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Editor: Mark van Wijk CONTEXT: Nitrogen (N) application to crops is crucial to feed an increasing world population. Yet, much of this N
is not taken up by crops, initiating a cascade of N losses with dire environmental and economic consequences.
There is, therefore, a need to develop crops with traits that make them use N more efficiently, thereby reducing N
losses. Process-based models have been used to design in-silico crops with desirable traits to maximize yield and
Root characteristics increase climate resiliency, but few have been used with the perspective of reducing N losses.
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METHODS: We synthesize the current knowledge on the relationships between plant traits and N losses based on

experiments reported in the literature, conduct a survey of process-based models simulating crop growth and N
losses, and run a sensitivity analysis with selected models (DSSAT, APSIM, DNDCvCAN, Daisy).

RESULTS AND CONCLUSIONS: The results show that the relationships between root traits and N losses can be
very strong in experiments, but model simulations do not capture the magnitude of these associations well. This
is mainly due to the lack of a robust representation of the plant root mechanisms influencing N losses. Suggested
model improvements include designing new functions to link root traits with key N-cycling processes supported
by experimental evidence - such as root exudation of various compounds including biological nitrification in-
hibitors — and using easily observable morphological traits in process-based models as proxies to predict changes
induced by plants on N-cycling by soil microbial communities.

SIGNIFICANCE: This work represents a key step towards designing novel root function-based ideotypes adapted
to reduced fertilizer inputs while maintaining the same level of yield, and that is, therefore, potentially less

harmful to the environment.

1. Introduction

Since the Green Revolution, the world has witnessed an unprece-
dented increase in nitrogen (N) fertilization owing to the increasing food
demand of a growing global population and the goal of achieving zero
hunger (Zhang et al., 2021; Gu et al., 2023). Indeed, a 5-fold increase in
N inputs has contributed to the doubling of global food production
(Tilman et al., 2002; Battye et al., 2017). However, on average only
around 46 % of the N fertilizer applied to agricultural soils is utilized by
plants, while a large fraction of the remaining N is lost from agro-
ecosystems through nitrate (NO3) leaching, ammonia (NH3) volatiliza-
tion, and nitrous oxide (N2O) emissions (Zhang et al., 2015a, 2015b;
Chang et al., 2021). These N losses can trigger a cascade of severe eco-
nomic, social, and environmental consequences, including eutrophica-
tion, biodiversity loss, air pollution, stratospheric ozone depletion,
global warming, and associated climate change (Reay et al., 2012;
Springmann et al., 2018). The pressure to increase N fertilizer inputs will
continue because global food demand is expected to increase by 35-56
% by 2050 (Van Dijk et al., 2021). This calls for an improved under-
standing of N cycling within the plant-soil-atmosphere continuum to
better manage the adverse impacts associated with this vital nutrient on
our ecosystems.

Plants can shape the fate of N losses in agroecosystems by influencing
the main biotic and abiotic controls on N transformations in soils. Ni-
trogen losses through leaching and runoff are caused by rainfall or
irrigation events that exceed the soil water retention or infiltration ca-
pacity, promoting NO3 movement with drainage water through the soil
profile or flooding across the soil surface (Padilla et al., 2018). Most NO3
leaching losses occur outside of the growing season, consisting of NO3
not taken up by the crops or mineralized from crop residues and soil
organic matter. Accordingly, the main mechanism by which plants can
influence NO3 leaching is through the immobilization of N in plant
biomass via N uptake and reducing soil drainage through water uptake.
Nitrous oxide (N2O) emissions are primarily produced through two
microbial processes: nitrification and denitrification. Denitrification is
stimulated under anaerobic conditions when soil is saturated with
water, while nitrification is an aerobic process that involves two suc-
cessive oxidation reactions. Soil carbon (C), mineral N, pH, and moisture
content are the dominant driving factors regulating NoO emissions (Lam
et al., 2017; Harris et al., 2022). Plants can affect all these factors
through various processes mediated by root biomass, root exudation,
and soil water and N uptake (Bardgett et al., 2014; Abalos et al., 2019).

Innovative root research has begun to reveal the pivotal and yet
overlooked importance of root traits as drivers of plant N uptake,
particularly when soil N availability is low (Freschet et al., 2021). Root
traits such as abundance and length of lateral roots and root hairs, root
length density (RLD), specific root length (SRL), and root depth, affect
the volume of soil explored by roots and the surface area for nutrient
uptake, thereby influencing plant N acquisition (Abalos et al., 2018,
2019; Freschet et al., 2021). In turn, more efficient plant N uptake can

reduce N losses in the form of NoO emissions (Abalos et al., 2014) and
NOj3 leaching (Fernandez Pulido et al., 2023). Other root traits such as
rhizodeposited C from live roots and the C/N ratio of the rhizodeposits,
regulate interactions with the soil microbial community and in partic-
ular with microbial guilds determining plant nutrient availability
(Moreau et al., 2019). This emerging evidence suggests that there is
potential to identify specific root traits — or suites of traits — representing
an improved crop ideotype (model plant) for more efficient N uptake
and reduced N losses.

Conventionally, plant traits are identified via field trials conducted
under various agronomic and pedoclimatic conditions and used in
breeding programs to develop new cultivars suitable for targeted envi-
ronments and climatic conditions (Voss-Fels et al., 2019). However,
these experiments are usually labor-intensive, time-consuming, and
expensive, making it difficult to carry out long-term trials across mul-
tiple sites (Johnston and Poulton, 2018; Kephe et al., 2021). Process-
based models that simulate the soil-plant-climate continuum have
arguably become the best tools to overcome these challenges (Tsuji and
Hoogenboom, 1998; Peng et al., 2020). These mechanistic models have
played a determinant role for the design of new crop ideotypes able to
cope with climate change (Rotter et al., 2015; Paleari et al., 2022;
Getachew et al., 2023), and to optimize agricultural management
practices to improve the economic and environmental sustainability of
food production (e.g., best N fertilizer strategies to reduce N losses,
modifying the sowing date to maintain or increase crop yield; Hunt
et al., 2019; Kropp et al., 2019). These robust modelling frameworks
combined with the empirical evidence supporting root traits as key
drivers of N cycling may pave the way to redefine a plant ideotype for
reducing N losses in agroecosystems.

The main objectives of this study are to explore how well process-
based models capture the relationship between root traits and N los-
ses, and to provide recommendations to overcome the identified limi-
tations. Ultimately, this work will contribute to supporting the use of
models to develop root trait-based ideotypes that improve N use effi-
ciency (NUE) in the context of reduced N fertilizer rates, thereby sup-
porting the sustainability of agroecosystems.

