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Supplementary Material 

Algebraic Connectivity 

The numbers and sizes of the predicted clusters was determined by their algebraic 

connectivity.  To do this, entries, 𝐴𝑖𝑗, in the adjacency matrix, A, were set to unity if the 

multiplicative noise contribution 𝐹𝑒𝑥𝑝 (−
(𝒓𝑖−𝒓𝑗)

2

𝜎2 ) in the stochastic  model, Eqn. 1, associated 5 

with the pair of individuals ‘i’ and ‘j’ exceeded the additive noise D, i.e., if  individuals ‘i’ and ‘j’  

are ‘connected’. The eigenvalues of the associated Laplacian matrix 𝑳 = 𝑫 − 𝑨 were then 

calculated, where 𝑫 is the degree matrix of the adjacency matrix.  The number of times 0 

appears as an eigenvalue in the Laplacian is the number of clusters. Clusters are predicted to 

become less numerous but larger on average as the swarms grow more populous (Fig. S1). 10 

Conversely, clusters are predicted to become more numerous but smaller on average as the 

intensity of the multiplicative noise, F, increases (Fig. S2). The average Fielder value (the 

second smallest eigenvalue of the Laplacian matrix) increases as the intensity of the 

multiplicative noise, F, increases, indicating that the swarms are becoming better connected. 

  15 



2 
 

 

 

 

Figure S1 Predicted numbers and sizes of clusters as a function of the swarm 

population size. Predictions were obtained using Eqn. 1 with 𝑘 = 1, 𝐷 =
1

10
, 𝐹 = 1 and 𝜎 = 1 20 

a.u. Here the ‘size’ of a cluster is taken to be the average number of connections that 

connected individuals have. The standard errors for the average numbers and sizes of the 

clusters are about 0.1 and 0.04 respectively. 
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Figure S2 Predicted numbers and sizes of clusters as a function of the multiplicative 25 
noise intensity, F. Predictions were obtained for a swarm containing N=50 individuals using 

Eqn. 1 with 𝑘 = 1, 𝐷 =
1

10
 and 𝜎 = 1 a.u. Here the ‘size’ of a cluster is taken to be the average 

number of connections that connected individuals have. The standard errors for the average 

numbers and sizes of the clusters are about 0.1 and 0.04 respectively. 
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Midge swarms are predicted to undergo a phase transition to states characterized by 

stellar polytropic sphere (q-Gaussian) distributions 

Here I show that stellar polytropic sphere distributions (q-Gaussians) which constitute the 

simplest, physically plausible models for self-gravitating stellar systems [Binney and Tremaine 

1987], are predicted by minimally structured, stochastic models to characterize the trajectories 35 

of swarming midges once the swarms have become sufficiently large. The new result extends 

the long-standing similitude that insect swarms have with self-gravitating systems [Gorbonos 

et al. 2016, 2020, Gorbonos and Gov 2017, Okubo 1986, Reynolds 2018a, 2019, 2021, 

2023a]. And somewhat paradoxically show how the presence of intrinsic noise can enhance 

the stability of swarms and sharpen their borders; thereby adding to the growing understanding 40 

as to how noise can facilitate order and structure in collective behaviour [Yates et al. 2009, 

Jhawar & Guttal 2020, Reynolds 2023b]. The new results arise from a simple modification to 

Okubo’s [1986] classic model for the trajectories of swarming midges.  

 

Okubo’s [1] 1-dimensional stochastic model for one component of the midge’s position relative 45 

to the center of the swarm, x, and for one component of the insect’s velocity, u, is given by 

𝑑𝑢 = −𝑘𝑢𝑑𝑡 − 𝜔2𝑥𝑑𝑡 + √2𝐵𝑑𝜉(𝑡)                (S1) 

𝑑𝑥 = 𝑢𝑑𝑡 

The first term on the right-hand side of Eqn. (S1) tends to drive velocities back to their mean 

zero value.  k is the ‘frictional coefficient’.  Interactions between the individuals are not explicitly 50 

modeled; rather, their net effect is subsumed in a restoring force term (the second term on the 

right-hand side of Eqn.1). This is consistent with subsequent observations which have shown 

that to leading order insects appear to be tightly bound to the swarm itself but weakly coupled 

to each other inside it [Puckett et al. 2014]. In accordance with observations [Okubo 1986, 

Kelley and Ouellette 2013] the strength of the restorative force increases linearly with distance 55 

from the swarm centre. ω is the frequency of this average restorative force (a harmonic 

attractive force). The third term, the noise term, represents fluctuations in the resultant internal 

force. B is the magnitude of the stochastic noise and 𝑑𝜉 is an incremental Wiener process with 

correlation property 〈𝑑𝜉(𝑡)𝑑𝜉(𝑡 + 𝜏)〉 = 𝛿(𝜏)𝑑𝑡 where the angular brackets denote an 

ensemble average. Simulated velocities are position-independent, and Gaussian distributed 60 

with mean zero and variance 𝜎𝑢
2 =

𝐵

𝑘
. Simulated positions are Gaussian distributed with mean 

zero and variance 𝜎𝑥
2 =

𝜎𝑢
2

𝜔2. These predictions are broadly consistent with observations of 
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laboratory swarms of the the non-biting midge Chironomus riparius [Kelley and Ouellette 

2013].   

