the most relevant features (Sosa-Cabrera et 
al., 2023). However, these features are not easily identifiable as no single feature selection 

(a)  

(b)  
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method is universally applicable (Silva et al., 2015). Therefore, feature selection techniques 
were used to sift through many features and find the optimal set that maximises the 
classification rate. Although several feature selection methods exist, filter methods are 
model-independent and can identify relevant features based on intrinsic data properties 
without overfitting, making them ideal for our image datasets. In this work, filter-based 
feature selection techniques were experimented with to ensure fair comparison and 
reliability in our analysis. 

2.2.3.1 Mutual information (MI) 
The MI technique measures the relevance and redundancy among features and estimates 
how much information one random variable has about another. This is valuable in feature 
selection as it measures how relevant a feature subset is to the target output (Estévez et al., 
2009; Vergara & Estévez, 2014). If X and Y are two discrete random variables with joint 
probability mass function p(x,y) and marginal probabilities p(x) and p(y), their MI can be 
expressed as follows:  

                           𝐼(𝑋; 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦) 𝑙𝑜𝑔
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)
                                                       (22)𝑦∈𝑌𝑥∈𝑋  

The MI becomes zero when the two variables are statistically independent, which means  
𝑝(𝑥, 𝑦) = 𝑝(𝑥)𝑝(𝑦)  

2.2.3.2 Chi-square coefficient 
The Chi-squared (X2) coefficient is a statistical feature selection method that measures the 
relevance between feature t and category C. If the feature t and category C are independent, 
t cannot be used to determine whether the object belongs to category C (Zhai et al., 2018).  
The Chi-squared coefficient was used to estimate the relevance of all our extracted features 
for the target output. The statistical expression for X2 is defined: 

𝑋2 =∑
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
                        (23) 

2.2.3.3 Fisher separation criterion  
When used for feature selection, the Fisher separation criterion identifies the best 
combinations of features that group similar objects in the same class while maximizing the 
margin between objects in different classes. Silva et al., (2015) summarized Fisher separation 
criterion equations as: 

𝐹𝑑 = 𝑎𝑟𝑔𝑚𝑎𝑥𝐽(𝐹
𝑑)

𝐹
                                                                                    (25) 

Where, F is the feature set containing all the extracted features, Fd is the feature subset 
consisting of d features and J is found by finding the value of projective vector W that 
maximizes the following Fisher criterion (Lei et al., 2012): 

𝐽 =
|𝑊𝑇𝑆𝑏𝑊|

|𝑊𝑇𝑆𝑊𝑊|
                                                                                        (26) 

Where WT, denotes the transpose of W, Sb, is the between-class scatter matrix and Sw is the 
within-class scatter matrix. The optimum value of W is obtained by solving the Eigenvalues 
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problem. The values of WT determine the features that contribute most to class separation, 
thus achieving high scores in the Fisher criterion.  

2.2.3.4 Variance thresholding  
This feature selection method uses a threshold to remove all features with low variance in 
the feature vector. It assumes that features with lower variance are less informative while 
features with higher variance might have more useful information about the target object. 
The variance of all the features is calculated, and a threshold is set. The selection of this 
threshold is critical; a high value might lead to elimination of the relevant features and a low 
threshold might result in including redundant features.  

2.2.3.5 Maximal information coefficient (MIC) 
The MIC, introduced by Reshef et al., (2011), is a dependency measure based on information 
theory. It is an important tool for identifying non-linear relationships between pairs of 
variables in large datasets. MIC can identify both correlated and non-correlated relationships 
and for correlated relationships provides a score similar to the coefficient of determination 
(R2) obtained from fitting data to the regression line. The basic steps in computing MIC are: 
(I) For every pair of coordinates (x, y), the algorithm identifies the 𝑥 × 𝑦 grid with the 
highest induced MI; (II) the algorithm normalises the MI scores and compiles a matrix that 
stores, for each resolution, the best grid at that resolution and its normalised score; (III) the 
normalised scores form the characteristic matrix, which can be visualised as a surface; MIC 
corresponds to the highest point on this surface. 

2.2.3.6 Principal components analysis (PCA) 
Although not a feature selection technique, PCA is a widely used statistical method in 
machine learning for dimensionality reduction. PCA reduces the dimensionality of the 
feature vector, containing all the extracted features to a lower dimensional vector thereby 
reducing computational complexity and improving performance. The new feature set, called 
principle components is the linear combination of the original features in the dataset. 
However, PCA suffers from major limitations including information loss due to data 
compression. Additionally, it is computationally intensive, because it transforms all the 
features including irrelevant ones into new features (Xiao, 2024). 

2.2.3.7  Proposed explainable artificial intelligence (XAI) feature selection method 
Despite decades of research on feature selection, challenges remain in identifying the 
optimal feature subset that optimises model performance while reducing complexity. Some 
methods require massive computational resources while others struggle to distinguish 
between important and redundant features, especially for high-dimensional data such as 
images. Therefore, feature selection remains an active research area in machine learning 
and data mining (Sosa-Cabrera et al., 2023). This work proposes using XAI to identify the 
most important and contributing features for model development. The concept of 
permutation feature importance (PFI) (Fisher et al., 2019) and Shapley Additive explanations 
(SHAP) (Lundberg et al., 2017) were adopted to identify the most relevant features in our 
dataset. The PFI evaluates the effect of permuting a feature on the model’s predictive ability. 