2. Plant traits and nitrogen losses: Empirical evidence

Root systems play a fundamental role in plant-soil interactions,
particularly in N cycling through various direct and indirect pathways
(Fig. 1). These plant-soil interactions significantly influence the trans-
formation and movement of elements and compounds in soil ecosystems
(Freschet et al., 2021). Roots can directly influence soil N cycling in
three primary ways. First, they regulate N uptake by modifying their
absorption surface area in response to available soil N (Duan et al.,
2024), adjusting uptake rates through the upregulation or down-
regulation of N transporter activity (Jacquot et al., 2020), and altering
root growth rates (Duan et al., 2024). Second, the roots of some plants
can release biological nitrification inhibitors (BNI) and denitrification
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inhibitors (BDI), which potentially reduce the rates of nitrification and
denitrification processes in soil (Bardon et al., 2014; Sun et al., 2016).
Third, roots could directly modify soil water dynamics through water
uptake, which affects N leaching patterns (Ehdaie et al., 2010).

The indirect effects of roots on soil N cycling are more complex and
occur through physical, chemical, and biological mechanisms. From a
physical perspective, roots alter the soil microclimate, causing temper-
ature fluctuations and shifts between aerobic and anaerobic conditions
within soil macropores (Greiser et al., 2024). Additionally, root growth
reshapes soil structure by increasing soil aggregation and porosity
(Lucas et al., 2019). Chemically, roots influence soil substrate compo-
sition through rhizodeposition (the release of organic compounds into
the soil) (Witzgall et al., 2024). Biologically, roots shape the soil mi-
crobial community by selectively recruiting specific microorganisms
and providing resources through rhizodeposition, affecting soil micro-
biota's abundance, composition, and diversity (Tomazelli et al., 2024).
These physical, chemical, and biological modifications occur simulta-
neously across temporal and spatial scales, creating complex in-
teractions that affect soil N cycling through changes in substrate
availability, abiotic conditions, and biotic factors.

Ecologists are increasingly adopting trait-based approaches to
characterize how plants interact with the soil for nutrient acquisition
and storage, and to regulate ecosystem processes (Laliberte, 2017).
These approaches enable the development of a quantitative, mechanistic
understanding of biochemical processes by linking them to measurable
plant traits (Bardgett et al., 2014). This framework offers valuable op-
portunities to incorporate physiological processes into process-based
models, enhancing their predictive capability. These approaches are
primarily based on the leaf and root economics spectrum, which
postulate that plants with acquisitive traits and resource strategies
invest in faster growth and resource uptake rates, coupled with shorter
life spans and more susceptible tissues. In contrast, plants with conser-
vative traits have lower water and nutrient requirements, and therefore
reduced growth and respiration rates, resulting in a longer life span
(Wright et al., 2004; Kong et al., 2019; Pan et al., 2020). Root traits can
be architectural and morphological, physiological and chemical, and
biotic (Table 1; Bardgett et al., 2014). Here, we provide qualitative and
quantitative estimates of the relationship between root traits and N
losses based on the available literature.

Qualitative vs. Quantitative
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2.1. Methodology

We conducted a literature survey using Google Scholar by searching
the following terms and their variations: root traits, plant traits, root
architecture, root exudate, nitrogen use efficiency, NO3 leaching, N,O
emissions, nitrification, denitrification, functional genes related to N
cycling (amoA-AOA, amoA-AOB, nirK, nirS, napA, napZ, and nosZ), and
N uptake. Articles were included if they met the following criteria: (1)
provided detailed information of experimental design, plant types, and
extractable data for at least one root trait (independent variables) and
one response variable (including NoO emission, N uptake, and NO3
leaching); (2) if referring to different phenological stages, the growing
season accumulated response variables and root traits at maturity were
reported. A total of 24 studies were used for a qualitative assessment
indicating the direction of the relationship between root traits and N
losses (i.e., suitable for qualitative assessment), including 6 studies
focused on nitrification and denitrification rates (Table 1), while 7 of
those studies were further used for a more in-depth quantitative
assessment of such relationships (Fig. 2). Regarding the functional genes
related to N cycling, a total of 7 studies were used for a qualitative
assessment (Table S1), and 3 of these studies contained detailed data
suitable for quantitative analysis (Fig. 2).

We used the natural log-transformed response ratio (In RR) as a
measure of effect size for the quantitative evaluation (Hedges et al.,
1999) (eq. 1):

Where x¢ is the reference value, selected as the observation within a
study with the greatest N loss (N3O or NO3 leaching) or abundance of
functional genes related to nitrification/denitrification, and xz is the
other observation (or observations) within a study with their corre-
sponding root trait values. Results were back-transformed to “percent-
age of change” using the formula [100 x {exp.(InRR) -1}] to ease
interpretation.

2.2. Results of the literature survey
We identified a relatively wide range of root traits (27) associated

with measurable changes in N losses (Table 1), and the mechanistic
understanding of these associations is robust. For example, an increase
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Fig. 1. Conceptual diagram depicting the relationships between roots and soil N cycling (SOM: soil organic matter; BNI: biological nitrification inhibitor; BDI:

