Journal Pre-proof

Improving the performance of machine learning algorithms for
detection of individual pests and beneficial insects using feature

selection techniques

Rabiu Aminu, Samantha M. Cook, David Ljungberg, Oliver
Hensel, Abozar Nasirahmadi

PII:
DOI:

Reference:

To appear in:

Received date:

Revised date:

Accepted date:

Please cite this article as: R. Aminu, S.M. Cook, D. Ljungberg, et al., Improving the
performance of machine learning algorithms for detection of individual pests and
beneficial insects using feature selection techniques, Artificial Intelligence in Agriculture

S2589-7217(25)00039-X
https://doi.org/10.1016/j.ai1ia.2025.03.008
AlIA 197

Artificial Intelligence in Agriculture

24 November 2024
27 March 2025
28 March 2025

(2024), https://doi.org/10.1016/j.a11a.2025.03.008

This is a PDF file of an article that has undergone enhancements after acceptance, such
as the addition of a cover page and metadata, and formatting for readability, but it is
not yet the definitive version of record. This version will undergo additional copyediting,
typesetting and review before it is published in its final form, but we are providing this
version to give early visibility of the article. Please note that, during the production
process, errors may be discovered which could affect the content, and all legal disclaimers

that apply to the journal pertain.

© 2024 . Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co.,

Ltd.

KeAl

Artificial
Intelligence
in Agriculture



https://doi.org/10.1016/j.aiia.2025.03.008
https://doi.org/10.1016/j.aiia.2025.03.008

Improving the performance of machine learning algorithms for detection of individual
pests and beneficial insects using feature selection techniques

Rabiu Aminu®®, Samantha M. Cook®, David Ljungberg?®, Oliver Hensel®, Abozar Nasirahmadi*®

a: Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032,
Upsala 75007, Sweden

b: Department of Agricultural and Biosystems Engineering, University of Kassel, Witzenhausen D-
37213, Germany

c: Biointeractions and Crop Protection Division, Rothamsted Research, Harpenden, United Kingdom

Abstract

To reduce damage caused by insect pests, farmers use insecticides to protect produce from
crop pests. This practice leads to high synthetic chemical usage because a large portion of
the applied insecticide does not reach its intended target; instead, it may affect non-target
organisms and pollute the environment. One approach to mitigating this is through the
selective application of insecticides to only those crop plants (or patches of plants) where
the insect pests are located, avoiding non-targets and beneficials. The first step to achieve
this is the identification of insects on plants and discrimination between pests and beneficial
non-targets. However, detecting small-sized individual insect pests is challenging using
image-based machine-learning techniques, especially in natural field settings. This paper
proposes a method based on explainable artificial intelligence feature selection and machine
learning to detect pests and beneficial insects in field crops. An insect-plant dataset
reflecting real field conditions was created. It comprises two pest insects—the Colorado
potato beetle (CPB, Leptinotarsa decemlineata) and green peach aphid (Myzus persicae)—
and the beneficial seven-spot ladybird (Coccinella septempunctata). The specialist herbivore
CPB was imaged only on potato plants (Solanum tuberosum) while green peach aphids and
seven-spot ladybirds were imaged on three crops: potato, faba bean (Vicia faba), and sugar
beet (Beta vulgaris subsp. vulgaris). This increased dataset diversity, broadening the
potential application of the developed method for discriminating between pests and
beneficial insects in several crops. The insects were imaged in both laboratory and outdoor
settings. Using the GrabCut algorithm, regions of interest in the image were identified before
shape, texture, and colour features were extracted from the segmented regions. The
concept of explainable artificial intelligence was adopted by incorporating permutation
feature importance ranking and Shapley Additive explanations values to identify the feature
set that optimised a model’s performance while reducing computational complexity. The
proposed explainable artificial intelligence feature selection method was compared to
conventional feature selection techniques, including mutual information, chi-square
coefficient, maximal information coefficient, Fisher separation criterion and variance
thresholding. Results showed improved accuracy (92.62% Random forest, 90.16% Support
vector machine, 83.61% K-nearest neighbours, and 81.97% Naive Bayes) and a reduction in
the number of model parameters and memory usage (7.22 x10’ Random forest, 6.23 x10°
Support vector machine, 3.64 x10* K-nearest neighbours and 1.88 x10® Naive Bayes)
compared to using all features. Prediction and training times were also reduced by
approximately half compared to conventional feature selection techniques. This
demonstrates a simple machine learning algorithm combined with an ideal feature selection
methodology can achieve robust performance comparable to other methods. With feature



selection, model performance can be maximised and hardware requirements reduced,
which are essential for real-world applications with resource constraints. This research offers
a reliable approach towards automatic detection and discrimination of pest and beneficial
insects which will facilitate the development of alternative pest control approaches and
other targeted pest removal methods that are less harmful to the environment than the
broad-scale application of synthetic insecticides.

Keywords: feature screening; explainable artificial intelligence; targeted pest control;
sustainable agriculture

1. Introduction

The Food and Agriculture Organisation (FAO, 2021) estimates that of the total $220 billion in
annual economic losses attributed to plant diseases, at least 31.8% are caused by insect
pests, including invasive species. The Colorado potato beetle (CPB, Leptinotarsa
decemlineata) and green peach aphids (Myzus persicae) are two of the most damaging
insect pests of potato crops due to direct feeding damage and disease transmission,
respectively (Gao et al., 2024a). Larvae of the CPB can cause up to 100% defoliation of the
leaves and infestation may reduce the yield of potato tubers by more than 50% (Sablon et
al., 2013; Balasko et al., 2020; Bitkov & Lykov, 2024). Green peach aphids (Myzus persicae)
cause even more damage; in Europe, viruses, particularly potato virus Y (PVY) transmitted by
aphid feeding activity cause total annual losses of 180 million Euros (Dupuis et al., 2023).
Environmentally sustainable solutions for insect pest control, particularly in arable crops, are
therefore crucial for protecting yield and ensuring food security. However, current pest
control methods, which usually involve the detection of pests in the field via scouting
followed by the application of synthetic insecticides as blanket treatments across fields,
negatively impact the environment, ecosystem, and biodiversity (Richard, 2010; Chaudhary
et al., 2021; Beaumelle et al., 2023). Additionally, manual detection of insect pests via plant
scouting is labour-intensive and time-consuming (Chen et al. 2021). Thus, there has been
growing interest in automated insect detection and classification in recent years (Xia et al.,
2018; Kirkeby et al., 2021; Hasan et al., 2024, Suresh et al., 2025), which could help detect
pest presence in the field quickly, easily and accurately, and enable the determination of
their spatial distribution for more targeted applications (Bick et al.,, 2024).

Advances in computer vision and machine learning have enabled researchers to develop
object detection systems capable of detecting small objects with high accuracy (Don et al,,
2023; Tan et al.,, 2023; Wan et al., 2023). These developments have made innovative
processes such as selective weed control a reality and are now finding other practical
applications in agriculture. For example, in plant disease detection and classification
(Bhosale et al., 2023; Kini et al., 2023; Singh et al., 2023). These technologies have also been
explored for insect detection and classification, where digital image processing techniques
have demonstrated great potential (Espinoza et al., 2016). Improvements in high-resolution
imaging technology have increased the capability of image processing techniques to extract
detailed features from high-resolution images for accurate insect segmentation (Alkan &
Aydin, 2023). Li et al. (2015) used multifractal analysis to segment whitefly images based on
local singularity and global image characteristics, demonstrating superior performance over
traditional image thresholding methods, achieving a true-positive detection rate of 86.9%
and a false-positive rate of 8.2%. Using a different approach, Xia et al. (2015) used
watershed segmentation and Mahalanobis distance to identify common greenhouse pests



on sticky traps; their method achieved a coefficient of determination of 0.945 for aphid
counting. In contrast, Agrawal et al. (2018) used clustering and pseudo-colour image
processing for pest region detection, including CPB in rice cultivation. Kasinathan et al.
(2020) combined foreground segmentation and a GrabCut algorithm to segment different
insect species in popular public datasets and achieved impressive results.

Image processing techniques are often considered the pre-processing steps for targeted
object detection and semantic segmentation in deep learning (Wang et al., 2019; Miranda et
al., 2023; Sahin et al., 2023). While these techniques are computationally efficient and have
excelled in simple image segmentation tasks such as distinguishing objects against simple
backgrounds, their performance deteriorates with increasing lighting variations and object
background complexity. This inconsistency is demonstrated by their excellent performance
with certain images and poor performance in others, and this does not improve with
additional data, as no supervised learning is involved (Cserni & Rovid, 2023; He et al., 2023).
Given the unpredictable nature of the real field, these techniques cannot be relied upon for
practical applications (Cuevas et al., 2023).