Let  𝑓:  ℝ𝑝 ⟶ℝ, denotes a machine learning hypothesis function, where 𝑓(𝑥) denotes the 
predicted output of the model for a feature vector   𝑥 ∈ ℝ𝑝, which has p dimensions. 
Suppose the observed feature vector is denoted as 𝑥𝑗 ∈ ℝ

𝑛 and the j-th feature is 

considered as a random variable Xj. The permutation importance of the j-th feature is then 
defined as: 
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𝑃𝐹𝐼𝑗 = 𝔼[𝐿(𝑦, 𝑓(𝑋̃𝑗, 𝑋𝑗−1))] − 𝔼[𝐿(𝑦, 𝑓(𝑋𝑗, 𝑋−𝑗))]                             (27) 

Where L is the loss function, y is the positive output, Xj is the original feature vector, 𝑋̃𝑗 is the 

permuted feature and 𝑋−𝑗 represents all unchanged features  (Molnar, 2022). 

In contrast, SHAP explains the contributions of individual features to a model’s prediction 
outcomes using the concept of Shapley values, an additive feature attribution similar to a 
linear model (Lundberg et al., 2020). Let f represent the original prediction model and g 
explanatory model. By using local methods (Ribeiro et al., 2016), the prediction f(x) for a 
given input x can be interpreted through a simplified input Z', a binary vector mapping the 
original features through a function where each feature is either included to be part of g(z) 
model or excluded. Lundberg et al., (2017) expressed an additive feature attribution method 
for a linear explanatory model g as follows: 

𝑔(𝑍′) = ϕ0 +∑ϕ𝑖

𝑁

𝑖=1

𝑧′𝑖                                                                          (28) 

Where N represents the number of simplified input features and 𝑍′ ∈  {0, 1}𝑁, ϕ0 ∈  ℝ is 
the null model output, ϕ𝑖 ∈  ℝ Xj is the feature attribution for a feature i, that is the Shapley 
value. The variable 𝑧′𝑖    are the observation outcomes, with (𝑧′𝑖  = 1) included or (𝑧′𝑖  =
0) excluded.  Additionally, the Shapley value ϕ for a feature i is computed by summing over 
all the possible feature subsets S that exclude i. Mathematically, this can be expressed as: 

ϕ𝑖 = ∑
|𝑆|! (𝑁 − |𝑆| − 1)!

𝑁
𝑆⊆𝑁{i}

 [𝑓(𝑆⋃{𝑖}) − 𝑓(𝑆)]                                 (29) 

Where, N is the total number of features, f(S) is the prediction outcome of the model for the 
feature subset S and the expression |𝑆|! (𝑁 − |𝑆| − 1)! is the weight of feature i in the 
subset S. 

The proposed XAI feature selection method uses the intersection of features selected by 
both PFI and SHAP to achieve better accuracy while reducing model complexity and 
execution time. In this work, tree-based SHAP models were implemented as presented in 
Lundberg et al., (2017). Finally, the classifiers discussed in section 2.3.4 were trained using 
our method and the six other conventional feature selection techniques described in 
sections 2.2.3.1 - 6. The performance was evaluated and compared based on key 
performance parameters: accuracy, model complexity, training time, execution time, and 
number of features. 

2.2.4 Machine learning algorithms 
To evaluate the feature selection methods in section 2.2.3, four machine learning 
algorithms, successfully used in previous studies for insect classification, were selected. 
These algorithms were chosen for their lower computational complexity and ability to 
produce competitive results with fewer computational resources. Unlike deep learning 
methods, which automatically extract and use features, classical machine learning enables 
controlled feature selection to optimise performance. Given the objective of this study is to 
balance accuracy with computational efficiency using feature selection, these algorithms 
were deemed appropriate, as supported by recent studies (Kasinathan et al., 2020; 
Srisuradetchai & Suksrikran, 2024). These classifiers are trained on feature matrix X’, 
consisting of the selected feature subset and the corresponding labels y. The goal is to 
improve performance and reduce computational overload in reduced feature space. Each 
classifier has a unique method of estimating the decision functions from the labelled 
dataset. In our experiment, there are three class labels (corresponding to CPB, ladybirds and 
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aphids) and each feature value represents shape, colour, texture and HOG as described in 
section 2. A brief description of these algorithms follows:  

2.2.4.1 Support vector machine (SVM) algorithm 
SVM is a supervised learning algorithm that separates classes in a dataset by finding the 
optimal hyperplane. Points in the dataset closer to the hyperplane are referred to as support 
vectors and are critical in defining the margin between classes (Guo & Song, 2018). Let the 
training dataset be {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1, 2, 3, … 𝑛}, where 𝑦𝑖𝜖 {+1,−1} which corresponds to class 
labels and 𝑋′ ∈ 𝑅𝑑 are the feature vector derived from d-dimensional input vectors. In linear 
SVM, a hyperplane separating two classes can be represented by the set of points x that 
satisfy: 
            𝑤. 𝑥 − 𝑏 = 0                                                                                                   (30) 
Where w is the normal vector perpendicular to the hyperplane, x feature vector and b is the 
bias term. In Equation (30), the classification problem is equivalent to minimizing the 
magnitude of w subject to constraint no data points fall within the margin. This means 

minimizing 
1

2
‖𝑤‖2 subject to the constraint 𝑦𝑖(𝑤. 𝑥𝑖 − 𝑏) ≥ 1       for all training points. 

For non-linear separable training samples, SVM maps the input vectors into a higher 
dimensional feature space, where a linear separating hyperplane can be created. This 
involves the use of a kernel function to reduce computational complexity of the high 
dimensional feature space. Common kernel functions include linear, Gaussian, sigmoid, and 
polynomial kernel functions.  