biological denitrification inhibitor).
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Table 1
Qualitative summary of relationships between root traits and nitrogen losses and plant nitrogen uptake reported in experiments.
N cycling Root trait Direction of N loss Scale Plant/crop References
component with increasing trait
values
Root biomass Increase Field Rice Baruah et al., 2010
Decrease Greenhouse Mesocosm  Grass Oram et al., 2020
Abalos et al., 2014, 2018; Oram
Specific root length Decrease Greenhouse Mesocosm Grass et al., 2020; Fernandez Pulido et al.,
2023
Abal t al., 2014, 2018;
Architectural and Root Diameter Increase Greenhouse Mesocosm  Grass alosetal, I Y
morphological Fernandez Pulido et al., 2023
’ ¢ Root length densit Decrease Greenhouse Mesocosm  Grass Abalos et al., 2018; Fernandez
N2O emission J y Pulido et al., 2023
Root ds tt
oot dry matter Increase Greenhouse Mesocosm  Grass Fernandez Pulido et al., 2023
content
Root/shoot ratio Increase Greenhouse Mesocosm Grass Abalos et al., 2014
Root tissue density Decrease Greenhouse Mesocosm  Grass Oram et al., 2020
Root C/N ratio Decrease Greenhouse Mesocosm  Grass Oram et al., 2020
Physiological ram et al., 2020; Fernandez Pulid,
ySI? ogical and Root N concentration  Increase Greenhouse Mesocosm  Grass Oram et al., 2020; Fernandez Pulido
chemical et al., 2023
Root C concentration Decrease Greenhouse Mesocosm Grass Oram et al., 2020
Deep root biomass Decrease Sand_tube Wheat Ehdaie et al., 2010
Shallow root biomass Decrease Sand_tube Wheat Ehdaie et al., 2010
Root/shoot ratio Decrease Sand_tube Wheat Ehdaie et al., 2010
Greenhouse Mesocosm  Sugarcane Takaragawa et al., 2022
0-0.3mroot biomass  Decrease Greenhouse Mesocosm  Sugarcane Takaragawa et al., 2022
0.3-1.0 t
. L roo Decrease Greenhouse Mesocosm  Sugarcane Takaragawa et al., 2022
biomass
0-0.1 mroot biomass  Decrease Greenhouse Mesocosm  Grass Popay and Crush, 2010
0.1-0.2 t
. mroo Decrease Greenhouse Mesocosm Grass Popay and Crush, 2010
biomass
> 0.2mroot biomass  Decrease Greenhouse Mesocosm  Grass Popay & Crush, 2011
Sand_tube Wheat Ehdaie et al., 2010
D P & Crush, 2011; Moir et al.
Root biomass ccrease Greenhouse Mesocosm  Grass 28?? Tust, s votret at,
Increase Greenhouse Mesocosm  Sugarcane Takaragawa et al., 2022
Root length density Decrease Greenhouse Mesocosm  Grass Fernandez Pulido et al., 2023
Maximum root depth Increase Sand_tube Wheat Ehdaie et al., 2010
Architectural and 0-0.1 m root length Decrease Greenhouse Mesocosm  Grass Popay and Crush, 2010
hological .1-0.2
NOj3 leaching morphologica ﬁe ng?h m root Decrease Greenhouse Mesocosm Grass Popay and Crush, 2010
> 0.2 m root length Decrease Greenhouse Mesocosm  Grass Popay and Crush, 2010
Root length Decrease Greenhouse Mesocosm  Grass Popay and Crush, 2010
0-0.1 t
. m roo Decrease Greenhouse Mesocosm  Grass Popay and Crush, 2010
diameter
.1-0.2
0_ 0.2 m root Increase Greenhouse Mesocosm  Grass Popay and Crush, 2010
diameter
0.2 t
>_ m roo Increase Greenhouse Mesocosm  Grass Popay and Crush, 2010
diameter
P h, 2011; F d
Root diameter Increase Greenhouse Mesocosm  Grass oplay & Crush, 2011; Fernandez
Pulido et al., 2023
Root dry matter Decrease Greenhouse Mesocosm  Grass Fernandez Pulido et al., 2023
content
P & Crush, 2011; Fernand
Specific root length Increase Greenhouse Mesocosm  Grass opay rus' - ernandez
Pulido et al., 2023
Center of gravity of
Decrease Greenhouse Mesocosm  Sugarcane Takaragawa et al., 2022
the root system
Physiological and .
. Root N content Increase Greenhouse Mesocosm Grass Fernandez Pulido et al., 2023
chemical
Controlled light
Wheat, barl
Root C exudation Increase exposure and soil eat, bariey Maurer et al., 2021
. . R and ryegrass
e Physiological and moisture
Denitrification . .
chemical Controlled light Wheat. barle
Root N exudation Increase exposure and soil ’ 4 Maurer et al., 2021
R and ryegrass
moisture
Archi 1
re ltectur.a and Specific root length Decrease Greenhouse Mesocosm  Grass Cantarel et al., 2015
morphological
Root N content Increase Greenhouse Mesocosm Grass Cantarel et al., 2015
Root affinity for NH,4 Increase Greenhouse Mesocosm  Grass Cantarel et al., 2015
Nitrificati Brachiari
Hritication Physiological and . Chamber rac- l.ana Subbarao et al., 2007
chemical Exudation of humidicola
nitrification Decrease Rice. Wheat Pariasca Tanaka et al., 2010;
inhibitors Greenhouse Mesocosm Y O'Sullivan et al., 2016; Sun et al.,
Elymus sibiricus
2016
Architectural and Chamber Rice, Cotton Chen et al., 2020; Igbal et al., 2020
N uptake Root surface area Increase

morphological

Hydroponic condition

Wheat

Zhang et al., 2015

(continued on next page)



H. Liu et al.

Table 1 (continued)

Agricultural Systems 228 (2025) 104400

N cycling Root trait Direction of N loss Scale Plant/crop References
component with increasing trait
values
Decrease Greenhouse Mesocosm  Rice Fan et al., 2010
Field Maize Mu et al., 2015; Guo et al., 2022
Chamber Rice, Cotton Chen et al., 2020; Igbal et al., 2020
Ju et al., 2015; Mu et al., 2015; Yu
Field Maize, Rice et al., 2015; Chu et al., 2022; Guo
Root biomass Increase etal,, 2022
Hydroponic condition Wheat Zhang et al., 2015
Grass, Rice, Fan et al., 2010; Moir et al., 2012;
Greenhouse Mesocosm -
Sugarcane Takaragawa et al., 2022
Sand_tube Wheat Ehdaie et al., 2010
Root biomass (0—10)  Increase Field Rice Ju et al., 2015; Chu et al., 2022
Root biomass Increase Field Rice Ju et al., 2015; Chu et al., 2022
(10-20)
:;Ot biomass (0-0.3 Decrease Greenhouse Mesocosm Sugarcane Takaragawa et al., 2022
Root biomass Decrease Greenhouse Mesocosm Sugarcane Takaragawa et al., 2022
(0.3-1.0 m) ’
Deep root biomass Increase Sand_tube Wheat Ehdaie et al., 2010
Shallow root biomass increase Sand_tube Wheat Ehdaie et al., 2010
Center of gravity of Decrease Greenhouse Mesocosm  Sugarcane Takaragawa et al., 2022
the root system
Sand_tube Wheat Ehdaie et al., 2010
Increase Field Maize, Rice Yu et al., 2015; Ju et al., 2015; Chu
. et al., 2022
Root/shaot ratio Grass, Abalos et al., 2014; Takaragawa
Greenhouse Mesocosm .
Decrease Sugarcane et al., 2022
Chamber Cotton Igbal et al., 2020
Root depth Increase Chamber Cotton Igbal et al., 2020
Sand_tube Wheat Ehdaie et al., 2010
Greenhouse Mesocosm Grass Abalos et al., 2014
Root Diameter Increase Chamber Cotton, Rice Chen et al., 2020; Igbal et al., 2020
Field Rice Chu et al., 2022
Root length density Increase Field Maize, Rice Juetal, 2015; Mu etal., 2015; Chu
et al., 2022
Field Rice Chu et al., 2022
Root volume Increase Hydroponic condition Wheat Zhang et al., 2015
Chamber Rice, Cotton Chen et al., 2020; Igbal et al., 2020
Root length ratio Decrease Chamber Cotton Igbal et al., 2020
Root thickness Increase Chamber Cotton Igbal et al., 2020
Specific root length Increase Field Rice Chu et al., 2022
Decrease Greenhouse Mesocosm  Grass Abalos et al., 2014
. . . Ju et al., 2015; Chu et al., 2022;
Field Maize, Rice Guo et al., 2022
Root length Increase Hydroponic condition Wheat Zhang et al., 2015a, 2015b
Greenhouse Mesocosm Rice, Grass Fan et al., 2010; Moir et al., 2013
Chamber Rice Chen et al., 2020
Root tip number Decrease Chamber Rice Chen et al., 2020
Root density Increase Chamber Cotton Igbal et al., 2020
Root projected area Decrease Chamber Cotton Igbal et al., 2020
Root angle opening Increase Field Maize Guo et al., 2022
Root maximal width Increase Field Maize Guo et al., 2022