Machine learning has proved more effective than traditional image processing for insect
detection and classification. The existing works based on machine learning can be broadly
grouped into classical and deep learning. The concept of classical machine learning is to
design hand-crafted features based on object descriptors such as shape, texture, colour,
edges, and other relevant features. These features are either extracted from the whole
image or the region of interest (ROI) in the segmented image and subsequently fed into the
machine learning classifier for training and evaluation (Gao et al., 2024a). Liu et al. (2016)
used a histogram of oriented gradients (HOG) features extracted from positive and negative
sample images to train a support vector machine (SVM) classifier, then employed a
maximally stable extremal region descriptor to detect aphids in the classified images,
achieving identification and error rates of 86.81% and 8.91%, respectively. In a similar
approach, Kasinathan et al. (2020) identified 9 and 24 insect classes in the Wang dataset and
9 and 24 insect classes in Xie dataset by extracting the shape features and training machine
learning techniques such as artificial neural networks (ANN), SVM, k-nearest neighbours
(KNN), Naive Bayes (NB), Random forest (RF) and CNN models, achieving the highest
classification rate of 91.5%. Kasinathan & Uyyala (2021), combined different feature
descriptors to train traditional and ensemble classifiers for insect classification. They
experimented with various feature combinations and improved the classification accuracy by
2.6% using majority voting. To count rice planthoppers (Sogatella furcifera) in paddy fields,
Yao et al. (2014) proposed a three-layer detection method: the first layer used an AdaBoost
classifier based on Haar features, an ensemble machine learning method that combines
multiple decision trees into a stronger classifier. The second layer used an SVM classifier
based on HOG features, and the third layer applied a threshold judgment of the three
features. Their experimental results show an 85.2% detection rate and a 9.6% false detection
rate. Others used a different approach; they first applied image segmentation to extract ROI
in the image before extracting features for training machine learning classifiers. For example,
Lucero et al. (2015) detected CPB with an 85% recognition rate by using a contour
orientation histogram to extract features from the ROI and fed them as inputs to the random
subspace classifier. Similarly, Remboski et al. (2018) developed an insect classification
system by extracting ROIs and transforming them into feature vectors using a bag-of-words
model. For the classification, they trained SVM, KNN, Decision Tree, and Gaussian Naive
Bayes, with SVM achieving the highest accuracy of 86.38%. In contrast, deep learning uses



convolutional layers to automatically extract relevant features of the target object and fully
connected layers for classification. With rapid developments in computing power, imaging
equipment, and its superiority for instance-segmentation, deep learning has become popular
for tasks such as aphid detection and counting (Xu et al., 2023; Gao et al., 2024a), two-
spotted spider mite (Tetranychus urticae Koch) detection, (Zhou et al., 2024), fall armyworm
(Spodoptera frugiperda) detection in field crops (Kasinathan & Uyyala, 2023) and detection
of brown marmorated stink bug (Halyomorpha halys) (Betti Sorbelli et al., 2023).

Methods based on digital image processing are ideal for insect detection in simple scenarios
but fail in complex situations because they are sensitive to lighting, colour, and other
variations in the object background (Gao et al., 2024a). In contrast, methods based on deep
learning may achieve high accuracy. However, these depend on large amounts of data and
huge computational resources, making them computationally expensive and difficult to
implement on affordable hardware for real-world applications (Cserni & Rovid, 2023). Due to
the rapid advancements in deep learning, researchers have not fully explored the potential
of classical machine learning. Despite dependence on manual feature design, classical
machine learning techniques have the potential to achieve acceptable insect detection and
classification accuracy (Gao et al., 2024b) with a small amount of data, a short training time,
and less computational power compared to deep learning methodologies. Owing to their
less computational resource requirements, they can easily be implemented with low-cost
hardware and deployed for practical applications. Using an optimal feature set, these
methods can achieve results comparable to deep learning methods while maintaining lower
computational complexity. However, no single feature is suitable for all tasks and challenges
remain in identifying the feature subset that optimises model performance while reducing
complexity (Ye et al., 2023). To our knowledge, no study has yet assessed the impact of
feature selection techniques on colour, shape, texture, and HOG features on a model’s
performance in insect detection tasks. This gap is significant because including irrelevant
features can result in multidimensionality and redundancy among features (Sumesh et al.,
2021), which increases computational time and reduces the model’s generalisation ability
and classification accuracy (El-Kenawy et al., 2024). Explainable artificial intelligence (XAl)
offers an alternative approach to addressing this. XAl refers to machine learning models that
are transparent and easily interpretable, which is essential for building confidence,
acceptability and trust, especially in settings where understanding the reasoning behind a
model’s decision-making process holds equal importance to its prediction accuracy (Dave et
al., 2020; Zhang et al., 2021). This approach has also been used to interpret machine learning
models for agricultural data analysis (Ryo,2022). The XAl incorporate the concept of
permutation feature importance (PFl) to assess the impact of permuting each feature on the
model’s prediction outcomes and Shapley Additive explanations (SHAP) values to explain the
contributions of individual features to a model’s prediction results (Lundberg et al., 2020).
Therefore, a method based on XAl to determine the optimal combination of features for
training machine algorithms, such as SVM, RF, KNN, and NB, was proposed for the current
study. Unlike conventional feature selection methods, this approach integrates PFl ranking
and SHAP values to identify the most relevant features in the dataset, thereby reducing
redundancy, optimising performance and decreasing computational overload associated
with machine learning. The proposed method was evaluated and compared to conventional
feature selection techniques. This method was designed for efficient implementation on
low-cost hardware to detect harmful insects (CPB and aphids) and beneficial insects



(ladybirds) in arable crops. The main objective was to balance computational efficiency with
detection accuracy while limiting computational complexity through feature selection.

2. Materials and methods

2.1 Data collection and pre-processing

Two insect pests (the Colorado potato beetle (CPB, Leptinotarsa decemlineata) and green
peach aphids, Myzus persicae), one beneficial insect (seven-spot ladybird, Coccinella
septempunctata), and three crops (potato, Solanum tuberosum; faba bean, Vicia faba; and
sugar beet, Beta vulgaris subsp. vulgaris) were selected for this study. The crop plants were
grown in the greenhouse of the University of Kassel, Germany, while the insects were
collected from three experimental farms, all located in the Kassel region. Four stages of CPB
and seven-spot ladybird (eggs, larva, pupa and adults) and adult aphids were collected from
the focus crops and kept in a greenhouse, with each species maintained separately inside 33
x 33 x5 cm; 570 g ventilated plant insect net cages. CPBs were maintained on potato plants,
and aphids on the three species; ladybirds were supplied with aphids as food. All insects
were provided with water using moistened filter paper. The greenhouse temperature ranged
between 14-31°C and insects were maintained for 1-3 weeks before being replaced with
freshly collected individuals. Data collection occurred from April to July, with insects being
transferred from the greenhouse maintenance cages to our laboratory setup for image
acquisition.

To create a working dataset reflecting the real field conditions, images of insects on the crop
plants were collected from animaging tent in the laboratory and from fields on three
commercial farms. The imaging tent (120 x 120 x 200 cm) was made from black Mylar fabric,
and was artificially lit using light-emitting diodes (LED-LE1200-EO3L-1S) with a spectrum of
450 nm +470 nm, 660 nm, 730 nm, 6500 K, providing various illumination levels and lighting
intensities. In each imaging session, 3-5 aphid-infested plants were transferred to the
imaging tent, and individual CPBs and ladybirds were placed by hand on specific areas of the
plants to simulate natural infestations. Approximately, 300 individual CPBs, 250 ladybirds
and the same number of aphid colonies were used. CPB was imaged only on potato plants
because it does not infest faba bean and sugar beet. Individual insects on plants were

e f g h

Figure 1: Sample images from our insect plant dataset- a and e: Seven-spot ladybird (Coccinella septempunctata)
on sugar beet (Beta vulgaris subsp. vulgaris) and potato (Solanum tuberosum) plants, respectively; b and f:
Colorado potato beetle (Leptinotarsa decemlineata) on potato plant; c and g: green Aphids (Myzus persicae) on
potato and sugar beet plants; d and h: faba bean (Vicia faba) and potato plant leaves without insects.



imaged more than once; however, to ensure data diversity, they were regularly replaced.
This approach combined with images of insects on crop plants captured from real farm fields
improved the quality and diversity of our dataset. Images of CPB on potato, and aphids and
ladybirds on potato, faba bean and sugarbeet crops were collected at three different times
of the day (morning, afternoon, and evening). A total of 2000 images were captured, with
1000 images taken in laboratory settings and 1000 in the field. These include 500 images of
individual CPB on potato plants, 500 seven-spot ladybirds, 500 green aphids on a mixture of
the three crop plants, and 500 leaves without insects across three crops. For ladybirds and
aphids, images were evenly distributed across the three crop types, with approximately 167
samples per crop per insect. Two cameras were used for data acquisition: The Canon EOS
2000D and Sony a6400, collecting 1000 images each. This dual-camera approach enhanced
dataset diversity, ensuring reliability for model training, evaluation and generalisation.
Samples of insect plant images in our dataset are shown in Figure 1.

