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Abstract

BACKGROUND

Phoma leaf spot / stem canker is an international oilseed rape (Brassica napus)
disease caused by Plenodomus lingam (Pl) and P. biglobosus (Pb). Phoma
management can include fungicide applications, often sterol 14a-demethylase
(CYP51) inhibitors (DMIs). PI and Pb isolates (collected throughout Poland in 2024)
were screened for in vitro sensitivity to the DMI prothioconazole-desthio, and
molecular mechanisms associated with altered sensitivity investigated.

RESULTS

Plisolates (2024) were less sensitive (4-fold) than older (<2002) isolates. All Pl (2024)
isolates carried CYP51 promoter inserts, likely a Sahana transposable element (TE)
fragment, previously associated with CYP51 overexpression and decreased DMI
sensitivity. Interestingly, Pb isolates with decreased DMI sensitivity were also
identified, but without such TE inserts. CYP51 gene sequencing instead revealed
substitution G476S that was absent in more sensitive G476 isolates. G476S
homologues have been linked to decreased DMI sensitivity in multiple other fungi. Pb
G476S isolates were less sensitive (7.3-fold) than Pb G476, widespread throughout
Poland, and comprised 14/24 (58%) Pb isolates tested. Although CYP51 promoter
inserts were detected in 2/24 (8%) Pb isolates, these were promoter sequence
duplications (not TEs) and not obviously associated with decreased sensitivity. Pl
isolates carrying promoter inserts (predominant in recently tested European
populations) were more sensitive (2.6-fold) than Pb G476S, but less sensitive (2.8-
fold) than Pb G476.

CONCLUSION

We provide first evidence for a CYP51 substitution associated with decreased DMI
sensitivity in Pb. Result implications for phoma management, how DMI usage might
influence pathogen population structure, resistance management strategies, and
future research required, are discussed.

Keywords: Ergll; fungicides; Leptosphaeria biglobosa; Leptosphaeria maculans;
mode of action; oilseed rape

1. INTRODUCTION
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Phoma leaf spot and stem canker (blackleg) is an internationally important threat to
oilseed rape (OSR; Brassica napus) production. Two main ascomycete fungi are
responsible for the disease — Plenodomus lingam (synonym Leptosphaeria maculans)
and P. biglobosus (syn. L. biglobosa)."-? A third species has recently been described,
P. dezfulensis, that is most closely related to P. biglobosus but is not so far considered
to be of economic importance having been reported on only a small number of leaves
in Iran.® The disease is primarily caused by the ascospores of the pathogen, which
can be detected using microscopic and molecular tools.* ® Moreover, the air-
transported ascospores may contribute to autumn asthma in areas of oilseed rape
production.® Back trajectory modelling and DNA-based species-specific detection
methods allow tracking the spore transport of Plenodomus spp. in air masses.’” Both
P. lingam and P. biglobosus co-occur in many parts of the world, including the
internationally important OSR growing regions of Australia, Canada, and Europe?,
although in some parts of the world only one or other of the species are known to occur
(e.g. P. biglobosus in China®) or at least appear predominant (e.g. P. lingam in South
Africa'®). The development of the pathogens and the subsequent yield loss strongly
depends on weather and is greater after warm but wet autumns. " 12

P. lingam has traditionally been considered the economically important oilseed
rape pathogen, being more often associated with damaging basal stem cankers,
compared to P. biglobosus that was linked to less damaging upper stem lesions.2
Research into phoma disease management however has focused predominantly on
P. lingam, with the deployment of host resistance genes targeted to this species that
are not effective against P. biglobosus, and Huang et al.’® suggest that effective control
of P. lingam has led to selection for P. biglobosus which is increasingly problematic in
the UK.

Application of fungicides, predominantly sterol demethylation inhibitors (DMls;
FRAC code 3) are the other key phoma disease management strategy. In the UK in
2023 alone, >500,000 hectares of crop were treated with this mode of action (MoA)
chemistry (i.e. nearly two applications per crop).' Similarly, the studies performed in
2023 in Poland by KYNETEC, an agricultural market research company, have
demonstrated that the area of oilseed rape treated with DMIs exceeded 1.93 million
hectares, which means that on average each field was treated twice or more times per
season (www.kynetec.com/pl). A recent 2025 study indicates that in Poland
environmental contamination with the DMI tebuconazole is due to use of this
compound in agriculture for disease control, which runs off into surface water following
application.’®

Decreased DMI sensitivity is often mediated either through alterations in the
structure of the target CYP571 (encoding the sterol 14 alpha-demethylase) or
overexpression of CYP51 that is typically mediated by insertions into the upstream
promoter region; increased fungicide efflux via overexpression of efflux pumps is
another possibility although other resistance mechanisms are also known to occur.'®
In 2015, P. lingam isolates with decreased DMI sensitivity were identified for the first
time in Australia'’, and subsequently in eastern and western Europe.'®2°, and that has
been associated with CYP57 promoter inserts and target site overexpression.?' To
date, CYP51 promoter inserts have not yet been identified for P. biglobosus, nor have
CYP51 target site mutations associated with decreased DMI sensitivity so far been
reported for either species'® 2224, although ongoing monitoring is required for early
detection of these resistance mechanisms should they emerge in future.