in architectural traits such as root/shoot ratio can cause a reduction in
NOj3 leaching. This is because higher root/shoot ratio indicates a larger
below-ground foraging capacity for nutrients and water, and since NO3
is highly mobile in the soil, it can easily be leached deep into the soil
with percolating water (Thorup-Kristensen et al., 2020). Regarding
morphological traits, an increase in root diameter can increase both NO3
leaching and N3O emission, because high root diameter indicates a
resource-conservative strategy, and therefore lower plant water and
nutrient uptake capacity and higher soil availability of both resources. A
greater C investment per unit of root length is required by larger-
diameter roots, which must be coupled with a longer lifespan to
ensure a favorable nutrient and water return on the higher C investment
compared with smaller-diameter roots (Weemstra et al., 2016). In terms
of chemical traits, an increase in root C exudation could increase NoO
emission due to greater soil C availability stimulating denitrification
(Abalos et al., 2019).

The quantitative assessment revealed the magnitude of some of the
trait x N loss relationships (Fig. 2). Changes in root traits were

associated with variations in N losses and N-related functional genes
often exceeding 50 %. In general, the relationship between root traits
and functional genes was much stronger than with NyO emissions or
NO3 leaching. Relatively modest increases of 10 % in root biomass could
increase the abundance of nirK gene copies by 67.4 %, while the same
increase in root diameter could raise the abundance of AOB and nosZI by
14.3 % and 9.4 %. Increases of 10 % in root biomass, root C/N ratio, and
root tissue density can reduce N,O emissions by 2.3 %, 4.3 %, and 6.5 %
respectively, whereas the same increase in root N concentration can
increase NoO emission by 4.2 %. Similarly, 10 % increases in root length,
and root biomass can lower NO3 leaching by 5.7 %, and 2.0 %,
respectively. The relationships identified in our literature survey high-
light the benefits of representing the associations between root traits,
functional genes and N losses in process-based models to ensure accurate
simulations of N cycling in agroecosystems.



H. Liu et al.

N,O emissions

Root biomass

N,O emissions

Root C/N ratio

Agricultural Systems 228 (2025) 104400

N,O emissions

Root N concentration

® .
& _ 40.6¢ 0.23 x « ® L -_464-0428x 0 L -503+0.415%
-20- p-value = 0.004 -25- p.value = 0.003 p-value = 0® -
R?=028 20" R 041
-40- =0 s
-60- 751 -60-
. e o
.80 L 1 1 U 100 1 1 1 -80 -l . 1 1
-50 0 50 100 -50 0 50 -50 0 50
:\o‘ N,O emissions NOleaching NO;leaching
3 Root tissue density Root biomass Root length
= 04
[} i [ ]
E’ yo-44.1-0.654 x y=-33.6-0.201x .. =-42.7-0.568 x Root traits
g _ p-value =0.014 -25- 'p-valugg0"004 -25- & ue =0.008 - .
& 25 i Root biomass
L RZ=0.30 R¥=0,14 PP o
2 ' g : < Root C/N ratio
£ 50- =01 501 - Root diameter
> - Root length
£ -75- 75- @ -~ Root N concentration
=z 75 ¢} ° Root tissue density
ﬁ -100- 100- © ©® %% o
> 20 0 20 40 0 50 100 150 200 0 25 50
©
5 AOB nirk nosZ|
Root diameter Root biomass Root diameter
500- ° 1500- 300- °
y=123+143 x y=534 +6.74 x y=74.3+0.935 x
400~ p-value = 0.061 1000 B pakcs 0
2 T R2= 200- R?=

300- R°=0.19 ® R“=0.69 R“=0.25

200- o =001

100- 0-

0 -
' . ) - -500- . \ ) ' ) ' '
-40 0 40 80 -50 0 50 -40 0 40 80

Change in root traits (%)

Fig. 2. Examples of quantitative relationships between nitrogen losses (N.O emissions and NO3 leaching), N-related functional genes (AOB (amoA-AOB), nirK, and
nosZI), and root traits based on metadata from experiments (Table 1). The units of the Y- and X-axis are relative changes (%).

3. Survey of process-based models simulating crop growth and
nitrogen losses

We identified 55 widely used process-based models with the capacity
to simulate crop growth, root traits, soil C dynamics, soil water flow, soil
N dynamics, NO3 leaching, and/or N2O emissions at different temporal
and spatial scales (Table S2). All these models were initially developed
with a focus on either soil processes or crop yield (Jones et al., 2003;
Keating et al., 2003; van Ittersum and Donatelli, 2003). Soil-focused
models were designed primarily to simulate C and/or N cycling and
water movement across the soil-plant-atmosphere continuum, such as
DayCent and DNDC, while crop-focused models were established to
simulate crop growth and development, such as DSSAT. Over time,
model developers have incorporated advances to encompass more fea-
tures related to the dynamic processes of plant growth and soil nutrient
cycling, and currently a large fraction of these models can simulate both
crop growth and soil dynamics with reasonable accuracy. Based on the
initial goals or the strengths of each model by the time they were
launched, models can be categorized into three types: crop models,
biogeochemical models, and agro-hydrological models (Table S2).
Approximately 45 and 39 of the surveyed models can simulate NO3

leaching and N5O emission, respectively, 39 models can simulate both N
losses, and only 37 models can simulate all seven processes including
crop growth, root traits, soil C and N dynamics, soil water flow, NOs-
leaching, and N3O emission (Table S2). Only 2 of the surveyed models
incorporate N-related functional genes. Two spatial (plot and regional)
and three temporal (hourly, daily and monthly) scales are covered by the
37 models that include all seven processes. The vast majority of models
simulate at the plot scale (49) on a daily time step (50).

