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• Synthesis of relationships between plant 
traits and N losses from experiments.

• Survey of process-based models simu
lating crop growth and N losses.

• Sensitivity analysis with four well- 
known models to examine root trait vs 
N loss interactions.

• Model simulations do not capture 
empirical relationships between root 
traits and N losses well.

• Suggested model improvements include 
new traits that link N cycling and prox
ies for complex traits.
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A B S T R A C T

CONTEXT: Nitrogen (N) application to crops is crucial to feed an increasing world population. Yet, much of this N 
is not taken up by crops, initiating a cascade of N losses with dire environmental and economic consequences. 
There is, therefore, a need to develop crops with traits that make them use N more efficiently, thereby reducing N 
losses. Process-based models have been used to design in-silico crops with desirable traits to maximize yield and 
increase climate resiliency, but few have been used with the perspective of reducing N losses.
OBJECTIVE: To examine the way process-based models capture interactions between root traits and N losses, and 
propose opportunities to improve model representation of observed relationships.
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Nitrogen pollution
Crop ideotype METHODS: We synthesize the current knowledge on the relationships between plant traits and N losses based on 

experiments reported in the literature, conduct a survey of process-based models simulating crop growth and N 
losses, and run a sensitivity analysis with selected models (DSSAT, APSIM, DNDCvCAN, Daisy).
RESULTS AND CONCLUSIONS: The results show that the relationships between root traits and N losses can be 
very strong in experiments, but model simulations do not capture the magnitude of these associations well. This 
is mainly due to the lack of a robust representation of the plant root mechanisms influencing N losses. Suggested 
model improvements include designing new functions to link root traits with key N-cycling processes supported 
by experimental evidence – such as root exudation of various compounds including biological nitrification in
hibitors – and using easily observable morphological traits in process-based models as proxies to predict changes 
induced by plants on N-cycling by soil microbial communities.
SIGNIFICANCE: This work represents a key step towards designing novel root function-based ideotypes adapted 
to reduced fertilizer inputs while maintaining the same level of yield, and that is, therefore, potentially less 
harmful to the environment.

1. Introduction

Since the Green Revolution, the world has witnessed an unprece
dented increase in nitrogen (N) fertilization owing to the increasing food 
demand of a growing global population and the goal of achieving zero 
hunger (Zhang et al., 2021; Gu et al., 2023). Indeed, a 5-fold increase in 
N inputs has contributed to the doubling of global food production 
(Tilman et al., 2002; Battye et al., 2017). However, on average only 
around 46 % of the N fertilizer applied to agricultural soils is utilized by 
plants, while a large fraction of the remaining N is lost from agro
ecosystems through nitrate (NO3

− ) leaching, ammonia (NH3) volatiliza
tion, and nitrous oxide (N2O) emissions (Zhang et al., 2015a, 2015b; 
Chang et al., 2021). These N losses can trigger a cascade of severe eco
nomic, social, and environmental consequences, including eutrophica
tion, biodiversity loss, air pollution, stratospheric ozone depletion, 
global warming, and associated climate change (Reay et al., 2012; 
Springmann et al., 2018). The pressure to increase N fertilizer inputs will 
continue because global food demand is expected to increase by 35–56 
% by 2050 (Van Dijk et al., 2021). This calls for an improved under
standing of N cycling within the plant-soil-atmosphere continuum to 
better manage the adverse impacts associated with this vital nutrient on 
our ecosystems.

Plants can shape the fate of N losses in agroecosystems by influencing 
the main biotic and abiotic controls on N transformations in soils. Ni
trogen losses through leaching and runoff are caused by rainfall or 
irrigation events that exceed the soil water retention or infiltration ca
pacity, promoting NO3

− movement with drainage water through the soil 
profile or flooding across the soil surface (Padilla et al., 2018). Most NO3

−

leaching losses occur outside of the growing season, consisting of NO3
−

not taken up by the crops or mineralized from crop residues and soil 
organic matter. Accordingly, the main mechanism by which plants can 
influence NO3

− leaching is through the immobilization of N in plant 
biomass via N uptake and reducing soil drainage through water uptake. 
Nitrous oxide (N2O) emissions are primarily produced through two 
microbial processes: nitrification and denitrification. Denitrification is 
stimulated under anaerobic conditions when soil is saturated with 
water, while nitrification is an aerobic process that involves two suc
cessive oxidation reactions. Soil carbon (C), mineral N, pH, and moisture 
content are the dominant driving factors regulating N2O emissions (Lam 
et al., 2017; Harris et al., 2022). Plants can affect all these factors 
through various processes mediated by root biomass, root exudation, 
and soil water and N uptake (Bardgett et al., 2014; Abalos et al., 2019).

Innovative root research has begun to reveal the pivotal and yet 
overlooked importance of root traits as drivers of plant N uptake, 
particularly when soil N availability is low (Freschet et al., 2021). Root 
traits such as abundance and length of lateral roots and root hairs, root 
length density (RLD), specific root length (SRL), and root depth, affect 
the volume of soil explored by roots and the surface area for nutrient 
uptake, thereby influencing plant N acquisition (Abalos et al., 2018, 
2019; Freschet et al., 2021). In turn, more efficient plant N uptake can 

reduce N losses in the form of N2O emissions (Abalos et al., 2014) and 
NO3

− leaching (Fernandez Pulido et al., 2023). Other root traits such as 
rhizodeposited C from live roots and the C/N ratio of the rhizodeposits, 
regulate interactions with the soil microbial community and in partic
ular with microbial guilds determining plant nutrient availability 
(Moreau et al., 2019). This emerging evidence suggests that there is 
potential to identify specific root traits – or suites of traits – representing 
an improved crop ideotype (model plant) for more efficient N uptake 
and reduced N losses.

Conventionally, plant traits are identified via field trials conducted 
under various agronomic and pedoclimatic conditions and used in 
breeding programs to develop new cultivars suitable for targeted envi
ronments and climatic conditions (Voss-Fels et al., 2019). However, 
these experiments are usually labor-intensive, time-consuming, and 
expensive, making it difficult to carry out long-term trials across mul
tiple sites (Johnston and Poulton, 2018; Kephe et al., 2021). Process- 
based models that simulate the soil-plant-climate continuum have 
arguably become the best tools to overcome these challenges (Tsuji and 
Hoogenboom, 1998; Peng et al., 2020). These mechanistic models have 
played a determinant role for the design of new crop ideotypes able to 
cope with climate change (Rötter et al., 2015; Paleari et al., 2022; 
Getachew et al., 2023), and to optimize agricultural management 
practices to improve the economic and environmental sustainability of 
food production (e.g., best N fertilizer strategies to reduce N losses, 
modifying the sowing date to maintain or increase crop yield; Hunt 
et al., 2019; Kropp et al., 2019). These robust modelling frameworks 
combined with the empirical evidence supporting root traits as key 
drivers of N cycling may pave the way to redefine a plant ideotype for 
reducing N losses in agroecosystems.

