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 A B S T R A C T

Closing the crop yield gap is critical to meeting rising global food demand driven by population growth. The 
boundary line (BL) methodology is widely used to assess yield gaps and identify its causes. However, the lack of 
a standard BL fitting method can lead to inconsistencies in outputs and recommendations. This study compared 
four BL fitting methods, binning, BOLIDES, quantile regression (QR), and the censored bivariate normal model 
(cbvn), in determining the most-limiting factor and critical values (𝑥crit) across three datasets from England 
(Dataset 1), East Africa (Dataset 2), and a nutrient omission-trial from Ethiopia (Dataset 3). The most-limiting 
factor was identified using the Law of the Minimum and experimentally via omission-trials. Agreement among 
BL fitting methods and between BL methodology and omission-trials was tested using Cohen/Fleiss 𝜅-statistic. 
The consistency of 𝑥crit from BL fitting methods was assessed using the 95% confidence interval (CI) of cbvn and 
compared to RB209 guidelines (Dataset 1 only). Additionally, stakeholder preferences/opinions on BL fitting 
methods were gathered via workshops in Nairobi and Harare. Results showed BL fitting methods generally 
identified the most-limiting factor consistently (𝜅 > 0.4), but inconsistencies were observed for binning and QR 
methods. Experimentally-determined most-limiting factors were inconsistent with BL outputs (𝜅 < 0.2). While 
most 𝑥crit estimates fell within the cbvn CI, deviations occurred, especially in Dataset 2. BL fitting methods 
often underestimated 𝑥crit compared to RB209 guidelines. Stakeholder exercise showed no evidence (p = 0.56) 
against the null hypothesis of uniform ranking of BL fitting methods. The study highlights that while BL 
fitting methods show general consistency, discrepancies with experimentally determined results exist. Despite 
consistent results, cbvn is recommended for critical nutrient estimation due to its uncertainty quantification, 
supporting probabilistic insights for agronomic decisions.

1. Introduction

Global increase in population coupled with the adverse effects of cli-
mate change and the reduction in agricultural land due to degradation 
threatens future global food security (Giller et al., 2021; Kopittke et al., 
2019). To counter this, agricultural production must be increased. 
This can be achieved by agricultural intensification through closing 
crop yield gaps which can avoid the need for expansion of the land 
area under agriculture (Godfray et al., 2010; Foley et al., 2011). The 
process to close the yield gap should start with its quantification and 
the determination of its possible causes. Management options can be 
identified and policies adopted that favour the identified management 
options (FAO and DWFI, 2015). Various methods for bench-marking 
yield to determine the yield gaps have been described (FAO and DWFI, 
2015). One method, which has been widely used in many agronomic 
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studies, is the boundary line methodology (Sadras, 2020). This method-
ology allows for bench-marking yield especially, in cases where data are 
collected from non-experimental settings e.g. field surveys.

The boundary line methodology was initially proposed by Webb 
(1972) as a tool to model the most efficient response, 𝑦, to factor, 𝑥, 
when these are measured in situations where other causes of varia-
tions in 𝑦 occur (Sadras, 2020). The boundary line model, therefore 
represents the maximum response of 𝑦, for any value of 𝑥. Webb’s 
(1972) method involves, (i) creating a scatter plot of 𝑦 against 𝑥, 
(ii) visually selecting the points at the upper edges assuming that 
they are the most efficient response and (iii) fitting a model to these 
selected points to represent the relationship of 𝑥 and 𝑦. Over the 
years, this simple methodology has undergone various developments 
that include binning (Casanova et al., 1999), boundary line determi-
nation technique (BOLIDES) (Schnug et al., 1995), quantile regression 
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methods, Makowski quantile regression (Makowski et al., 2007), the 
Bayesian segmented quantile regression (Andrade et al., 2023) and 
the censored bivariate normal model (cbvn) (Milne et al., 2006b). 
These methods can be classified into two groups, the heuristic methods 
(e.g. BOLIDES, Binning and quantile regression methods) which involve 
making subjective decisions (e.g. the quantile to regard as the boundary 
in quantile regression method) and the statistical methods which use 
strict statistical principles to fit boundary lines making them more 
objective and robust as they provide measures of uncertainty for the 
determined parameters (i.e. cbvn, Bayesian segmented quantile regres-
sion and Markowski quantile regression). For more information on the 
different boundary line fitting methods refer to Miti et al. (2024b).

The boundary line methodology is useful to identify appropriate 
agronomic practices to increase agricultural productivity. It has been 
applied in many studies to identify the most-limiting factors to produc-
tion (Casanova et al., 1999; Fermont et al., 2009; Shatar and McBrat-
ney, 2004; Wang et al., 2015). Such information helps agronomists 
and agricultural land managers to prioritize which factors to address in 
order to improve productivity. The boundary line methodology has also 
been used for determination of critical nutrient concentrations (𝑥crit) to 
avoid limiting crop production (Andrade et al., 2023; Evanylo et al., 
1987; Lark et al., 2020; Smith et al., 2024). This has economic and 
environmental benefits as application of excess fertilizer to soil which 
exceeds 𝑥crit adds unnecessary financial costs of production and may 
also contaminate the environment (Schut and Giller, 2020). Reliable 
determination of the boundary line model parameters and their mea-
sures of uncertainty is therefore important if it is to be effectively used 
for yield gap analysis.

Despite the usefulness of the boundary line methodology in agron-
omy, there is still no standard agreed method for fitting a boundary 
line model to a dataset (Hajjarpoor et al., 2018; Smith et al., 2024; 
Miti et al., 2024b). The use of different boundary line fitting methods 
may lead to differences in the boundary line parameters and, therefore, 
different post-hoc interpretations and inconsistencies in agronomic rec-
ommendations. The use of statistical methods may be advantageous as 
they provide a more objective way of fitting the boundary line, making 
the procedure of boundary line fitting more consistent and also provide 
measures of uncertainty. However, they may be more complex to use 
which may make them difficult to implement for researchers with 
a limited statistical background (Harris and Smith, 2009). Statistical 
methods as opposed to heuristic methods may also require larger data 
sets to implement especially those that rely on the maximum likelihood 
approach. This means a lot of data is needed to establish the boundary 
with confidence. We are not aware of any studies that compare the 
results and interpretations for boundary line models fitted by different 
methods yet this type of comparative analysis is needed to give a better 
understanding of which methods should be recommended for future 
agronomic studies. This gap highlights the need for such comparative 
analysis, which our study addresses as a novel contribution.

The aim of this study is to compare the output of a boundary line 
analysis using different boundary line fitting methods for the purposes 
of (i) identification of the most-limiting factor, (ii) determination of 
critical soil nutrient concentration, and (iii) how these impact on agro-
nomic interpretation and recommendations using dataset from three 
different studies. We also present results of a stakeholder consultation 
with agronomists and other researchers’ opinions on the use of different 
boundary line methods as tools for yield gap analysis that were elicited 
during two hands-on workshops.

2. Methodology

2.1. Datasets used

Three datasets consisting of crop yields and potentially limiting 
factors were used for this study. Two of these datasets have previ-
ously been used in yield gap analysis studies using the boundary line 
methodology (Fermont et al., 2009; Lark et al., 2020).

The first dataset, Dataset 1, was assembled by AgSpace Agriculture 
Ltd and includes measures of wheat yield as well as soil variables pH, 
potassium (K), phosphorus (P), and magnesium (Mg), all of which were 
taken in various management units across England. For more details 
see Lark et al. (2020). AgSpace Agriculture Ltd uses pre-identified man-
agement zones inside each field to guide soil sampling for its clients. 
Each management unit served as the foundation for the sampling zone 
and was defined by skilled soil scientists utilizing a free survey. In 
each sampling zone, 24 soil cores were taken to a depth of 15 cm, and 
then pooled to create a bulk sample. A sub-sample was taken from the 
bulk sample for laboratory analyses for P, Mg, K and pH. The Olsen’s 
method was used to extract P while K and Mg were extracted using 
1M ammonium nitrate. Soil pH was measured in 1:2.5 soil to water 
suspension with a pH meter. The result was treated as the estimate of 
the sampling zone. The mean wheat yield was measured for each zone 
for the year 2015 to 2017. The dataset used in this study is based on 
measurements done in 2016. In our study, we applied the boundary 
line methodology to wheat yield and the variables P, K, Mg and pH.

The second dataset, Dataset 2, was compiled by Fermont et al. 
(2009) from farm surveys and agronomic on-farm and research station 
trials in a study on closing the cassava yield gap for smallholder farms 
in East Africa. Data on main production constraints, socio-economic set-
tings, farm management, and cassava crop management was collected 
in on-farm surveys. In each field at a farm, composite soil samples 
(depth of 0 − 20 cm) were taken, oven-dried, sieved through a 2-mm 
sieve, and analysed for pH, available P, exchangeable K, Ca, Mg, total 
N, soil organic carbon (SOC) and soil texture. Daily precipitation data 
were recorded using rainfall gauges at all sites. Research technicians 
scored overall weed management as well as disease incidence (yes/no) 
and severity. The boundary line methodology was applied to this 
dataset by Fermont et al. (2009) to identify the most-limiting factor 
in each field. In our study, we applied the boundary line methodology 
to cassava yield and the soil pH, available P, exchangeable K, Ca, Mg, 
total 𝑁 and SOC.