The original image resolution of 6000 x 4000 pixels acquired from the two cameras was
converted to a lower resolution of 800 x 500 pixels because training models with high-
resolution images is time-consuming and requires substantial computing power. Unwanted
image backgrounds were cropped using the crop-and-select, method adopted from (Gao et
al., 2024a). This involves manually dividing the original image into 4 smaller parts and
carefully selecting the portion containing the insects and background leaf while discarding
portions that do not have insects or leaves. The final insect-plant dataset has 1000 images:
250 CPB on potato plants, 250 for both ladybirds and aphids, divided approximately equally
between the three crop plants, and 250 of the three crop plant leaves without insects,
equally distributed across crop types. Images of plant leaves without insects were included
because the model’s ability to detect the absence of insects in the image holds equal
importance to a farmer as positive detection of insects, as this means no treatment is
needed. The complete workflow of the insect-plant dataset pre-processing and labelling is
given in Figure 2. The labellmg annotation tool, an open-source software designed for image
labelling, was used to annotate the images. This enabled the labelling of insects by drawing
rectangular bounding boxes around them and saving the annotations in extensible markup
language file format (Figure 3). The images and labels are inputs to the machine learning
algorithms.
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Figure 2: Workflow of image pre-processing and labelling for insect-plant dataset- The right end shows the zoom-out
labelled Colorado potato beetle image with the insect inside the bounding box. Image pre-processing is an important step
in machine learning.

Our final dataset combined images collected in real field conditions with laboratory-captured
images under varied lighting conditions to enhance generalisation. Field data captured at
different times of the day account for natural field variations, while laboratory data acquired
under varied lighting wavelengths simulate diverse environmental conditions. This ensures
that the proposed method generalises well across different real-world scenarios, mitigating
the impact of lighting variations on detection performance.

Figure 3: Images of green peach aphids,Myzus persicae on potato, Solanum tuberosum leaf- with manually annotated
bounding boxes (red rectangles)




2.2 Overview of the framework

This study combined image segmentation, feature selection, and classical machine learning
to detect and identify pests and beneficial insects. In the first step, a GrabCut algorithm was
developed in Python to segment the potential ROl in the image, which are areas likely to
contain the target insects. In the second step, features such as shape descriptors (e.g. area,
compactness, elongation and aspect ratio), texture features (e.g. correlation, entropy and
contrast), colour features (e.g. skewness, energy and standard deviation derived from colour
histogram) and multiple HOG features are extracted from the segmented ROIs for feature
selection. These handcrafted features capture critical information about texture patterns,
colour distributions and morphology in the image, which are key factors for discriminating
objects. Incorporating feature selection in our methodology helps improve model
performance by retaining the most relevant features and reducing computational time by
removing redundant features in our image dataset. In step three, the performance of seven
feature selection techniques based on standard performance metrics and model
computational complexity was evaluated. To improve the feature selection process, an
optimised feature selection method was developed using XAl feature importance ranking to
identify top-performing features. In the final step, four machine learning algorithms (SVM,
RF, KNN and NB) were trained using our new feature selection method, and then a
performance comparison was conducted.

An overview of our framework is shown in Figure 4; the algorithm first inputs the image into
the GrabCut algorithm to segment potential insect regions, which are areas likely to contain
insects in the image. It then extracts all relevant features from segmented insects and stores
them as a feature vector. Our optimised feature selection technique identifies the optimal
features from the created feature vector and feeds them to the machine learning algorithm
for training. The model identifies if the leaf has insects before classifying the insects into
three classes (Ladybirds, CPB, and aphids). If the classification result is a ladybird, it is
considered a beneficial insect. On the contrary, if the classification result is CPB or aphids,
the identified insect is pest-CPB or pest-aphids. Lastly, if the leaf has no insect the model
detects that at the initial classification stage. The steps to determine the optimal features
are explained in detail in Section 2.2.5.

Digital image ROI Extraction Feature Extraction Optimal feature set
selection process Classifier training

Feature Machine
:> selection :> learning

Detection & Classification

Figure 4: Framework for the improved feature selection technique- extracted region of interest (ROI), shape, texture, edges
and colour features.



2.2.1 Region of interest segmentation

Image segmentation is a fundamental step in computer vision and machine learning tasks,
essential for partitioning an image into distinct regions or scenes based on pixel similarities.
In this work, the GrabCut algorithm was used to segment insects from the backgrounds in
the dataset. The GrabCut algorithm was originally introduced by Rother et al. (2004) and
remains the most widely used lightweight image segmentation method because of its
computational efficiency and ability to produce results comparable to deep-learning-based
approaches without requiring extensive computational resources (Zhang et al., 2017; Liang &
Palaoag, 2024). Since this study aims to introduce a novel method that balances
computational efficiency with practical applicability, the GrabCut algorithm was
incorporated into the machine learning pipeline due to its lightweight processing advantages
over deep learning-based segmentation, which typically requires specialised hardware and
extensive training. The GrabCut image segmentation process consists of three key steps:

(a) Bounding box initialisation:

e A bounding box is manually or automatically placed around the region of
interest (ROIl), defining the area containing the object to be segmented in
the image.

e Everything outside the bounding box is initially considered the background.

(b) Gaussian Mixture Models (GMM) clustering:

e The GMM clusters pixel values into foreground and background
distributions based on probability models. Initially, the image is classified
using a trimap model (T) with three-pixel groups:

i. TB (Background pixels): pixels outside the bounding box, initially
labelled as background.

ii. TU (Unknown pixels): pixels within the bounding box, requiring further
classification.

iii. TF (Foreground pixels): initially empty (TF = @), representing the object
region to be segmented.

e Alpha values (an) are introduced to optimise the classification into the
background (an = 0) and foreground (an = 1) GMM models.

(c) Iterative segmentation and energy minimisation:

e The segmentation is refined iteratively using an energy minimisation

framework, optimising the Gibbs energy function described in equation (1)
E(Gibbs) = U(data) + V(smooth) (D

Where the data term (U(data)) measures how well the segmentation fits the observed image
data and the smoothness term (V(smooth)) identifies unexpected changes in segmentation
labels across neighbouring pixels. The GrabCut algorithm being an iterative method has
advantages over traditional image segmentation algorithms, such as thresholding methods,
template matching and watershed segmentation, particularly in refining object boundaries
and handling complex image backgrounds.

2.2.2 Features extraction

Features are unique characteristics or attributes that discriminate different objects in the
same image or environment. Machine learning algorithms are generally trained on features
and labels to predict output; their performance depends on how well features are extracted
and prepared before training. Therefore, feature extraction is a critical step in data pre-
processing and forms the basis of machine learning training. The goal is to extract relevant
information from the data, suitable for the classifier to distinguish between the different



classes in the dataset. Features previously used in the literature and proven effective for
insect classification tasks were considered in this study. The histogram of oriented gradient
(HOG) features has achieved excellent results in extracting shape and edge features for
insect pest classification and identification (Kasinathan & Uyyala, 2021). The extraction of
HOG feature vectors from our image data includes dividing the image into cells, histogram
generation, gradient calculation, and block normalisation (equations 2, 3 and 4).

Ge(x,y) =H(x,y+1)-Hkxy—-1) (2
G(x,y) =G (x,¥)? +Gy(x,y)? (3)
a(x,y) = tan™! (%) (4)

Where x,y are pixel coordinates and H(x,y) are pixel values at this location and G(x,y)
represents the gradient magnitude. G, (x,y) and G,(x,y) are the vertical and horizontal
gradients, respectively, and a(x, y) denotes the gradient orientation.

The next important feature for insect classification is the texture feature. Texture describes
patterns, pixel arrangements and spatial distributions of tones within specific images or
bands in satellite images. This important pictorial information about the structural
arrangement of image surfaces and their relationships with neighbouring pixels can help to
discriminate objects or regions of interest in digital, aerial and satellite images (Haralick et
al., 1973). Statistical texture features such as contrast, correlation, entropy, variance and
angular moment, calculated in the spatial domain were used in this study. These descriptors
can effectively quantify texture information in digital and aerial photos. Alkan & Aydin,
(2023) found Grey level co-occurrence matrix (GLCM) to be effective for extracting statistical
texture features from digital and unmanned aerial vehicle images, respectively. GLCM
extracts texture features by using statistical measures to analyse the spatial relationship of
pixels in an image. The first four basic and eight advanced GLCM components that quantify
texture features in our data were extracted, and the corresponding mathematical equations
of these descriptors, as described in Haralick et al., (1973) are as follows:

Angular sec. moment = 2 Z{p(i,]')}z (5)
i
Ng Ng Ny
Contrast = Z n? 2 2 p(i,)) (6)
n=0 =1 j=1
li=j=n|
Correlation = — 2 Z p(i, ) log(p(i,)) (7)
i j
Y (i), ) —
Entropy = 220, ) — pxtty 8)
00y
Variance = z Z(l —wW?p@i,)) 9)
i
2N,
Sum average = z Py (D) (10)

i=2
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i=2
Dif ference of Variance = Variance of py.y- (13)
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Difference of Entropy = Z Dx—y () log{px_y(i)} (14)
i=0

Max. correletion coef f.= (2nd largest eigen value of Q)l/Z (15)

p(i, DU, k)
Where Q = 2 22 ()P, (1)

HXY — HXY1

max{HX, HY} (16)

Information Measure Correlation =
Note: i, Is pixel location and p(i, j) is pixel value at this location and Ny represents number
of grey levels in the image. uy, 1y, 0y, and o, are the means and standard deviations at

px and p,, and HX, HY are entropies of p (i)and py(i), respectively.