4. Understanding how current generation models simulate root
traits and nitrogen losses

To acquire a deeper mechanistic understanding of the capacity of
models to simulate root trait x N loss relationships, we focused on four
of the more widely used models listed in Table S2: DSSAT, APSIM,
DNDCvVCAN, and Daisy. These models were selected for various reasons:
(1) they can simulate at least six of the surveyed categories (Table S2);
(2) they were initially developed with a different purpose, two of them
to simulate crop growth, development, and yield (DSSAT and APSIM),
and the other two with a stronger focus on soil properties (DNDCv.CAN
and Daisy); and (3) they cover a wide gradient of complexity in terms of
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potential root traits to explore, from 4 in DNDCv.CAN to 21 in APSIM
(Table S3). For each of the selected models, first we unfold the main
links and interactions between plant traits and their impacts on soil
processes related to N losses. Then, we collected already calibrated and
evaluated datasets for model setups from individual studies, and all the
required input data to run the models, covering climatic, soil and agri-
cultural management information, in order to perform sensitivity ana-
lyses (more details below and in the supplementary information).

4.1. General representation of N2O emissions in process-based models

Nitrification and denitrification are the two processes linked to NoO
emission in process-based models. Nitrification refers to the process of
oxidation of NH} to NO3 and occurs under aerobic conditions. The first
step in process-based models is to calculate the nitrification rate based
on the extractable soil NHJ and soil abiotic/biotic modifiers, which are
model specific. Then, NO and N,O emissions from nitrification are
calculated as a constant proportion of nitrified N (Parton et al., 2001).
By contrast, denitrification involves a series of reductive reactions from
NO3 to NO3, NO, N»O and N5 under anaerobic conditions, and requires
an energy source from soil extractable C. Similar to nitrification, the first
step of denitrification is also to calculate the denitrification rate based
on the soil NO3 or extractable C modified by abiotic or biotic factors.
Then the second step is often to calculate the N/N»O ratio based on
oxidation of an electron donor (normally hydrogen) to reduce oxidized
N substrates as a function of soil water content. The N2O gas flux from
denitrification is the product of the denitrification rate and the N,O
ratio. Most models follow these steps and incorporate the associated
mechanisms to simulate soil NoO emissions from both nitrification and
denitrification; yet they differ in specific modifying (driving) factors
with soil temperature and water content generally being the most
important.

4.2. General representation of NO3 leaching in process-based models

Losses via NO3 leaching are primarily linked to drainage using a
cascade water flow approach in process-based models. When the soil
water content exceeds the upper drained limit or field capacity (gener-
ally defined as the water content retained in soil at —0.1 bar, ranging
from —0.06 to —0.33 bar for different soil types), the drainage flow in
each soil layer is calculated based on the difference between saturation
water content and the upper drained limit of the soil. Then, NO3
leaching is simulated based on the soil NO3 concentration and drainage
flow in each soil layer. Most process-based models follow this principle
to simulate NO3 loss, while differing in hydraulic parameters and
drainage flow types. Some models use the Richards equation to simulate
water flow, and some also include a retention process that slows NO3
leaching relative to the drainage flow. The soil NO3 concentration is,
therefore, a key driver of NO3 leaching in most models, and this is in
turn affected by the estimation on nitrification.

4.3. Model description and representation of plant trait x N loss
relationships

4.3.1. DSSAT

The Cropping System Model (CSM) of The Decision Support System
for Agrotechnology Transfer (DSSAT; www.DSSAT.net) model has been
used to reproduce crop growth and yield formation accurately under a
wide range of climatic and management conditions (e.g., Liu et al.,
2020; Cammarano et al., 2022; Dar et al., 2023). Five primary modules
are embedded in the DSSAT-CSM structure: plant, soil-plant-
atmosphere, soil, weather, and management. The latest DSSAT v4.8
also includes a greenhouse gas emissions (GHGs) module which makes it
possible to simulate NoO and methane emissions (Hoogenboom et al.,
2019, 2021).

In DSSAT-CSM, only saturated flow is considered for drainage, and
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the drainage rate is controlled by hydraulic parameters, including soil
water saturation content and drained upper limit. Soil NO3 concentra-
tion and the drainage flow determine NOg3 leaching. Soil abiotic factors,
including soil temperature, water, and pH, are the modifiers for nitrifi-
cation rate. The N,O emission is estimated as a fraction (0.001) of
nitrification. The DSSAT-CSM model provides two methods for denitri-
fication: CERES denitrification (Godwin and Singh, 1998) and Century
denitrification (Gijsman et al., 2002). In the CERES module, soil
extractable C, NO3 concentration, temperature and water factors are
accounted for in calculating the denitrification rate. Then N2O emissions
are calculated based on the soil NO3 content and a given N2/N5O ratio
modified by soil water content. By contrast, in the Century denitrifica-
tion module, the denitrification rate is calculated based on soil hetero-
trophic respiration (CO3), NO3, and soil water content. The N3/N2O
ratio is calculated based on the ratio of NO3 to CO5 and modified by soil
water content. Plant traits in DSSAT-CSM are specific at the crop/species
level. In terms of the general representation of N losses and plant traits
across crops in DSSAT-CSM, traits linked to crop N uptake modify soil
NO3 and NH7 content and associated N losses, and the soil water flow is
influenced by plant water uptake that in turn is affected by changes in
root length density and potential N and water demand. Belowground,
root senescence can add litter to the soil and affect the soil fresh organic
matter pool, further affecting soil mineralization and immobilization
and, thus, both soil C and N pools. Aboveground, the leaf area index
(LAI) regulates evapotranspiration and, therefore, to soil water content
(Fig. 3).

4.3.2. APSIM

The Agricultural Production System Simulator (APSIM) is a
comprehensive mechanistic model which has been used for various
purposes (Holzworth et al., 2014). APSIM is structured around plant,
soil, and management modules, covering multiple crops and many soil
processes including a water balance, N transformations, and soil pH, as
affected by management practices (Pasley et al., 2021).

In APSIM, NOj3 dissolved in water can move to deeper soil layers via
saturated or unsaturated water flow. The saturated and unsaturated
water flows are calculated based on soil water retention capacity and
hydraulic parameters, including drained upper limit, saturated water
limit, 15 bar lower limit (water content at wilting point), hydraulic
conductivity, and drainage and diffusivity rate constants. Nitrification is
assumed to follow Michaelis-Menten kinetics (Godwin and Jones, 1991).
The nitrification rate is modified by soil water, temperature, and pH.
The NO and N3O emissions from nitrification are calculated as a fixed
proportion of nitrified N (Parton et al., 2001). For denitrification, APSIM
adds an extra temperature factor to adjust the potential denitrification
rate. The N,O from denitrification is then calculated based on the N5 to
N0 ratio (Del Grosso et al., 2000). Plant traits are linked to N losses
through N uptake, water uptake by adjusting root parameters, and plant
nutrient and water uptake capacity, further indirectly affecting the dy-
namic N cycling process through the soil water and temperature factors.
Root litter left in the soil affects the soil fresh organic matter pool,
further affecting soil N mineralization and immobilization processes and
thus both soil C and N pools (Fig. 4).