The third dataset, Dataset 3, was compiled by CIMMYT for wheat 
nutrient omission trials conducted in two zones (West Showa and 
Jimma) in Ethiopia in 2015 and 2016 (Craufurd, 2017). The trials 
comprised six nutrient management treatments, namely Control (zero 
fertilizer), PK (N omitted), NK (P omitted), NP (K omitted), NPK, and 
NPK+Ca+Mg+Zn+B laid out in a randomized complete design repli-
cated across individual farmers’ fields. Each treatment plot measured 
8 meters by 8 m, with maize planted at a spacing of 75 cm (inter-
row spacing) and 25 cm (intra-row spacing). The nutrients N, P and 
K were applied at rates of 120, 40 and 40 kg/ha respectively using 
urea (46%), triple super phosphate (P2O5) and muriate of potash(K2O) 
as sources. Nitrogen was applied in three splits, the first as a basal 
application, the second as a topdressing 21 days after emergence, and 
the third was applied as a topdressing approximately 42 days after 
emergence. All other nutrients (P and K) were applied as basal at the 
time of planting. Apart from fertilizer application, all plots received the 
same management practices. The plots were weeded manually twice 
during the cropping season. First at 2 weeks after planting and the 
second at 4 weeks after planting. Key soil properties SOC, total N, 
available P, exchangeable K, exchangeable Ca, exchangeable Mg, pH, 
soil texture, exchangeable acidity (H + Al) and Micro-nutrients (Zn, 
Fe, Cu, Mn and B) were measured in each field on soil samples to 
depth of 20 cm before the trial. SOC was determined using the modified 
Walkley and Black method while the micro-Kjeldahl digestion was used 
to determine total N. The Mehlich-3 extraction procedure preceding 
inductively coupled plasma optical emission spectroscopy was used to 
determine available P, K, Ca, Mg and micro-nutrients (Zn, Fe, Cu, Mn 
and B). Exchangeable acidity (H + Al) was determined by extracting 
soil with 1N potassium chloride and titration of the supernatant with 
0.5M sodium hydroxide. At the end of the trial, biomass and grain 
yields were collected from each plot. We used the data from the control 
plot to fit the boundary lines to determine the most-limiting factor in 
the absence of fertilizer application. A total of 148 data points were 
used. In this study, boundary line models were fitted to SOC, N, P, K, 
Ca, Mg and pH data.
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2.2. Fitting boundary line to data

2.2.1. Initial exploratory analysis
An exploratory analysis was conducted on all the factors used to fit 

the boundary line models in the datasets. Since the censored bivariate 
normal model works on the assumption that data are from a bivariate 
normal distribution with a censoring boundary frontier, exploratory 
analysis was conducted using histograms and summary statistics to 
check for the assumption of the variable being from a normal dis-
tribution possibly showing censoring of the yield variable. The octile 
skewness, a robust measure of skewness, was used (Brys et al., 2008). 
Variables with an octile skewness between −0.2 to 0.2 were assumed 
to be from a normal distribution. Otherwise they were log-transformed 
to meet the assumption. Because boundary line analysis is sensitive 
to outliers, we identified and removed bivariate outliers—data points 
that deviate markedly from the central distribution in two dimensions. 
To detect these, we used the bagplot, a bivariate extension of the 
univariate boxplot based on halfspace depth (Tukey, 1975). The central 
50% of the data, referred to as the ‘bag’, was computed following the 
procedure of Rousseeuw et al. (1999), and the outer fence was defined 
by expanding this bag by a factor of 3. Observations falling outside 
the outer fence were classified as bivariate outliers and excluded from 
further analysis. Prior evidence for a limiting yield boundary in the re-
sponse to different factors was obtained using the peel cluster approach 
described by Miti et al. (2024c).

2.2.2. Proposed models forms
Piece-wise broken-stick boundary line models were fitted to scatter 

plots for response, 𝑦 as a function of factor 𝑥 for the variables in 
the three datasets, as have been used in previous studies (Andrade 
et al., 2023; Lark et al., 2020). This enabled the determination of 
critical values (𝑥crit) in the independent variable (i.e. critical nutrient 
concentration) from the inflection points of the models. Two model 
forms, linear-plateau and trapezium boundary line models were used 
depending on the shape of the upper bound of a data cloud. The 
linear-plateau is a two-piece model that consists of a linear component 
that represents the functional change in response, 𝑦, with incremental 
changes in the independent factor, 𝑥, and a plateau component that 
represents the section of no change in 𝑦 with change in 𝑥. It is expressed 
as 
𝑦 = min(𝛽0, 𝛽1 + 𝛽2𝑥), (1)

where 𝛽0 is the plateau response, 𝛽1 is the 𝑦-intercept and 𝛽2 is the slope. 
The trapezium model is a three piece model consisting of two linear 
components (with positive and negative slopes respectively) separated 
by a plateau component. It can be expressed as 
𝑦 = min(𝛽0, 𝛽1 + 𝛽2𝑥, 𝛽3 + 𝛽4𝑥), (2)

where 𝛽0 is the plateau response, 𝛽1 and 𝛽3 are the 𝑦-intercepts for the 
two linear components, and 𝛽2 and 𝛽4 are the slopes with positive and 
negative values respectively.

2.2.3. Fitting methods
Four commonly-used boundary line fitting methods were used to 

fit boundary lines to the data. These were the binning methodol-
ogy (Casanova et al., 1999), BOLIDES algorithm (Schnug et al., 1995), 
quantile regression (Baudron et al., 2019) and the cbvn (Milne et al., 
2006a).

For the binning methodology, a data cloud of the response variable, 
𝑦, against a factor of interest, 𝑥, was divided into 10 sections in the 
𝑥-axis as done by Casanova et al. (1999). In each section, a boundary 
point was selected as the point that corresponds to a given percentile 
of 𝑦. In this study we used the 95th and 99th percentile (𝜏). These are 
the most commonly used 𝜏 values in the literature for fitting boundary 
lines to data, although we note that they are somewhat arbitrary. The 

boundary line models were then fitted to the selected boundary points 
by the method of least squares.

The BOLIDES algorithm operates in several steps. First, the data 
relating factor 𝑥 and response 𝑦 were arranged in ascending order with 
respect to 𝑥. Three benchmark 𝑥 values were defined as 𝑥min for the 
minimum value of factor 𝑥, 𝑥max for the maximum value of factor 𝑥 and 
𝑥ymax for the value of factor 𝑥 that corresponds to the largest response 
in the dataset. The boundary points were then selected as follows. The 
first boundary point was selected as the point at 𝑥min with the largest 
𝑦. The next point was the data point at the next 𝑥 value that had the 
largest response greater than the previous boundary point. Subsequent 
boundary points were selected in this way until 𝑥ymax was reached. This 
process was then repeated starting from 𝑥max, this time moving in the 
opposite direction. Agronomically plausible boundary line models were 
then fitted to the selected boundary points by the least squares method.

The quantile regression method was implemented by fitting a
boundary line model of the response 𝑦 as a function of 𝑥 to the data 
conditional of a quantile, 𝜏, which can range from 0 − 1 (Cade et al., 
1999). Parameters of the boundary model were determined by minimiz-
ing the weighted sum difference between the modelled response and 
actual response (Koenker and D’Orey, 1987). In this procedure, data 
points that lay above the modelled response are given more weight (𝜏) 
than those that fall below it (1 − 𝜏). Two quantile values, 𝜏 = 0.95
and 𝜏 = 0.99, commonly used in literature to fit boundary lines were 
considered in this study.

For the cbvn, the boundary line was fitted using the maximum 
likelihood approach following the procedure described by Lark and 
Milne (2016). In brief, this method assumes that the observed data is 
from a bivariate normal distribution of 𝑥 and 𝑦, which has an upper 
censor (boundary) which 𝑦 cannot exceed. Fitting the boundary line 
in this case involves finding the maximum likelihood of a censored 
bivariate normal distribution of the data given its distribution prop-
erties (means of 𝑥 and 𝑦, 𝛍 and variance–covariance matrix, C), the 
parameters of the censor/boundary line, 𝛃 and a parameters describing 
the measurement error in 𝑦 (𝜎me). The likelihood of the distribution is 
given as the product of the likelihoods for the individual data points. As 
the product of a large number of small likelihoods can easily underflow 
the numerical precision of the computer, the log of the likelihood 
values was taken and the sum of the log likelihoods was computed 
instead. Direct estimates of 𝜎me, a fixed parameter in the cbvn, were 
not available and were therefore, estimated using the 𝜎me likelihood 
profile (Royall, 2017; Lark and Milne, 2016). This was done by fixing 
𝜎me at each of a set of values in turn, and remaining parameters were 
estimated conditional on 𝜎me by maximum likelihood. The maximized 
likelihoods for the sequence of values constitute a likelihood profile. 
The value of 𝜎me where the profile is maximized was selected as the 
estimate of 𝜎me.

To determine the parameters of the boundary line, an objective 
negative log-likelihood function was written in R software (version 
4.4.0) (R Core Team, 2022) and the optim() function was used 
to find the parameters that minimized the objective function using 
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimization methods. 
There is a tendency for optimization algorithms to settle at a local 
rather than global minima. To avoid this, several starting values were 
used for the optimization and the output with the lowest negative log-
likelihood value was chosen. In addition, the uncertainty (standard 
error) of the parameters was determined using the Hessian matrix, 𝐇
(which is part of the output of the optim() function), following 
the procedure described by Dobson and Barnett (2018). This is done 
by taking the inverse of H and then taking the square root of the 
corresponding terms on the main diagonal.

Evidence for the validity of the cbvn compared to a bivariate normal 
model was assessed by computing Akaike’s information criteria (AIC) 
for the censored and uncensored bivariate normal distribution models 
fitted to the data (Lark and Milne, 2016). The AIC values for a model 
was calculated as 
𝛬 = 2𝑝 + 2𝓁, (3)

European Journal of Agronomy 170 (2025) 127744 

3 



C. Miti et al.

where 𝛬 is the criterion, 𝑝 is the number of model parameters and 
𝓁 is the maximized log-likelihood value. This information criterion 
compares the models on their likelihood, with a penalty for the greater 
complexity of the cbvn model. In any comparison the model with 
smallest AIC is selected. Although the AIC is not a formal significance 
test, if one selects the model with smaller AIC this minimizes the 
expected information loss through the selection decision (Verbeke and 
Molenberghs, 2000).