The main objectives of this study are to explore how well process- 
based models capture the relationship between root traits and N los
ses, and to provide recommendations to overcome the identified limi
tations. Ultimately, this work will contribute to supporting the use of 
models to develop root trait-based ideotypes that improve N use effi
ciency (NUE) in the context of reduced N fertilizer rates, thereby sup
porting the sustainability of agroecosystems.

2. Plant traits and nitrogen losses: Empirical evidence

Root systems play a fundamental role in plant-soil interactions, 
particularly in N cycling through various direct and indirect pathways 
(Fig. 1). These plant-soil interactions significantly influence the trans
formation and movement of elements and compounds in soil ecosystems 
(Freschet et al., 2021). Roots can directly influence soil N cycling in 
three primary ways. First, they regulate N uptake by modifying their 
absorption surface area in response to available soil N (Duan et al., 
2024), adjusting uptake rates through the upregulation or down
regulation of N transporter activity (Jacquot et al., 2020), and altering 
root growth rates (Duan et al., 2024). Second, the roots of some plants 
can release biological nitrification inhibitors (BNI) and denitrification 
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inhibitors (BDI), which potentially reduce the rates of nitrification and 
denitrification processes in soil (Bardon et al., 2014; Sun et al., 2016). 
Third, roots could directly modify soil water dynamics through water 
uptake, which affects N leaching patterns (Ehdaie et al., 2010).

The indirect effects of roots on soil N cycling are more complex and 
occur through physical, chemical, and biological mechanisms. From a 
physical perspective, roots alter the soil microclimate, causing temper
ature fluctuations and shifts between aerobic and anaerobic conditions 
within soil macropores (Greiser et al., 2024). Additionally, root growth 
reshapes soil structure by increasing soil aggregation and porosity 
(Lucas et al., 2019). Chemically, roots influence soil substrate compo
sition through rhizodeposition (the release of organic compounds into 
the soil) (Witzgall et al., 2024). Biologically, roots shape the soil mi
crobial community by selectively recruiting specific microorganisms 
and providing resources through rhizodeposition, affecting soil micro
biota's abundance, composition, and diversity (Tomazelli et al., 2024). 
These physical, chemical, and biological modifications occur simulta
neously across temporal and spatial scales, creating complex in
teractions that affect soil N cycling through changes in substrate 
availability, abiotic conditions, and biotic factors.

Ecologists are increasingly adopting trait-based approaches to 
characterize how plants interact with the soil for nutrient acquisition 
and storage, and to regulate ecosystem processes (Laliberté, 2017). 
These approaches enable the development of a quantitative, mechanistic 
understanding of biochemical processes by linking them to measurable 
plant traits (Bardgett et al., 2014). This framework offers valuable op
portunities to incorporate physiological processes into process-based 
models, enhancing their predictive capability. These approaches are 
primarily based on the leaf and root economics spectrum, which 
postulate that plants with acquisitive traits and resource strategies 
invest in faster growth and resource uptake rates, coupled with shorter 
life spans and more susceptible tissues. In contrast, plants with conser
vative traits have lower water and nutrient requirements, and therefore 
reduced growth and respiration rates, resulting in a longer life span 
(Wright et al., 2004; Kong et al., 2019; Pan et al., 2020). Root traits can 
be architectural and morphological, physiological and chemical, and 
biotic (Table 1; Bardgett et al., 2014). Here, we provide qualitative and 
quantitative estimates of the relationship between root traits and N 
losses based on the available literature.

2.1. Methodology

We conducted a literature survey using Google Scholar by searching 
the following terms and their variations: root traits, plant traits, root 
architecture, root exudate, nitrogen use efficiency, NO3

− leaching, N2O 
emissions, nitrification, denitrification, functional genes related to N 
cycling (amoA-AOA, amoA-AOB, nirK, nirS, napA, napZ, and nosZ), and 
N uptake. Articles were included if they met the following criteria: (1) 
provided detailed information of experimental design, plant types, and 
extractable data for at least one root trait (independent variables) and 
one response variable (including N2O emission, N uptake, and NO3

−

leaching); (2) if referring to different phenological stages, the growing 
season accumulated response variables and root traits at maturity were 
reported. A total of 24 studies were used for a qualitative assessment 
indicating the direction of the relationship between root traits and N 
losses (i.e., suitable for qualitative assessment), including 6 studies 
focused on nitrification and denitrification rates (Table 1), while 7 of 
those studies were further used for a more in-depth quantitative 
assessment of such relationships (Fig. 2). Regarding the functional genes 
related to N cycling, a total of 7 studies were used for a qualitative 
assessment (Table S1), and 3 of these studies contained detailed data 
suitable for quantitative analysis (Fig. 2).

We used the natural log-transformed response ratio (ln RR) as a 
measure of effect size for the quantitative evaluation (Hedges et al., 
1999) (eq. 1): 

lnRR = ln
(

xE

xC

)

Where xC is the reference value, selected as the observation within a 
study with the greatest N loss (N2O or NO3

− leaching) or abundance of 
functional genes related to nitrification/denitrification, and xE is the 
other observation (or observations) within a study with their corre
sponding root trait values. Results were back-transformed to “percent
age of change” using the formula [100 × {exp.(lnRR) -1}] to ease 
interpretation.

2.2. Results of the literature survey

We identified a relatively wide range of root traits (27) associated 
with measurable changes in N losses (Table 1), and the mechanistic 
understanding of these associations is robust. For example, an increase 

Fig. 1. Conceptual diagram depicting the relationships between roots and soil N cycling (SOM: soil organic matter; BNI: biological nitrification inhibitor; BDI: 
biological denitrification inhibitor).
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Table 1 
Qualitative summary of relationships between root traits and nitrogen losses and plant nitrogen uptake reported in experiments.