 65 

Okubo [1986] attributed the fluctuations in the resultant internal force to the combined effects 

of the limited number of individuals in the swarm, the non-uniformity in their spatial distribution, 

and to chance close encounters of the modelled individual with other individuals.  Okubo 

[1986] tactfully assumed that the stochastic noise term encapsulating these fluctuations was 

position independent. This seems appropriate because Okubo’s model [1986] and its 70 

subsequent extension to 3-dimensions are in close agreement with numerous observations of 

midge swarms studied under controlled laboratory conditions [Reynolds 2017, 2018b, van der 

Vaart et al. 2019, 2020]. These laboratory swarms contain less than 100 individuals but appear 

nonetheless to be asymptotically large, as their statistical properties saturate when the swarm 

contain of order 10 individuals [Puckett and Ouellette 2014]. Here, however, attention is 75 

focused on much larger swarms containing 1000’s or more individuals, as can occur in the 

wild [Attanasi et al. 2014]. In these cases, the chance close encounters can be expected to 

make the dominant contribution to the noise term, and such encounters can be expected to 

be more likely at the core of the swarm where the number of fast fliers is highest and more 

likely for slower fliers that are less able to head-off collisions with the fast fliers. The simplest 80 

form of the noise intensity that encapsulates these expectations, and the one adopted here, 

is 𝐵 = 1 − 𝑎
𝑥2

2
− 𝑏

𝑢2

2
   where a and b are positive constants. Using the methodology of 

Reynolds [2017], it is readily shown that with this noise intensity, Eqn. 1 predicts that the 

positions and velocities of the modelled insects have stellar polytropic sphere distributions: 

 85 

𝑃(𝑢, 𝑥) = 𝑁(1 − (1 − 𝑞)𝜀)
𝑞

1−𝑞   if  𝜀 <
1

1−𝑞
              (S2) 

                = 0     if  𝜀 ≥
1

1−𝑞
 

 

where N is a normalization constant, 0 < 𝑞 < 1,  and where  𝜀 = (𝜔2 𝑥2

2
+

𝑢2

2
) is the observable 

energy of an insect. Consistency contributions require that 𝑎 = (1 − 𝑞)𝜔2, 𝑏 = 1 − 𝑞 and that  90 

𝑘 = 1. Notice that the noise intensity is seen, in retrospect, to be proportional to the joint 

distribution of x and u raised to the power of (1 − 𝑞)/𝑞. 
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Gaussian distributions of positions and velocities are recovered from Eqn. S2 as 𝑞 → 1. More 

generally, when 𝑞 < 1, the joint distributions of positions and velocities are more compact, 95 

having finite support. In the context of self-gravitating systems such cut-off corresponds, for 

each value of the radial coordinate x, to the corresponding gravitational escape velocity 

[Binney and Tremaine 1987]. 

 

The modelling therefore predicts that swarms undergo a phase transition to more stable, more 100 

compact forms when they become sufficiently large; the findings of Puckett and Ouellette 

[2014] regarding the asymptotic character of laboratory swarms notwithstanding. Moreover, 

because the entropic parameter q and the polytropic index n are related by 
1

1−𝑞
= 𝑛 −

1

2 
  

(Taruya, and Sakagami 2004), the modelling also predicts that these newly identified putative 

phases of swarm can, for example, have similitude with fully convective star cores (like those 105 

of red giants), brown dwarfs, giant gaseous planets (like Jupiter), or even for rocky planets; 

self-gravitating systems that are characterized by polytropes with index 𝑛 = 3/2 

[Chandrasekhar 2016].This predictions mirrors the case of wild swarms of Anopheles coluzzi 

mosquitoes which can be driven into more robust states (characterized by 𝑛 = 3/2) by 

environmental perturbations [Reynolds 2018a]. 110 

 

It has been shown that as swarms grow, more cohesive states that are better able to withstand 

environmental disturbances become accessible even when individuals have the simplest 

possible (linear) flight dynamics. The swarms are predicted to become ever more stable, as 

they grow (as collisions become ever more likely) thereby making any potential gains from 115 

adopting non-linear dynamics redundant. Consequently, when swarms become sufficiently 

large, selection pressures for cohesiveness, could drive flight dynamics towards simplicity.  