In general we selected the cbvn model if its value of AIC, 𝛬bl, 
was smaller than that of the uncensored bivariate normal model, 𝛬bvn. 
Further information on the strength of this evidence for the model was 
obtained by computing the Akaike weight for each, as done by Lark 
et al. (2020). If the value of 𝛬 for the 𝑖th model, 𝛬𝑖, in a set of 𝑚 exceeds 
the minimum value of 𝛬𝑗 over the set of models considered by 𝛥𝑖 then 
one may compute the Akaike weight for that model as 

𝑤𝑖 =
exp

{

−𝛥𝑖∕2
}

∑𝑚
𝑗=1 exp

{

−𝛥𝑗∕2
} . (4)

The value 𝑤𝑖 can be interpreted as the probability that the model is 
the best one for the variable in the sense that the Kullback–Leibler 
divergence is minimal for the 𝑖th, over the set of 𝑚 models consid-
ered (Burnham and Anderson, 2004).

2.2.4. Determination of the most-limiting factor
For each point in the three datasets, the most-limiting factor was 

identified according to Sprengel-Liebig Law of the Minimum (van der 
Ploeg et al., 1999) as done by Fermont et al. (2009) using the equation:
𝑦 = min(𝑓1(𝑥1), 𝑓2(𝑥2),… , 𝑓𝑛(𝑥𝑛)), (5)

where 𝑦 is the response variable and 𝑥𝑖 are the potential limiting factors 
on 𝑦 according to the boundary line function 𝑓𝑖(𝑥𝑖), where 𝑖 = 1, 2,… , 𝑛. 
The most-limiting factor is identified as 𝑖 if 𝑦 = 𝑓𝑖(𝑥𝑖). However, if a 
point has an 𝑥 value greater than the critical value for all factors and 
has a yield gap, the cause of the yield gap was defined as ‘‘Unknown’’ 
because all the studied factors predict that yield should be maximum. 
The most-limiting factor was modelled using each of the four boundary 
line fitting methods.

For Dataset 3, this method was applied to interpret the boundary 
models fitted to the yield data from control plots only. An experimental 
determination of the most-limiting factor was also done considering 
the additional plots from the nutrient omission trial. The most-limiting 
factor was identified for each experimental farm in the omission trials 
by examining the yields for all non-control plots (PK, PN, NK, NPK). The 
most limiting factor was identified by finding, among the plots with all, 
or all but one, nutrient applied, which had the smallest yield. This is 
the nutrient which, on addition, has the largest effect on yield. In cases 
where the smallest yield was observed in the treatment that received all 
the nutrients (NPK), the limiting factor was classified as ‘‘Unknown’’. 
Additionally, if the difference between the treatment with the smallest 
yield and NPK is less than the critical difference at 95% confidence, 
we concluded that the NPK yield was not significantly large and hence 
classified the limiting factor as ‘‘Unknown’’. The critical difference with 
95% confidence was determined as 
𝛥crit = 1.65 ×

√

2𝜎2me, (6)

where 𝛥crit is the critical difference at 95% confidence and 𝜎2me is the 
variance of measurement error (determined using the likelihood profile 
described in Section 2.2.3). The variance of difference between two 
measurements is given as 2𝜎2me and so the standard error of difference 
is equal to its square root. The 1.65 is a one-tailed t-statistic value at 
95% confidence. For example, given that the yields for the treatments 
PK(−N), NP(−K) NK(−P) and NPK are 2, 6, 5.21 and 6.5 respectively, 
and the 𝛥crit is equal to 3. The most-limiting factor is identified as 
𝑁 because it has the smallest yield and its difference with NPK is 
larger than 𝛥crit . However, if the yield for the treatment PK(−N) was 
5, its difference with NPK treatment was less than 𝛥crit (no significant 
difference). In this case, the most-limiting factor was classified as 
unknown.

Table 1
Joint proportions of rating by two boundary line fitting methods with 𝑗 limiting factor 
categories.
 Method 1  
 factor 1 factor 2 .. factor j Total 
 
Method 2

factor 1 𝜋11 𝜋12 .. 𝜋1𝑗 𝜋1.  
 factor 2 𝜋21 𝜋22 .. 𝜋2𝑗 𝜋2.  
 : : : : :  
 factor j 𝜋𝑗1 𝜋𝑗2 .. 𝜋𝑗𝑗 𝜋𝑗.  
 Total 𝜋.1 𝜋.2 .. 𝜋.𝑗 1  

2.3. Statistical analysis

2.3.1. Comparing the most-limiting factors predicted by different boundary 
line fitting methods

The Cohen’s and Fleiss kappa (𝜅) statistics were used to check the 
agreement among the different boundary line fitting methods in the 
identification of the most-limiting factor. The 𝜅 statistic is a measure 
of inter-rater-reliability of classification methods (Fleiss, 1971). The 
Cohen’s 𝜅 is used when two classifications are compared while the 
Fleiss 𝜅 is used when more than two classifications are compared. These 
statistics are particularly useful when dealing with categorical data or 
classification problems, where models are assigning items to categories 
or labels. It assesses whether the agreement between the models is 
better than what would be expected by chance alone. The 𝜅 statistic 
has been widely used in medicine and psychology studies, and it has 
also been applied in ecological studies (Monserud and Leemans, 1992; 
Tarkesh and Jetschke, 2012; Tang et al., 2009). It works on three basic 
assumptions that (a) the subjects being rated are independent (knowing 
the class of subject 𝑥1 does not give any information about the class 
of subject 𝑥𝑖, where 𝑖 = 2, 3,… , 𝑛), (b) the categories of ratings are 
independent, mutually exclusive and collectively exhaustive, and (c) 
two raters operate independently. The formula for 𝜅 is given as: 

𝜅 =
𝜋𝑜 − 𝜋𝑒
1 − 𝜋𝑒

, (7)

where 𝜋𝑜 is the observed agreement (the proportion of times the models 
actually agree) and 𝜋𝑒 is the expected agreement by chance (Fleiss 
et al., 2003). For a comparison of two boundary line fitting methods 
(though this can be extended to comparison of more than two methods) 
with 𝑗 number of potential limiting factors modelled over 𝑛 number of 
points, a contingency table of proportions of agreement is generated 
as shown in Table  1. Note that 𝜋 is the proportion and not the count 
value.

As described by Fleiss et al. (2003), the value of 𝜋𝑜 is calculated as: 

𝜋𝑜 =
𝑗
∑

𝑖=1
𝜋𝑖𝑖, (8)

while 𝜋𝑒 is calculated as: 

𝜋𝑒 =
𝑗
∑

𝑖=1
𝜋𝑖.𝜋.𝑖. (9)

The 𝜅 coefficient values range from −1 to 1. A 𝜅 of 1 shows that there 
is perfect agreement while a 𝜅 equal to 0 indicates that the agreement 
is equivalent to chance. A 𝜅 of less than 0 indicates that agreement 
is worse than chance. This negative value suggests that the raters are 
not only disagreeing but are systematically disagreeing more often than 
what is expected by random chance alone. Generally, 𝜅 values greater 
than 0.75 are considered to represent excellent agreement beyond 
chance while those below 0.40 are considered poor agreement beyond 
chance. Values of 𝜅 that are between 0.40 and 0.75 are considered 
to represent fair to good agreement beyond chance (Monserud and 
Leemans, 1992).

The 𝑧-statistic is used to test null hypothesis (𝐻0) that the agreement 
is no better than would be obtained by chance agreement (𝜅 = 0) 
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against the alternative hypothesis (𝐻𝑎) that the agreement is different 
from chance agreement (𝜅 ≠ 0). The 𝑧-statistic is computed as: 

𝑧 = 𝜅 − 0
se(𝜅)

, (10)

where se(𝜅) is the standard error of 𝜅 calculated based on the formula 
proposed by Fleiss et al. (1969): 

se(𝜅) = 1
(1 − 𝜋𝑒)

√

𝑛

√

√

√

√𝜋𝑒 + 𝜋2
𝑒 −

𝑗
∑

𝑖=1
𝜋𝑖.𝜋.𝑖(𝜋𝑖. + 𝜋.𝑖). (11)

The null hypothesis was rejected if the probability of getting the 
calculated 𝑧-value or larger was small. This process was done using 
the functions kappa2() and kappam.Fleiss() from the irr 
package version 0.84.1 (Gamer et al., 2012) to compare two and more 
than two models respectively.

The 𝜅 statistic was also used to compare the modelled most-limiting 
factor using boundary lines and that obtained experimentally using 
omission trials for Dataset 3. The assumption that outcome categories 
of the raters are collectively exhaustive for use of 𝜅-statistic was not 
met as the omission trial had four possible outcomes (N, P, K and 
Unknown) while the boundary line models had eight possible outcomes 
(Ca, K, Mg, N, SOC, P, pH and Unknown). However, if the classifi-
cations from the boundary line methodology and omission trials are 
the same, we expect points that identified pH, Ca, Mg and SOC as the 
most-limiting factor using the boundary line models will correspond 
to the classification ‘‘Unknown’’ for the omission trial. We therefore 
converted the classifications pH, Ca, Mg and SOC for the boundary 
line methodology to Unknown to satisfy the assumption of raters being 
collectively exhaustive.