N cycling 
component

Root trait Direction of N loss 
with increasing trait 
values

Scale Plant/crop References

N2O emission

Architectural and 
morphological

Root biomass
Increase Field Rice Baruah et al., 2010
Decrease Greenhouse Mesocosm Grass Oram et al., 2020

Specific root length Decrease Greenhouse Mesocosm Grass
Abalos et al., 2014, 2018; Oram 
et al., 2020; Fernandez Pulido et al., 
2023

Root Diameter Increase Greenhouse Mesocosm Grass Abalos et al., 2014, 2018; 
Fernandez Pulido et al., 2023

Root length density Decrease Greenhouse Mesocosm Grass Abalos et al., 2018; Fernandez 
Pulido et al., 2023

Root dry matter 
content Increase Greenhouse Mesocosm Grass Fernandez Pulido et al., 2023

Root/shoot ratio Increase Greenhouse Mesocosm Grass Abalos et al., 2014
Root tissue density Decrease Greenhouse Mesocosm Grass Oram et al., 2020

Physiological and 
chemical

Root C/N ratio Decrease Greenhouse Mesocosm Grass Oram et al., 2020

Root N concentration Increase Greenhouse Mesocosm Grass Oram et al., 2020; Fernandez Pulido 
et al., 2023

Root C concentration Decrease Greenhouse Mesocosm Grass Oram et al., 2020

NO3
− leaching

Architectural and 
morphological

Deep root biomass Decrease Sand_tube Wheat Ehdaie et al., 2010
Shallow root biomass Decrease Sand_tube Wheat Ehdaie et al., 2010

Root/shoot ratio Decrease
Sand_tube Wheat Ehdaie et al., 2010
Greenhouse Mesocosm Sugarcane Takaragawa et al., 2022

0–0.3 m root biomass Decrease Greenhouse Mesocosm Sugarcane Takaragawa et al., 2022
0.3–1.0 m root 
biomass

Decrease Greenhouse Mesocosm Sugarcane Takaragawa et al., 2022

0–0.1 m root biomass Decrease Greenhouse Mesocosm Grass Popay and Crush, 2010
0.1–0.2 m root 
biomass Decrease Greenhouse Mesocosm Grass Popay and Crush, 2010

> 0.2 m root biomass Decrease Greenhouse Mesocosm Grass Popay & Crush, 2011

Root biomass Decrease
Sand_tube Wheat Ehdaie et al., 2010

Greenhouse Mesocosm Grass Popay & Crush, 2011; Moir et al., 
2012

Increase Greenhouse Mesocosm Sugarcane Takaragawa et al., 2022
Root length density Decrease Greenhouse Mesocosm Grass Fernandez Pulido et al., 2023
Maximum root depth Increase Sand_tube Wheat Ehdaie et al., 2010
0–0.1 m root length Decrease Greenhouse Mesocosm Grass Popay and Crush, 2010
0.1–0.2 m root 
length

Decrease Greenhouse Mesocosm Grass Popay and Crush, 2010

> 0.2 m root length Decrease Greenhouse Mesocosm Grass Popay and Crush, 2010
Root length Decrease Greenhouse Mesocosm Grass Popay and Crush, 2010
0–0.1 m root 
diameter Decrease Greenhouse Mesocosm Grass Popay and Crush, 2010

0.1–0.2 m root 
diameter Increase Greenhouse Mesocosm Grass Popay and Crush, 2010

> 0.2 m root 
diameter

Increase Greenhouse Mesocosm Grass Popay and Crush, 2010

Root diameter Increase Greenhouse Mesocosm Grass Popay & Crush, 2011; Fernandez 
Pulido et al., 2023

Root dry matter 
content Decrease Greenhouse Mesocosm Grass Fernandez Pulido et al., 2023

Specific root length Increase Greenhouse Mesocosm Grass
Popay & Crush, 2011; Fernandez 
Pulido et al., 2023

Center of gravity of 
the root system

Decrease Greenhouse Mesocosm Sugarcane Takaragawa et al., 2022

Physiological and 
chemical

Root N content Increase Greenhouse Mesocosm Grass Fernandez Pulido et al., 2023

Denitrification
Physiological and 
chemical

Root C exudation Increase
Controlled light 
exposure and soil 
moisture

Wheat, barley 
and ryegrass

Maurer et al., 2021

Root N exudation Increase
Controlled light 
exposure and soil 
moisture

Wheat, barley 
and ryegrass Maurer et al., 2021

Nitrification

Architectural and 
morphological

Specific root length Decrease Greenhouse Mesocosm Grass Cantarel et al., 2015

Physiological and 
chemical

Root N content Increase Greenhouse Mesocosm Grass Cantarel et al., 2015
Root affinity for NH4 Increase Greenhouse Mesocosm Grass Cantarel et al., 2015

Exudation of 
nitrification 
inhibitors

Decrease

Chamber
Brachiaria 
humidicola

Subbarao et al., 2007

Greenhouse Mesocosm
Rice, Wheat, 
Elymus sibiricus

Pariasca Tanaka et al., 2010; 
O'Sullivan et al., 2016; Sun et al., 
2016

N uptake
Architectural and 
morphological Root surface area Increase

Chamber Rice, Cotton Chen et al., 2020; Iqbal et al., 2020
Hydroponic condition Wheat Zhang et al., 2015

(continued on next page)
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in architectural traits such as root/shoot ratio can cause a reduction in 
NO3

− leaching. This is because higher root/shoot ratio indicates a larger 
below-ground foraging capacity for nutrients and water, and since NO3

−

is highly mobile in the soil, it can easily be leached deep into the soil 
with percolating water (Thorup-Kristensen et al., 2020). Regarding 
morphological traits, an increase in root diameter can increase both NO3

−

leaching and N2O emission, because high root diameter indicates a 
resource-conservative strategy, and therefore lower plant water and 
nutrient uptake capacity and higher soil availability of both resources. A 
greater C investment per unit of root length is required by larger- 
diameter roots, which must be coupled with a longer lifespan to 
ensure a favorable nutrient and water return on the higher C investment 
compared with smaller-diameter roots (Weemstra et al., 2016). In terms 
of chemical traits, an increase in root C exudation could increase N2O 
emission due to greater soil C availability stimulating denitrification 
(Abalos et al., 2019).

The quantitative assessment revealed the magnitude of some of the 
trait × N loss relationships (Fig. 2). Changes in root traits were 

associated with variations in N losses and N-related functional genes 
often exceeding 50 %. In general, the relationship between root traits 
and functional genes was much stronger than with N2O emissions or 
NO3

− leaching. Relatively modest increases of 10 % in root biomass could 
increase the abundance of nirK gene copies by 67.4 %, while the same 
increase in root diameter could raise the abundance of AOB and nosZI by 
14.3 % and 9.4 %. Increases of 10 % in root biomass, root C/N ratio, and 
root tissue density can reduce N2O emissions by 2.3 %, 4.3 %, and 6.5 % 
respectively, whereas the same increase in root N concentration can 
increase N2O emission by 4.2 %. Similarly, 10 % increases in root length, 
and root biomass can lower NO3

− leaching by 5.7 %, and 2.0 %, 
respectively. The relationships identified in our literature survey high
light the benefits of representing the associations between root traits, 
functional genes and N losses in process-based models to ensure accurate 
simulations of N cycling in agroecosystems.