After the GLCM computation, the next feature extractor is a colour histogram, commonly
used for computing colour features. For an RGB image, the histogram is the plot of intensity
values of each colour component against the frequency of pixels at that value, with the bins
providing information about the colour distribution in the image, which might correspond to
different objects or regions in the image. For example, a narrow bin indicates a low contrast
image while a wider bin signifies a high contrast image. Colour feature has been used
previously for insect classification (Espinoza et al., 2016; Kasinathan & Uyyala, 2021). From
the GrabCut segmented images, the mean, standard deviation, skew, energy and entropy
statistical-based histogram features were extracted. These statistics-based features give a
better estimation of colour features, especially for greyscale or segmented images. They
provide information about the general intensity distribution in the image and help in
extracting important characteristics such as brightness, contrast, asymmetry, energy levels
and data quality from the image. considering the probability distribution P(g), grey level pixel
locations g and total number of intensity levels in image L, Sergyan, (2008) summarises the
five statistical-based colour feature descriptors as follows:

L-1
= Z gP(9) a7
g=0
L-1
> a- 9P (18)
g=0

L—
1
== Z (9 - 9)°P(9) (19)
g :



~

-1

Energy = ) [P(9)]* (20)
g=0

L-1

Entropy = Z P(g) log,[P(g)] (21)
g=0

Where g, 0, and @3 are mean, standard deviation and skew, respectively.

The next widely used feature in the literature for object detection is the shape feature,
which has demonstrated a high success rate for weed detection and insect classification
(Kasinathan et al., 2020; Pathak et al., 2023). Geometric-based shape information such as
area, circularity, elongation and many advanced shape descriptors can distinguish objects in
digital images. For example, in digital and aerial images area can help discriminate small
objects from large ones while circularity can distinguish round objects from irregular ones.
Contour detection is one of the most efficient methods of extracting geometric shape
features from digital images (Figueiredo et al., 2016). However, basic shape features such as
area, perimeter, minor and major axis depend on image dimensions and their values change
with image resolution. Due to this limitation, these parameters are ineffective for image
classification but can be used to derive advanced features independent of image dimension
changes (Pathak et al., 2023). The Contour method was used to compute 21 advanced
geometric shape descriptors applied by Pathak et al. (2023) in their work on weed
detection (Table 1).



Table 1: Geometric shape feature descriptors used for image analysis and object detection tasks. These features quantify
various aspects of the object’s geometry and are essential for accurate object detection and classification.
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respectively.

2.2.3 Techniques for features selection

Selecting suitable features is crucial for optimising the performance of machine learning
classifiers and reducing computational complexity. Often, most extracted features do not
contribute to model improvement. Therefore, exploratory data analysis was applied to
thoroughly analyse all features to uncover hidden patterns, relationships, anomalies and
redundancy by checking their statistical summaries, and univariate, bivariate, and
multivariate interactions. The correlation matrix shows the relationship and strength of
features with target classes in our dataset “CPB, ladybird and aphids” (Figure 5). A similar
plot for GLCM features highlighted that differences in variance and difference in entropy



features are outliers and therefore dropped. No issue is observed for colour histogram and
HOG features and thus all are included in the feature selection process.
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Figure 5: Correlation matrix of extracted sample features with three labelled insect classes- showing relationships among
different (a) shape features and (b) texture features and their correlation with labelled insect classes. Positively correlated
features like circularity, roundness and solidarity show potential for discriminating between insect classes. While negatively
correlated features such as aspect ratio, and elongation may contribute less to improving classification performance

Feature selection aims to automatically identify the most relevant features (Sosa-Cabrera et
al., 2023). However, these features are not easily identifiable as no single feature selection



method is universally applicable (Silva et al., 2015). Therefore, feature selection techniques
were used to sift through many features and find the optimal set that maximises the
classification rate. Although several feature selection methods exist, filter methods are
model-independent and can identify relevant features based on intrinsic data properties
without overfitting, making them ideal for our image datasets. In this work, filter-based
feature selection techniques were experimented with to ensure fair comparison and
reliability in our analysis.

2.2.3.1 Mutual information (M)

The MI technique measures the relevance and redundancy among features and estimates
how much information one random variable has about another. This is valuable in feature
selection as it measures how relevant a feature subset is to the target output (Estévez et al.,
2009; Vergara & Estévez, 2014). If X and Y are two discrete random variables with joint
probability mass function p(x,y) and marginal probabilities p(x) and p(y), their Ml can be
expressed as follows:

I06Y) = Zeex Zyey p(x,7) log £ (22)

The MI becomes zero when the two variables are statistically independent, which means
p(x,y) = p)p(y)

2.2.3.2 Chi-square coefficient

The Chi-squared (X?) coefficient is a statistical feature selection method that measures the
relevance between feature t and category C. If the feature t and category C are independent,
t cannot be used to determine whether the object belongs to category C (Zhai et al., 2018).
The Chi-squared coefficient was used to estimate the relevance of all our extracted features
for the target output. The statistical expression for X? is defined:

¥? = Z (Observed frequency — Expected frequency)? 23)
Expected Frequency

2.2.3.3 Fisher separation criterion

When used for feature selection, the Fisher separation criterion identifies the best

combinations of features that group similar objects in the same class while maximizing the

margin between objects in different classes. Silva et al., (2015) summarized Fisher separation

criterion equations as:

Fd — argm(}:x](Fd) (25)

Where, F is the feature set containing all the extracted features, F is the feature subset
consisting of d features and J is found by finding the value of projective vector W that
maximizes the following Fisher criterion (Lei et al., 2012):

_wTs,w|

-7 26
WSy W] (26)

Where W', denotes the transpose of W, S, is the between-class scatter matrix and S, is the
within-class scatter matrix. The optimum value of W is obtained by solving the Eigenvalues



problem. The values of W determine the features that contribute most to class separation,
thus achieving high scores in the Fisher criterion.

2.2.3.4 Variance thresholding

This feature selection method uses a threshold to remove all features with low variance in
the feature vector. It assumes that features with lower variance are less informative while
features with higher variance might have more useful information about the target object.
The variance of all the features is calculated, and a threshold is set. The selection of this
threshold is critical; a high value might lead to elimination of the relevant features and a low
threshold might result in including redundant features.

2.2.3.5 Maximal information coefficient (MIC)

The MIC, introduced by Reshef et al., (2011), is a dependency measure based on information
theory. It is an important tool for identifying non-linear relationships between pairs of
variables in large datasets. MIC can identify both correlated and non-correlated relationships
and for correlated relationships provides a score similar to the coefficient of determination
(R?) obtained from fitting data to the regression line. The basic steps in computing MIC are:
() For every pair of coordinates (x, y), the algorithm identifies the x X y grid with the
highest induced MiI; (Il) the algorithm normalises the Ml scores and compiles a matrix that
stores, for each resolution, the best grid at that resolution and its normalised score; (lll) the
normalised scores form the characteristic matrix, which can be visualised as a surface; MIC
corresponds to the highest point on this surface.

2.2.3.6 Principal components analysis (PCA)

Although not a feature selection technique, PCA is a widely used statistical method in
machine learning for dimensionality reduction. PCA reduces the dimensionality of the
feature vector, containing all the extracted features to a lower dimensional vector thereby
reducing computational complexity and improving performance. The new feature set, called
principle components is the linear combination of the original features in the dataset.
However, PCA suffers from major limitations including information loss due to data
compression. Additionally, it is computationally intensive, because it transforms all the
features including irrelevant ones into new features (Xiao, 2024).

2.2.3.7 Proposed explainable artificial intelligence (XAl) feature selection method

Despite decades of research on feature selection, challenges remain in identifying the
optimal feature subset that optimises model performance while reducing complexity. Some
methods require massive computational resources while others struggle to distinguish
between important and redundant features, especially for high-dimensional data such as
images. Therefore, feature selection remains an active research area in machine learning
and data mining (Sosa-Cabrera et al., 2023). This work proposes using XAl to identify the
most important and contributing features for model development. The concept of
permutation feature importance (PFI) (Fisher et al., 2019) and Shapley Additive explanations
(SHAP) (Lundberg et al., 2017) were adopted to identify the most relevant features in our
dataset. The PFl evaluates the effect of permuting a feature on the model’s predictive ability.
Let f: R? — R, denotes a machine learning hypothesis function, where f(x) denotes the
predicted output of the model for a feature vector x € RP, which has p dimensions.
Suppose the observed feature vector is denoted as x; € R" and the j-th feature is
considered as a random variable X;. The permutation importance of the j-th feature is then
defined as:



PFl; = E[L(y, (%) X1 )] ~ E[LG £ (%, X)) @
Where L is the loss function, y is the positive output, X; is the original feature vector, X; is the
permuted feature and X_; represents all unchanged features (Molnar, 2022).