In the majority of European P. lingam populations tested to date (including the
Czech Republic, Germany, Ireland, and the UK; although not yet detected in France),
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such CYP51 promoter inserts, typically transposable elements (TEs), have now been
reported at high frequencies of >85%, with a 237 bp fragment of the Sahana TE the
predominant variant.’® 20 Given these findings, and the fact that King et al.'® report
some evidence that P. lingam isolates (carrying CYP51 promoter inserts) were less
sensitive to DMIs in vitro than P. biglobosus (no inserts) to DMIs, they suggest that
application of this MoA might lead to future selection for P. lingam. Eckert et al.?®
suggest that differential sensitivity to fungicides might affect the P lingam / P.
biglobosus population structure. Effective control of phoma leaf spotting and stem
canker, including the use of fungicides, thus requires targeting of both P. lingam / P.
biglobosus' and should be underpinned by good understanding of the population
biology of both pathogens.

The main aims of the present study were to screen populations of P. lingam and
P. biglobosus sampled in 2024 from Poland (a country in central-east Europe for which
such recent data are currently unavailable) to investigate the possibility of decreased
DMI sensitivity for either species in vitro; secondly to investigate the underpinning
molecular mechanisms associated with any sensitivity shifts identified; and third to
assess whether there are differences in DMI sensitivity between the species that might
impact on the pathogen population structure. This paper reports the findings of these
studies, and considers their implications in terms of phoma stem canker management.

2. MATERIALS AND METHODS
2.1. Fungal isolation, DNA extraction and species-specific PCR

Stems of winter OSR exhibiting clear phoma stem canker lesions were collected from
multiple sites throughout Poland in July/August 2024. Fungal isolation was attempted
from stems within one week of collection (for a very small number within two weeks),
predominantly from basal cankers. . From each stem, the outer lesioned material was
removed using a sterile scalpel, and a small fragment of the underlying necrotic
material (~3mm?) was excised. These fragments were surface sterilised for 1 minute
in 5% sodium hypochlorite solution (v/v), two rinses in sterile distilled water, and lastly
dried on sterile filter paper in a laminar flow hood until dry. Lesion segments were
transferred to PDA plates (containing penicillin and streptomycin at final
concentrations of 50 units/mL and 50 ug/mL, respectively; Gibco, Thermo-Fisher
Scientific) and incubated at 18°C for approximately one week until colonies were
evident. Subsequently, a small piece of mycelium was taken from each colony margin
using a sterile needle and used to establish a pure isolate. All isolates were each
obtained from different stems, i.e. one isolate was retained per individual stem. All
isolates obtained from single mycelial tips were maintained in duplicate at 4°C on PDA
slopes at Rothamsted Research (UK). In addition to these newly collected isolates,
five older Polish isolates (LmPL002, 012, 014, 016, 020) collected before 2002 were
also sourced from the OREGIN culture collection that had been maintained at 4°C on
PDA slopes at Rothamsted Research (UK).

DNA was extracted and species identities of obtained isolates confirmed as
either P. lingam | P. biglobosus via multiplex species-specific PCR?® as previously
described.'® 27 In total, 37 isolates of P. lingam collected from 12 sites and 24 isolates
of P. biglobosus collected from 11 sites (Table 1), were newly collected from Poland in
2024 for this study. The distribution of the isolates of both species from Poland is
shown graphically in Fig. 1.
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2.2. Fungicide sensitivity testing

In vitro prothioconazole-desthio sensitivity was tested for: 37 P. lingam isolates
collected from Poland in 2024; 24 P. biglobosus isolates collected from Poland in 2024
(Table 1); and five P. lingam isolates collected from Poland before 2002. Testing was
as described in King et al.’%, except that isolates were incubated for an additional 48
hours under near-UV light to ensure sufficient sporulation before use. To account for
minor between-run variation in sensitivity testing, a simple conversion factor was
calculated so that the combined mean ECso value of the five older (<2002) reference
Polish P. lingam isolates used in this study (lacking CYP51 promoter inserts) was
0.004 pg/mL (the value obtained for isolates lacking inserts by King et al.'®).
Subsequently, the entire ECso dataset of this study was uniformly scaled using this
calculated conversion factor (i.e. all data remained proportional). This uniform
adjustment of raw ECso values ensured consistency between datasets obtained in this
study and King et al.'®