Table 1 (continued )

N cycling 
component 

Root trait Direction of N loss 
with increasing trait 
values 

Scale Plant/crop References

Decrease
Greenhouse Mesocosm Rice Fan et al., 2010
Field Maize Mu et al., 2015; Guo et al., 2022

Root biomass Increase

Chamber Rice, Cotton Chen et al., 2020; Iqbal et al., 2020

Field Maize, Rice
Ju et al., 2015; Mu et al., 2015; Yu 
et al., 2015; Chu et al., 2022; Guo 
et al., 2022

Hydroponic condition Wheat Zhang et al., 2015

Greenhouse Mesocosm
Grass, Rice, 
Sugarcane

Fan et al., 2010; Moir et al., 2012; 
Takaragawa et al., 2022

Sand_tube Wheat Ehdaie et al., 2010
Root biomass (0− 10) Increase Field Rice Ju et al., 2015; Chu et al., 2022
Root biomass 
(10–20)

Increase Field Rice Ju et al., 2015; Chu et al., 2022

Root biomass (0–0.3 
m) Decrease Greenhouse Mesocosm Sugarcane Takaragawa et al., 2022

Root biomass 
(0.3–1.0 m) Decrease Greenhouse Mesocosm Sugarcane Takaragawa et al., 2022

Deep root biomass Increase Sand_tube Wheat Ehdaie et al., 2010
Shallow root biomass increase Sand_tube Wheat Ehdaie et al., 2010
Center of gravity of 
the root system

Decrease Greenhouse Mesocosm Sugarcane Takaragawa et al., 2022

Root/shoot ratio

Increase
Sand_tube Wheat Ehdaie et al., 2010

Field Maize, Rice
Yu et al., 2015; Ju et al., 2015; Chu 
et al., 2022

Decrease
Greenhouse Mesocosm

Grass, 
Sugarcane

Abalos et al., 2014; Takaragawa 
et al., 2022

Chamber Cotton Iqbal et al., 2020

Root depth Increase Chamber Cotton Iqbal et al., 2020
Sand_tube Wheat Ehdaie et al., 2010

Root Diameter Increase
Greenhouse Mesocosm Grass Abalos et al., 2014
Chamber Cotton, Rice Chen et al., 2020; Iqbal et al., 2020
Field Rice Chu et al., 2022

Root length density Increase Field Maize, Rice
Ju et al., 2015; Mu et al., 2015; Chu 
et al., 2022

Root volume Increase
Field Rice Chu et al., 2022
Hydroponic condition Wheat Zhang et al., 2015
Chamber Rice, Cotton Chen et al., 2020; Iqbal et al., 2020

Root length ratio Decrease Chamber Cotton Iqbal et al., 2020
Root thickness Increase Chamber Cotton Iqbal et al., 2020

Specific root length
Increase Field Rice Chu et al., 2022
Decrease Greenhouse Mesocosm Grass Abalos et al., 2014

Root length Increase

Field Maize, Rice Ju et al., 2015; Chu et al., 2022; 
Guo et al., 2022

Hydroponic condition Wheat Zhang et al., 2015a, 2015b
Greenhouse Mesocosm Rice, Grass Fan et al., 2010; Moir et al., 2013
Chamber Rice Chen et al., 2020

Root tip number Decrease Chamber Rice Chen et al., 2020
Root density Increase Chamber Cotton Iqbal et al., 2020
Root projected area Decrease Chamber Cotton Iqbal et al., 2020
Root angle opening Increase Field Maize Guo et al., 2022
Root maximal width Increase Field Maize Guo et al., 2022
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3. Survey of process-based models simulating crop growth and 
nitrogen losses

We identified 55 widely used process-based models with the capacity 
to simulate crop growth, root traits, soil C dynamics, soil water flow, soil 
N dynamics, NO3

− leaching, and/or N2O emissions at different temporal 
and spatial scales (Table S2). All these models were initially developed 
with a focus on either soil processes or crop yield (Jones et al., 2003; 
Keating et al., 2003; van Ittersum and Donatelli, 2003). Soil-focused 
models were designed primarily to simulate C and/or N cycling and 
water movement across the soil-plant-atmosphere continuum, such as 
DayCent and DNDC, while crop-focused models were established to 
simulate crop growth and development, such as DSSAT. Over time, 
model developers have incorporated advances to encompass more fea
tures related to the dynamic processes of plant growth and soil nutrient 
cycling, and currently a large fraction of these models can simulate both 
crop growth and soil dynamics with reasonable accuracy. Based on the 
initial goals or the strengths of each model by the time they were 
launched, models can be categorized into three types: crop models, 
biogeochemical models, and agro-hydrological models (Table S2). 
Approximately 45 and 39 of the surveyed models can simulate NO3

−

leaching and N2O emission, respectively, 39 models can simulate both N 
losses, and only 37 models can simulate all seven processes including 
crop growth, root traits, soil C and N dynamics, soil water flow, NO3- 
leaching, and N2O emission (Table S2). Only 2 of the surveyed models 
incorporate N-related functional genes. Two spatial (plot and regional) 
and three temporal (hourly, daily and monthly) scales are covered by the 
37 models that include all seven processes. The vast majority of models 
simulate at the plot scale (49) on a daily time step (50).

4. Understanding how current generation models simulate root 
traits and nitrogen losses

To acquire a deeper mechanistic understanding of the capacity of 
models to simulate root trait × N loss relationships, we focused on four 
of the more widely used models listed in Table S2: DSSAT, APSIM, 
DNDCvCAN, and Daisy. These models were selected for various reasons: 
(1) they can simulate at least six of the surveyed categories (Table S2); 
(2) they were initially developed with a different purpose, two of them 
to simulate crop growth, development, and yield (DSSAT and APSIM), 
and the other two with a stronger focus on soil properties (DNDCv.CAN 
and Daisy); and (3) they cover a wide gradient of complexity in terms of 

Fig. 2. Examples of quantitative relationships between nitrogen losses (N2O emissions and NO3
− leaching), N-related functional genes (AOB (amoA-AOB), nirK, and 

nosZI), and root traits based on metadata from experiments (Table 1). The units of the Y- and X-axis are relative changes (%).
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potential root traits to explore, from 4 in DNDCv.CAN to 21 in APSIM 
(Table S3). For each of the selected models, first we unfold the main 
links and interactions between plant traits and their impacts on soil 
processes related to N losses. Then, we collected already calibrated and 
evaluated datasets for model setups from individual studies, and all the 
required input data to run the models, covering climatic, soil and agri
cultural management information, in order to perform sensitivity ana
lyses (more details below and in the supplementary information).

4.1. General representation of N2O emissions in process-based models

Nitrification and denitrification are the two processes linked to N2O 
emission in process-based models. Nitrification refers to the process of 
oxidation of NH4

+ to NO3
− and occurs under aerobic conditions. The first 

step in process-based models is to calculate the nitrification rate based 
on the extractable soil NH4

+ and soil abiotic/biotic modifiers, which are 
model specific. Then, NO and N2O emissions from nitrification are 
calculated as a constant proportion of nitrified N (Parton et al., 2001). 
By contrast, denitrification involves a series of reductive reactions from 
NO3

− to NO2
− , NO, N2O and N2 under anaerobic conditions, and requires 

an energy source from soil extractable C. Similar to nitrification, the first 
step of denitrification is also to calculate the denitrification rate based 
on the soil NO3

− or extractable C modified by abiotic or biotic factors. 
Then the second step is often to calculate the N2/N2O ratio based on 
oxidation of an electron donor (normally hydrogen) to reduce oxidized 
N substrates as a function of soil water content. The N2O gas flux from 
denitrification is the product of the denitrification rate and the N2O 
ratio. Most models follow these steps and incorporate the associated 
mechanisms to simulate soil N2O emissions from both nitrification and 
denitrification; yet they differ in specific modifying (driving) factors 
with soil temperature and water content generally being the most 
important.