2.3.2. Comparing critical nutrient concentration obtained using various 
boundary line techniques

The critical nutrient concentrations for variables in datasets 1, 2 and 
3 were computed using the boundary line fitting methods described 
above and the outcomes compared. The critical nutrient concentration 
was determined as the inflection point of the boundary line model 
where an increase in soil nutrient concentration does not result in an 
increase in yield. This was calculated using parameters obtained from 
the model in Eqs. (1) and (2) as: 

𝑥crit =
𝛽0 − 𝛽1

𝛽2
. (12)

The estimates of 𝑥crit by heuristic methods were compared to the 
estimate obtained by the cbvn method to check if they are consistent. 
This was done in R (version 4.4.0) by computing the uncertainty 
around the 𝑥crit determined using cbvn and checking whether the 𝑥crit
obtained using heuristic methods were contained in this uncertainty 
range. To determine the uncertainty around 𝑥crit from the cbvn, 10000 
combinations of the boundary line parameters were generated using the
mvrnorm() function from the MASS package version 7.3-65 (Ripley 
et al., 2013) with mean vector equal to the censored bivariate nor-
mal parameter estimates and the estimated covariance matrix, 𝜮. The 
value of 𝑥crit was computed from each simulated set of boundary line 
parameters. As the values of 𝑥crit were not symmetrically distributed, 
a 95% highest density interval (HDI) (Barry, 2011) was determined 
around 𝑥crit as a measure of uncertainty using the hdi() function 
from the HDInterval package version 0.2.4 (Meredith and Kruschke, 
2020). The HDI is the interval which contains the required mass such 
that all points within the interval have a higher probability density 
than points outside the interval. The HDI is particularly useful for 
summarizing uncertainty of a variable with an asymmetric distribution. 
A 95% HDI, means that there is a 95% probability that the true value of 
the parameter lies within that interval. Once the 95% HDI of 𝑥crit was 
determined, we checked whether the 𝑥crit obtained using the heuristic 
methods were contained within this range.

For Dataset 1, the estimated 𝑥crit values were further compared 
to the standard index concentrations for soil nutrients proposed by 

RB209 (AHDB, 2023) for fertilizer advice in the UK. The RB209 guide-
lines classifies laboratory soil analysis result ranges for P, K and Mg 
into soil indices for each nutrient according to cereal yield response in 
field trials (AHDB, 2023). For P, K and Mg, yield response is expected 
in index 0 and 1 with application of P, K and Mg fertilizer. In index 
2, 2- and 2 for P, K and Mg respectively, yield response to addition 
of P, K and Mg is not expected as this is the optimum range. It is 
therefore, expected that the 𝑥crit values determined from the boundary 
line methodology for each nutrient to fall in these respective indices. 
At index 3 and above, application of P, K and Mg is not required.

2.4. Stakeholder feedback exercises

It is important that methods for yield gap analysis are accessible 
to scientists who may wish to use them. For this reason workshops 
were organized at CGIAR centres in Kenya and Zimbabwe. Participants 
with various specialities and levels of experience in statistical analysis 
were drawn from various institutions including International Institute 
of Tropical Agriculture (IITA), International Centre of Insect Physiology 
and Ecology (ICIPE), Alliance of Bioversity International and CIAT, 
Kenya Agricultural and Livestock Research (KALRO), University of 
Nairobi, French Agricultural Research Centre for International Develop-
ment (CIRAD) and International Maize and Wheat Improvement Centre 
(CIMMYT). These were recruited by CGIAR research leads in Harare 
(CIMMYT) and Nairobi (IITA) who contacted potential users of the 
boundary line methodology for yield gap analysis. The criteria used 
to identify potential participants was that they work in research in 
agricultural crop production. A total of 32 participants took part in 
the workshops, 14 in Kenya and 18 in Zimbabwe. A comprehensive 
yield gap analysis was demonstrated to the participants using the four 
boundary line fitting methods, binning, BOLIDES, quantile regression 
and cbvn, in what was then a prototype of the BLA library (Miti 
et al., 2024a). R scripts for each of the boundary line fitting methods 
were provided and analysis was demonstrated on Dataset 1. Partici-
pants were then given Dataset 2 to carry out the yield gap analysis 
independently using the different boundary line fitting methods.

An anonymous structured questionnaire was given to participants 
at the end of the session to elicit their views on the various boundary 
line fitting methods and yield gap analysis in general. Each ques-
tionnaire had a consent form attached for participants to indicate 
informed consent to participate in the study. A positive ethical option 
(SBREC202324010FEO - SB202223/35 PhD - Miti (Lark)) was provided 
by the School of Biosciences Research Ethics Committee (University 
of Nottingham) prior to this study taking place. The questionnaire 
was composed of two sections. The first section consisted of questions 
intended to collect information on participants’ research areas, their 
interaction with farmers and level of statistical experience. The second 
part contained questions to collect information on their past use of the 
boundary line methodology, their preferred methods (through ranking) 
and their views on boundary line methodology for yield gap analysis 
in general. The complete structure of the questionnaire is provided in 
Appendix D.

The question in section two required participants to rank the bound-
ary line fitting methods presented in the workshop according to which 
they found easier to use from the easiest (rank 1) to the least easy 
(rank 4). The dataset was tested for uniformity in ranking to see if 
there was influence of location, statistical experience and past use of 
boundary line methods. When a ranking dataset is uniform, it means 
that all possible rankings have the same probability of being observed. 
To test the uniformity of ranking in the dataset, a hypothesis test was 
conducted on the mean rank according to the procedure of Marden 
(1996). Under the null hypothesis of uniform ranking for 𝑘 items, the 
expected value of the mean rank is given as: 

𝜇rank = (𝑘 + 1)∕2, (13)
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Table 2
Parameters of fitted boundary lines of the potential limiting factors for Dataset 1.
 Method Factor Model 𝛽1 𝛽2 𝛽0 𝛽3 𝛽4 𝛬bl 𝛬bvn 𝜔bv 𝜔bl  
 Binning (𝜏 = 0.95) P trapezium 7.31 1.89 12.14 19.18 −1.82 – – – –  
 Binning (𝜏 = 0.95) Mg trapezium 5.52 5.31 12.13 26.48 −2.67 – – – –  
 Binning (𝜏 = 0.95) pH linear-plateau 18.88 3.53 11.97 – – – – – –  
 Binning (𝜏 = 0.95) K linear-plateau – – 12.24 15.60 −0.67 – – – –  
 Binning (𝜏 = 0.99) P trapezium 4.74 3.38 13.34 22.16 −2.32 – – – –  
 Binning (𝜏 = 0.99) Mg trapezium −15.17 8.66 13.32 34.46 −3.95 – – – –  
 Binning (𝜏 = 0.99) pH linear-plateau 24.05 5.44 13.34 – – – – – –  
 Binning (𝜏 = 0.99) K trapezium −1.52 3.42 13.61 23.18 −1.77 – – – –  
 BOLIDES P trapezium 4.76 3.46 13.57 108.35 −21.26 – – – –  
 BOLIDES Mg trapezium −18.24 9.34 13.94 40.94 −5.14 – – – –  
 BOLIDES pH linear-plateau 35.01 10.21 13.97 – – – – – –  
 BOLIDES K trapezium −76.01 21.16 13.95 42.86 −5.04 – – – –  
 Q.reg (𝜏 = 0.99) P trapezium 7.82 2.03 13.37 27.41 −3.46 – – – –  
 Q.reg (𝜏 = 0.99) Mg trapezium −15.34 8.50 13.34 37.37 −4.47 – – – –  
 Q.reg (𝜏 = 0.99) pH linear-plateau 17.59 2.17 13.36 – – – – – –  
 Q.reg (𝜏 = 0.99) K trapezium 2.04 2.53 13.42 41.31 −4.76 – – – –  
 Q.reg (𝜏 = 0.95) P trapezium 7.83 1.65 12.14 15.26 −0.85 – – – –  
 Q.reg (𝜏 = 0.95) Mg trapezium −8.37 6.07 12.14 26.11 −2.58 – – – –  
 Q.reg (𝜏 = 0.95) pH linear-plateau 13.74 1.12 12.13 – – – – – –  
 Q.reg (𝜏 = 0.95) K trapezium −6.62 5.80 12.10 44.10 −5.23 – – – –  
 cbvn P trapezium 5.75 (0.88) 2.82 (0.37) 13.43 (0.09) 82.57 (12.66) −15.77 (2.71) 32376.46 32429.55 1.0 0.0  
 cbvn Mg trapezium −15.33 (2.61) 8.13 (0.84) 13.20 (0.19) 40.62 (1.90) −5.15 (0.31) 33145.73 33189.39 1.0 0.0  
 cbvn pH linear-plateau 26.93 (1.88) 6.98 (0.81) 13.61 (0.10) – – 41073.00 41093.24 0.92 0.08 
 cbvn K trapezium −21.88 (0.04) 8.12 (0.16) 13.35 (0.19) 46.23 (7.03) −5.67 (1.16) 28464.52 28476.13 0.99 0.01 
cbvn, censored bivariate normal model; Q.reg, quantile regression model; 𝛬bl and 𝛬bvn, AIC values for the censored and uncensored bivariate normal models; 𝜔, Aikaike weight 
for the fitted model.
Bold values of 𝛬bl and 𝛬bvn indicate the smaller of the two values.

and the evidence against this null hypothesis is measured using the test 
statistic: 

12𝑛
𝑘(𝑘 + 1)

𝑘
∑

𝑖=1
{𝑚𝑖 − 𝜇rank}2, (14)

where 𝑚𝑖 is the mean rank of the 𝑖th item, and 𝑛 is the number of 
rankings. Under the null hypothesis, this statistic is distributed as 𝜒2

with 𝑛 − 1 degrees of freedom (Lee and Yu, 2013). Note that whilst 
participants ranked the methods 1 (favoured) to 4 (least favoured), 
mean rank was evaluated on reversed ranking i.e. the method which 
was ranked as the easiest to use was given a weight of 4 while the 
second, third and fourth easiest were given weights of 3, 2 and 1 re-
spectively. Only those responses which had complete ranking provided 
by the respondent were considered for this test.

3. Results

3.1. Fitted boundary lines to data sets

The summary statistics and plots for the variables in the datasets 
used in this study are provided in Appendix  A. From the initial ex-
ploratory analysis, the variable P, K and Mg from Dataset 1, SOC, 
K, P, Mg, Ca and N from Dataset 2 and, P and Ca from Dataset 3 
were transformed to natural logs to make the assumption of underlying 
normality plausible. For pH in Dataset 1, the assumption of normality 
was achieved with Yeo-Johnson transformation (Yeo and Johnson, 
2000). The test for evidence of a limiting boundary (Miti et al., 2024c) 
in the datasets showed that a boundary was likely (small 𝑝-values) in 
Dataset 1 for the variables P, Mg, K and pH while for Datasets 2 and 
3, none of the variables exhibited any evidence of a boundary (See 
Appendix  B).