2.3. Molecular analyses

2.3.1. PCR screening and sequencing of P. lingam isolates CYP51 promoter
inserts

The promoter region of the CYP51 gene was PCR amplified for 37 P. lingam isolates
collected from Polish OSR crops in 2024 using primers EPS1/EPS6.2" In addition,
these primers were also applied to DNA extracted from the five older (collected <2002)
Polish P. lingam isolates. PCR was carried out in 25 pyL volumes, containing 12.5 uL
RedTaq ReadyMix (2 x concentrate), 0.2 yL each of primers EPS1 and EPS6 (100 uM
stocks) (EPS1: 5' AGCACCCATGGACCACGG 3% EPS6: 5'
CAGGATAAAGGAGGCGAAG 3, 10.1 yL of PCR-grade water and 2 pL of genomic
DNA (~20 ng total). Reaction conditions were: 35 cycles of 95°C for 1 min, 60°C for
1 min, 72°C for 1 min; a final elongation step of 72°C for 5 min; and a final hold at 4°C.
PCR amplicons were visualized by electrophoresis on 3% agarose gels. Two
reference P. lingam isolates, one without a CYP51 insert, the other carrying the 237
bp insert predominant in most contemporary European pathogen populations tested
to date, were also screened.’” PCR amplicons were visualised by agarose gel
electrophoresis and the presence / absence of inserts confirmed by amplicon size
comparison to the reference isolates. Amplicons obtained for two representative P.
lingam isolates (24-42-2, 24-50-7) were purified using a MinElute PCR purification kit
(Qiagen) and sent to GeneWiz UK Ltd for bidirectional sequencing. Sequences were
aligned and analysed using Geneious software v. 8.1 (Biomatters). CYP57 promoter
inserts present were described, as is convention?®, based on the position of the insert
relative to the gene start codon, followed by the size of the insert. As inserts were
known to include a few base pairs of sequence duplicated from the CYP57 promoter
region, the positioning of the inserts relative to the start codon were based on the
downstream positioning of this repeated sequence.’®

2.3.2. Sequencing of the CYP51 gene for P. biglobosus isolates
The CYP51 gene was amplified and sequenced for 15 P. biglobosus isolates (Table

1). Primers used for amplification of the entire P. biglobosus CYP51 gene coding
region were designed in this study, and were based on available genome sequence of
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this species (GenBank accession FO905635, positions spanned 23,694 to 25,479).2°
Primers were designed to amplify the entire CYP57 gene (1642 bp that includes a 58
bp intron), with outer primers designed to target the gene flanking regions (predicted
PCR amplicon size 1786 bp). PCR was carried out in 50 uL volumes, containing 5 uL
10 x PfuUltra Il reaction buffer, 0.5 yL dNTP mix (25 mM stock), 0.15 uL each of outer
primers  LbigCYP51geneF_ 1 (8 AAGTCTCTCGTTCTTCCGCG 3) and
LbigCYP51geneR_1 (5° AGCCAGCCATTCCATCAAGG 3’) (each 100 uM stocks),
40.7 yL PCR-grade water, 1L PfuUltra Il Fusion HS DNA polymerase (Agilent
Technologies Inc.) and 2.5 pL of genomic DNA (25 ng total). Reaction conditions were
as follows: 35 cycles of 95°C for 20 s, 60°C for 20 s, 72°C for 1 min; a final elongation
step of 72°C for 3 min; and a final hold at 4°C. Amplicons were sequenced using
primers LbigCYP51geneF_1 and LbigCYP51geneR _1, plus an additional two internal
primers LbigCYP51int1 (5 TGGATGACGACGAGTGTTGG 3’) and LbigCYP51int2 (5’
CGCAGCAAAGAAAGACTCACA 3’). Sequences were aligned and inspected for the
presence of synonymous/non-synonymous mutations. Molecular analyses revealed
that some of the P. biglobosus isolates sequenced had no CYP51 substitution at codon
476 (i.e. were wild type, hereafter referred to as G476 isolates), while others carried
substitution G476S (hereafter referred to as G476S isolates); the numbering here is
based on the nomenclature of Mair et al.3° and by reference to the Zymoseptoria tritici
archetype (GenBank accession AY253234).

2.3.3. PCR diagnostics for detection / discrimination of P. biglobosus
G476/G476S isolates

Two new diagnostic assays, developed to be used individually in two different sets of
reactions, were designed to target the non-synonymous mutation at CYP57 codon 476
[G476: GGT, G476S: AGT]. For both primer sets, the forward ‘common’ primer was
the same (PbCommon2: 5 CCGACGAAAAGGACGACGAG 3’). For G476 isolates the
specific reverse primer was PbGly2 (5 AGCGATGTCTTCCTGCACCG 3’); for G476S
isolates the specific reverse primer was PbSer2 (5 AGCGATGTCTTCCTGCACTG
3’.) In each of the specific reverse primers, the underlined base represented the key
SNP targeted whereas the final bold base was an intentional mismatch introduced to
improve assay specificity. Primers were designed to amplify a product of 99 bp. Details
of the P. biglobosus isolates used for validation of the developed assays are given in
Table 1, although P. lingam DNA (isolate 24-40-4) was also screened as a further test
of specificity. Isolates were considered G476 if an amplicon of the expected size was
produced using primer pair PbCommon2/PbGly2 but not PbCommon2/PbSer2, and
G476S if the opposite result was found. PCR was carried out in 25 uL volumes,
containing 12.5 yL RedTaq ReadyMix (2 x concentrate), 0.2 uL each of forward and
reverse primers (100 uM stocks), 10.1 yL of PCR-grade water and 2 pyL of genomic
DNA (~20 ng total). Reaction conditions were: 35 cycles of 95°C for 1 min, 66°C for
1 min, 72°C for 1 min; a final elongation step of 72°C for 5 min; and a final hold at 4°C.
PCR amplicons were visualized by electrophoresis on 2% agarose gels.