4.2. General representation of NO3
− leaching in process-based models

Losses via NO3
− leaching are primarily linked to drainage using a 

cascade water flow approach in process-based models. When the soil 
water content exceeds the upper drained limit or field capacity (gener
ally defined as the water content retained in soil at − 0.1 bar, ranging 
from − 0.06 to − 0.33 bar for different soil types), the drainage flow in 
each soil layer is calculated based on the difference between saturation 
water content and the upper drained limit of the soil. Then, NO3

−

leaching is simulated based on the soil NO3
− concentration and drainage 

flow in each soil layer. Most process-based models follow this principle 
to simulate NO3

− loss, while differing in hydraulic parameters and 
drainage flow types. Some models use the Richards equation to simulate 
water flow, and some also include a retention process that slows NO3

−

leaching relative to the drainage flow. The soil NO3
− concentration is, 

therefore, a key driver of NO3
− leaching in most models, and this is in 

turn affected by the estimation on nitrification.

4.3. Model description and representation of plant trait × N loss 
relationships

4.3.1. DSSAT
The Cropping System Model (CSM) of The Decision Support System 

for Agrotechnology Transfer (DSSAT; www.DSSAT.net) model has been 
used to reproduce crop growth and yield formation accurately under a 
wide range of climatic and management conditions (e.g., Liu et al., 
2020; Cammarano et al., 2022; Dar et al., 2023). Five primary modules 
are embedded in the DSSAT-CSM structure: plant, soil-plant- 
atmosphere, soil, weather, and management. The latest DSSAT v4.8 
also includes a greenhouse gas emissions (GHGs) module which makes it 
possible to simulate N2O and methane emissions (Hoogenboom et al., 
2019, 2021).

In DSSAT-CSM, only saturated flow is considered for drainage, and 

the drainage rate is controlled by hydraulic parameters, including soil 
water saturation content and drained upper limit. Soil NO3

− concentra
tion and the drainage flow determine NO3

− leaching. Soil abiotic factors, 
including soil temperature, water, and pH, are the modifiers for nitrifi
cation rate. The N2O emission is estimated as a fraction (0.001) of 
nitrification. The DSSAT-CSM model provides two methods for denitri
fication: CERES denitrification (Godwin and Singh, 1998) and Century 
denitrification (Gijsman et al., 2002). In the CERES module, soil 
extractable C, NO3

− concentration, temperature and water factors are 
accounted for in calculating the denitrification rate. Then N2O emissions 
are calculated based on the soil NO3

− content and a given N2/N2O ratio 
modified by soil water content. By contrast, in the Century denitrifica
tion module, the denitrification rate is calculated based on soil hetero
trophic respiration (CO2), NO3

− , and soil water content. The N2/N2O 
ratio is calculated based on the ratio of NO3

− to CO2 and modified by soil 
water content. Plant traits in DSSAT-CSM are specific at the crop/species 
level. In terms of the general representation of N losses and plant traits 
across crops in DSSAT-CSM, traits linked to crop N uptake modify soil 
NO3

− and NH4
+ content and associated N losses, and the soil water flow is 

influenced by plant water uptake that in turn is affected by changes in 
root length density and potential N and water demand. Belowground, 
root senescence can add litter to the soil and affect the soil fresh organic 
matter pool, further affecting soil mineralization and immobilization 
and, thus, both soil C and N pools. Aboveground, the leaf area index 
(LAI) regulates evapotranspiration and, therefore, to soil water content 
(Fig. 3).

4.3.2. APSIM
The Agricultural Production System Simulator (APSIM) is a 

comprehensive mechanistic model which has been used for various 
purposes (Holzworth et al., 2014). APSIM is structured around plant, 
soil, and management modules, covering multiple crops and many soil 
processes including a water balance, N transformations, and soil pH, as 
affected by management practices (Pasley et al., 2021).

In APSIM, NO3
− dissolved in water can move to deeper soil layers via 

saturated or unsaturated water flow. The saturated and unsaturated 
water flows are calculated based on soil water retention capacity and 
hydraulic parameters, including drained upper limit, saturated water 
limit, 15 bar lower limit (water content at wilting point), hydraulic 
conductivity, and drainage and diffusivity rate constants. Nitrification is 
assumed to follow Michaelis-Menten kinetics (Godwin and Jones, 1991). 
The nitrification rate is modified by soil water, temperature, and pH. 
The NO and N2O emissions from nitrification are calculated as a fixed 
proportion of nitrified N (Parton et al., 2001). For denitrification, APSIM 
adds an extra temperature factor to adjust the potential denitrification 
rate. The N2O from denitrification is then calculated based on the N2 to 
N2O ratio (Del Grosso et al., 2000). Plant traits are linked to N losses 
through N uptake, water uptake by adjusting root parameters, and plant 
nutrient and water uptake capacity, further indirectly affecting the dy
namic N cycling process through the soil water and temperature factors. 
Root litter left in the soil affects the soil fresh organic matter pool, 
further affecting soil N mineralization and immobilization processes and 
thus both soil C and N pools (Fig. 4).

4.3.3. DNDCv.CAN
The Canadian version of DNDC (Denitrification - Decomposition 

model: DNDCv.CAN; available at https://github.com/BrianBGrant/ 
DNDCv.CAN) has been used to estimate the effects of climate and 
management strategies on crop growth, soil C and N dynamics, espe
cially for NO3

− leaching and N2O emission (Smith et al., 2013, 2020; 
Abalos et al., 2016). DNDCv.CAN utilizes most of the same C and N 
cycling framework as the original DNDC (DNDC95) model (Li et al., 
2012), including four of the main sub-models: soil/climate, crop vege
tation, decomposition, and denitrification. The decomposition sub- 
model is composed of four main C pools (litter, labile humus, passive 
humus, and microbial biomass). Each of these has its own fixed C/N 
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ratio and base decomposition rate. These rates are influenced by a 
combination of soil texture, soil moisture, soil temperature, and soil N 
(Smith et al., 2008). The initial status of the available NO3

− and soluble C 
is provided by the decomposition sub-model. The denitrification sub- 
model predicts the consumption of NO3

− and generates soil fluxes of 
NO, N2O, and N2 depending on the microbial biomass of denitrifiers, pH, 
redox potential (Eh), soil water content, soil organic C, soil temperature, 
and the concentration of the corresponding N oxides (Fig. 4; Smith et al., 
2008; Li et al., 2012).