All the four boundary line fitting methods were applied for yield 
responses to variables in Datasets 1 and 2. For Dataset 3, the binning 
methodology was not applied because the selected boundary data 
points could not represent the boundary well with the proposed bin 
sizes (10 bins) for all the variables. The standard deviation of the mea-
surement error, a fixed parameter in the cbvn, was estimated to be 0.4 
t ha−1, 0.6 t ha−1 and 0.15 t ha−1 for Datasets 1, 2 and 3 respectively 
using the likelihood profiling methods (see Appendix  C). The various 

model parameters for Dataset 1, 2 and 3 for the various boundary line 
fitting methods are presented in Tables  2, 3 and 4 respectively. The 
standard errors of the parameters are given in the brackets for the cbvn. 
The AIC values for the censored (𝛬bl) and uncensored bivariate normal 
(𝛬bvn) model for variables in Datasets 1, 2 and 3 all indicated that the 
boundary model was appropriate for all the variables in the datasets as 
the 𝛬bl was always less than 𝛬bvn except for the variables N and Mg in 
Dataset 3. However, the Aikaike weights for the boundary line models 
of these two variables showed a larger probability (close to 50%) for 
the boundary line model. The determined critical values for variable 
which were transformed are converted back to the original scale (see 
Fig.  1).

3.2. Comparison of the modelled most-limiting factors

The boundary line parameters reported in Section 3.1 were used 
to model the most-limiting factors for each point in the datasets using 
Eq.  (5) described in Section 2.2.4. Fig.  2 shows the proportions of the 
identified most-limiting factors modelled by the different boundary line 
fitting methods for the three datasets. For Dataset 1, the identified 
most-limiting factor proportions for K, Mg, P and pH were similar for 
all methods. However, the binning method at 𝜏 = 95 identified K and 
pH as most-limiting factors more often than the other methods. This 
difference is also reflected by the limiting factor being unknown for a 
smaller proportion of the variables for the binning method (𝜏 = 0.95). 
For Dataset 2, the binning(𝜏 = 0.95) and quantile regression(𝜏 = 0.95) 
methods generally differed from the other methods in identification of 
the most-limiting factor, particularly for N, P, pH and SOC. In instances 
where other methods did not identify a limiting factor, the quantile 
regression(𝜏 = 0.95) largely allocated it to N and pH. For binning 
(𝜏 = 0.95), the smaller proportion of P identified as most-limiting factor 
compared to other methods was compensated by a larger proportion of 
N and SOC as the identified most-limiting factor.

For Dataset 3, the proportions of the identified most-limiting factors 
were similar for the four boundary line fitting methods. However, there 
was a notable difference for the proportion of Mg identified as the 
limiting factor for the BOLIDES method. While other methods identified 
Mg as the most-limiting factor in about 5% of the cases, the BOLIDES 
identified it in 60% of the cases. This was also reflected by a smaller 
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Fig. 1. Boundary lines fitted using the censored bivariate normal model for the variables P, Mg, and K from Dataset 1, displayed on the log-transformed scale (panels a, c, and 
e) and the original scale (panels b, d, and f) respectively.

allocation to the unknown limiting factor for BOLIDES (5%) compared 
to the other methods (about 60%).

Table  5 shows the 𝜅 values for comparison of the identified most-
limiting factors modelled by different boundary line fitting methods 

with the corresponding 𝑧-statistic values and 𝑝-values for Datasets 1, 
2 and 3. For Dataset 1, overall agreement (when all models were com-
pared) was 0.52 which is fair to good agreement. This is similar to when 
only heuristic methods were compared (𝜅 = 0.50). The comparison 
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Table 3
Parameters of fitted boundary lines of the potential limiting factors for Dataset 2.
 Method Factor Model 𝛽1 𝛽2 𝛽0 𝛽3 𝛽4 𝛬bl 𝛬bvn 𝜔bl 𝜔bvn  
 Binning (𝜏 = 0.95) SOC Linear Plateau 21.75 41.86 22.37 – – – –   
 Binning (𝜏 = 0.95) N Linear Plateau 49.68 10.21 25.07 – – – – – –  
 Binning (𝜏 = 0.95) pH Linear Plateau −232.37 50.48 23.44 – – – – – –  
 Binning (𝜏 = 0.95) P Trapezium −1.87 33.97 23.71 35.40 −5.73 – – – –  
 Binning (𝜏 = 0.95) K Linear Plateau 67.18 21.98 23.41 – – – – – –  
 Binning (𝜏 = 0.95) Mg Linear Plateau 36.48 7.43 23.52 – – – – – –  
 Binning (𝜏 = 0.95) Ca Linear Plateau 29.12 6.76 22.50 – – – – – –  
 Binning (𝜏 = 0.99) SOC Linear Plateau 22.56 43.87 23.44 – – – – – –  
 Binning (𝜏 = 0.99) N Linear Plateau 58.38 12.40 25.03 – – – – – –  
 Binning (𝜏 = 0.99) pH Linear Plateau −263.79 57.05 24.81 – – – – –  
 Binning (𝜏 = 0.99) P Trapezium 0.29 27.99 25.64 45.29 −9.10 – – – –  
 Binning (𝜏 = 0.99) K Linear Plateau 74.95 24.92 24.55 – – – – – –  
 Binning (𝜏 = 0.99) Mg Linear Plateau 40.57 8.47 24.16 – – – – – –  
 Binning (𝜏 = 0.99) Ca Linear Plateau 32.34 8.00 23.23 – – – – – –  
 BOLIDES SOC Linear Plateau 20.50 32.10 26.17 – – – – – –  
 BOLIDES N Linear Plateau 56.54 10.97 27.05 – – – – – –  
 BOLIDES pH Linear Plateau −260.39 55.44 26.66 – – – – – –  
 BOLIDES P Trapezium 4.24 19.36 26.81 58.82 −13.89 – – – –  
 BOLIDES K Linear Plateau 63.53 21.66 27.05 – – – – – –  
 BOLIDES Mg Linear Plateau 36.24 6.91 26.81 – – – – – –  
 BOLIDES Ca Linear Plateau 29.25 5.80 26.67 – – – – – –  
 Q.reg (𝜏 = 0.95) SOC Linear Plateau 19.91 10.75 26.09 – – – – – –  
 Q.reg (𝜏 = 0.95) N Linear Plateau 61.99 11.83 25.50 – – – – – –  
 Q.reg (𝜏 = 0.95) pH Linear Plateau −254.82 54.42 25.25 – – – – – –  
 Q.reg (𝜏 = 0.95) P Trapezium 4.61 19.86 25.83 50.29 −10.54 – – – –  
 Q.reg (𝜏 = 0.95) K Linear Plateau 73.56 25.07 25.25 – – – – – –  
 Q.reg (𝜏 = 0.95) Mg Linear Plateau 43.64 8.38 25.25 – – – – – –  
 Q.reg (𝜏 = 0.95) Ca Linear Plateau 30.56 6.33 25.50 – – – – – –  
 Q.reg (𝜏 = 0.99) SOC Linear Plateau 20.10 18.51 27.33 – – – – – –  
 Q.reg (𝜏 = 0.99) N Linear Plateau 53.17 9.05 27.33 – – – – – –  
 Q.reg (𝜏 = 0.99) pH Linear Plateau −254.83 54.42 26.53 – – – – – –  
 Q.reg (𝜏 = 0.99) P Trapezium 4.46 20.98 27.33 50.29 −10.54 – – – –  
 Q.reg (𝜏 = 0.99) K Linear Plateau 74.36 25.36 26.60 – – – – – –  
 Q.reg (𝜏 = 0.99) Mg Linear Plateau 44.10 8.48 27.33 – – – – – –  
 Q.reg (𝜏 = 0.99) Ca Linear Plateau 30.58 6.33 27.33 – – – – – –  
 cbvn SOC Linear Plateau 20.58 (0.59) 32.23 (1.82) 26.33 (0.42) – – 790.10 799.48 0.99 0.01 
 cbvn N Linear Plateau 61.84 (2.18) 11.82 ( 0.59) 26.48 (0.43) – – 887.53 893.40 0.95 0.05 
 cbvn pH Linear Plateau −255.49 (12.62) 54.53 (2.54) 26.48 (0.42) – – 852.25 858.15 0.95 0.05 
 cbvn P Trapezium 4.47 (0.67) 20.08 (0.84) 26.48 (0.44) 49.51 (12.44) −10.24 (4.84) 879.60 893.61 0.99 0.01 
 cbvn K Linear Plateau 54.99 (0.15) 15.31 (0.29) 26.47 ( 0.44) – – 934.84 935.44 0.57 0.43 
 cbvn Mg Linear Plateau 44.09 (1.40) 8.48 (0.36) 26.48 (0.44) – – 1060.17 1065.42 0.93 0.07 
 cbvn Ca Linear Plateau 29.54 (1.42) 6.07 (0.75) 26.33 (0.43) – – 1086.76 1092.32 0.94 0.06 
cbvn, censored bivariate normal model; Q.reg, quantile regression model; 𝛬bl and 𝛬bvn, AIC values for the censored and uncensored bivariate normal models; 𝜔, Aikaike weight 
for the fitted model.
Bold values of 𝛬bl and 𝛬bvn indicate the smaller of the two values.