2.3.4. Screening of P. biglobosus isolates for CYP51 promoter inserts

All 24 P. biglobosus isolates (Table 1) were screened for CYP51 promoter inserts using
primers KK2F/R, as previously described in King et al..’® Amplicons obtained for three
isolates (24-38-4, 24-44-3, 24-44-6) were purified, bidirectionally sequenced, and
analysed in Geneious.
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2.4. Statistical analyses of datasets

All data were collated in MS Excel, where initial exploratory data analysis and graph
production were carried out. Subsequent statistical analyses mostly used the
GraphPad Prism software package v. 8.4.2.

2.41. P lingam dataset

Analyses of ECso data suggested some violations of assumption of normality
(Kolmogorov—Smirnov tests) and equal variance (Levene test) (data not shown). Thus,
nonparametric Kruskal-Wallis one-way analysis of variance (ANOVA) tests were used
to explore whether significant differences could be identified between six P. lingam
populations: Poland (isolates collected <2002, N = 5), Poland (2024, N = 37), France
(2023, N = 3), the UK (collected 2022/2023, N = 34), Ireland (2023, N = 9), and
Germany (2022/2023, N = 9). Data for the two Polish populations tested were obtained
in the present study; data for the other four populations was sourced from King et al."®.
If significant differences were identified, post hoc Dunn's multiple comparisons tests,
commonly used following Kruskal-Wallis one-way ANOVA and that makes no
assumptions as to whether the data are normally distributed, were subsequently
carried out to pinpoint between which populations differences occurred.

2.4.2. P biglobosus dataset

Analyses of ECso data suggested violation in the assumption of equality of variance
(Levene test) but not normality (Kolmogorov—Smirnov test); thus Welch’s T-test was
used to determine whether significant differences could be identified between G476
(N =10) and G476S (N = 14) isolates.

2.4.3. P. lingam versus P. biglobosus datasets

Analyses of ECso data suggested violation in the assumption of equality of variance
(Levene test) but not normality (Kolmogorov—Smirnov test); thus Welch’'s one-way
ANOVA test was used to determine whether significant differences could be identified
between isolates (all collected in 2024 from Poland) of P. lingam carrying CYP51
promoter inserts (N = 37), P. biglobosus G476 (N = 10), and P. biglobosus G476S (N
= 14). If significant differences were identified, post hoc Games-Howell multiple
comparisons tests, used because of the violation of the assumption of equality of
variance, were subsequently carried out to pinpoint between which groups differences
occurred.

3. RESULTS

3.1. P. lingam - sensitivity testing and molecular analyses

3.1.1. P. lingam - in vitro sensitivity testing

Screening for prothioconazole-desthio sensitivity showed that the six groups of P,

lingam isolates (ranked from the lowest to the highest median ECso values with
interquartile range (IQR) in parentheses were from: France (collected 2023, N = 3),

6
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ECs0 0.003 (0) pg/mL; Poland (isolates collected <2002, N = 5), ECs0 0.004 (0.003)
Mg/mL; the UK (collected 2022/2023, N = 34), ECs0 0.014 (0.010) ug/mL; Ireland
(collected 2023, N = 9), ECs0 0.015 (0.015) ug/mL; Poland (collected 2024, N = 37),
ECs0 0.016 (0.006) pg/mL; and Germany (collected 2022/2023, N = 9), ECs0 0.019
(0.010) pg/mL (Fig. 2). Kruskal-Wallis test one-way ANOVA results suggested
significant differences between one or more pairs of the six groups
(H[5] =26.25, p<0.01). Post hoc comparisons using Dunn's multiple comparisons test
showed that significant differences (at least p < 0.05) occurred between the more
sensitive isolates from both Poland (collected <2002) and France versus less sensitive
isolates from Germany, Ireland, Poland (collected 2024), and the UK (collected
2022/2023). No other significant differences were observed in any pairwise
combinations, apart from between the UK and slightly less sensitive German isolates
for which small but statistically significant differences were detected. These results
indicate sensitivity shifts (4-fold) between more sensitive older (collected <2002) and
less sensitive recent (collected 2024 ) Polish P. lingam isolates.

3.1.2. P. lingam - molecular screening for CYP51 promoter inserts

Screening via PCR of all 37 Polish P. lingam isolates collected in 2024 using primers
EPS1/EPS6 revealed that all carried CYP51 promoter inserts (Fig. 1A). The five P.
lingam isolates (collected <2002) all lacked promoter inserts (data not shown). Based
on visual inspection of amplicons resolved by agarose gel electrophoresis, almost all
(36/37; 97%) appeared to carry inserts that based on visual inspection of amplicons
were of an identical, or very similar size, to that of a reference P. lingam isolate carrying
the -99, ins. 237 bp insert. Sequencing of amplicons of one such representative P.
lingam isolate (24-50-7) confirmed 100% identity to GenBank accession OR961466,
a P. lingam isolate with a 237 bp insert at 99 bp upstream of the start codon. A single
isolate (1/37; 3%) gave a larger amplicon in PCR screening (24-42-2) and sequencing
of this isolate confirmed 100% identity to GenBank accession OR961467, a P. lingam
isolate previously confirmed by King et al.’to carry a 360 bp insert at 382 bp upstream
of the start codon.