The DNDC model uses an anaerobic balloon concept to regulate the 
nitrifier and denitrifier populations. This representation of aerobic and 
anaerobic soil volumes contrasts with other models such as APSIM and 
DayCent, that only model bulk soil properties. The nitrifier and deni
trifier populations are controlled by soil Eh via the Nernst equation and 
the reaction rates (i.e., nitrification or denitrification) is calculated by 
the Michaelis-Menten Equation (modified by the concentration of sub
strates in reaction). The nitrification rate is calculated based on soil NH4

+

concentration, the biomass of nitrifiers, and soil pH. Abiotic factors 
including soil temperature and moisture can also affect the nitrification 
rate by regulating the growth of nitrifiers. The N2O emission induced by 
denitrification is the result of the production, consumption, and diffu
sion of gases within the anaerobic balloon. The consumption rate for the 
N oxides is calculated by the relative growth rate of denitrifiers, 
maximum growth rate on N oxides, maintenance coefficient on N oxides, 
denitrifier biomass, N concentration of all N oxides, and pH and tem
perature factors (Li et al., 2000). Leaching losses of NO3

− in DNDCv.CAN 
are derived from the bulk water flux between soil layers, the soluble 
NO3

− concentration, and a small amount of preferential N movement 
which can be parameterized through the user interface (Smith et al., 
2020). Plant traits, including plant water demand, root shape function, 

and root depth, affect the soil water flow and the adsorption and 
desorption of NH4

+ to clay particles impacting N movement (Li et al., 
2006). Plant traits controlling water and N uptake capacity directly 
affect the N substrate concentrations in the soil, and root architecture 
parameters, including the rooting depth and the vertical distribution of 
root biomass regulate plant access to soil water and N, which can lead to 
differences in the vertical distribution of these elements within the soil. 
Root exudates affect the soil organic matter pool, and aboveground 
traits such as LAI affect soil temperature, which can be important for 
denitrification and nitrification processes (Fig. 5).

4.3.4. Daisy
The soil-plant-atmosphere system model Daisy is an explanatory, 

mechanistic, and physically based model (Abrahamsen and Hansen, 
2000; Hansen et al., 2012). The model simulates water, heat, C and N 
balances, and crop growth in the root zone (Hansen et al., 2012). The 
three main modules are bioclimate, vegetation, and soil. The root system 
in the vegetation module is characterized by root weight, rooting depth, 
and root density distribution. The decomposition of soil organic matter 
is affected by soil temperature, soil water content, and soil clay content. 
This decomposition results in flows of organic matter between pools 
based on the C in each pool, and the corresponding N is calculated based 
on a fixed C/N ratio in each pool, then net N mineralization or immo
bilization are simply derived from the N balance of the pool changes.

In Daisy, the water flow is calculated by the flow towards the 
drainage above and below the groundwater level, adjusting by an 
average of the conductivities of the saturated layers above and below the 
drainage level (Mollerup et al., 2014; Holbak et al., 2021). Solute NH4

+

concentration, temperature and water potential pressure factors are 
taken into account for calculating nitrification rate. The fraction of the 

Fig. 3. Conceptual diagram depicting the potential effects of plant traits on nitrogen losses described in the Cropping System Model of DSSAT. The red color box 
indicates plant traits; red solid arrows indicate the possible impact of plant traits; blue color boxes indicate the soil substrates; blue solid arrows indicate the possible 
biochemical processes in which the substrates are directly involved; green boxes indicate soil abiotic factors and green dashed arrows indicate possible processes 
affected by abiotic factors; light orange boxes indicate process related to soil C, N and water dynamics; light orange solid arrows indicate possible consequence of 
changes in processes; purple boxes indicate the N losses. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)
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nitrified NH4
+ that becomes N2O is given as a constant with a default 

value of 0.02. The denitrification rate is calculated using CO2 respiration 
rate as a proxy and solute NO3

− modified by the soil temperature and 
water factors. The N2O emission from denitrification is currently not 
simulated by Daisy, but ongoing work is underway to develop and add 
this component into the model. Plant traits affect N2O emissions from 
nitrification in a similar way by affecting the concentration of substrates 
(soil C, NH4

+, NO3
− ) and abiotic factors (soil water, and temperature), as 

described for the other models above (Fig. 6).

4.4. Sensitivity analysis

4.4.1. Approach
For each of the four models (DSSAT, APSIM, DNDCvCAN, and Daisy) 

we performed a one-factor-at-a-time sensitivity analysis (Lenhart et al., 
2002), by testing a set of different values for the parameters related to 
root traits in each model, and extracting the simulated effects on crop N 
uptake, N2O emissions, and NO3

− leaching. The sensitivity of each root 
parameter was tested by setting a range from − 40 % to 40 % of the 
default value with intervals of 5 %, and the default value of each 
parameter was taken as the baseline to calculate the percentage change 
in N losses and N uptake compared to the percentage change of each root 
parameter. To benchmark the models, we utilized model setups from 
experimental datasets that the models had previously been calibrated 
and evaluated with, along with all the required input data including 
daily weather, soil, and agricultural management information. A 
description of the models' setups is provided in Table 2; further details of 
the field experiments and the articles reporting the calibration and 
validation of each model can be found in the Supplementary Informa
tion. We selected the four most responsive traits in each model to 

represent the magnitudes and directions of the interactions between root 
traits and N loss (Table 3), according to the results of the sensitivity 
analysis for each model for a wide range of traits (Table S3). The models 
were assessed over a single growing season and non-growing season 
period that spanned from sowing to sowing so as to calculate the annual 
N losses and capture any NO3

− leaching losses that occurred after crop 
harvesting. All the analyses were conducted using R version 4.2.2. (R 
Core Team, 2022).

4.4.2. Results of the sensitivity analysis
The magnitude of the changes in N cycling in response to modifi

cations in root traits was similar for all four models (Fig. 7). The changes 
ranged from − 20 % to 9.4 % for crop N uptake, from − 9.1 % to 18.6 % 
for NO3

− leaching, and from − 5.4 % to 8.3 % for N2O emissions. The most 
responsive traits for crop N uptake, NO3

− leaching, and N2O emission 
were root length weight ratio in DSSAT, and root penetration rate for 
Daisy, which are traits indicating how fast the root grows into deeper 
soil layers (Table 3), and root shape function parameter in DNDCv.CAN, 
which considers the root distribution across the soil profile (Smith et al., 
2020).