In contrast, SHAP explains the contributions of individual features to a model’s prediction
outcomes using the concept of Shapley values, an additive feature attribution similar to a
linear model (Lundberg et al., 2020). Let f represent the original prediction model and g
explanatory model. By using local methods (Ribeiro et al., 2016), the prediction f(x) for a
given input x can be interpreted through a simplified input Z', a binary vector mapping the
original features through a function where each feature is either included to be part of g(z)
model or excluded. Lundberg et al., (2017) expressed an additive feature attribution method
for a linear explanatory model g as follows:

N
g(Z,):¢O+2¢iZ/i (28)
=1

Where N represents the number of simplified input features and Z’ € {0,1}", ¢, € R is
the null model output, ¢; € R X; is the feature attribution for a feature j, that is the Shapley
value. The variable z'; are the observation outcomes, with (z’; = 1) included or (z'; =
0) excluded. Additionally, the Shapley value ¢ for a feature i is computed by summing over

all the possible feature subsets S that exclude i. Mathematically, this can be expressed as:
ISI'(N —|S| - 1)! :
b= ) - [FSUED) - £(5)] 29)
SEN{i}
Where, N is the total number of features, f(S) is the prediction outcome of the model for the
feature subset S and the expression |S|! (N — |S| — 1)! is the weight of feature i in the
subset S.

The proposed XAl feature selection method uses the intersection of features selected by
both PFI and SHAP to achieve better accuracy while reducing model complexity and
execution time. In this work, tree-based SHAP models were implemented as presented in
Lundberg et al., (2017). Finally, the classifiers discussed in section 2.3.4 were trained using
our method and the six other conventional feature selection techniques described in
sections 2.2.3.1 - 6. The performance was evaluated and compared based on key
performance parameters: accuracy, model complexity, training time, execution time, and
number of features.

2.2.4 Machine learning algorithms

To evaluate the feature selection methods in section 2.2.3, four machine learning
algorithms, successfully used in previous studies for insect classification, were selected.
These algorithms were chosen for their lower computational complexity and ability to
produce competitive results with fewer computational resources. Unlike deep learning
methods, which automatically extract and use features, classical machine learning enables
controlled feature selection to optimise performance. Given the objective of this study is to
balance accuracy with computational efficiency using feature selection, these algorithms
were deemed appropriate, as supported by recent studies (Kasinathan et al., 2020;
Srisuradetchai & Suksrikran, 2024). These classifiers are trained on feature matrix X/,
consisting of the selected feature subset and the corresponding labels y. The goal is to
improve performance and reduce computational overload in reduced feature space. Each
classifier has a uniqgue method of estimating the decision functions from the labelled
dataset. In our experiment, there are three class labels (corresponding to CPB, ladybirds and



aphids) and each feature value represents shape, colour, texture and HOG as described in
section 2. A brief description of these algorithms follows:

2.2.4.1 Support vector machine (SVM) algorithm

SVM is a supervised learning algorithm that separates classes in a dataset by finding the
optimal hyperplane. Points in the dataset closer to the hyperplane are referred to as support
vectors and are critical in defining the margin between classes (Guo & Song, 2018). Let the
training dataset be {(x;,y;),i = 1, 2, 3, ...n}, where y;e {+1, —1} which corresponds to class
labels and X’ € R? are the feature vector derived from d-dimensional input vectors. In linear
SVM, a hyperplane separating two classes can be represented by the set of points x that
satisfy:

w.x—b=0 (30)

Where w is the normal vector perpendicular to the hyperplane, x feature vector and b is the
bias term. In Equation (30), the classification problem is equivalent to minimizing the
magnitude of w subject to constraint no data points fall within the margin. This means

minimizin l||W||2 subject to the constraint y;(w.x; —b) =1  for all training points.
g3 j yi(w. x; gp

For non-linear separable training samples, SVM maps the input vectors into a higher
dimensional feature space, where a linear separating hyperplane can be created. This
involves the use of a kernel function to reduce computational complexity of the high
dimensional feature space. Common kernel functions include linear, Gaussian, sigmoid, and
polynomial kernel functions.

2.2.4.2 Random forest (RF) algorithm

RF is an ensemble machine learning algorithm that combines the strength of multiple
decision trees to achieve better predictions. RF algorithms can be used to solve both
regression and classification problems. The working principle involves building multiple
decision trees and merging their predictions to achieve more accurate and stable results.
During training, sampling is performed at both the sample and feature levels. At the sample
level, subsets of samples are determined by the bootstrap sampling method to train
individual decision trees. At the feature level, feature subsets are randomly selected for
information gain computation before splitting the decision tree nodes. The RF model
reduces the variance effects of a single decision tree model by synthesizing results of
multiple decision trees, although it may not correct bias effectively but ensures no
underfitting occurs in each decision tree. Additionally, RF decision trees are independent,
this allows the training and prediction processes to be executed simultaneously (Boruah &
Biswas, 2023). After training, the final prediction is through majority voting for classification
tasks and averaging the predicted probabilities of all the trees for regression tasks. The
majority voting process in RF classifier is expressed as follows (Breiman, 2001):

argmax

]
e ="J8% Y 1ty =) (31)
=1

Where f(x) is the predicted class with the highest votes, y is an actual class, Y is the set of
all possible class labels, and hj(x) represents the jth base learner, and /{(.) is an indicator
function that returns a value of 1 if the prediction is true and 0 if not.

2.2.4.3 K-nearest neighbour (KNN) algorithm



The KNN classifier has been applied in many applications including insect classification and
has achieved excellent results in classifying insects on public datasets (Yao et al., 2014;
Remboski et al., 2018; Kasinathan et al., 2020). KNN is an instance-based classifier that uses
distance metrics such as Euclidian, and Manhattan to estimate similarity between data
points. To do classification, each data sample is considered as a point in a two-dimensional
plane. The distance between data points is computed and the class of a sample is
determined based on the majority votes of its neighbours (Venkateswarlu & Gangula, 2024).
For regression tasks, the mean, or median of the k-neighbours can be calculated or a
solution to the linear regression problem can be found using the neighbours. The number of
nearest neighbour K is always an odd number to avoid any ties in the voting process. Cross-
validation is used to choose the best value of k to minimise prediction error (Srisuradetchai
& Suksrikran, 2024).

2.2.4.4 Naive Bayes (NB) algorithm

The NB, derived from probabilistic reasoning is a commonly used classifier in machine
learning that assumes feature independence given the class label (Russell & Norvig, 2010).
This model considers the “class” variable C to be predicted as the root node and the
“Features” variable Xi as the leaf nodes. The features are assumed to be conditionally
independent, hence the name Naive. To perform classification, let ¢ be the number of
classes in our dataset, x feature vector values, and p number of features, the probability of a
new sample belonging to class ¢ can be summarized as follows (Silva et al., 2015):

p
P(C = c|x) = P(C =c)1_[P(Fj =X|C=0) (32)
j=1

Where P(C = c) is the probability of an observation belongs to class ¢, P(F; = X;|C =¢) is
the probability of feature X; having value x; given class c.

2.3 Evaluation metrics

To analyse our results, both model complexity and performance were evaluated. the model
complexity was determined by computing the number of learnable parameters needed to
construct the model, training and execution time. While complex models can achieve higher
accuracy, they often require huge hardware resources and longer training time (Lee & Chen,
2020). Training time, usually measured in seconds, is the time needed to train a model from
start to end and mostly depends on model complexity, hardware resources, and data size.
Execution time, which reflects how long a model takes to predict a new sample, is crucial for
real-world applications. Model performance was also evaluated using standard metrics such
as accuracy, precision, recall, and F1 score. These metrics are calculated based on False
positive (FP), false negative (FN), true positive (TP) and true negative (TN) as shown in
Equations 33 to 36. Precision is the percentage of correctly predicted classes. The accuracy
of the classifier gives the percentage of the correctly classified positive and negative
samples. Recall estimates the fraction of the classes correctly predicted as positives out of
the total prediction while the F1 score is the harmonic mean between precision and recall.

Precision = e 33
reClswn—TP_I_FP (33)

Recall = — 34
A = TP FN €3



TP+TN
TP+TN+FP+FN

Accuracy = (35)

1 _ Precision X Recall 36
score = Precision + Recall (36)

2.4 Model fine-tuning

To improve the performance of our model, parameters were fine-tuned using a 10-fold grid
search and 5-fold stratified cross-validation. Grid search systematically tries a range of
hyperparameter values to find the combination that gives optimal performance. Stratified
cross-validation is an enhancement of k-fold cross-validation, where the dataset is divided
such that each fold maintains the same proportion of class labels as in the original dataset,
thus providing a more robust evaluation of the model's performance. This technique
prevents overfitting, which occurs when a model performs well on the training set but
poorly on the testing set or when predicting new data samples (Russell et al., 2010). Table 2
summarises the range of parameters used and the final optimal parameters of each
classifier.