 

Enhanced stability is only required in the presence of perturbations. This may explain why 

natural swarms, which must contend with environmental disturbances, are typically much 120 

larger than laboratory swarms. The increasing simplicity that is predicted accompany the 

growth in swarm size may also account, in part, for why the largest, least agile males occur 

predominantly in larger swarms [Neems et al. 1992]. 

 

A second phase transition is predicted to occur when 𝑞 < −1. In these cases, the joint 125 

distributions of positions and velocities are no longer polytropes. Instead, individuals are most 

https://en.wikipedia.org/wiki/Red_giant
https://en.wikipedia.org/wiki/Brown_dwarf
https://en.wikipedia.org/wiki/Gas_giant
https://en.wikipedia.org/wiki/Jupiter
https://en.wikipedia.org/wiki/Terrestrial_planet
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likely to located in the outskirts of the swarms, rather than in the cores of the swarms. This is 

reminiscent of starling (Sturnus vulgaris) flocks, as the birds are more tightly packed at the 

border than at the centre of the flock [Ballerini et al. 2008]. Moreover, because the swarming 

insects are predicted to have relatively low velocities in the borders, the insects like flocking 130 

starlings [Cavagna et al. 2016] are predicted to stay at the borders longer than the way internal 

individuals keep their position inside the collective. Although accidental this trait could be 

advantageous as males in the outskirts of swarms may be the first to detect the presence of 

incoming females. If this is the case, then there could be selection pressures of maintaining 

high density borders. But so far, such behaviour in insect swarms has not been reported on. 135 

  

The two predicted phase transitions, from extensive to compacted density profiles, and from 

low density to high density borders, are not specific to noise intensities of the form 𝐵 = 1 −

𝑎
𝑥2

2
− 𝑏

𝑢2

2
, and in this sense are robust model predictions. The predicted phase transitions do, 

for example, also arise when the noise intensities 𝐵 = 𝑒𝑥𝑝 (−𝑎
𝑥2

2
− 𝑏

𝑢2

2
), in which case the 140 

joint distributions of positions and velocity are Gumbel-like (extreme value distribution-like), 

𝑃(𝑢, 𝑥) ∝ 𝑒𝑥𝑝 (𝑎
𝑥2

2
+ 𝑏

𝑢2

2
− 𝑐 ∗ 𝑒𝑥𝑝 (𝑎

𝑥2

2
+ 𝑏

𝑢2

2
)) where consistency conditions require that 

𝑎/𝑏 = 𝜔2 and 𝑏𝑐 = 𝑘. More generally, Okubo’s [1987] model predicts the occurrence of the 

phase transitions whenever it is driven by multiplicative noise that is a monotonically decaying 

function of 𝑎
𝑥2

2
+ 𝑏

𝑢2

2
. Forms of multiplicative noise that are not functions of 𝑎

𝑥2

2
+ 𝑏

𝑢2

2
are 145 

incompatible with Okubo’s [1987] model. The phase transitions are also predicted by second-

order variants of Okubo’s [1987] model in which the positions, velocities and accelerations of 

simulated swarming  insects evolve jointly as Markovian processes [Reynolds 2024], when 

these models are driven by multiplicative noise that is a monotonically decaying function of 

𝑎
𝑥2

2
+ 𝑏

𝑢2

2
+ 𝑐

𝐴́2

2
 where 𝐴́ are the fluctuations in the accelerations above and below that mean 150 

acceleration that effectively bind simulated individuals to the centres of the swarms (see 

above). This is biologically plausible because these fluctuations arise, in part, from collision 

avoidance manoeuvrers.  

 

Finally, note that polytropic distributions albeit with q>1 and with more complicated 155 

expressions for the observable energies can accurately characterise the properties of 

laboratory swarms of the midge Chironomus riparius, as reported on by Kelley and Ouellette 

[2013]. The added complexity is necessary because the effective forces that bind individuals 
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to the centre of the swarm centre (and so the effective potential energies) are speed-

dependent [Reynolds et al. 2017, see below].   160 
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Midges may maximize the cohesiveness of their swarms 235 

Here with the aid of stochastic modelling I show that the excess velocity flatness statistic of 

asymptotically large swarms of the non-biting midge Chironomus riparius may result in the 

maximum attainable cohesiveness of the swarm. One-dimensional stochastic models for the 

joint evolution of the positions, x, and velocities, u, are individual midges take the general form, 

𝑑𝑢 = 𝑎(𝑢, 𝑥, 𝑡)𝑑𝑡 + 𝑏(𝑢, 𝑥, 𝑡)𝑑𝜉(𝑡)         (1) 240 

𝑑𝑥 = 𝑢𝑑𝑡 

where 𝑑𝜉(𝑡) is an incremental Wiener process with correlation property 𝑑𝜉(𝑡)𝑑𝜉(𝑡 + 𝜏) =