Table 4
Parameters of fitted boundary lines of the potential limiting factors for Dataset 3.
 Method Factor Model 𝛽1 𝛽2 𝛽0 𝛬bl 𝛬bvn 𝜔bl 𝜔bvn  
 BOLIDES N linear-plateau −45.19 396.10 9.05  
 BOLIDES pH linear-plateau −37.12 9.23 9.25  
 BOLIDES SOC linear-plateau −8.99 9.42 9.05  
 BOLIDES P linear-plateau 6.19 2.29 9.17  
 BOLIDES Ca linear-plateau −5.58 8.77 9.17  
 BOLIDES Mg linear-plateau 1.67 2.75 9.02  
 BOLIDES K linear-plateau 3.51 7.64 9.05  
 Q.reg (𝜏 = 0.99) N linear-plateau 0.14 47.34 9.25  
 Q.reg (𝜏 = 0.99) pH linear-plateau −35.02 8.81 9.25  
 Q.reg (𝜏 = 0.99) SOC linear-plateau −3.96 6.66 9.25  
 Q.reg (𝜏 = 0.99) P linear-plateau 6.48 2.38 9.25  
 Q.reg (𝜏 = 0.99) Ca linear-plateau −5.58 8.77 9.25  
 Q.reg (𝜏 = 0.99) Mg linear-plateau 4.84 1.49 9.25  
 Q.reg (𝜏 = 0.99) K linear-plateau 3.51 8.29 9.25  
 Q.reg (𝜏 = 0.95) N linear-plateau 0.15 47.33 8.66  
 Q.reg (𝜏 = 0.95) pH linear-plateau −31.21 7.98 8.65  
 Q.reg (𝜏 = 0.95) SOC linear-plateau −3.96 6.66 8.67  
 Q.reg (𝜏 = 0.95) P linear-plateau 6.43 2.27 9.02  
 Q.reg (𝜏 = 0.95) Ca linear-plateau −5.53 8.72 8.65  
 Q.reg (𝜏 = 0.95) Mg linear-plateau 1.43 3.06 8.67  
 Q.reg (𝜏 = 0.95) K linear-plateau 3.51 8.29 8.67  
 cbvn N linear-plateau 0.14 (0.22) 47.34 (0.08) 9.06 (0.24) 99.25 98.76 0.44 0.56 
 cbvn pH linear-plateau −36.95 (0.01) 9.19 (0.04) 8.97 (0.20) 377.62 382.35 0.91 0.09 
 (continued on next page)
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Table 4 (continued).
 Method Factor Model 𝛽1 𝛽2 𝛽0 𝛬bl 𝛬bvn 𝜔bl 𝜔bvn  
 cbvn SOC linear-plateau −8.07 (0.06) 9.13 (0.11) 8.99 (0.22) 391.44 394.22 0.8 0.2  
 cbvn P linear-plateau 6.33 (0.25) 2.35 (0.11) 9.06 (0.22) 482.91 485.55 0.79 0.21 
 cbvn Ca linear-plateau −5.58 (3.73) 8.77 (2.52) 9.07 (0.23) 337.68 337.77 0.51 0.49 
 cbvn Mg linear-plateau 1.44 ( 1.71) 3.05 (0.95) 8.98 (0.22) 506.20 505.37 0.4 0.6  
 cbvn K linear-plateau 3.41 (0.39) 8.27 ( 1.04) 9.07 (0.26) 374.68 377.80 0.83 0.17 
cbvn, censored bivariate normal model; Q.reg, quantile regression model; 𝛬bl and 𝛬bvn, AIC values for the censored and uncensored bivariate normal models; 𝜔, Aikaike weight 
for the fitted model.
Bold values of 𝛬bl and 𝛬bvn indicate the smaller of the two values.

Table 5
The 𝜅 coefficients for most-limiting factors modelled by different boundary line fitting methods for Dataset 1, 2 and 3.
 Dataset Model comparison raters 𝜅 𝑧-statistic 𝑝-value 
 1 All models 6 0.52 258.00 <0.01  
 1 heuristic models 5 0.50 203.00 <0.01  
 1 cbvn and BOLIDES 2 0.64 78.00 <0.01  
 1 cbvn and Binning (𝜏 = 0.99) 2 0.55 64.00 <0.01  
 1 cbvn and Q.Reg (𝜏 = 0.99) 2 0.77 92.60 <0.01  
 1 cbvn and Binning (𝜏 = 0.95) 2 0.32 51.20 <0.01  
 1 cbvn and Q.Reg (𝜏 = 0.95) 2 0.63 77.20 <0.01  
 1 Binning (𝜏 = 0.99) and Binning (𝜏 = 0.95) 2 0.39 54.70 <0.01  
 1 Q.Reg (𝜏 = 0.95) and Q.Reg (𝜏 = 0.99) 2 0.67 81.60 <0.01  
 2 All models 6 0.59 52.60 <0.01  
 2 heuristic models 5 0.55 41.20 <0.01  
 2 cbvn and BOLIDES 2 0.82 17.50 <0.01  
 2 cbvn and Binning(𝜏 = 0.99) 2 0.82 17.50 <0.01  
 2 cbvn and Binning(𝜏 = 0.95) 2 0.40 8.58 <0.01  
 2 cbvn and Q.Reg (𝜏 = 0.99) 2 0.81 17.20 <0.01  
 2 cbvn and Q.Reg (𝜏 = 0.95) 2 0.39 9.08 <0.01  
 2 Binning(𝜏 = 0.99) and Binning(𝜏 = 0.95) 2 0.46 10.10 <0.01  
 2 Q.Reg (𝜏 = 0.95) and Q.Reg (𝜏 = 0.99) 2 0.40 9.80 <0.01  
 3 heuristic models 3 0.37 14.10 <0.01  
 3 cbvn and BOLIDES 2 0.31 14.00 <0.01  
 3 cbvn and Q.Reg (𝜏 = 0.99) 2 0.86 18.40 <0.01  
 3 cbvn and Q.Reg (𝜏 = 0.95) 2 0.93 18.90 <0.01  
 3 Q.Reg (𝜏 = 0.95) and Q.Reg (𝜏 = 0.99) 2 0.86 18.30 <0.01  
 3 Omission trial and BOLIDES 2 0.01 0.31 0.75  
 3 Omission trial and Q.Reg(𝜏 = 0.99) 2 0.00 0.17 0.87  
 3 Omission trial and Q.Reg(𝜏 = 0.99) 2 0.00 0.00 0.99  
 3 Omission trial and cbvn 2 0.00 0.04 0.97  

between the cbvn and any of the heuristic methods produced fair to 
good agreements with the exception of binning (𝜏 = 0.95) which had 
poor agreement. For the methods that require a subjective choice of 𝜏, 
the comparison of the results using the two values had poor agreement 
for binning and fair to good for quantile regression. For Dataset 2, the 
overall agreement was fair to good when all methods were compared 
and similar when all the heuristic methods were compared. Good to 
excellent agreement was observed for comparison of the cbvn and each 
of the heuristic methods. The comparison between the two quantile 
regression methods as well as the two binning methods (𝜏 = 0.95 and 
𝜏 = 0.99) had fair to good agreements. For Dataset 3, only the cbvn, 
BOLIDES, quantile regression (𝜏 = 95) and quantile regression (𝜏 = 99), 
were compared. The overall agreement was fair to good agreement 
when all methods were compared. A poor agreement was observed 
when only heuristic methods were compared. The comparison between 
cbvn and any of the heuristic methods had excellent agreements except 
for the BOLIDES method which had poor agreement. The comparison 
of the two quantile regression methods produced excellent agreement.

Comparing the identified most-limiting factor using the boundary 
line methodology and the omission trials for Dataset 3, poor agreements 
were observed (𝜅 < 0.1 for all comparisons). The 𝑝-values were large 
indicating that these 𝜅 were not significantly different from zero. The 
omission trial identified N as the most-limiting factor in 71.6% of the 
cases, P in 12.8% of the cases, K in 3.4% of the cases and 12.2% of 
the cases did not identify any of the studied factors as most limiting 
(Fig.  2(d)). On the other hand, the boundary line methods on average 
identified N as limiting factor in 1.4% of cases, P in 15.7% of cases, K 
in 3.2% of cases, Mg in 19.3% of cases, Ca in 0.8% of cases, SOC in 
7.8% of cases, pH in 3.2% of cases and 48.6% of cases were unknown 
(Fig.  2(c)).

3.3. Comparison of critical nutrient concentration from various boundary 
line techniques

Table  6 shows the critical values associated with the variables in 
the three datasets. The upper and lower bounds of 95% confidence 
intervals (highest density interval) determined by the cbvn are also 
given. Note that the critical values for the transformed variables were 
back transformed to the original scale after fitting the boundary lines 
for easy comparison with recommended RB209 index values.

For all datasets, the critical values obtained using the quantile 
regression methods fell within the 95% CI of the cbvn in most instances 
except for Mg, K and pH in Datasets 1 and SOC in Dataset 2. However, 
the critical Mg values just fell at the border of the lower limit of the 
CI. The values obtained using the BOLIDES were consistently within 
the 95% CI of cbvn except for few instances mostly in Dataset 2. The 
critical values obtained using the binning methods mostly fell outside 
the 95% CI of the cbvn. Comparing the estimated critical nutrient 
values for Dataset 1 with the RB209 guideline indices, the critical P 
concentrations determined by heuristic methods all fell in the upper 
section of index 1 with the exception of the quantile regression (𝜏 =
0.99) which, like the cbvn, fell in the lower section of index 2. However 
the 95% CI of cbvn stretches further into index 2 (Fig.  3(a)). The critical 
Mg concentrations fell in the lower to middle section of index 1 for 
all methods except for the binning (𝜏 = 0.95) which fell in index 0. 
It is worth noting that for the variables Mg and K, there was a small 
number data points in the index 0. The fitted boundary line models for 
K using the binning and quantile regression methods at 𝜏 = 0.95 (i.e 
initially plateau then linear model with negative slope) indicate that 
all values of K were above the critical concentration i.e no value of 
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Fig. 2. Proportions of identified limiting factors modelled using four boundary line fitting methods for (a) Dataset 1, (b) Dataset 2 (c) Dataset 3, and (d) limiting factor identified 
using nutrient omission trials (Dataset 3).