3.2. P biglobosus — sensitivity testing and molecular analyses
3.2.1. P. biglobosus - in vitro sensitivity testing

Initial visual inspection of sensitivity data revealed two distinct groups. The first group
comprised 10 isolates that appeared relatively sensitive to prothioconazole-desthio;
molecular analyses (discussed in more detail below) revealed no CYP51 substitutions
including at codon 476 (isolates subsequently referred to as G476). By contrast, the
second group contained 14 isolates that appeared less sensitive; molecular analyses
showed these isolates carried the CYP51 substitution G476S (subsequently referred
to as G476S isolates). Welch’s unpaired T-test revealed highly significant differences
in sensitivity to prothioconazole-desthio in vitro between P. biglobosus G476 (mean
ECs0 0.006 pug/mL, SD = 0.002 pg/mL) and P. biglobosus G476S (mean ECso 0.044
pug/mL, SD = 0.020 pg/mL) isolates (1(22)=5.70, p < 0.01) (Fig. 3). Thus, P. biglobosus
G476S isolates were 7.3-fold less sensitive than P. biglobosus G476 isolates. P,
biglobosus G476S isolates were widely geographically distributed throughout Poland
(Fig. 1B).
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3.2.2. P. biglobosus - molecular analyses
3.2.2.1. Sequencing of the CYP51 gene

Complete CYP51 gene coding sequences (coding for 527 amino acids) were obtained
for six P. biglobosus isolates from 2024, while almost complete sequences (encoding
519/527 amino acids) were obtained for a further nine isolates; details of the isolates
sequenced and corresponding GenBank accession numbers are given in Table 1.
Alignment of the 15 sequences revealed two synonymous mutations at positions 1288
(C/T) and 1588 (A/G), neither of which correlated with differences in prothioconazole-
desthio sensitivity. A single non-synonymous mutation was also identified at position
1442 (A/G). The position numbering for these mutations is based on the complete
sequence obtained for isolate 24-43-7 (GenBank accession PV013628). The single
non-synonymous mutation identified corresponded to substitution G476S (numbering
based on reference to the archetype sequence Z. tritici®°) resulting in a switch from
glycine (G; codon GGT) to serine (S; codon AGT). Of the 15 P. biglobosus isolates for
which the CYP57 gene was sequenced, eight were G476 and seven were G476S
(Table 1).

3.2.2.2. PCR diagnostics for G476/G476S discrimination

Use of primers PbCommon2 and PbGly2 amplified a 99 bp product only for G476
isolates, while primers PbCommon2 and PbSer2 amplified a 99 bp product only for
G476S isolates (Table 1; Fig. 4). The fact that all isolates were PCR screened
simultaneously with both diagnostics and only ever produced an amplicon with one or
the other, plus that the genotype inferred using the new diagnostics matched exactly
results obtained by sequencing, confirmed the robustness of the assays. Of the 24 P.
biglobosus isolates screened with the new diagnostic assays, 10 (42%) were G476
while 14 (58%) were G476S. Furthermore, although very faint bands were observed
in testing with a P. lingam isolate, indicative of minor non-specific amplification for this
closely related species, these were of a larger size to the diagnostic 99 bp amplicon.

3.2.2.3. Screening of P. biglobosus isolates for CYP51 promoter inserts

For 22/24 (92%) P. biglobosus isolates screened, a similarly sized amplicon of about
805 bp was obtained using primers KK2F/R (Table 1; Fig. 5). Primer KK2F was
designed to target 691 bp upstream of the predicted CYP51 gene start codon (i.e. to
promoter region sequence), with primer KK2R targeted 114 bp downstream of the start
codon (i.e. gene coding sequence). Thus, for these 22 isolates, there was no clear
evidence for CYP51 promoter inserts. Sequence obtained for the amplicon from
isolate 24-44-3 (GenBank accession PV013636) yielded high quality sequence of 714
bp (647 bp was predicted promoter region sequence and the remainder predicted to
be gene coding sequence). For the remaining 2/24 (8%) isolates, a larger amplicon of
~1.15 Kb was amplified, which is indicative of possible inserts into the CYP51 promoter
region. Sequencing of amplicons obtained for isolates 24-38-4 and 24-44-6 (GenBank
accession PV013637) revealed that both carried an insert of 336 bp (two copies of a
168 bp segment of the promoter region itself), which was located 107 bp upstream of
the CYP51 gene start codon. The geographic distribution of P. biglobosus isolates
with/without CYP51 promoter inserts is shown in Fig. 1B. The two isolates carrying
promoter inserts were both G476S, and visual inspection of the data (Table 1)

8



400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449

suggested no immediately obvious differences in prothioconazole-desthio sensitivity
between them and other G476S isolates for which no promoter inserts were detected.