We observed that the relationships between changes in root traits 
and N losses and crop N uptake in the model simulations were mainly 
linear (Fig. 7). Some traits showed little effect on N pools, such as initial 
root depth in APSIM, and maximum root/shoot ratio in Daisy. However, 
sometimes the same traits showed divergent responses across models. 
For example, in DSSAT an increase in root depth growth rate caused 
higher crop N uptake and lower N2O emissions and NO3

− leaching. By 
contrast, in APSIM an increase of this trait caused only a marginal effect 
on crop N uptake and a slight increase of N2O emissions.

Pearson correlation analysis revealed that, in general, there was a 

Fig. 4. Conceptual diagram depicting the potential effects of plant traits on nitrogen losses described in APSIM. The red color box indicates plant traits; red solid 
arrows indicate the possible impact of plant traits; blue color boxes indicate the soil substrates; blue solid arrows indicate the possible biochemical processes in which 
the substrates are directly involved; green boxes indicate soil abiotic factors and green dashed arrows indicate possible processes affected by abiotic factors; light 
orange boxes indicate process related to soil C, N and water dynamics; light orange solid arrows indicate possible consequence of changes in processes; purple boxes 
indicate the N losses. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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strong negative relationship between changes in crop N uptake and 
changes in N losses for all models (Fig. S1). This indicates that the main 
pathway by which changes in root traits affect N losses in the models is 

by controlling the transfer of N from the soil into the crop biomass.
In general, we found that N losses did not respond strongly to 

changes in root traits in most process-based models. A variation in root 

Fig. 5. Conceptual diagram depicting the potential effects of plant traits on nitrogen losses described in DNDCv.CAN. The red color box indicates plant traits; red 
solid arrows indicate the possible impact of plant traits; blue color boxes indicate the soil substrates; blue solid arrows indicate the possible biochemical processes in 
which the substrates are directly involved; green boxes indicate soil abiotic factors and green dashed arrows indicate possible processes affected by abiotic factors; 
light orange boxes indicate process related to soil C, N and water dynamics; light orange solid arrows indicate possible consequence of changes in processes; purple 
boxes indicate the N losses. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Conceptual diagram depicting the potential effects of plant traits on nitrogen losses described in Daisy. The red color box indicates plant traits; red solid 
arrows indicate the possible impact of plant traits; blue color boxes indicate the soil substrates; blue solid arrows indicate the possible biochemical processes in which 
the substrates are directly involved; green color boxes indicate soil abiotic factors and green dashed arrows indicate possible processes affected by abiotic factors; 
light orange boxes indicate process related to soil C, N and water dynamics; light orange solid arrows indicate possible consequence of changes in processes; purple 
boxes indicate the N losses. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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trait values from − 40 % to 40 % induced changes in NO3
− leaching or 

N2O emissions that did not exceed ±20 % of the default scenarios 
(Fig. 7). Among all traits represented in APSIM, architectural and 
morphological traits such as maximum root depth and root depth 
growth rate tended to cause weaker responses than physiological and 
chemical traits such as critical root N concentration. By contrast, 
architectural and morphological traits such as root shape function 
parameter and root length-weight ratio tended to cause stronger re
sponses than physiological and chemical traits such as root C/N ratio 
and fraction of assimilate for growth to root in the other three models.

5. Comparison between model simulations and experimental 
results

Experiments at the plot/field scale aim to represent actual agricul
tural production systems. Yet, the use of process-based models is often 
necessary to overcome the spatial, temporal, and geographic limitations 
of field experiments, and to integrate research from multiple disciplines 
at multiple locations. The use of process-based models for informing the 
design of more efficient agroecosystems that can better utilize applied N 
and assist in the development of crop varieties with higher NUE and 
lower N losses, requires that the capacity of models to simulate N cycling 
in response to changes in root traits is adequate. Wherever serious de
ficiencies or inadequate representations of relevant processes are iden
tified, models need to be improved before they can be applied for crop 
ideotype design. Here we show the current understanding of the linkage 
between roots and soil N cycling in the real-world and in process-based 
models, emphasize the strong relationships between certain root traits 
and N losses found in experiments, present the most sensitive root traits 
in commonly used dynamic models, and highlight the large in
consistencies found between empirical evidence and model 
representations.

Our analysis revealed a notable disconnect between root traits 

studied in field experiments (Table 1, Fig. 2) and those parameterized in 
process-based models (Fig. 7, Table S3). Models typically focus on traits 
related to root growth rates, penetration depth, and resource assimila
tion efficiency. In contrast, field experiments predominantly examine 
functional traits associated with root architecture, morphology, physi
ology, and biology. This misalignment between modelled and measured 
traits creates a significant barrier to integrating experimental data with 
process-based models for an improved understanding of the relation
ships between root traits and N losses.

The magnitude of the observed effects sometimes diverged strongly 
between experimental results and modelling estimations for the same 
root traits. For example, our analysis of the available results showed that 
NO3

− leaching or N2O emission changed by 50 % in response to changes 
in some root traits (Fig. 2), whereas the maximum effects in the models 
only reached 18.6 % (Fig. 7). The direction of the observed effects also 
differed in some instances between the experimental results and simu
lations. For example, with an increase in root C/N ratio, NO3

− leaching 
and N2O emission estimated by the DNDCv.CAN model showed a flat 
trend without obvious changes (Fig. 7). Conversely, observations from 
experiments show that an increase in root C/N ratio may induce a strong 
reduction in N2O emission (Fig. 2), although the empirical evidence is 
still scarce, and further experiments are required to validate these 
findings. These results further support that an improved representation 
of root traits in process-based models may open new opportunities for 
improving N cycling simulations, help to improve estimates of N2O 
emissions and N loading to rivers and estuaries, and develop crops/crop 
cultivars that acquire N more efficiently.

Our survey confirmed that current process-based models capture 
several key root-soil interactions, including N and water uptake, root 
litter/exudate contributions to soil organic matter, and their effects on 
abiotic factors such as soil temperature and water content. However, the 
survey also revealed key fundamental gaps, in particular in relation to 
soil microbial communities mediating soil N transformations. For 

Table 2 
General information of the dataset setups for the sensitivity analysis with process-based models.

Models Crop Site Soil texture Nitrogen input (kg/ha) Water regime Reference

DSSAT Spring barley Dundee (56.45◦N, 3.07◦W) Loam 120 Irrigated Cammarano et al., 2019
APSIM Spring barley Foulum (56.30◦ N, 9.35◦ E) Sandy loam 140 Rainfed Vogeler et al., 2023
DNDCv.CAN Spring barley Quebec (48.85◦N, 72.54◦W) Silty clay 70 Rainfed Jégo et al., 2024
Daisy Winter wheat Foulum (56.30◦ N, 9.35◦ E) Sandy loam 150–165 Rainfed Gyldengren et al., 2020

Table 3 
Main root traits in a selection of dynamic models (APSIM, DNDCvCAN, DSSAT, and Daisy) with potential effects on nitrogen losses.