2.2.4.2 Random forest (RF) algorithm 
RF is an ensemble machine learning algorithm that combines the strength of multiple 
decision trees to achieve better predictions. RF algorithms can be used to solve both 
regression and classification problems. The working principle involves building multiple 
decision trees and merging their predictions to achieve more accurate and stable results. 
During training, sampling is performed at both the sample and feature levels. At the sample 
level, subsets of samples are determined by the bootstrap sampling method to train 
individual decision trees. At the feature level, feature subsets are randomly selected for 
information gain computation before splitting the decision tree nodes. The RF model 
reduces the variance effects of a single decision tree model by synthesizing results of 
multiple decision trees, although it may not correct bias effectively but ensures no 
underfitting occurs in each decision tree.  Additionally, RF decision trees are independent, 
this allows the training and prediction processes to be executed simultaneously (Boruah & 
Biswas, 2023). After training, the final prediction is through majority voting for classification 
tasks and averaging the predicted probabilities of all the trees for regression tasks. The 
majority voting process in RF classifier is expressed as follows (Breiman, 2001): 

𝑓(𝑥) =
𝑎𝑟𝑔𝑚𝑎𝑥 
𝑦 ∈ 𝑌 ∑𝐼(𝑦 = ℎ𝑗(𝑥))

𝐽

𝑗=1

                                                (31)                      

Where 𝑓(𝑥) is the predicted class with the highest votes, 𝑦 is an actual class, 𝑌 is the set of 
all possible class labels, and ℎ𝑗(𝑥) represents the jth base learner, and I(.) is an indicator 

function that returns a value of 1 if the prediction is true and 0 if not. 
 

2.2.4.3 K-nearest neighbour (KNN) algorithm 
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The KNN classifier has been applied in many applications including insect classification and 
has achieved excellent results in classifying insects on public datasets (Yao et al., 2014; 
Remboski et al., 2018; Kasinathan et al., 2020). KNN is an instance-based classifier that uses 
distance metrics such as Euclidian, and Manhattan to estimate similarity between data 
points. To do classification, each data sample is considered as a point in a two-dimensional 
plane. The distance between data points is computed and the class of a sample is 
determined based on the majority votes of its neighbours (Venkateswarlu & Gangula, 2024). 
For regression tasks, the mean, or median of the k-neighbours can be calculated or a 
solution to the linear regression problem can be found using the neighbours. The number of 
nearest neighbour K is always an odd number to avoid any ties in the voting process. Cross-
validation is used to choose the best value of k to minimise prediction error (Srisuradetchai 
& Suksrikran, 2024).    

2.2.4.4 Naïve Bayes (NB) algorithm 
The NB, derived from probabilistic reasoning is a commonly used classifier in machine 
learning that assumes feature independence given the class label (Russell & Norvig, 2010). 
This model considers the “class” variable C to be predicted as the root node and the 
“Features” variable Xi as the leaf nodes. The features are assumed to be conditionally 
independent, hence the name Naïve.  To perform classification, let c be the number of 
classes in our dataset, x feature vector values, and p number of features, the probability of a 
new sample belonging to class c can be summarized as follows (Silva et al., 2015): 

𝑃(𝐶 = 𝑐|𝑥) = 𝑃(𝐶 = 𝑐)∏𝑃(

𝑝

𝑗=1

𝐹𝑗 = 𝑋𝑗|C = c)                                      (32) 

Where 𝑃(𝐶 = 𝑐) is the probability of an observation belongs to class c, 𝑃(𝐹𝑗 = 𝑋𝑗|C = c) is 

the probability of feature 𝑋𝑗 having value 𝑥𝑗 given class c.  

2.3 Evaluation metrics 
To analyse our results, both model complexity and performance were evaluated. the model 
complexity was determined by computing the number of learnable parameters needed to 
construct the model, training and execution time. While complex models can achieve higher 
accuracy, they often require huge hardware resources and longer training time (Lee & Chen, 
2020). Training time, usually measured in seconds, is the time needed to train a model from 
start to end and mostly depends on model complexity, hardware resources, and data size. 
Execution time, which reflects how long a model takes to predict a new sample, is crucial for 
real-world applications. Model performance was also evaluated using standard metrics such 
as accuracy, precision, recall, and F1 score. These metrics are calculated based on False 
positive (FP), false negative (FN), true positive (TP) and true negative (TN) as shown in 
Equations 33 to 36. Precision is the percentage of correctly predicted classes. The accuracy 
of the classifier gives the percentage of the correctly classified positive and negative 
samples. Recall estimates the fraction of the classes correctly predicted as positives out of 
the total prediction while the F1 score is the harmonic mean between precision and recall.  
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                               (33) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                  (34) 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                             (35) 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                                (36) 

 
2.4 Model fine-tuning 
To improve the performance of our model, parameters were fine-tuned using a 10-fold grid 
search and 5-fold stratified cross-validation. Grid search systematically tries a range of 
hyperparameter values to find the combination that gives optimal performance. Stratified 
cross-validation is an enhancement of k-fold cross-validation, where the dataset is divided 
such that each fold maintains the same proportion of class labels as in the original dataset, 
thus providing a more robust evaluation of the model's performance. This technique 
prevents overfitting, which occurs when a model performs well on the training set but 
poorly on the testing set or when predicting new data samples (Russell et al., 2010). Table 2 
summarises the range of parameters used and the final optimal parameters of each 
classifier.  
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Table 2: Hyperparameters ranges and optimal values for principal components analysis (PCA), mutual information (MI) and 
our proposed method. Linear kernel optimised support vector machine model (SVM) performance across all the techniques 
while parameter ranges varied for k-nearest neighbour (KNN) and random forest (RF) models. 