Table 2: Hyperparameters ranges and optimal values for principal components analysis (PCA), mutual information (Ml) and
our proposed method. Linear kernel optimised support vector machine model (SVM) performance across all the techniques
while parameter ranges varied for k-nearest neighbour (KNN) and random forest (RF) models.

Model

Range of parameters

Optimal parameters

Techniques

SVM

Kernel= [linear, poly, rbf, sigmoid],
C=[0.1, 1, 10, 100],

C=10, kernel=
probability=True

'linear’,

C=100, kernel=
probability=True

'linear’,

C=10,
probability=True

kernel='linear",

All
PCA

Ml

Proposed

+

RF

n_estimators= [100, 200, 300],
max_depth=[None, 10, 20, 30],
min_samples_split=" [2, 5,
min_samples_leaf=[1, 2, 4]

10],

n_estimators=200,
max_depth=None,
min_samples_split=2,
min_samples_leaf=1

n_estimators=300,
max_depth=None,
min_samples_split=5,
min_samples_leaf=4

All
PCA

Ml

n_estimators=100,
max_depth=None,
min_samples_split=2,
min_samples_leaf=1

Proposed

n_neighbors= 3, weights= All +
'uniform’, eetric= 'manhattan’ PCA
KNN n_neighbors=[3, 5, 7],
['uniform’, 'distance'],
['euclidean’, 'manhattan']

weights=
metric=

n_neighbors=5, weights= Ml
'distance', metric= 'manhattan’

n_neighbors=7, weights= 'uniform’,

metric= 'manhattan’ Proposed

2.5 Experiments

To evaluate feature selection techniques for insect detection and classification using the
insect-plant dataset, we: (1) Trained and evaluated SVM, RF, KNN, and NB classifiers based
on standard performance metrics Equations 31-34 and computational complexity measures,
such as the number of parameters, training, and prediction times; (2) identified the top-
performing features using XAl feature importance ranking, a collection of consistent,
valuable features that contributed to model development; (3) compared the performance of
the proposed technique with the six conventional techniques (Section 2.2.3-6) in terms of
model complexity and detection accuracy. To evaluate model complexity, training time,
execution time, and the number of features selected were computed. Standard metrics
(Section 2.3) were used to assess performance. The accuracy and practical suitability of each
model for real-world applications were evaluated. All evaluations were conducted using
Python version 3.8 on a Dell Optiplex 3050 desktop computer with an Intel Core i5-6500 CPU
(3.20 GHz, 4 cores, 4 threads) and 4 GB RAM. These requirements are similar to most single-
board computers and edge devices.



3. Results and discussion

3.1 Insect segmentation and region of interest identification

Accurate segmentation of ROl is crucial for feature extraction and insect classification tasks.
The GrabCut algorithm was used to segment regions containing insects from the
background, enabling feature extraction specifically from insects only. The algorithm
performed extremely well in segmenting images of CPB and seven-spot ladybirds with all
instances correctly identified (Figure 6a-f). However, the GrabCut algorithm improperly
segmented images where the background closely matched the insect, especially in images
containing aphids (Figure 6g-i). This could also be due to their smaller size as well as colour
similarity to the background leaves. To address this, maximally stable extremal regions post-
processing was applied to improve segmentation accuracy. This technique focuses on the
maximally stable regions in the image, to effectively identify and isolate small objects that
may otherwise be challenging to segment due to their size and similarity in colour to the
background. Applying this method improved GrabCut segmentation accuracy, correctly
identifying almost all the ROlIs in the aphids’ images (Figure 6j-I).



j k !

Figure 6: (a) Original image of Colorado potato beetles on a potato plant, (b) segmented background and foreground
regions, (c) identified region of interest (ROI); (d) original image of a seven-spot ladybird on a potato plant, (e) segmented
background and foreground regions, (f) identified ROI; (g) original image of green peach aphids on a potato plant, (h)
segmented background and foreground regions, (i) identified ROIs (j) original image of green peach aphids (k) Correctly
identified background and foreground regions (l) Correctly identified ROIs

A plot of pixel distributions of the foreground and background models shows that an insect
represents less than 5% of the original image (Figure 7). This highlights the challenge of
accurately segmenting small objects. Consequently, this study focuses on the overall
performance of the complete machine-learning pipeline rather than individual pre-

processing steps. However, future work may include a comparative evaluation of image
segmentation methods for specific insect species.
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Figure 7: Image pixels distribution- showing segmented regions of interest in the image, illustrating the distinction between
background and insect regions. The red dotted line represents the insect region, capturing all its body parts, and the blue
line outlines the background including the surrounding scene.

Although detecting individual aphids may present challenges, high precision can be achieved
in estimating aphids' population and identifying infested leaves or patches of plants by
analysing the overall distribution of aphids within an image. In practice, pinpointing
individual aphids might not be necessary, especially in the context of on-the-spot spraying
methods, where the focus is on targeting infested leaves or areas rather than individual
insects. Thus, for aphid detection, it may be more effective to assess the algorithm’s ability
to estimate the number of aphids and identify the infested leaves for treatment instead of
induvial insects, as explored in previous works (Xu et al., 2023; Gao et al., 2024a). This
consideration is important for integrating the technique into targeted pest control
strategies.

3.2 Explainability and feature importance ranking

The overall contribution of each feature in our dataset was assessed to identify the most
influential features in insect classification. This analysis is important for improving the
model’s performance and generalisation ability.

Permutation feature importance ranking: The ranking of features (Table 3) is based on the
contribution of each feature; hog 1757 with a standard deviation of 0.020 and mean
average of 0.030 had the highest influence on the model’s performance followed by
compactness. The influence decreases down the table with lower-ranked
features, suggesting that the model’s performance is less affected by the
random permutations of these features.

classification: the weight column
higher values indicating greater
texture and edges (hog_1757,
area length ratio, hollowness)
importance evaluates the
insights into its significance in
features in our dataset.

Table 3: Top 20 features ranked by permutation importance for insect
shows each feature’s contribution to classification performance, with
influence. Features include a histogram of oriented gradients (HOG) for
hog_611, hog_1661, etc.), geometric shape descriptors (compactness,
and colour features (standard deviation and entropy). Permutation
model’s prediction error after randomly permuting a feature, providing
the model decision-making. This analysis identifies the most influential
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Weight

Feature

0.030 + 0.020

hog_1757

0.025 + 0.010

compactness

0.021 £ 0.022

hog_611

0.020 + 0.008

hog_1294

0.019 + 0.008

Alr

0.018 + 0.007

hog_1661

0.016 + 0.017

Std_hist

0.016 + 0.010

hog_1643

0.016 £ 0.023

hog_1266

0.015 + 0.012

hog_60

0.015 + 0.007

hog_298

0.015 + 0.012

hollowness

0.015 £ 0.019

hog_730

0.013 + 0.008

hog_1578

0.013 £ 0.017

hog_504

0.013 + 0.008

hog_598

0.013 £ 0.008

entropy

0.013 £ 0.017

hog_56

0.013 + 0.013

hog_478

0.013 £ 0.008

hog_206

Shapley additive explanations: The area length ratio (alr) feature had the highest average
impact on the model's performance (Figure 8). Other features such as roundness, length
perimeter ratio (lpr), compactness, circularity, and standard deviation histogram (std_hist)
also strongly contributed to model outputs. On the other hand, features like the energy,
rectangularity, hollowness and histogram of oriented gradients (hog_889) had lower average
impacts, suggesting that the model's performance is less affected by these features. This
indicates their contribution to the overall model's performance is relatively minimal. The
rule of thumb is that features with higher SHAP values like alr and roundness are likely to
have stronger correlations with the target class and, hence, are more influential in
determining the predicted outcome. Likewise, features with lower SHAP values such as
energy and rectangularity have a lower impact, signifying that their random permutations
have a negligible effect on the model’s performance.



alr
roundness
lpr
compactness
circularity
std_hist
energy_hist
entropy_hist
contrast

epr

solidity
entropy

mc

skew_hist
pbr

asm

hog_889
hollowness
rectangularity

energy

0.000 0.005 0.010 0.015

alr
roundness
lpr
compactness
circularity
std_hist
energy_hist
entropy_hist
contrast

epr

solidity
entropy

mc

skew_hist
pbr

asm

hog_889
hollowness
rectangularity

energy

High

. a3
H
Feature value

T T T Low
—0.025 0.000 0.025

Figure 8: Shapley values showing the impact of each feature on the random forest model for ranking and selection (a)
average feature importance, where bar length represents the contribution of each feature to model performance, longer
bars indicate higher influence (b) Feature influence on individual predictions, features ranked from most (area length ratio,
alr) to least (energy). The horizontal axis indicates the direction and magnitude of each feature's impact on the model’s
outcomes, with positive values increasing predictions and negative values reducing them. The colour scale ranges from blue
(low values) to red (high values), while the vertical grey line represents a neutral impact (value=0). This analysis enables

informed feature selection to improve model performance.