3.3. Comparative fungicide sensitivity of P. ingam and P. biglobosus

Results described in this section are visualised in Fig. 3. Screening for
prothioconazole-desthio sensitivity showed that when ranked from the lowest to the
highest mean ECso values (with standard deviation given in parentheses) were: 0.006
(SD = 0.002) pg/mL (P. biglobosus G476, N=10); 0.017 (SD = 0.004) ug/mL (P.
lingam with inserts, N=37); and 0.044 (SD = 0.020) pg/mL (P. biglobosus
G476S, N=14). Welch's one-way ANOVA results suggested significant differences in
prothioconazole-desthio sensitivity existed between one or more pairs of the three
groups (F[2,25.7] =81.57, p<0.01). Post hoc comparisons using Games-Howell tests
revealed significant differences (all at least p < 0.05) occurred in all pairwise
comparisons between the three groups. P. biglobosus G476S substitution isolates
were significantly less sensitive (7.3-fold) than P. biglobosus G476 isolates. Compared
to P. lingam isolates carrying inserts, P. biglobosus G476S isolates were significantly
less sensitive (2.6-fold), contrasting with P. biglobosus G476 isolates that were more
sensitive (2.8-fold).

4. DISCUSSION AND CONCLUSION

In this study, 37 P. lingam isolates collected in 2024 from across a broad geographic
range in Poland were significantly less sensitive (4-fold) to prothioconazole-desthio in
vitro compared to five Polish isolates collected over 20 years before (<2002). PCR
screening for CYP51 promoter inserts revealed all Polish P. lingam isolates collected
in 2024 carried an insert that was absent in the five older reference isolates. The
sensitivity shifts identified in the Polish P. lingam population (collected 2024) were
broadly consistent with isolates reported previously from Australia and Europe carrying
promoter inserts.'®?* Indeed, the Polish P. lingam population was not significantly
different to German, Irish and UK populations (collected 2022/2023) in which CYP51
promoter inserts were present at high frequencies of >85-100% but was significantly
less sensitive than the French population where such inserts were not found.'® Based
on visual inspection of PCR amplicons of the CYP51 promoter region when resolved
via agarose gel electrophoresis, all 37 Polish P. lingam isolates carried promoter
inserts, in most instances producing an amplicon of a very similar size to that of a =99,
ins237 reference isolate, this genotype being confirmed by sequencing of one
representative isolate. This 237 bp Sahana TE insert also appears predominant in P,
lingam populations from the Czech Republic, Ireland, Germany and the UK.'% 20
However, it is noted that one Polish P. lingam isolate yielded a significantly larger
amplicon, and was instead found to be the -382, ins360 variant, previously only
reported from two UK isolates.'® Given that the least sensitive P. lingam isolates from
Poland (24-42-8) was only 6.75-fold less sensitive to prothioconazole-desthio, the
possibility of CYP51 target site mutations was not investigated further in this study.
This research provides the first evidence for decreased DMI sensitivity in vitro in the
Polish P. lingam population, associated with CYP51 promoter inserts, although it is
noted that the practical implications of these findings in terms of phoma disease
management under field conditions requires further investigation. Such a shift was not
surprising given the extensive use of DMIs as plant protection products in Poland.?
Similar extensive use of DMIs is observed in some other European countries like the
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UK." Moreover, there is evidence that the degradation of tebuconazole, a leading DMI
active compound is very slow in Polish mineral soils with low organic carbon content,
and its adsorption rate is even lower in subsoils, which differentiates soils in Poland
from some others in Europe.3? All of this could potentially have led towards selective
pressure for decreased DMI sensitivity.

Initial inspection of sensitivity data obtained for 24 modern Polish P. biglobosus
isolates revealed that some were less sensitive than others to the DMI
prothioconazole-desthio. Therefore, we first investigated whether the observed
differences could be explained by mutations in the CYP571 gene, given that such
mutations have been linked to decreased DMI sensitivity in many other fungi33 34
although not yet for either P. lingam or P. biglobosus."® ?2:23 High quality CYP571 gene
sequences were obtained for 15 Polish P. biglobosus isolates. One non-synonymous
substitution was identified at codon 476 (numbering based on Mair et al.*°) in some of
the P. biglobosus isolates. Based on this sequence data, in combination with PCR
typing data of all Polish P. biglobosus isolates using new G476/G476S molecular
diagnostics (discussed further below), ten more sensitive isolates had codon GGT at
position 476 that translated to the amino acid glycine and considered wild type (i.e.
G476). Conversely, 14 less sensitive isolates instead had codon AGT, which instead
encoded the amino acid serine (G476S). Statistically, G476 and G476S isolates were
significantly different in sensitivity to prothioconazole-desthio, with the latter being 7.3-
fold less sensitive. The equivalent substitution has been associated with decreased
DMI sensitivity in many other fungi of agricultural and clinical importance, including the
human pathogen Candida albicans in which the mutation alters the heme binding
environment, with decreased DMI binding affinity and reduced enzyme activity.3+ 36 37
These results represent the first evidence of a CYP57 mutation associated with
decreased DMI sensitivity in P. biglobosus, which had not previously been identified
by sequencing of older (2012/2013) UK isolates of this species.?> However further
work is now required to investigate the role of G476S, including testing for possible
incomplete cross resistance to different DMIs, in addition to functional and modelling
studies.