Model Range of parameters  Optimal parameters       
Techniques 

  
 
 

 C=10, kernel= 'linear', 
probability=True 

       All + 
PCA 

SVM Kernel= [linear, poly, rbf, sigmoid], 
C=[0.1, 1, 10, 100],  

 C=100, kernel= 'linear', 
probability=True 
 

        MI 

   C=10, kernel='linear', 
probability=True 

       
Proposed 

   n_estimators=200, 
max_depth=None, 
min_samples_split=2, 
min_samples_leaf= 1 
 

       All + 
PCA 

RF n_estimators= [100, 200, 300],    
max_depth=[None, 10, 20, 30],   
min_samples_split= [2, 5, 10],     
min_samples_leaf=[1, 2, 4] 

 n_estimators=300, 
max_depth=None, 
min_samples_split=5, 
min_samples_leaf= 4 
 

       MI 

   n_estimators=100, 
max_depth=None, 
min_samples_split=2, 
min_samples_leaf=1 

       
Proposed 

   n_neighbors= 3, weights= 
'uniform', eetric= 'manhattan' 
 

       All + 
PCA 

KNN n_neighbors=[3, 5, 7], weights= 
['uniform', 'distance'], metric= 
['euclidean', 'manhattan'] 

 n_neighbors=5, weights= 
'distance', metric= 'manhattan' 
 

        MI 

   n_neighbors=7, weights= 'uniform', 
metric= 'manhattan' 

       
Proposed 

2.5 Experiments 

To evaluate feature selection techniques for insect detection and classification using the 
insect-plant dataset,  we: (1) Trained and evaluated SVM, RF, KNN, and NB classifiers based 
on standard performance metrics Equations 31-34 and computational complexity measures, 
such as the number of parameters, training, and prediction times; (2)  identified the top-
performing features using XAI feature importance ranking, a collection of consistent, 
valuable features that contributed to model development; (3) compared the performance of 
the proposed technique with the six conventional techniques (Section 2.2.3-6) in terms of 
model complexity and detection accuracy. To evaluate model complexity, training time, 
execution time, and the number of features selected were computed. Standard metrics 
(Section 2.3) were used to assess performance. The accuracy and practical suitability of each 
model for real-world applications were evaluated. All evaluations were conducted using 
Python version 3.8 on a Dell Optiplex 3050 desktop computer with an Intel Core i5-6500 CPU 
(3.20 GHz, 4 cores, 4 threads) and 4 GB RAM. These requirements are similar to most single-
board computers and edge devices. 
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3. Results and discussion 

 
3.1 Insect segmentation and region of interest identification 
Accurate segmentation of ROI is crucial for feature extraction and insect classification tasks. 
The GrabCut algorithm was used to segment regions containing insects from the 
background, enabling feature extraction specifically from insects only. The algorithm 
performed extremely well in segmenting images of CPB and seven-spot ladybirds with all 
instances correctly identified (Figure 6a-f). However, the GrabCut algorithm improperly 
segmented images where the background closely matched the insect, especially in images 
containing aphids (Figure 6g-i). This could also be due to their smaller size as well as colour 
similarity to the background leaves. To address this, maximally stable extremal regions post-
processing was applied to improve segmentation accuracy. This technique focuses on the 
maximally stable regions in the image, to effectively identify and isolate small objects that 
may otherwise be challenging to segment due to their size and similarity in colour to the 
background. Applying this method improved GrabCut segmentation accuracy, correctly 
identifying almost all the ROIs in the aphids’ images (Figure 6j-l). 
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Figure 6: (a) Original image of Colorado potato beetles on a potato plant, (b) segmented background and foreground 

regions, (c) identified region of interest (ROI); (d) original image of a seven-spot ladybird on a potato plant, (e) segmented 

background and foreground regions, (f) identified ROI; (g) original image of green peach aphids on a potato plant, (h) 

segmented background and foreground regions, (i) identified ROIs (j) original image of green peach aphids (k) Correctly 

identified background and foreground regions (l) Correctly identified ROIs 

 

A plot of pixel distributions of the foreground and background models shows that an insect 
represents less than 5% of the original image (Figure 7). This highlights the challenge of 
accurately segmenting small objects. Consequently, this study focuses on the overall 
performance of the complete machine-learning pipeline rather than individual pre-
processing steps. However, future work may include a comparative evaluation of image 
segmentation methods for specific insect species. 
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Figure 7: Image pixels distribution- showing segmented regions of interest in the image, illustrating the distinction between 

background and insect regions. The red dotted line represents the insect region, capturing all its body parts, and the blue 
line outlines the background including the surrounding scene. 

Although detecting individual aphids may present challenges, high precision can be achieved 
in estimating aphids' population and identifying infested leaves or patches of plants by 
analysing the overall distribution of aphids within an image. In practice, pinpointing 
individual aphids might not be necessary, especially in the context of on-the-spot spraying 
methods, where the focus is on targeting infested leaves or areas rather than individual 
insects. Thus, for aphid detection, it may be more effective to assess the algorithm’s ability 
to estimate the number of aphids and identify the infested leaves for treatment instead of 
induvial insects, as explored in previous works  (Xu et al., 2023; Gao et al., 2024a). This 
consideration is important for integrating the technique into targeted pest control 
strategies.  

3.2 Explainability and feature importance ranking  
The overall contribution of each feature in our dataset was assessed to identify the most 
influential features in insect classification. This analysis is important for improving the 
model’s performance and generalisation ability.  