4.3.3. DNDCv.CAN

The Canadian version of DNDC (Denitrification - Decomposition
model: DNDCv.CAN; available at https://github.com/BrianBGrant/
DNDCv.CAN) has been used to estimate the effects of climate and
management strategies on crop growth, soil C and N dynamics, espe-
cially for NO3 leaching and N,O emission (Smith et al., 2013, 2020;
Abalos et al., 2016). DNDCv.CAN utilizes most of the same C and N
cycling framework as the original DNDC (DNDC95) model (Li et al.,
2012), including four of the main sub-models: soil/climate, crop vege-
tation, decomposition, and denitrification. The decomposition sub-
model is composed of four main C pools (litter, labile humus, passive
humus, and microbial biomass). Each of these has its own fixed C/N
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ratio and base decomposition rate. These rates are influenced by a
combination of soil texture, soil moisture, soil temperature, and soil N
(Smith et al., 2008). The initial status of the available NO3 and soluble C
is provided by the decomposition sub-model. The denitrification sub-
model predicts the consumption of NO3 and generates soil fluxes of
NO, N30, and N3 depending on the microbial biomass of denitrifiers, pH,
redox potential (Eh), soil water content, soil organic C, soil temperature,
and the concentration of the corresponding N oxides (Fig. 4; Smith et al.,
2008; Li et al., 2012).

The DNDC model uses an anaerobic balloon concept to regulate the
nitrifier and denitrifier populations. This representation of aerobic and
anaerobic soil volumes contrasts with other models such as APSIM and
DayCent, that only model bulk soil properties. The nitrifier and deni-
trifier populations are controlled by soil Eh via the Nernst equation and
the reaction rates (i.e., nitrification or denitrification) is calculated by
the Michaelis-Menten Equation (modified by the concentration of sub-
strates in reaction). The nitrification rate is calculated based on soil NHJ
concentration, the biomass of nitrifiers, and soil pH. Abiotic factors
including soil temperature and moisture can also affect the nitrification
rate by regulating the growth of nitrifiers. The N2O emission induced by
denitrification is the result of the production, consumption, and diffu-
sion of gases within the anaerobic balloon. The consumption rate for the
N oxides is calculated by the relative growth rate of denitrifiers,
maximum growth rate on N oxides, maintenance coefficient on N oxides,
denitrifier biomass, N concentration of all N oxides, and pH and tem-
perature factors (Li et al., 2000). Leaching losses of NO3 in DNDCv.CAN
are derived from the bulk water flux between soil layers, the soluble
NOj3 concentration, and a small amount of preferential N movement
which can be parameterized through the user interface (Smith et al.,
2020). Plant traits, including plant water demand, root shape function,

and root depth, affect the soil water flow and the adsorption and
desorption of NHJ to clay particles impacting N movement (Li et al.,
2006). Plant traits controlling water and N uptake capacity directly
affect the N substrate concentrations in the soil, and root architecture
parameters, including the rooting depth and the vertical distribution of
root biomass regulate plant access to soil water and N, which can lead to
differences in the vertical distribution of these elements within the soil.
Root exudates affect the soil organic matter pool, and aboveground
traits such as LAI affect soil temperature, which can be important for
denitrification and nitrification processes (Fig. 5).

4.3.4. Daisy

The soil-plant-atmosphere system model Daisy is an explanatory,
mechanistic, and physically based model (Abrahamsen and Hansen,
2000; Hansen et al., 2012). The model simulates water, heat, C and N
balances, and crop growth in the root zone (Hansen et al., 2012). The
three main modules are bioclimate, vegetation, and soil. The root system
in the vegetation module is characterized by root weight, rooting depth,
and root density distribution. The decomposition of soil organic matter
is affected by soil temperature, soil water content, and soil clay content.
This decomposition results in flows of organic matter between pools
based on the C in each pool, and the corresponding N is calculated based
on a fixed C/N ratio in each pool, then net N mineralization or immo-
bilization are simply derived from the N balance of the pool changes.

In Daisy, the water flow is calculated by the flow towards the
drainage above and below the groundwater level, adjusting by an
average of the conductivities of the saturated layers above and below the
drainage level (Mollerup et al., 2014; Holbak et al., 2021). Solute NH}
concentration, temperature and water potential pressure factors are
taken into account for calculating nitrification rate. The fraction of the



H. Liu et al.

Agricultural Systems 228 (2025) 104400

Plant traits
) £ _ -
£ g2 S E
z T8 33
o o o ‘o‘ —
o= -1 -]
@ - = ©
£ - Z = 2
= e e R 1
O e e e e e e e e e e 1 e e e
£ b i |
- o N uptake ! Water uptake !
D e -~ 1 1 |
I : : vov Mineralization !
| Soil Temperature
: ! | I : . i
I f(Soil W Soil T, Immobilization 1
l | C/N ratio)
S — 7/ |
l | I D
e ' '
I f(Activec, |
| Soil W, Soil T) ¥
Denitrification I -
I
e i 1
P T = i
f (gas diffusivity, NO; 1 | N % 2 R il e
concentration, heterophic 1 | % § E 5
CO, respiration constants, 1 | 2585 f (a constant
WEFPS factor ) Il 1 ke proportion of
M o nitrified N)
N,O emission
NO;" leaching

Fig. 4. Conceptual diagram depicting the potential effects of plant traits on nitrogen losses described in APSIM. The red color box indicates plant traits; red solid
arrows indicate the possible impact of plant traits; blue color boxes indicate the soil substrates; blue solid arrows indicate the possible biochemical processes in which
the substrates are directly involved; green boxes indicate soil abiotic factors and green dashed arrows indicate possible processes affected by abiotic factors; light
orange boxes indicate process related to soil C, N and water dynamics; light orange solid arrows indicate possible consequence of changes in processes; purple boxes
indicate the N losses. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

nitrified NHj that becomes N,O is given as a constant with a default
value of 0.02. The denitrification rate is calculated using CO3 respiration
rate as a proxy and solute NO3 modified by the soil temperature and
water factors. The N2O emission from denitrification is currently not
simulated by Daisy, but ongoing work is underway to develop and add
this component into the model. Plant traits affect NoO emissions from
nitrification in a similar way by affecting the concentration of substrates
(soil C, NHZ, NO3) and abiotic factors (soil water, and temperature), as
described for the other models above (Fig. 6).