Based on data obtained in this study, the G476S genotype was found to have a
frequency of 58% in the Polish pathogen population (with G476 and G476S
co-occurring at some sites) and is widely distributed geographically there. Initial
sequencing of the CYP51 gene of two additional UK P. biglobosus isolates by the
authors of this study, both of which had been collected from OSR in 2023 (described
in King et al.’®), revealed that one Essex isolate (23ESXLB01; prothioconazole-desthio
ECso0 of 0.021 ug/mL; GenBank accession PV013635) was G476, whereas one Norfolk
isolate (23DERELBO1; prothioconazole-desthio ECso of 0.028 ug/mL; GenBank
accession PV013634) had codon AGT translating to substitution G476S. Thus, albeit
based on only a single isolate to date, the geographic distribution of G476S now also
includes western Europe. Further work is now required to explore spatial and temporal
dynamics of G476S, or indeed any other potential CYP57 mutations that may be
present, in P. biglobosus populations, particularly in the key OSR producing regions of
Australia, Canada, China and Europe.? 3 New PCR diagnostics have been developed
in the present study for rapid detection/discrimination of G476 (primers
PbCommon2/PbGly2) and G476S (primers PbCommon2/PbSer2) P. biglobosus
isolates that can be utilised in such surveys. However, caution is required in the use
and interpretation of these diagnostic assays as different mutations within the CYP51
gene, either at codon 476 or elsewhere, might be overlooked if using these diagnostics
alone.
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Given that inserts (In Europe, predominantly the 237 bp Sahana TE) in the
CYP51 upstream promoter region have previously been associated with decreased
sensitivity in P. lingam'% 2. 24 this possibility was also investigated for P. biglobosus.
DNA extracted from all 24 modern Polish P. biglobosus isolates were screened using
primer pair KK2F/R'®, and were expected to yield an 805 bp amplicon for wild type P.
biglobosus isolates [comprising sequence 691 bp upstream and 114 bp downstream
of the predicted CYP51 start codon]. Most of the P. biglobosus isolates tested (22/24,;
92%), produced an identically sized amplicon of ~805 bp as determined by agarose
gel electrophoresis. This result was confirmed by bidirectional sequencing of the
amplicon obtained for a single representative isolate (22-44-3) and demonstrated
100% identity to GenBank accession FO905635. Given that the vast majority of 2024
Polish P. biglobosus isolates, that exhibited a broad range of sensitivities to
prothioconazole-desthio, all yielded a similarly sized amplicon of ~805 bp, CYP51
promoter inserts are unlikely to explain P. biglobosus fungicide sensitivity shifts
identified in this study. These findings are consistent with those of King et al.’® who
found no evidence for CYP51 promoter inserts in PCR screening of 17 European P.
biglobosus isolates collected between 2021-2023.

Nevertheless, it is noted that a larger product of ~1.15 Kb was amplified for 2/24
(8%) Polish P. biglobosus isolates (both G476S) in screening with primers KK2F/R,
indicative of possible insertion into the CYP51 promoter region. Bidirectional
sequencing of amplicons revealed that this promoter region alteration (-107, ins336)
was due to an insertion of two repeat copies (i.e. 2 x 168 bp) of a segment of the
promoter region itself. This contrasts with P. lingam in which CYP51 promoter inserts
linked to decreased sensitivity are TEs, in Europe predominantly the -99, ins237
Sahana TE.' This finding represents the first report of CYP51 promoter inserts in P.
biglobosus, although it is noted that prothioconazole-desthio sensitivity of these two
G476S isolates with inserts (ECsos of 0.046 pg/mL and 0.063 pg/mL) was similar to
that of the other 12 G476S isolates for which no CYP51 inserts were identified (mean
ECs0 = 0.042 ug/mL). In previous studies with other fungal pathogens the presence of
target site alterations in combination with promoter inserts has led to far greater
decreases in sensitivity than for either mechanism alone33 3* but this does not appear
to be obviously the case here for P. biglobosus. Further work is required to investigate
whether this 336 bp insert is associated with CYP57 overexpression and decreased
DMI sensitivity, such as has been reported previously in P. ingam. Overall, however,
CYP51 promoter inserts do not appear to explain the decreased DMI sensitivity
observed in the present study, which instead correlates well with the CYP51
substitution G476S. Ongoing monitoring of P. biglobosus populations for inserts is
required, although it is possible, however, that such TE CYP51 inserts are more likely
to occur in P. lingam than P. biglobosus given that the former has a heavily TE-invaded
genome (32.4%) compared to the latter (<4%).2°