Permutation feature importance ranking: The ranking of features (Table 3) is based on the 
contribution of each feature; hog_1757 with a standard deviation of 0.020 and mean 
average of 0.030 had the highest influence on the model’s performance followed by 
compactness. The influence decreases down the table with lower-ranked 
features, suggesting that the model’s performance is less affected by the 
random permutations of these features.   

Table 3: Top 20 features ranked by permutation importance for insect classification: the weight column 
shows each feature’s contribution to classification performance, with higher values indicating greater 
influence. Features include a histogram of oriented gradients (HOG) for texture and edges (hog_1757, 
hog_611, hog_1661, etc.), geometric shape descriptors (compactness, area length ratio, hollowness) 
and colour features (standard deviation and entropy). Permutation importance evaluates the 
model’s prediction error after randomly permuting a feature, providing insights into its significance in 
the model decision-making. This analysis identifies the most influential features in our dataset. 
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Weight Feature 

0.030 ± 0.020 hog_1757 

0.025 ± 0.010 compactness 
0.021 ± 0.022 hog_611 
0.020 ± 0.008 hog_1294 
0.019 ± 0.008 Alr 

0.018 ± 0.007 hog_1661 

0.016 ± 0.017 Std_hist 

0.016 ± 0.010 hog_1643 

0.016 ± 0.023 hog_1266 

0.015 ± 0.012 hog_60 

0.015 ± 0.007 hog_298 

0.015 ± 0.012 hollowness 

0.015 ± 0.019 hog_730 

0.013 ± 0.008 hog_1578 

0.013 ± 0.017 hog_504 

0.013 ± 0.008 hog_598 

0.013 ± 0.008 entropy 

0.013 ± 0.017 hog_56 

0.013 ± 0.013 hog_478 

0.013 ± 0.008 hog_206 

Shapley additive explanations: The area length ratio (alr) feature had the highest average 
impact on the model's performance (Figure 8). Other features such as roundness, length 
perimeter ratio (lpr), compactness, circularity, and standard deviation histogram (std_hist) 
also strongly contributed to model outputs.  On the other hand, features like the energy, 
rectangularity, hollowness and histogram of oriented gradients (hog_889) had lower average 
impacts, suggesting that the model's performance is less affected by these features. This 
indicates their contribution to the overall model's performance is relatively minimal. The 
rule of thumb is that features with higher SHAP values like alr and roundness are likely to 
have stronger correlations with the target class and, hence, are more influential in 
determining the predicted outcome. Likewise, features with lower SHAP values such as 
energy and rectangularity have a lower impact, signifying that their random permutations 
have a negligible effect on the model’s performance. 
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Figure 8: Shapley values showing the impact of each feature on the random forest model for ranking and selection (a) 
average feature importance, where bar length represents the contribution of each feature to model performance, longer 

bars indicate higher influence (b) Feature influence on individual predictions, features ranked from most (area length ratio, 
alr) to least (energy). The horizontal axis indicates the direction and magnitude of each feature's impact on the model’s 

outcomes, with positive values increasing predictions and negative values reducing them. The colour scale ranges from blue 
(low values) to red (high values), while the vertical grey line represents a neutral impact (value=0). This analysis enables 

informed feature selection to improve model performance. 
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3.3 Evaluating the performance of feature selection techniques and classifiers 
The RF model achieved high performance across all the feature selection techniques, with all 
metrics above 80% (Figure 9a). Our proposed method, MI and Fisher separation criterion 
produced the best results, with a Fisher separation criterion achieving above 90% for all 
metrics and MI yielding the highest precision value at 94.44%. The PCA and Chi-square were 
ineffective methods for RF algorithm despite being more computationally demanding than 
MI. On average, the two top-performing techniques exceeded the PCA with all features by 
approximately 1.77% accuracy, 2.13% precision, 2.34% recall and 1.84% F1 score.  

The method developed in this study, MI and variance thresholding were the most effective 
feature selection techniques for the SVM classifier, achieving an average of 85% for all 
metrics (Figure 9b). While other techniques consistently performed well, exceeding 75%, 
Fisher separation criterion underperformed, with below 60% accuracy despite higher 
computational demands (Table 4). This further highlights the importance of feature 
selection, demonstrating that performance does not depend on the number of features and 
computational complexity of the model (Table 4) but on the relevance and suitability of the 
selected features for the specific algorithm. For example, the Fisher separation criterion 
proved effective for an RF algorithm but not for SVM. 

Fisher separation criterion and our proposed method yielded the best results for the KNN 
model, with all metrics exceeding 81% (Figure 9c). Interestingly, Fisher separation criterion 
was consistent for both KNN and RF models (Figure 9a). Both techniques achieved the same 
results for all metrics, with the highest value of 84.75% for precision and the lowest value of 
83.33% for recall. The remaining five techniques showed consistently similar results with all 
metrics above 75%. 

Despite the NB algorithm being rarely used for insect classification, it performed fairly well in 
our experiment, with all metrics above 75% across all the feature selection techniques 
(Figure 9d). MI produced the best results exceeding 80% for all metrics. This suggests that 
MI selects the most relevant features and seems to be the most suitable technique for the 
Naïve Bayes algorithm. Our proposed method and PCA were the next best-performing 
methods while chi-square and variance thresholding resulted in lower scores, particularly for 
recall (76.67%). These results indicate that with a suitable combination of features, the 
performance of a classifier can be improved. 