3.3 Evaluating the performance of feature selection techniques and classifiers

The RF model achieved high performance across all the feature selection techniques, with all
metrics above 80% (Figure 9a). Our proposed method, Ml and Fisher separation criterion
produced the best results, with a Fisher separation criterion achieving above 90% for all
metrics and Ml yielding the highest precision value at 94.44%. The PCA and Chi-square were
ineffective methods for RF algorithm despite being more computationally demanding than
MI. On average, the two top-performing techniques exceeded the PCA with all features by
approximately 1.77% accuracy, 2.13% precision, 2.34% recall and 1.84% F1 score.

The method developed in this study, Ml and variance thresholding were the most effective
feature selection techniques for the SVM classifier, achieving an average of 85% for all
metrics (Figure 9b). While other techniques consistently performed well, exceeding 75%,
Fisher separation criterion underperformed, with below 60% accuracy despite higher
computational demands (Table 4). This further highlights the importance of feature
selection, demonstrating that performance does not depend on the number of features and
computational complexity of the model (Table 4) but on the relevance and suitability of the
selected features for the specific algorithm. For example, the Fisher separation criterion
proved effective for an RF algorithm but not for SVM.

Fisher separation criterion and our proposed method yielded the best results for the KNN
model, with all metrics exceeding 81% (Figure 9c). Interestingly, Fisher separation criterion
was consistent for both KNN and RF models (Figure 9a). Both techniques achieved the same
results for all metrics, with the highest value of 84.75% for precision and the lowest value of
83.33% for recall. The remaining five techniques showed consistently similar results with all
metrics above 75%.

Despite the NB algorithm being rarely used for insect classification, it performed fairly well in
our experiment, with all metrics above 75% across all the feature selection techniques
(Figure 9d). Ml produced the best results exceeding 80% for all metrics. This suggests that
Ml selects the most relevant features and seems to be the most suitable technique for the
Naive Bayes algorithm. Our proposed method and PCA were the next best-performing
methods while chi-square and variance thresholding resulted in lower scores, particularly for
recall (76.67%). These results indicate that with a suitable combination of features, the
performance of a classifier can be improved.
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Figure 9: Performance of classifiers (precision, recall, F1 score and accuracy) across feature selection techniques (principal
component analysis (All+PCA), mutual information (Ml), chi-squared coefficient, fisher separation criterion, variance
thresholding, maximal information coefficient (MIC) and the proposed method). Metrics scores are expressed as
percentages (a) random forest (RF) (b) support vector machine (SVM) (c) K-nearest neighbour (KNN) and (d) Naive Bayes
(NB) performance across all techniques. This figure compares the performance of machine learning algorithms used in this

study.

3.3 Comparing the proposed method with conventional feature selection techniques




Our proposed method improved performance, producing the highest Metric scores while
reducing model parameters compared to traditional feature selection techniques (Table 4).
This resulted in faster training time, especially for the SVM classifier, requiring approximately
half of the training time required by conventional feature selection techniques. Our
proposed technique prediction time was comparable to top-performing feature selection
techniques for all models (Table 4).

The RF classifier consistently achieved the highest accuracy across all feature selection
techniques, though it required the highest number of parameters (Table 4). The proposed
method, M| and Fisher separation criterion outperformed other feature selection methods
for all classifiers, with the proposed method maintaining the best balance between accuracy
and computational complexity. NB required the fewest number of parameters, and the
fastest training and prediction times, while SVM had the longest training times regardless of
feature selection technique used. Notably, the MIC technique required more training time
for all algorithms while the KNN classifier consistently achieved lower accuracy and had the
slowest prediction times.

Feature selection improved the performance of machine learning algorithms, (Table 4) SVM
with XAl (90.16%) and PCA (81.96%). This shows that our proposed technique optimised
SVM classifier accuracy while maintaining an acceptable number of parameters, training and
prediction time. Likewise, our proposed technique optimised an RF classifier, with an
accuracy of 92.62%. The KNN classifier achieved its highest accuracy of 84.43% using Fisher
separation criterion, though have longer prediction times. The NB consistently performs with
feature selection techniques compared to PCA, with accuracy ranging from 81.97% to
85.25% and minimal computational demands.



Table 4: Comparison of accuracy and computational complexity of the proposed method with conventional feature
selection techniques for insect classification. Machine learning models (support vector machine, SVM; random forest, RF; K-
nearest neighbour, KNN; and naive Bayes, NB) were evaluated across various feature selection methods (All features +
principal component analysis, All +PCA; mutual information, Ml; Fisher separation criterion; chi-square coefficient; maximal
information coefficient, MIC; variance thresholding and the proposed explainable artificial intelligence, (XAl) method).
Columns show classification accuracy (%), number of model parameters, and training/ prediction times. This comparison
evaluates the effectiveness of the XAl method in balancing accuracy and computational efficiency.

Models | Techniques Accu (%) Number_param Training time (s) Prediction Time (ms) The
All+PCA 81.96  8.96x10° 1.95x10* <1x10° prop
SVM MI 85.25 4.04 x10° 9.48 x10° 3.29x10° osed
Fisher 51.64 1.93 x10* 4.15 x10* 3.27 x10” XAl
Chi-square  78.69  5.52x10° 3.02 x10° 2.07 x10” met
MIC 86.07  4.52x10° 8.12 x10’ 1.64 x10” hod
Variance 87.70 4.60 x10° 1.72 x10* 1.86 x10” redu
Proposed  90.16 2.73 x10° 2.87 x10? 2.50 x10° ces
All+PCA 90.16 7.77 x10’ 2.64 x10° 3.53x10" com
RF Ml 90.16 5.28 x10° 2.64 x10° 5.12 x10" uta
Fisher 90.98 1.88 x10° 2.88 x10° 2.56 x10™" t? o
Chi-square 86.07  9.09 x10° 2.82 x10° 1.28x107 10 a:
MIC 89.34 3.91 x10° 2.73 x10° 2.56 x10™"
Variance  88.52  1.45x10° 2.77 x10 5.12 x10 com
Proposed  92.62 5.46 x10° 6.02x10™ 3.92 x10 plexi
All+PCA 79.51 4.85 x10" 5.03x10™ 1.40 x10™ ty
KNN Ml 77.04 2.42 x10* 2.63 x10" 0.71 x10" and
Fisher 84.43 2.42 x10* 2.62 x10" 0.72 x10" basic
Chi-square  79.51 2.42 x10* 2.86 x10" 0.77 x10" hard
MIC 77.05 2.42 x10* 2.63 x10" 0.71 x10" ware
Variance  79.51 2.42 x10* 2.97x10" 0.91 x10" requi
Proposed  83.61 1.21 x10* 2.98x10° 1.31x10" rem
All+PCA 82.79 3.20 x10? <1x10™ 1.28 x10™" ents
NB Ml 85.25 1.60 x10° 1.56x10™ <1x10° com
Fisher 81.97 1.60 x10° <1x10™ <1x10° pare
Chi-square  84.44  1.60 x10° <1x10™ <1x10° d to
MIC 82.79 1.60 x10° <1x10™ <1x10° conv
Variance 84.43 1.60 x10° <1x10™* <1x10° entio
Proposed  81.97 1.32 x10° 3.99x10° 4.08 x10* nal

techniques (Table 5). By selecting only 18 top-performing features instead of 80 (PCA) or 40
(others), XAl minimises redundancy while maintaining classification performance. Its smaller
model size (50-150 MB) compared to (500-1000 MB) for PCA enhances scalability and
deployment feasibility. Additionally, XAl reduces training time, memory footprint, and
inference costs, making it a practical and efficient alternative to conventional feature
selection techniques for insect classification tasks.

Table 5: Comparison of the basic hardware requirements of the proposed explainable artificial intelligence (XAl) method
with principal components analysis (PCA+AIl features), mutual information (MI), variance thresholding and maximal
information coefficient (MIC) using the support vector machine (SVM) model. All experiments used a Dell Optiplex 3050
(Intel Core i5-6500, 4 GB RAM) desktop computer.



Techniques

metric XAl PCA + All MI Variance MIC
method features thresholding

Training time (hours) ~ 0.08 ~5.42 ~2.63 ~4.78 ~2.26

Inference time 2.50x10°  1.0x10° 3.29x10° 1.86x107 1.64 x10™

(ms/sample)

RAM usage (GB) ~0.5 ~2.0 ~1.0 ~1.8 ~19

CPU utilisation (%) ~50 ~70 ~ 65 ~ 80 ~ 84

Energy efficiency (W) ~ 5-40 ~ 30-50 ~ 45-55 ~ 48-58 ~ 49-60

Model size (MB) ~50-150 ~ 500-1000 ~ 500 - ~ 600-800 ~ 800-
750 950

Scalability High medium medium medium medium

Note: scalability is assessed based on dataset and processing time (High scalability requires
less computational resources and medium scalability requires high computational power).