Previous studies have suggested how fungicide applications might affect
P. lingam | P. biglobosus population structure given differing sensitivities of the species
to fungicides?®, although other factors such as deployment of host resistance genes
(effective against P. lingam but not P. biglobosus'?) also need to be considered. Both
of these species have the potential to be economically important OSR pathogens?® 35,
so both species need to be targeted for sustainable phoma management.’® King et
al.’® report that P. lingam isolates carrying the 237 bp CYP51 promoter inserts, the
predominant variant in most European populations tested, were 5-fold less sensitive
to prothioconazole-desthio in vitro compared to isolates lacking such inserts. In this
study P. biglobosus isolates of G476S genotype were 7.3-fold less sensitive compared
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to G476. Statistically, based on the Polish dataset obtained in this study, P. lingam
isolates carrying CYP51 promoter inserts were significantly less sensitive to
prothioconazole-desthio than P. biglobosus G476 isolates (2.8-fold), but significantly
more sensitive than P. biglobosus G476S isolates (2.6-fold). There is evidence that
the equivalent substitution in the clinical pathogen C. albicans is not costly in fitness
terms at least under laboratory conditions.® If the G476S substitution in P. biglobosus
carries no fitness penalty, it is possible that this genotype will increase over time under
selection by DMI fungicides. Further work is required to investigate whether P.
biglobosus (carrying G476S) may be selected for over P. lingam (carrying CYP51
promoter inserts) under field conditions via application of DMI fungicides. Such studies
should also consider other factors likely to influence pathogen population structure,
particularly deployment of host resistance targeted only to P. lingam and its current
effectiveness.’®

Ongoing proactive monitoring of both P. ingam and P. biglobosus populations
for any future DMI sensitivity shifts and identification of the underpinning molecular
mechanisms will be important as a component of fungicide resistance management
strategies. Further work for both species is required to investigate the possibility of
enhanced fungicide efflux via overexpression of efflux pumps which was not tested in
this study. It is possible that P. lingam may in future develop CYP51 target site
mutations, perhaps more likely those encoding G476S, given that this substitution has
now been confirmed in P. biglobosus. Alternatively, CYP51 promoter inserts leading to
target site overexpression and decreased DMI sensitivity may emerge in P
biglobosus. Should increasingly complex CYP51 variants emerge for either species
that encompass both these resistance mechanisms, they are likely to exhibit far
greater decreases in DMI sensitivity than for either mechanism alone, such as has
been reported for other economically important phytopathogenic fungi.33 34
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Figure 1. Geographical distribution of (A) 37 Plenodomus lingam and (B) 24 P.
biglobosus isolates collected from oilseed rape in Poland in 2024 used in this study.
All P. lingam isolates shown in (A) contained CYP51 promoter inserts. The CYP51
genotype of the P. biglobosus isolates in (B) is indicated in the legend.
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Figure 2. In vitro sensitivity of Plenodomus lingam (all carrying CYP51 inserts) isolates
from France (FRA), Germany (GER), Ireland (IRE), the United Kingdom (UK) and
Poland (POL) to the DMI prothioconazole-desthio. The years that isolates were
collected are indicated in the legend (i.e. ‘22/23’ indicates 2022/2023). Isolates are
ranked according to increasing ECso values (cumulative). The number of isolates in
each group is indicated (N). Each data point shown represents the mean of two
technical replicates.

18



840
841

842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866

Figure 3
94700

O O
o)
5 ® o
< 75 e O
o o
g o ®
o @)
2 50 o) )
3 25 e o
E O &
< o)
0
0.000 0.001 0.010 0.100

Log(ECsp) Hg/mL

O P. biglobosus G476 (N=10)

O P. biglobosus G476S (N=12)

@ P. biglobosus G476S + 336 bp insert (N=2)
@ P, lingam + insert (N=37)

Figure 3. In vitro sensitivity of Plenodomus lingam (all carrying CYP51 inserts) and P.
biglobosus (CYP51 gene encoding either G476 or G476S) isolates collected from
Poland in 2024 to the DMI prothioconazole-desthio. Note that the two G476S P.
biglobosus isolates carrying promoter inserts (336 bp) are also indicated. Isolates are
ranked according to increasing ECso values (cumulative). The number of isolates in
each group is indicated (N). Each data point shown represents the mean of two
technical replicates.
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Figure 4. New PCR diagnostic assays based on CYP571 gene sequence variation for
rapid typing of G476 and G476S isolates of Plenodomus biglobosus. (A) Primers
PbCommon2 and PbGly2 amplified a 99 bp product only for G476 isolates. (B) Primers
PbCommon2 and PbSer2 amplified a 99 bp product only for G476S isolates. P.
biglobosus isolates tested and their genotypes are given to the top of the gel, with full
information given in Table 1. Lane labelled ‘NTC’ was a no template water control; lane
labelled P. lingam was Polish isolate 24-40-4. Molecular marker sizes are indicated to
the left, with an arrow showing the expected 99 bp PCR amplicon to the right.
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Figure 5. Amplification of the CYP571 promoter region of 12 representative
Plenodomus biglobosus isolates collected from Poland in 2024. Eleven of the isolates
shown amplified an ~805 bp product indicative of no promoter inserts, while the
remaining isolate shown (24-44-6) amplified an ~1.15 Kb product consistent with the
presence of an insert. Amplification of the CYP51 promoter region used PCR primers
KK2F/R. Isolate codes are indicated above well lanes, with full information on isolates
given in Table 1. Lane labelled ‘NTC’ was a no-template water control. Molecular
marker sizes are indicated to the left.
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