4.4. Sensitivity analysis

4.4.1. Approach

For each of the four models (DSSAT, APSIM, DNDCvCAN, and Daisy)
we performed a one-factor-at-a-time sensitivity analysis (Lenhart et al.,
2002), by testing a set of different values for the parameters related to
root traits in each model, and extracting the simulated effects on crop N
uptake, N2O emissions, and NO3 leaching. The sensitivity of each root
parameter was tested by setting a range from —40 % to 40 % of the
default value with intervals of 5 %, and the default value of each
parameter was taken as the baseline to calculate the percentage change
in N losses and N uptake compared to the percentage change of each root
parameter. To benchmark the models, we utilized model setups from
experimental datasets that the models had previously been calibrated
and evaluated with, along with all the required input data including
daily weather, soil, and agricultural management information. A
description of the models' setups is provided in Table 2; further details of
the field experiments and the articles reporting the calibration and
validation of each model can be found in the Supplementary Informa-
tion. We selected the four most responsive traits in each model to

represent the magnitudes and directions of the interactions between root
traits and N loss (Table 3), according to the results of the sensitivity
analysis for each model for a wide range of traits (Table S3). The models
were assessed over a single growing season and non-growing season
period that spanned from sowing to sowing so as to calculate the annual
N losses and capture any NOg3 leaching losses that occurred after crop
harvesting. All the analyses were conducted using R version 4.2.2. (R
Core Team, 2022).

4.4.2. Results of the sensitivity analysis

The magnitude of the changes in N cycling in response to modifi-
cations in root traits was similar for all four models (Fig. 7). The changes
ranged from —20 % to 9.4 % for crop N uptake, from —9.1 % to 18.6 %
for NO3 leaching, and from —5.4 % to 8.3 % for N2O emissions. The most
responsive traits for crop N uptake, NO3 leaching, and NoO emission
were root length weight ratio in DSSAT, and root penetration rate for
Daisy, which are traits indicating how fast the root grows into deeper
soil layers (Table 3), and root shape function parameter in DNDCv.CAN,
which considers the root distribution across the soil profile (Smith et al.,
2020).

We observed that the relationships between changes in root traits
and N losses and crop N uptake in the model simulations were mainly
linear (Fig. 7). Some traits showed little effect on N pools, such as initial
root depth in APSIM, and maximum root/shoot ratio in Daisy. However,
sometimes the same traits showed divergent responses across models.
For example, in DSSAT an increase in root depth growth rate caused
higher crop N uptake and lower N,O emissions and NO3 leaching. By
contrast, in APSIM an increase of this trait caused only a marginal effect
on crop N uptake and a slight increase of N2O emissions.

Pearson correlation analysis revealed that, in general, there was a
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strong negative relationship between changes in crop N uptake and by controlling the transfer of N from the soil into the crop biomass.
changes in N losses for all models (Fig. S1). This indicates that the main In general, we found that N losses did not respond strongly to
pathway by which changes in root traits affect N losses in the models is changes in root traits in most process-based models. A variation in root
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Table 2
General information of the dataset setups for the sensitivity analysis with process-based models.
Models Crop Site Soil texture Nitrogen input (kg/ha) Water regime Reference
DSSAT Spring barley Dundee (56.45°N, 3.07°W) Loam 120 Irrigated Cammarano et al., 2019
APSIM Spring barley Foulum (56.30° N, 9.35° E) Sandy loam 140 Rainfed Vogeler et al., 2023
DNDCv.CAN Spring barley Quebec (48.85°N, 72.54°W) Silty clay 70 Rainfed Jégo et al., 2024
Daisy Winter wheat Foulum (56.30° N, 9.35° E) Sandy loam 150-165 Rainfed Gyldengren et al., 2020
Table 3
Main root traits in a selection of dynamic models (APSIM, DNDCvCAN, DSSAT, and Daisy) with potential effects on nitrogen losses.
Trait Category Trait Models Default values Units
Initial root depth APSIM 100 mm
Maximum root depth APSIM, DNDCv. 1000; 1.51 mm; m
CAN
s (0, 5.0, 30, 30, 30, 30, 0.0, 0.0,
h h APSIM, DSSAT** 5
Root depth growth rate SIM, DSS. 0.0,0.0,0); 3.0 mm/d; cm/d
. Root fraction of total biomass DNDCv.CAN 0.15 fraction
Architectural and ratio per developmental stage (sowing, flowerin,
morphological Maximal root/shoot ratio Daisy ¢(0.5, 0.5, 0.25) P ) P & 8 &
and maturity)
Denmfy distribution of root DNDCv.CAN 5 function number
shape*
Root length weight ratio DSSAT 0.98 cm/g
Penetration rate parameter of Daisy 1 mm/dg C/d
root
NOj3 uptake/root length DSSAT 0.006 mg/cm
Conversion efficiency of root Daisy 0.69 g DM-C/g Ass-C
) ) . Fraction of assimilate for growth Daisy (0.5, 0.45, 0.4) fractlo?'l per developn.lental stage (sowing,
Physiological and chemical ~ to root flowering, and maturity)
Root respiration fraction DSSAT 0.4 fraction
Critical root N concentration APSIM 0.02 gN/gDM
Root C/N ratio DNDCv.CAN 85 ratio

" The density distribution of root shape in DNDCv.CAN ranges from 1 to 8.

" For DSSAT, all root parameters are based on barley using the CERES module.

trait values from —40 % to 40 % induced changes in NO3 leaching or
N5O emissions that did not exceed +20 % of the default scenarios
(Fig. 7). Among all traits represented in APSIM, architectural and
morphological traits such as maximum root depth and root depth
growth rate tended to cause weaker responses than physiological and
chemical traits such as critical root N concentration. By contrast,
architectural and morphological traits such as root shape function
parameter and root length-weight ratio tended to cause stronger re-
sponses than physiological and chemical traits such as root C/N ratio
and fraction of assimilate for growth to root in the other three models.

5. Comparison between model simulations and experimental
results

Experiments at the plot/field scale aim to represent actual agricul-
tural production systems. Yet, the use of process-based models is often
necessary to overcome the spatial, temporal, and geographic limitations
of field experiments, and to integrate research from multiple disciplines
at multiple locations. The use of process-based models for informing the
design of more efficient agroecosystems that can better utilize applied N
and assist in the development of crop varieties with higher NUE and
lower N losses, requires that the capacity of models to simulate N cycling
in response to changes in root traits is adequate. Wherever serious de-
ficiencies or inadequate representations of relevant processes are iden-
tified, models need to be improved before they can be applied for crop
ideotype design. Here we show the current understanding of the linkage
between roots and soil N cycling in the real-world and in process-based
models, emphasize the strong relationships between certain root traits
and N losses found in experiments, present the most sensitive root traits
in commonly used dynamic models, and highlight the large in-
consistencies found between empirical evidence and model
representations.

Our analysis revealed a notable disconnect between root traits
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studied in field experiments (Table 1, Fig. 2) and those parameterized in
process-based models (Fig. 7, Table S3). Models typically focus on traits
related to root growth rates, penetration depth, and resource assimila-
tion efficiency. In contrast, field experiments predominantly examine
functional traits associated with root architecture, morphology, physi-
ology, and biology. This misalignment between modelled and measured
traits creates a significant barrier to integrating experimental data with
process-based models for an improved understanding of the relation-
ships between root traits and N losses.