Table 6
Critical values obtained from boundary line parameters and the upper and lower limit from the censored bivariate normal model.
 Data var Units cbvn Lower Upper BOLIDES Bin95 Bin99 QR95 QR99 
 1 P mg L−1 15.29 12.65 17.80 12.76 12.88 12.74 13.63 15.39 
 1 Mg mg L−1 33.42 30.38 37.47 31.36 3.47 26.84 29.34 29.20 
 1 pH – 6.06 5.93 6.23 5.84 5.99 5.97 6.00 6.59  
 1 K mg L−1 76.61 66.19 90.94 70.21 – 83.43 25.22 89.84 
 2 SOC g kg−1 1.20 1.13 1.27 1.19 1.02 1.02 1.77 1.48  
 2 N % 0.05 0.05 0.06 0.07 0.09 0.07 0.05 0.06  
 2 pH – 5.17 5.14 5.20 5.18 5.07 5.06 5.15 5.17  
 2 P mg kg−1 2.99 2.81 3.19 3.21 2.12 2.47 2.91 2.98  
 2 K cmol kg−1 0.16 0.13 0.19 0.19 0.14 0.13 0.15 0.15  
 2 Mg cmol kg−1 0.13 0.10 0.15 0.26 0.18 0.14 0.11 0.14  
 2 Ca cmol kg−1 0.59 0.42 0.89 0.64 0.38 0.32 0.45 0.60  
 3 N % 0.19 0.17 0.21 0.14 – – 0.19 0.18  
 3 pH – 5.00 4.87 5.17 5.03 – – 5.03 5.00  
 3 SOC % 1.87 1.75 2.01 1.92 – – 1.98 1.90  
 3 P mg kg−1 3.20 2.47 4.10 3.67 – – 3.21 3.14  
 3 Ca cmol kg−1 5.32 4.73 6.38 5.38 – – 5.43 5.08  
 3 Mg cmol kg−1 2.47 2.04 3.56 2.68 – – 2.95 2.37  
 3 K cmol kg−1 0.68 0.58 0.82 0.73 – – 0.69 0.62  
All values are on the original measurement scale.
Values in bold are outside the 95% confidence interval of the censored bivariate normal model.
RB209 P Index: 0, 0–9 mg L−1; 1, 10–15 mg L−1; 2, 16–25 mg L−1; 3, 26–45 mg L−1; 4, 46-70 mg L−1
RB209 Mg Index: 0, 0–25 mg L−1; 1, 26–50 mg L−1; 2,51–100 mg L−1; 3, 101–175 mg L−1; 4, 176–250 mg L−1
RB209 K Index: 0, 0–60 mg L−1; 1, 61–120 mg L−1; 2−, 121–180 mg L−1; 2+ , 181–240 mg L−1; 3, 241–600 mg L−1
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Fig. 3. Boundary line models for (a) soil P, (b) soil Mg, (c) soil K and (d) Soil pH fitted using the various methods. The reddish area is the 95% CI of 𝑥𝑐𝑟𝑖𝑡 from the cbvn model. 
The black vertical lines mark the boundaries used for the RB209 index categories: 0, 1, 2, 3, 4, and 5.

measured K could have limited yield by deficiency. According to the 
RB209 guidelines, the optimum pH for mineral soils of England is 6.5. 
This falls just outside the upper bound of the 95% CI of cbvn.

3.4. Stakeholder preferences

Fig.  4 shows the mean ranks of stakeholders’ preferences for the 
different boundary line fitting methods from the study. The mean ranks 
for binning, BOLIDES, cbvn and quantile regression for all participants 
were 3.17, 2.45, 2.31 and 2.07 respectively. The test statistic (𝜒2 =
2.71, df = 3) for all the participants showed that there was no evi-
dence (𝑝 = 0.56) against the null hypothesis of uniform ranking. For 
adequacy of output from the different boundary line fitting methods 
for yield gap analysis (Fig.  4(b)), 4 participants stated all methods, 7 
binning, 1 BOLIDES and 20 cbvn. Twenty three participants stated that 
information on uncertainty was an important output for interpretation 
while 9 did not give an opinion. For the adequacy of the boundary 
line methodology in general for yield gap analysis (Fig.  4(c)), 23 
participants stated that it is adequate, 7 stated it is not adequate and 2 
did not give an opinion.

The results from the elicitation exercise in the Nairobi and Harare 
workshops did not indicate any special preference of a particular 

method. The ranking of the boundary line fitting methods was uniform 
for the whole dataset and hence we did not further split the data 
by locations and statistical experience for further analysis. However, 
some useful information for the reasons of their ranking was obtained. 
Some participants stated that the input parameters for the cbvn may be 
unavailable and difficult to estimate (especially measurement error) as 
reason for ranking it lower. However, the information on uncertainty of 
parameters was recognized as an important output for boundary lines 
using the cbvn. While more participants stated that the boundary line 
methodology was sufficient for yield gap analysis as a whole, some 
participants stated that it is inadequate as it does not incorporate the 
interaction effects on biological response, and in the cases of the cbvn 
method, cannot be applied to categorical variables including social 
economic factors.

4. Discussion

The comparison of boundary line fitting methods for yield gap 
analysis was undertaken to check the consistency among the different 
methods to model the most-limiting factor and critical nutrient con-
centrations. The results for the three datasets show the importance of 
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Fig. 4. (a) Ranking of the boundary line fitting methods according to user-friendliness for all participants, (b) Adequacy of output for interpretation (c) Adequacy of boundary 
line methodology as a whole for yield gap analysis.

considering whether a boundary model is justified, rather than auto-
matically applying it. This is not generally done, and heuristic methods 
offer no basis for assessing whether the model is justified on the basis 
of its fit. One could, after all, draw lines through the upper fringes of 
any bivariate plot, and this is what the peel method aims to address 
at the exploratory stage, and what the AIC assessments of the cbvn 
model does more powerfully. Unlike heuristic methods, the statistical 
cbvn approach fits both bounded and unbounded models to the data, 
enabling model comparison. By evaluating AIC values, this method 
assesses whether the additional boundary parameters improve model 
fit. A lower AIC for the bounded model indicates that the boundary 
is statistically justified, supporting its interpretation. Without this step, 
any interpretation of the boundary would lack statistical validation and 
could be misleading. In addition, one can also check for evidence of 
clustering in the upper edges of a data cloud as justification to carry 
out boundary line analysis.

Dataset 1 showed evidence for boundary structure from the peel 
tests (𝑠𝑑 mostly smaller than the bootstrap mean, and some small 
𝑝-values) (see Appendix  B) and this was supported by the AIC as-
sessments with decisive evidence for the cbvn model with Akaike 
weights all above 0.9 and mostly above 0.99 (Table  2). With Dataset 
2, the evidence from the peel tests was mostly positive, but larger 
𝑝-values(Appendix  B). This is consistent with smaller size of dataset 
and observations on limited range for some variables. Dataset 3 mostly 
provides no evidence for boundary structure (𝑠𝑑 larger than bootstrap 
mean in 5 out of 7 cases for left bound and all cases for right) and 
assessment of the AIC rejects boundary model for N and Mg, and is 
much less decisive for other variables with Akaike weights for cbvn less 
than 0.9 for all but pH (Table  4). This shows that the AIC assessment 
of the cbvn model is more powerful than the peel test, but is consistent 
with it. The small size of Dataset 3 makes it difficult to establish 
evidence of boundary existence as there are less data points in the upper 
edges of the data cloud. These findings indicate that results based on 
boundary line models from Datasets 2 and 3 should be interpreted with 
caution, as there is no clear evidence of boundary structures in these 
datasets.

Agronomically plausible models were fitted to the datasets by ac-
cessing the upper boundary data structure in relation to the possible un-
derlying biophysical and agronomic theories as emphasized by Sadras 
(2020). For example in Dataset 1, a piecewise trapezium model was 
fitted for the relationship of Mg and wheat yield. This is because 
an increase in soil Mg concentration might be expected to lead to 
increases in yield until the critical concentration above which yields do 
not increase further (AHDB, 2023). In general, soil Mg concentrations 
larger than the critical concentration do not damage crop growth, but 
may hinder the uptake of other cations such as K. So, where soil Mg 
is excessively high (index 4 and above of the RB209 guidelines), a 
reduction in yield may be observed due to limitation of other nutri-
ents (PDA, 2017). This was consistent with our fitted model as the 
second inflection point fell within the range of index 4.

Apart from the piece-wise linear models, other complex models like 
the quadratic, logistic (Nelder, 1961; Oliver, 1964), double-logistic
(Shabani et al., 2018), inverse logistic (Helidoniotis et al., 2011), 
monomolecular (Draper and Smith, 1998), Gompertz (Draper and 
Smith, 1998), Weibull (Myers and Myers, 1990), Schmidt (Schmidt 
et al., 2000) and Mitscherlich (Mitscherlich, 1909) models among 
others may be used to fit the boundary lines. In this study, we used 
the piece-wise linear models to enable the determination of the critical 
values at the inflection points. In cases where other complex models 
are used, they may produce similar fits and the simplest model should 
be adopted (Bargagli Stoffi et al., 2022). However, differences in model 
structure/form has been identified as one of the sources of uncertainty 
in determination of yield gap from process models (Schils et al., 2022). 
This may affect the boundary line model outputs in a similar way. There 
is need for further studies to evaluate the sensitivity of model form on 
the output of the boundary line methodology.