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

 

Figure 9: Performance of classifiers (precision, recall, F1 score and accuracy) across feature selection techniques (principal 
component analysis (All+PCA), mutual information (MI), chi-squared coefficient, fisher separation criterion, variance 

thresholding, maximal information coefficient (MIC) and the proposed method). Metrics scores are expressed as 
percentages (a) random forest (RF) (b) support vector machine (SVM) (c) K-nearest neighbour (KNN) and (d) Naïve Bayes 

(NB) performance across all techniques. This figure compares the performance of machine learning algorithms used in this 
study. 
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Our proposed method improved performance, producing the highest Metric scores while 
reducing model parameters compared to traditional feature selection techniques (Table 4). 
This resulted in faster training time, especially for the SVM classifier, requiring approximately 
half of the training time required by conventional feature selection techniques. Our 
proposed technique prediction time was comparable to top-performing feature selection 
techniques for all models (Table 4).  

The RF classifier consistently achieved the highest accuracy across all feature selection 
techniques, though it required the highest number of parameters (Table 4). The proposed 
method, MI and Fisher separation criterion outperformed other feature selection methods 
for all classifiers, with the proposed method maintaining the best balance between accuracy 
and computational complexity. NB required the fewest number of parameters, and the 
fastest training and prediction times, while SVM had the longest training times regardless of 
feature selection technique used. Notably, the MIC technique required more training time 
for all algorithms while the KNN classifier consistently achieved lower accuracy and had the 
slowest prediction times. 

Feature selection improved the performance of machine learning algorithms, (Table 4) SVM 
with XAI (90.16%) and PCA (81.96%). This shows that our proposed technique optimised 
SVM classifier accuracy while maintaining an acceptable number of parameters, training and 
prediction time.  Likewise, our proposed technique optimised an RF classifier, with an 
accuracy of 92.62%. The KNN classifier achieved its highest accuracy of 84.43% using Fisher 
separation criterion, though have longer prediction times. The NB consistently performs with 
feature selection techniques compared to PCA, with accuracy ranging from 81.97% to 
85.25% and minimal computational demands. 
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Table 4: Comparison of accuracy and computational complexity of the proposed method with conventional feature 
selection techniques for insect classification. Machine learning models (support vector machine, SVM; random forest, RF; K-
nearest neighbour, KNN; and naïve Bayes, NB) were evaluated across various feature selection methods (All features + 
principal component analysis, All +PCA; mutual information, MI; Fisher separation criterion; chi-square coefficient; maximal 
information coefficient, MIC; variance thresholding and the proposed explainable artificial intelligence, (XAI) method).  
Columns show classification accuracy (%), number of model parameters, and training/ prediction times. This comparison 
evaluates the effectiveness of the XAI method in balancing accuracy and computational efficiency. 

The 
prop
osed 

XAI 
met
hod 

redu
ces 

com
puta

tiona
l 

com
plexi

ty 
and 

basic 
hard
ware 
requi

rem
ents 
com
pare

d to 
conv
entio

nal 
techniques (Table 5). By selecting only 18 top-performing features instead of 80 (PCA) or 40 
(others), XAI minimises redundancy while maintaining classification performance. Its smaller 
model size (50-150 MB) compared to (500-1000 MB) for PCA enhances scalability and 
deployment feasibility. Additionally, XAI reduces training time, memory footprint, and 
inference costs, making it a practical and efficient alternative to conventional feature 
selection techniques for insect classification tasks. 

 

 

 

Table 5: Comparison of the basic hardware requirements of the proposed explainable artificial intelligence (XAI) method 
with principal components analysis (PCA+All features), mutual information (MI), variance thresholding and maximal 
information coefficient (MIC) using the support vector machine (SVM) model. All experiments used a Dell Optiplex 3050 
(Intel Core i5-6500, 4 GB RAM) desktop computer. 

Models Techniques Accu (%) Number_param Training time (s) Prediction Time (ms) 

 All+PCA 81.96 8.96 x103 1.95x104 <1x10-6 

SVM MI 85.25 4.04 x103 9.48 x103 3.29 x10-2 

 Fisher 51.64 1.93 x104 4.15 x101 3.27 x10-2 

 Chi-square 78.69 5.52 x103 3.02 x103 2.07 x10-2 

 MIC 86.07 4.52 x103 8.12 x103 1.64 x10-2 

 Variance 87.70 4.60 x103 1.72 x104 1.86 x10-2 

 Proposed 90.16 2.73 x103 2.87 x102 2.50 x10-3 

 All+PCA 90.16 7.77 x107 2.64 x102 3.53 x10-1 

RF MI 90.16 5.28 x106 2.64 x102 5.12 x10-1 

 Fisher 90.98 1.88 x106 2.88 x102 2.56 x10-1 

 Chi-square 86.07 9.09 x106 2.82 x102 1.28 x10-1 

 MIC 89.34 3.91 x106 2.73 x102 2.56 x10-1 

 Variance 88.52 1.45 x106 2.77 x102 5.12 x10-1 

 Proposed 92.62 5.46 x106 6.02x10-1 3.92 x10-1 

 All+PCA 79.51 4.85 x104 5.03x10-1 1.40 x10-1 

KNN MI 77.04 2.42 x104 2.63 x101 0.71 x101 

 Fisher 84.43 2.42 x104 2.62 x101 0.72 x101 

 Chi-square 79.51 2.42 x104 2.86 x101 0.77 x101 

 MIC 77.05 2.42 x104 2.63 x101 0.71 x101 

 Variance 79.51 2.42 x104 2.97x101 0.91 x101 

 Proposed 83.61 1.21 x104 2.98x10-3 1.31 x101 

 All+PCA 82.79 3.20 x102 <1x10-4 1.28 x10-1 

NB MI 85.25 1.60 x102 1.56x10-1 <1x10-6 

 Fisher 81.97 1.60 x102 <1x10-4 <1x10-6 

 Chi-square 84.44 1.60 x102 <1x10-4 <1x10-6 

 MIC 82.79 1.60 x102 <1x10-4 <1x10-6 

 Variance 84.43 1.60 x102 <1x10-4 <1x10-6 

 Proposed 81.97 1.32 x102 3.99x10-3 4.08 x10-2 
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metric 