3.4 Sensitivity analysis

A sensitivity analysis was conducted to examine the impact of individual features on model
performance. Features used in this study are derived from image properties (shape, texture,
edges and colour), they are inherently independent of environmental changes such as
temperature, humidity and pressure. To thoroughly evaluate our approach, an ablation
study was conducted by successively adding features and assessing their impact on accuracy.
The accuracy trend was examined for all the feature selection methods as features were
added successively. It can be inferred that all feature selection techniques demonstrated
similar performance; as the number of selected features increased from 1 to 5, accuracy
improved (from 50% to 75%). However, adding more features (from 6-20) led to fluctuations
in accuracy for all methods, demonstrating how feature selection methods influence model
robustness (Figure 10). This suggests that while adding informative features might initially
improve performance, excessive features may introduce noise, leading to instability. The
proposed XAl method achieved an accuracy of 90% by selecting only the top 11 features and
consistently outperformed other methods, suggesting stability across features (Figure 10).
The top 11 features are identified as follows: histogram of oriented gradients (HOG)
(hog_1704, hog 680, hog 543, hog 216, hog 1385, hog 809), colour histogram
('entropy_hist, energy_hist and std_hist) and shape (elongation and ferrat major axis)
features. For the proposed method, adding the first three HOG features increased accuracy
to 65%, suggesting that HOG features are the most influential, followed by colour and shape
features. In contrast, other methods exhibited greater fluctuations in performance,
underlining the varying contributions of individual features to model effectiveness. These
results highlight the importance of selecting optimal features to enhance model
generalizability. This analysis provides valuable insights into the stability and reliability of
feature selection techniques, thereby supporting the validity of our proposed methodology.
A good feature selection method should be sensitive to the inclusion of additional features,
indicating the first few features added resulted in a proportional improvement in the
accuracy. However, there must be a saturation point beyond which the accuracy becomes
stable and further additions of features might yield less accuracy and overfitting.
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Figure 10: Impact of individual features on model accuracy-comparing XAl method with existing feature selection
techniques on accuracy in classifying insects

3.5 Comparison with existing works

To further assess the effectiveness of our proposed method, its performance was compared
with existing works. The comparison focused on accuracy as most authors do not evaluate
computational complexity. Using the IP102 public dataset (a large-scale benchmark public
dataset for insect classification), Kasinathan & Uyyala, (2021) achieved slightly higher
accuracy, approximately 1.48% than our RF and SVM models. This might be due to our
reduction of the redundant features; a trade-off for faster computation. Additionally, their
work is simply image classification, where the entire image is classified as one insect species,
without considering the bounding box or the insect's exact location. Our RF model, however,
produced a superior performance of 92.62% compared to the 91.5% reported by Kasinathan
et al., (2020) using a CNN model, despite including all features in their work. This is evidence
of the effectiveness of our feature selection method. Similarly, our SVM model, with 91.16%
accuracy outperformed the 85.2% and 86.81% accuracy obtained in previous studies (Yao et
al.,, 2014; Liu et al., 2016), despite the simplicity of their task of identifying negative and
positive samples and their models requiring longer computational time. This further
highlights the advantage of integrating feature selection into the machine learning pipeline,
as it improved model performance, reduced computational requirements and enhanced
generalisation ability. This is achieved by using feature selection to rank and identify the
most relevant features in the dataset. Furthermore, deep learning methodologies may
require more data and large computing power to produce effective and reliable models
(Cserni & Rovid, 2023). However, insect-plant datasets from real in-field scenarios are highly
scarce, which might pose difficulties in training reliable models for practical applications.
Most researchers rely on data augmentation to artificially increase data samples, thus results
obtained by models built using this technique should be interpreted with caution as they
might not fully reflect the real field situations.

Original Label: Ladybird Original Label: Colorado potato beetle Original Label: Ladybird

Original Label: Colorado potato beetle
P
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Figure 11: Visual results; showing beneficial and pest insects (seven-spot ladybird and green peach aphids on potato, faba
bean and sugar beet plants; Colorado potato beetles on potato plant only;) with original labels, and predictions made by
the developed model using explainable artificial intelligence (XAl) method. The model is trained on an insect-plant dataset
containing images of the three insects and three crop plants taken in laboratory and field settings to improve data diversity
and model robustness.

Samples of visual results (Figure 11) demonstrate the effectiveness of our developed
method in pinpointing the exact position of the insect in diverse image backgrounds. This is a
very important requirement for an on-the-spot spraying or targeted pest removal approach.
Three crop plants were used in our experiments to increase data diversity. However, we
have not analysed the impact of individual host plants on the model performance. Future
research could delve into this, as crop plant types might affect the performance of machine
learning models. Additionally, investigating how having more than one insect species in a
single image affects detection accuracy could also be useful, as overlapping objects might
affect the performance of machine learning algorithms. In a broader sense, while deep
learning methodologies might achieve higher insect identification accuracy, our proposed
method offers comparable performance with relatively low hardware requirements. These
requirements are important for developing an automatic targeted pest control system for



practical applications. Hardware used in agricultural applications is often constrained by size,
energy consumption, memory and portability. Agricultural hardware like robots may have
limited computational capacity compared to desktop computers or high-end servers in other
applications. Hence, keeping a balance between detection accuracy and computational
efficiency is desirable. It is worth noting that, for agricultural applications near-perfection
detection rate is not always necessary. In many cases, an accuracy of 80% might be quite
sufficient to effectively target individual insect pests and reduce their numbers below
the economic threshold, without requiring complete eradication (Crowder et al., 2009). Our
method achieves this level of precision while using less computational power, this is
important for real-world deployment, as it makes the technique cheaper and accessible.

Our findings further suggest that model computational complexity depends largely on the
number of features and algorithm complexity, while prediction time is affected by model
parameters and memory requirements. Training time is determined by the feature selection
technique and classifier type, not the number of model parameters. Most importantly,
model accuracy is independent of the number of features. Furthermore, the recorded
training and prediction times for the proposed method using SVM are approximately 4 hours
and 13 milliseconds, respectively, with a model’s size of around 50 MB and accuracy of
(91.16%) (Table 4). These modest hardware requirements indicate that the approach is
computationally feasible for real-world deployment on single-board hardware like Raspberry
Pi and standard desktop computers or cloud-based systems with similar or better
specifications.

4. Conclusion

This study evaluates the significance of feature selection in improving the performance of
machine learning algorithms for individual insect detection. Our proposed approach used
explainable artificial intelligence (XAl) to identify the optimal feature set that maximised the
performance of machine learning algorithms for the detection of individual pest and
beneficial insects (Colorado potato beetles on potato plants and seven-spot ladybirds, green
peach aphids on potato, faba bean and sugar beet plants). Laboratory and field-collected
insect-plant datasets were used to evaluate and compare several feature selection
techniques, with XAl achieving an accuracy of 90.16% and 92.62 for support vector machine
and random forest, respectively. This approach improved accuracy compared to using a
principal components analysis without feature selection and conventional top-performing
feature selection techniques such as Fisher separation criterion, mutual information,
and maximal information coefficient. Additionally, the XAl method reduced the model’s
computational complexity compared to traditional methods, resulting in shorter training and
prediction times. For K-nearest neighbour and Naive Bayes algorithms, our approach
achieved results comparable to the top-performing feature selection techniques while
reducing the number of model parameters, training and prediction times. The faster training
and prediction time recorded highlights the potential of XAl method for real-time
applications, making it a promising approach for deployment in low-cost hardware and edge
computing devices for easy integration with mechanical parts such as robotic arms for
targeted-pest removal or portable devices like mobile phones for automatic pest monitoring.
The low hardware requirements and shorter prediction times make the proposed method
suitable for integration with agricultural machinery, such as tractors and drones or
deployment in edge devices for insect pest monitoring in field crops. This XAl-based feature
selection approach advances machine-learning techniques for pest detection, particularly
under hardware resource constraints, while also managing computational complexity to



facilitate real-time applications. The proposed method's ability to identify individual insects
makes it suitable for targeted removal, minimizing ecological impacts on non-target species.

Finally, our findings show that combining a machine learning algorithm with an ideal feature
selection technique can achieve robust performance without requiring complex and
computationally demanding methodologies. This is essential for real-world applications with
resource constraints where hardware limitations must be considered. Our method offers
comparable performance with relatively low hardware requirements. These are important
for developing an automatic targeted pest control system for practical applications, as
hardware used in agricultural applications is often constrained by size, energy consumption,
memory and portability. Further research should focus on limitations posed by external
factors such as lighting variations, which remain challenging in insect detection across
machine learning techniques, especially for aphid detection on plant material in field
conditions due to their smaller size and similarity to green leaves. Future research could
explore combining feature selection with deep learning or the potential of artificial lighting
and synthetic data to improve the accuracy of small insect detection in complex scenes.
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Highlights

A diverse insect-plant dataset was created, featuring two insect pests and one
beneficial insect on three host plants.

A feature selection method based on explainable artificial intelligence was
developed, and its performance was compared with conventional feature selection
techniques.

Feature selection balances computational efficiency with detection accuracy while
managing computational complexity.

Combining machine learning with ideal feature selection methodology can achieve
robust performance comparable to heavyweight models.