Trait Category Trait Models Default values Units

Architectural and 
morphological

Initial root depth APSIM 100 mm

Maximum root depth
APSIM, DNDCv. 
CAN

1000; 1.51 mm; m

Root depth growth rate APSIM, DSSAT** (0, 5.0, 30, 30, 30, 30, 0.0, 0.0, 
0.0,0.0,0); 3.0

mm/d; cm/d

Root fraction of total biomass DNDCv.CAN 0.15 fraction

Maximal root/shoot ratio Daisy c(0.5, 0.5, 0.25)
ratio per developmental stage (sowing, flowering, 
and maturity)

Density distribution of root 
shape*

DNDCv.CAN 5 function number

Root length weight ratio DSSAT 0.98 cm/g
Penetration rate parameter of 
root

Daisy 1 mm/dg C/d

Physiological and chemical

NO3
− uptake/root length DSSAT 0.006 mg/cm

Conversion efficiency of root Daisy 0.69 g DM-C/g Ass-C
Fraction of assimilate for growth 
to root Daisy c(0.5, 0.45, 0.4)

fraction per developmental stage (sowing, 
flowering, and maturity)

Root respiration fraction DSSAT 0.4 fraction
Critical root N concentration APSIM 0.02 gN/gDM
Root C/N ratio DNDCv.CAN 85 ratio

* The density distribution of root shape in DNDCv.CAN ranges from 1 to 8.
** For DSSAT, all root parameters are based on barley using the CERES module.
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excample, only 4 % of models incorporate quantification and charac
terization of microbial functional genes in the nitrification and denitri
fication pathways, even though the abundance of these genes can help 
inform N cycling process rates and associated N losses. Furthermore, 
none of the models simulate the production and release through the 
roots of biological nitrification inhibitors (BNIs) and biological denitri
fication inhibitors (BDIs).

6. Limitations and implications

Our research synthesis revealed a significant mismatch between 
experimental studies and process-based models in representing root 
traits associated with N cycling. To address this divergence, a broad 
screening of root traits may be required to distinguish traits that are 
crucial for N-cycling from those with minimal impact. Accordingly, we 
propose creating a comprehensive global dataset through multi- 
institutional collaboration among root, soil, crop scientists, and model 
developers, inspired by the coordinated efforts of the Agricultural Model 
Intercomparison and Improvement Project (AgMIP). By implementing 
standardized protocols for data collection, unified data-sharing 

mechanisms, and consistent measurement methodologies, this initiative 
aims to produce a “platinum dataset” accessible to all contributors. Such 
a dataset would help standardize root trait measurements, align exper
imental and modelling approaches, identify root traits with the strongest 
impacts on N cycling, and bridge the gap between experimental and 
modelling communities.

The influence of root traits on N-cycling varies significantly across 
plant species, genotypes, environmental conditions, and management 
practices. Our quantitative analysis illustrates the high variability 
behind the relationship between root traits and N cycling, as evidenced 
by experimental results. To reduce this uncertainty, targeted experi
ments focusing on identified root traits of specific species should be 
conducted across diverse environments, management practices, and 
climate scenarios. These systematic investigations will help uncover the 
primary factors driving the observed variations in root trait impacts on N 
cycling, enabling the development of empirical or mathematical func
tions that can be integrated into process-based models.

Given our review's focus on understanding the representation of root 
traits and N losses in models, the use of calibrated datasets for simula
tions is justified. However, each individual dataset used in our study can 

Fig. 7. Sensitivity analysis showing the potential effects of key root traits on nitrogen losses and crop nitrogen uptake in the models APSIM, DNDCvCAN, DSSAT, and 
Daisy, for spring barley (BA) or winter wheat (WH).
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introduce different partitioning along the N loss pathways, and unique 
soil textures and soil characteristics can also influence these changes. 
For instance, when soil N is limited, changes in root traits may have 
negligible effects on N losses. Similarly, in soils with a large N surplus, 
the impact of root traits may be minimal. The most pronounced effects 
are likely in conditions of slight N surplus, where changes in plant traits 
could significantly influence the residual soil N pool. Accordingly, 
different traits can be important in different situations among various 
plant species, genotypes, environment, and management combinations, 
even when applying the same model. To deepen our understanding, the 
next logical step is to evaluate the sensitivity of model traits under a 
broader range of conditions, leveraging shared datasets across all 
models. This comprehensive approach will aid in designing crops with 
optimized root traits, tailored to specific pedoclimatic conditions and 
agricultural management practices.

From the perspective of experimental research, both well-described 
but also less well-studied suites of root traits should be considered in 
future studies to provide more detailed observational data for devel
oping, calibrating, and validating models (Table 4). This is because 
classical morphological root traits are not necessarily the ones that 
explain best the influence of plants on N cycling (Freschet et al., 2021). 
Other indicators of root N uptake which are more complex to measure, 
including net and maximum NO3

− and NH4
+ uptake rates, must be better 

documented. The amount, rate, and composition of root exudates, both 
in terms of C and N compounds, are other challenging root traits to 
determine that may be of key importance to unfold the role of plants on 
N losses.

A root trait that may be particularly important in terms of conse
quences for N losses is the biological exudation of nitrification and 
denitrification inhibitors. To date, no model incorporates this root trait, 
although several experiments have shown the potential impacts on N 
cycling of this trait (Table 1, and S3). For example, the secondary me
tabolites from Fallopia spp led to a 92 % biological denitrification inhi
bition (BDI) and 52 % respiration inhibition in 15 stains of denitrifying 
bacteria (Bardon et al., 2014). Another study showed that Brachiaria 
pastures can suppress soil nitrifier populations, reducing c. 75 % 
ammonium-oxidation rates and N2O emissions compared to bare soil 
and soybean (Subbarao et al., 2009). Future field studies validating 
these results under realistic field conditions and with comparisons using 
the same crop with and without the capacity to inhibit nitrification will 
provide the basis for the required model improvements.

The mechanisms by which root traits regulate the microbial com
munities involved in N cycling are also not captured by process-based 
models, among other reasons, due to the exclusion of root and rhizo
sphere microbiome interactions (Saleem et al., 2018; Herms et al., 
2022). The abundance of N-related functional genes has been shown to 
be strongly associated to N2O production (Prosser et al., 2020; Grass
mann et al., 2022), and N2O consumption (Xu et al., 2020; Kim et al., 
2022). Our study shows that root traits are very closely associated with 
N-related functional genes. Accordingly, using easily observable 
morphological traits as proxies of these biological interactions may be 
an avenue to incorporate them in process-based models.

Although process-based plant-soil models are inherently imperfect in 
capturing the intricacies of the systems they simulate, they remain 
among the most effective tools for quantifying the impacts of crop 
management on agricultural sustainability. Ongoing model enhance
ments, specifically targeting the incorporation of root mechanisms and 
traits, will contribute significantly to advancing research efforts in 
improving crop NUE and reducing N losses at the farm scale.
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