Techniques 

XAI 
method 

PCA + All 
features 

MI Variance 
thresholding 

MIC 

Training time (hours) ∼ 0.08   ∼ 5.42  ∼ 2.63  ∼ 4.78  ∼ 2.26  
Inference time 
(ms/sample) 

2.50 x10-3  1.0 x10-6  3.29 x10-2  1.86 x10-2  1.64 x10-2  
 

RAM usage (GB) ∼ 0.5 ∼ 2.0 ∼ 1.0  ∼ 1.8  ∼ 1.9 
CPU utilisation (%) ∼ 50 ∼ 70  ∼ 65  ∼ 80  ∼ 84  
Energy efficiency (W) ∼ 5-40 ∼ 30-50 ∼ 45-55 ∼ 48-58 ∼ 49-60 
Model size (MB) ∼ 50 -150  ∼ 500-1000  ∼ 500 -

750  
∼ 600-800  ∼ 800-

950  
Scalability High medium medium medium medium 

Note: scalability is assessed based on dataset and processing time (High scalability requires 
less computational resources and medium scalability requires high computational power). 
 
3.4 Sensitivity analysis 
A sensitivity analysis was conducted to examine the impact of individual features on model 
performance. Features used in this study are derived from image properties (shape, texture, 
edges and colour), they are inherently independent of environmental changes such as 
temperature, humidity and pressure. To thoroughly evaluate our approach, an ablation 
study was conducted by successively adding features and assessing their impact on accuracy. 
The accuracy trend was examined for all the feature selection methods as features were 
added successively. It can be inferred that all feature selection techniques demonstrated 
similar performance; as the number of selected features increased from 1 to 5, accuracy 
improved (from 50% to 75%). However, adding more features (from 6-20) led to fluctuations 
in accuracy for all methods, demonstrating how feature selection methods influence model 
robustness (Figure 10). This suggests that while adding informative features might initially 
improve performance, excessive features may introduce noise, leading to instability. The 
proposed XAI method achieved an accuracy of 90% by selecting only the top 11 features and 
consistently outperformed other methods, suggesting stability across features (Figure 10). 
The top 11 features are identified as follows: histogram of oriented gradients (HOG) 
(hog_1704, hog_680, hog_543, hog_216, hog_1385, hog_809), colour histogram 
('entropy_hist, energy_hist and std_hist) and shape (elongation and ferrat major axis) 
features. For the proposed method, adding the first three HOG features increased accuracy 
to 65%, suggesting that HOG features are the most influential, followed by colour and shape 
features. In contrast, other methods exhibited greater fluctuations in performance, 
underlining the varying contributions of individual features to model effectiveness. These 
results highlight the importance of selecting optimal features to enhance model 
generalizability. This analysis provides valuable insights into the stability and reliability of 
feature selection techniques, thereby supporting the validity of our proposed methodology. 
A good feature selection method should be sensitive to the inclusion of additional features, 
indicating the first few features added resulted in a proportional improvement in the 
accuracy. However, there must be a saturation point beyond which the accuracy becomes 
stable and further additions of features might yield less accuracy and overfitting.  
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Figure 10:  Impact of individual features on model accuracy-comparing XAI method with existing feature selection 

techniques on accuracy in classifying insects 

 
3.5 Comparison with existing works 
To further assess the effectiveness of our proposed method, its performance was compared 
with existing works. The comparison focused on accuracy as most authors do not evaluate 
computational complexity. Using the IP102 public dataset (a large-scale benchmark public 
dataset for insect classification), Kasinathan & Uyyala, (2021) achieved slightly higher 
accuracy, approximately 1.48% than our RF and SVM models. This might be due to our 
reduction of the redundant features; a trade-off for faster computation. Additionally, their 
work is simply image classification, where the entire image is classified as one insect species, 
without considering the bounding box or the insect's exact location. Our RF model, however, 
produced a superior performance of 92.62% compared to the 91.5% reported by Kasinathan 
et al., (2020) using a CNN model, despite including all features in their work. This is evidence 
of the effectiveness of our feature selection method. Similarly, our SVM model, with 91.16% 
accuracy outperformed the 85.2% and 86.81% accuracy obtained in previous studies (Yao et 
al., 2014; Liu et al., 2016), despite the simplicity of their task of identifying negative and 
positive samples and their models requiring longer computational time. This further 
highlights the advantage of integrating feature selection into the machine learning pipeline, 
as it improved model performance, reduced computational requirements and enhanced 
generalisation ability. This is achieved by using feature selection to rank and identify the 
most relevant features in the dataset. Furthermore, deep learning methodologies may 
require more data and large computing power to produce effective and reliable models 
(Cserni & Rovid, 2023). However, insect-plant datasets from real in-field scenarios are highly 
scarce, which might pose difficulties in training reliable models for practical applications. 
Most researchers rely on data augmentation to artificially increase data samples, thus results 
obtained by models built using this technique should be interpreted with caution as they 
might not fully reflect the real field situations. 
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Figure 11: Visual results; showing beneficial and pest insects (seven-spot ladybird and green peach aphids on potato, faba 
bean and sugar beet plants; Colorado potato beetles on potato plant only;) with original labels, and predictions made by 

the developed model using explainable artificial intelligence (XAI) method. The model is trained on an insect-plant dataset 
containing images of the three insects and three crop plants taken in laboratory and field settings to improve data diversity 

and model robustness. 