𝛿(𝜏)𝑑𝑡. The simplest such model, Okubo’s classic [1986] model, wherein 𝑎(𝑢, 𝑥, 𝑡) is linear in 

both x and u, and 𝑏(𝑢, 𝑥, 𝑡) is a constant, captures many of the properties of laboratory swarms 

of Chironomus riparius midges. The joint distribution of positions and velocities, 𝑝(𝑥, 𝑢), is a 245 

solution of the Fokker-Planck equation 

𝜕𝑝

𝜕𝑡
+ 𝑢

𝜕𝑝

𝜕𝑥
= −

𝜕

𝜕𝑥
(𝑎𝑝) +

1

2

𝜕2

𝜕𝑥2
(𝑏2𝑝)        (2) 

Here for simplicity, I consider statistically stationary swarms with homogeneous velocity 

statistics and I consider models those deterministic terms are quadratic functions of u so that 

𝑎(𝑢, 𝑥, 𝑡) = 𝛼(𝑥)𝑢2 + 𝛽(𝑥)𝑢 + 𝛾(𝑥) and those intensity amplitude is constant, 𝑏(𝑢, 𝑥, 𝑡) = 𝑏0. 250 

Following Franzese et al. [1999], a set of equations for the coefficients 𝛼(𝑥), 𝛽(𝑥) and 𝛾(𝑥) is 

obtained by multiplying the Fokker-Planck equation by 𝑢𝑛 and then averaging over all 

velocities: 

−〈𝑢𝑛+1〉
𝜕𝜌

𝜕𝑥
= 𝑛[𝛼〈𝑢𝑛+1〉 + 𝛽〈𝑢𝑛〉 + 𝛾〈𝑢𝑛−1〉] +

𝑏0
2

2
𝑛(𝑛 − 1)〈𝑢𝑛−2〉    (3) 

where  𝜌(𝑥) is the swarm’s density profile. Evaluating this equation for n=1, 2 and 3 provides 255 

expressions for 𝛼(𝑥), 𝛽(𝑥) and 𝛾(𝑥): 

𝛼(𝑥) =
𝜕𝜌

𝜕𝑥

[
〈𝑢4〉

3
−〈𝑢2〉2]

[〈𝑢4〉−〈𝑢2〉2]
                    (4)

   

  𝛽(𝑥) = −
𝑏0

2

2〈𝑢2〉
 

𝛾(𝑥) =
𝜕𝜌

𝜕𝑥
〈𝑢2〉

2

3
〈𝑢4〉

[〈𝑢4〉−〈𝑢2〉2]
  260 

 



12 
 

Such a prescription ensures that the position and velocity statistics of the simulated trajectories 

are approximately consistent with the model inputs, namely the moments of the velocity 

distribution and the swarm’s density profile. For swarms with Gaussian position and velocity 

statistics, the stochastic model reduces to Okubo’s [1986] model: 𝛼(𝑥) = 0,   𝛽(𝑥) = −
𝑏0

2

2〈𝑢2〉
 , 265 

𝛾(𝑥) = −
〈𝑢2〉

〈𝑥2〉
𝑥 wherein individuals behave on the average as if they are trapped in elastic 

potential wells (since the effective forces are linear in position, x) that keeps them bound to 

the swarms. This is consistent with early observations [Okubo 1986, Kelly and Ouellette 2013]. 

More generally, the effective forces that bind individuals to the swarms are predicted to be 

speed dependent, as observed by Reynolds et al. [2017]. As the velocity flatness increases 270 

from unity, slower (faster) moving individuals become increasingly less (more) tightly bound to 

the swarm (Fig. 1). Nonetheless, the most slowly moving individuals are necessarily bound to 

the swarm by virtue of their not moving whilst the fastest moving individuals may be most 

susceptible to environmental disturbances, and so could benefit from enhanced binding to 

their swarms, i.e., could benefit from high excess velocity flatness values. In practice the 275 

excess velocity flatness values cannot be arbitrarily large because insects cannot fly arbitrarily 

fast. This analysis may therefore account for the positive excess velocity flatness, ~0.4, of 

asymptotic large midge swarms [Puckett and Ouellette 2014]. 

 

 280 
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Figure 1. The predicted strength of the central attraction for slow- and fast-moving 

individuals as functions of the velocity flatness. Without loss of generality results are 

shown for 
𝜕𝜌

𝜕𝑥
= −1. Results for velocity flatness values less than unity are shown for 285 

completeness even though the associated velocity distributions are pathological. 

 

 