The magnitude of the observed effects sometimes diverged strongly
between experimental results and modelling estimations for the same
root traits. For example, our analysis of the available results showed that
NOj3 leaching or N2O emission changed by 50 % in response to changes
in some root traits (Fig. 2), whereas the maximum effects in the models
only reached 18.6 % (Fig. 7). The direction of the observed effects also
differed in some instances between the experimental results and simu-
lations. For example, with an increase in root C/N ratio, NO3 leaching
and N3O emission estimated by the DNDCv.CAN model showed a flat
trend without obvious changes (Fig. 7). Conversely, observations from
experiments show that an increase in root C/N ratio may induce a strong
reduction in NO emission (Fig. 2), although the empirical evidence is
still scarce, and further experiments are required to validate these
findings. These results further support that an improved representation
of root traits in process-based models may open new opportunities for
improving N cycling simulations, help to improve estimates of N3O
emissions and N loading to rivers and estuaries, and develop crops/crop
cultivars that acquire N more efficiently.

Our survey confirmed that current process-based models capture
several key root-soil interactions, including N and water uptake, root
litter/exudate contributions to soil organic matter, and their effects on
abiotic factors such as soil temperature and water content. However, the
survey also revealed key fundamental gaps, in particular in relation to
soil microbial communities mediating soil N transformations. For
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Fig. 7. Sensitivity analysis showing the potential effects of key root traits on nitrogen losses and crop nitrogen uptake in the models APSIM, DNDCvCAN, DSSAT, and

Daisy, for spring barley (BA) or winter wheat (WH).

excample, only 4 % of models incorporate quantification and charac-
terization of microbial functional genes in the nitrification and denitri-
fication pathways, even though the abundance of these genes can help
inform N cycling process rates and associated N losses. Furthermore,
none of the models simulate the production and release through the
roots of biological nitrification inhibitors (BNIs) and biological denitri-
fication inhibitors (BDIs).

6. Limitations and implications

Our research synthesis revealed a significant mismatch between
experimental studies and process-based models in representing root
traits associated with N cycling. To address this divergence, a broad
screening of root traits may be required to distinguish traits that are
crucial for N-cycling from those with minimal impact. Accordingly, we
propose creating a comprehensive global dataset through multi-
institutional collaboration among root, soil, crop scientists, and model
developers, inspired by the coordinated efforts of the Agricultural Model
Intercomparison and Improvement Project (AgMIP). By implementing
standardized protocols for data collection, unified data-sharing

mechanisms, and consistent measurement methodologies, this initiative
aims to produce a “platinum dataset” accessible to all contributors. Such
a dataset would help standardize root trait measurements, align exper-
imental and modelling approaches, identify root traits with the strongest
impacts on N cycling, and bridge the gap between experimental and
modelling communities.

The influence of root traits on N-cycling varies significantly across
plant species, genotypes, environmental conditions, and management
practices. Our quantitative analysis illustrates the high variability
behind the relationship between root traits and N cycling, as evidenced
by experimental results. To reduce this uncertainty, targeted experi-
ments focusing on identified root traits of specific species should be
conducted across diverse environments, management practices, and
climate scenarios. These systematic investigations will help uncover the
primary factors driving the observed variations in root trait impacts on N
cycling, enabling the development of empirical or mathematical func-
tions that can be integrated into process-based models.

Given our review's focus on understanding the representation of root
traits and N losses in models, the use of calibrated datasets for simula-
tions is justified. However, each individual dataset used in our study can
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introduce different partitioning along the N loss pathways, and unique
soil textures and soil characteristics can also influence these changes.
For instance, when soil N is limited, changes in root traits may have
negligible effects on N losses. Similarly, in soils with a large N surplus,
the impact of root traits may be minimal. The most pronounced effects
are likely in conditions of slight N surplus, where changes in plant traits
could significantly influence the residual soil N pool. Accordingly,
different traits can be important in different situations among various
plant species, genotypes, environment, and management combinations,
even when applying the same model. To deepen our understanding, the
next logical step is to evaluate the sensitivity of model traits under a
broader range of conditions, leveraging shared datasets across all
models. This comprehensive approach will aid in designing crops with
optimized root traits, tailored to specific pedoclimatic conditions and
agricultural management practices.

From the perspective of experimental research, both well-described
but also less well-studied suites of root traits should be considered in
future studies to provide more detailed observational data for devel-
oping, calibrating, and validating models (Table 4). This is because
classical morphological root traits are not necessarily the ones that
explain best the influence of plants on N cycling (Freschet et al., 2021).
Other indicators of root N uptake which are more complex to measure,
including net and maximum NO3 and NHZ uptake rates, must be better
documented. The amount, rate, and composition of root exudates, both
in terms of C and N compounds, are other challenging root traits to
determine that may be of key importance to unfold the role of plants on
N losses.

A root trait that may be particularly important in terms of conse-
quences for N losses is the biological exudation of nitrification and
denitrification inhibitors. To date, no model incorporates this root trait,
although several experiments have shown the potential impacts on N
cycling of this trait (Table 1, and S3). For example, the secondary me-
tabolites from Fallopia spp led to a 92 % biological denitrification inhi-
bition (BDI) and 52 % respiration inhibition in 15 stains of denitrifying
bacteria (Bardon et al., 2014). Another study showed that Brachiaria
pastures can suppress soil nitrifier populations, reducing c. 75 %
ammonium-oxidation rates and NoO emissions compared to bare soil
and soybean (Subbarao et al., 2009). Future field studies validating
these results under realistic field conditions and with comparisons using
the same crop with and without the capacity to inhibit nitrification will
provide the basis for the required model improvements.

The mechanisms by which root traits regulate the microbial com-
munities involved in N cycling are also not captured by process-based
models, among other reasons, due to the exclusion of root and rhizo-
sphere microbiome interactions (Saleem et al., 2018; Herms et al.,
2022). The abundance of N-related functional genes has been shown to
be strongly associated to NoO production (Prosser et al., 2020; Grass-
mann et al., 2022), and N,O consumption (Xu et al., 2020; Kim et al.,
2022). Our study shows that root traits are very closely associated with
N-related functional genes. Accordingly, using easily observable
morphological traits as proxies of these biological interactions may be
an avenue to incorporate them in process-based models.

Although process-based plant-soil models are inherently imperfect in
capturing the intricacies of the systems they simulate, they remain
among the most effective tools for quantifying the impacts of crop
management on agricultural sustainability. Ongoing model enhance-
ments, specifically targeting the incorporation of root mechanisms and
traits, will contribute significantly to advancing research efforts in
improving crop NUE and reducing N losses at the farm scale.
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