Samples of visual results (Figure 11) demonstrate the effectiveness of our developed 
method in pinpointing the exact position of the insect in diverse image backgrounds. This is a 
very important requirement for an on-the-spot spraying or targeted pest removal approach.  
Three crop plants were used in our experiments to increase data diversity. However, we 
have not analysed the impact of individual host plants on the model performance. Future 
research could delve into this, as crop plant types might affect the performance of machine 
learning models.  Additionally, investigating how having more than one insect species in a 
single image affects detection accuracy could also be useful, as overlapping objects might 
affect the performance of machine learning algorithms. In a broader sense, while deep 
learning methodologies might achieve higher insect identification accuracy, our proposed 
method offers comparable performance with relatively low hardware requirements. These 
requirements are important for developing an automatic targeted pest control system for 
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practical applications. Hardware used in agricultural applications is often constrained by size, 
energy consumption, memory and portability. Agricultural hardware like robots may have 
limited computational capacity compared to desktop computers or high-end servers in other 
applications. Hence, keeping a balance between detection accuracy and computational 
efficiency is desirable. It is worth noting that, for agricultural applications near-perfection 
detection rate is not always necessary. In many cases, an accuracy of 80% might be quite 
sufficient to effectively target individual insect pests and reduce their numbers below 
the economic threshold, without requiring complete eradication (Crowder et al., 2009). Our 
method achieves this level of precision while using less computational power, this is 
important for real-world deployment, as it makes the technique cheaper and accessible. 

Our findings further suggest that model computational complexity depends largely on the 
number of features and algorithm complexity, while prediction time is affected by model 
parameters and memory requirements. Training time is determined by the feature selection 
technique and classifier type, not the number of model parameters. Most importantly, 
model accuracy is independent of the number of features. Furthermore, the recorded 
training and prediction times for the proposed method using SVM are approximately 4 hours 
and 13 milliseconds, respectively, with a model’s size of around 50 MB and accuracy of 
(91.16%) (Table 4). These modest hardware requirements indicate that the approach is 
computationally feasible for real-world deployment on single-board hardware like Raspberry 
Pi and standard desktop computers or cloud-based systems with similar or better 
specifications. 

4. Conclusion 
This study evaluates the significance of feature selection in improving the performance of 
machine learning algorithms for individual insect detection. Our proposed approach used 
explainable artificial intelligence (XAI) to identify the optimal feature set that maximised the 
performance of machine learning algorithms for the detection of individual pest and 
beneficial insects (Colorado potato beetles on potato plants and seven-spot ladybirds, green 
peach aphids on potato, faba bean and sugar beet plants). Laboratory and field-collected 
insect-plant datasets were used to evaluate and compare several feature selection 
techniques, with XAI achieving an accuracy of 90.16% and 92.62 for support vector machine 
and random forest, respectively. This approach improved accuracy compared to using a 
principal components analysis without feature selection and conventional top-performing 
feature selection techniques such as Fisher separation criterion, mutual information, 
and maximal information coefficient. Additionally, the XAI method reduced the model’s 
computational complexity compared to traditional methods, resulting in shorter training and 
prediction times.  For K-nearest neighbour and Naïve Bayes algorithms, our approach 
achieved results comparable to the top-performing feature selection techniques while 
reducing the number of model parameters, training and prediction times. The faster training 
and prediction time recorded highlights the potential of XAI method for real-time 
applications, making it a promising approach for deployment in low-cost hardware and edge 
computing devices for easy integration with mechanical parts such as robotic arms for 
targeted-pest removal or portable devices like mobile phones for automatic pest monitoring. 
The low hardware requirements and shorter prediction times make the proposed method 
suitable for integration with agricultural machinery, such as tractors and drones or 
deployment in edge devices for insect pest monitoring in field crops. This XAI-based feature 
selection approach advances machine-learning techniques for pest detection, particularly 
under hardware resource constraints, while also managing computational complexity to 
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facilitate real-time applications. The proposed method's ability to identify individual insects 
makes it suitable for targeted removal, minimizing ecological impacts on non-target species. 

Finally, our findings show that combining a machine learning algorithm with an ideal feature 
selection technique can achieve robust performance without requiring complex and 
computationally demanding methodologies. This is essential for real-world applications with 
resource constraints where hardware limitations must be considered. Our method offers 
comparable performance with relatively low hardware requirements. These are important 
for developing an automatic targeted pest control system for practical applications, as 
hardware used in agricultural applications is often constrained by size, energy consumption, 
memory and portability. Further research should focus on limitations posed by external 
factors such as lighting variations, which remain challenging in insect detection across 
machine learning techniques, especially for aphid detection on plant material in field 
conditions due to their smaller size and similarity to green leaves. Future research could 
explore combining feature selection with deep learning or the potential of artificial lighting 
and synthetic data to improve the accuracy of small insect detection in complex scenes. 
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Highlights 

 A diverse insect-plant dataset was created, featuring two insect pests and one 

beneficial insect on three host plants.  

 

 A feature selection method based on explainable artificial intelligence was 

developed, and its performance was compared with conventional feature selection 

techniques.  

 

 Feature selection balances computational efficiency with detection accuracy while 

managing computational complexity.  

 

 Combining machine learning with ideal feature selection methodology can achieve 

robust performance comparable to heavyweight models. 