The 𝜅 statistic was used to check how consistent boundary line 
fitting approaches are in modelling the most-limiting factor (Tables  5). 
It is important to note that the 𝜅 statistic is a measure of consistency 
and not correctness. In general, the approaches are consistent in the 
determination of the most limiting factor but some inconsistencies 
were observed for the comparisons between the binning methods in 
Dataset 1 and, the comparison of quantile regression (𝜏 = 0.95) and 
cbvn in Dataset 2. These inconsistencies highlight the influence of the 
subjective decisions in the implementation of the heuristic binning and 
quantile regression methods, where the boundary is defined based on 
an arbitrary choice of 𝜏. This emphasizes the need for the use of more 
objective methods to fit boundary line models if consistency is to be 
achieved. There was one notable instance for Dataset 3, where soil Mg 
was found to be limiting in substantially more cases using the BOLIDES 
than the other methods (Fig.  2(c)). This was also reflected in the poor 
agreement (𝜅 < 0.4) for the heuristic methods. This may have been due 
to the effect of the data size and the arrangement of data points at the 
upper edge of the scatter. Unlike all other methods, the BOLIDES fits 
the boundary line model to the extreme points that cover the upper part 
of the cloud and therefore, has a higher sensitivity to the distribution of 
the boundary points. This means that a few extreme points, including 
points that are not considered as outliers, could determine the model 
parameters when the BOLIDES method is applied.

In the case of the omission trial, the limiting factors identified from 
the experimental results were not consistent with those identified from 
the boundary line methodology (𝜅 < 0.4) (Table  5). This highlights the 
need for further work to examine the interpretation of boundary line 
models for yield gap analysis. As has been noted previously by Miti 
et al. (2024b), the boundary line need not be interpreted exclusively 
in terms of a limiting factor model in terms of Sprengel-Liebig, where 
factors have independent effects on the crop response, and only one can 
be limiting. However, before considering further experimental work 
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it is necessary to consider the potential reasons for these observed 
inconsistencies and the two issues which these results raise.

First, the results for exploratory analysis of Datasets 2 and 3 did 
not provide evidence for boundary structures in the data. In the case of 
Dataset 2 the comparison of the cbvn model with a null bivariate nor-
mal model did indicate that the boundary model was appropriate for all 
soil variables apart from Potassium (Table  3), with the Akaike weight 
for the cbvn model exceeding 0.93 in all cases. In contrast, for Dataset 3 
from the omission trial (Table  4), the censored bivariate normal model 
was favoured for soil N and Mg. For other variables, the evidence for 
the boundary model was limited, with Akaike weights ranging from 
0.51 (soil Ca) to 0.91 (soil pH). These results show weak evidence that 
the data exhibit a boundary which can be confidently modelled and 
interpreted to identify the most-limiting factor. In particular, there was 
no evidence for the boundary model in the case of soil N, whereas 
the largest group of sites in the omission trial was that for which N 
application had the largest effect on yield.

The small size of Dataset 3 likely contributed to the observed result. 
It has been emphasized that boundary line analysis requires relatively 
large datasets to ensure that any bounding behaviour is exhibited, and 
that there are sufficient observations near the bound to allow robust 
estimation of its parameters (Sadras, 2020; Shatar and McBratney, 
2004; Miti et al., 2024c). Miti et al. (2024c) used simulated data 
from different distributions to examine the power of the peel cluster 
test to detect bounded behaviour; they found that a minimum of 400 
data points were required. In the case of Dataset 3, the exploratory 
analysis and analysis with the cbvn model would provide grounds for 
not proceeding with an interpretation based on the boundary line. In 
most studies which use heuristic methods to fit the boundary line (Miti 
et al., 2024b) such an assessment cannot be made.

Another consideration, highlighted by the results for Dataset 3, is 
whether the appropriate soil variables have been measured to identify 
a limiting effect which would respond to a particular input. For a 
macronutrient such as P and K it is widely assumed that measurements 
of available nutrient concentration in the soil can be used to deter-
mine a quantitative recommendation for P or K fertilizer respectively. 
In the case of soil N, laboratory measurements of either total N or 
mineral N do not relate simply to a measure of soil N supply which 
is commensurate with rates of application of fertilizer N. Nitrogen in 
the soil undergoes constant transformations such as mineralization, 
nitrification and denitrification which are driven by microbial activity, 
temperature, moisture and other environmental factors, all of which 
influence the availability of plant-accessible N (Pruthviraj et al., 2024). 
It is therefore unlikely that a single soil N measurement will necessarily 
be indicative of the presence or absence of an N limitation on crop 
yield. It is notable that there was some evidence, albeit not strong, for 
a boundary line relationship between yield and SOC in Dataset 3, with 
an Akaike weight of 0.8. As mineralization of SOC is the primary source 
of the soil N supply in the absence of artificial fertilizer, this boundary 
relationship might be indicative of nitrogen limitation. It is necessary 
to consider carefully what soil measurements are most appropriate to 
identify and act on yield gaps.

The boundary line fitting approaches are generally consistent in 
the estimation of critical values. Therefore, the use of one method is 
not expected to produce results that differ markedly from others. In 
most instances, the critical values for variables estimated using the 
heuristic methods all fell within 95% CI of the cbvn or just outside 
the CI (e.g. Mg in Dataset 1 and N using the BOLIDES in Dataset 
3) (Table  6). Most of the cases where the critical values fell outside 
the 95% CI of cbvn were observed in Dataset 2 especially when the 
binning methods were used. This may have been due to the combined 
effect of bin size, 𝜏 value considered as boundary and small size of the 
dataset. From this, we recommend that the boundary line methodology 
is applied to sufficiently large datasets with enough coverage and 
sufficient distribution of all possible conditions, and especially those 
that fulfil the assumption of boundary existence as earlier pointed out.

Generally, results from the different boundary line fitting methods 
are inconsistent with the RB209 guideline indices with the exception of 
the cbvn and quantile regression (𝜏 = 0.99) methods for soil P (Table 
6). In most instances, the boundary line fitting methods underestimated 
the critical values placing them in index 1 and in a few case index 0. 
In these indices we still expect addition of P, K and Mg to increase 
yield (AHDB, 2023). The inconsistencies in results obtained using the 
different 𝜏 values for the binning and quantile regression methods 
indicate the impact of the subjective decision on the outcome of the 
boundary line analysis when heuristic method are used. Andrade et al. 
(2023) similarly found that varying the 𝜏 value for quantile regression 
had a large effect on the determined critical soil nutrient values. This 
stresses the need for a more objective way to determine the 𝜏 value to 
consider as the boundary. Makowski et al. (2007) proposed a method 
to determine a specific 𝜏 for quantile regression methods using expert 
knowledge and previous knowledge on the distribution of measurement 
errors using Bayesian statistics. However, this is only possible when 
there is enough information available on the uncertainty of the crop 
yield being studied. Despite, the inconsistency of the boundary line 
methodology with standard RB209 indices, similar studies have found 
that the boundary line methodology is an effective tool for under-
standing yield response to soil conditions (Smith et al., 2024; Andrade 
et al., 2023). In these studies, the obtained critical values fell within 
the recommended guidelines for soils of those regions.

The results from our study indicate that there is little difference 
in modelled limiting factors and critical nutrient concentrations using 
the different boundary line fitting methods. However, the statistical 
cbvn method offers a more objective and consistent approach to fit-
ting boundary line models, with added robustness through uncertainty 
estimates for the critical nutrient concentration and a strong test for 
boundary presence. Schut and Giller (2020) and Andrade et al. (2023) 
highlighted the importance of measures of uncertainty in soil analysis 
measurements for field-specific fertilizer recommendations. As uncer-
tainty provides a form of risk for decision makers who use boundary 
line outputs to make decisions, uncertainty should be included as an 
output of the analysis. This was also emphasized by participants in 
the consultation exercise in the Nairobi and Harare workshops with 
the majority of participants indicating that uncertainty of the outputs 
was important for interpretation. However, attention should not only 
be focused on the precise quantification of uncertainty, but should 
also aim to identify the sources of uncertainty and how they can be 
reduced (Schils et al., 2022). In this study, no measures of uncertainty 
were given for output of the heuristic methods because these involve 
subjective decisions in their implementation. Hence the uncertainty 
around the determined parameters will be strongly influenced by these 
subjective decisions, making it challenging to interpret. This mostly 
arises in instances where researchers have different views on reality 
and therefore, what to be included in a model (Walker et al., 2003).

In practice, the choice of which method to use for analysis is 
influenced by several factors including data availability (nature of 
data i.e continuous or categorical, size of data and whether it meets 
model assumptions among other qualities), usability of the method and 
the statistical competencies of the analysts (Miti et al., 2024b). For 
example, Smith et al. (2024) highlighted that they could not apply the 
cbvn method proposed by Milne et al. (2006a) on their data because the 
variables could not meet the assumption of normality. Currently, most 
published studies that have evaluated yield gaps using the boundary 
line methodology have used heuristic methods (Smith et al., 2024). The 
ease of use of the heuristic methods has been pointed out as one of the 
reasons for their popularity as compared to statistical methods (Miti 
et al., 2024b). However, the questionnaire exercise with researchers 
in Harare and Nairobi showed that there was no strong evidence that 
users found the statistical method harder to engage with, and they see 
value of uncertainty quantification of this approach. The cbvn provides 
a more robust approach to fitting boundary lines but can benefit further 
from improvements by extending it to include categorical variables 
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which currently cannot be analysed. Variables like planting date, days 
to weeding among others are important determinants of yield gaps and 
must be analysed to get a full picture of yield gaps. This was pointed 
out as one of the weaknesses of the cbvn by the workshop partici-
pants. Until the limitations of the cbvn method are addressed, heuristic 
methods will still be the preferred methods for researchers especially 
in agronomy where categorical variables are important factors in their 
studies.

The boundary line methodology is a valuable tool for extracting 
agronomic insights, particularly in this era of big data. However, there 
remains significant potential to refine this approach and broaden its 
applicability. Further work is needed to deepen our understanding of 
the agronomic implications of the boundary line methodology. While 
much of the current focus has been on interpretations aligned with 
Sprengel-Liebig Law of the Minimum (van der Ploeg et al., 1999), this 
perspective could be expanded to include alternative frameworks, such 
as the Law of the Optimum (Liebscher, 1895). Miti et al. (2024b) have 
outlined various ways the boundary line models can be interpreted, 
but more comprehensive biological exploration is required to fully 
understand their implications. Omission trial experiment provide a 
good basis to test the ability of the boundary line methodology to 
model the most-limiting factor. More studies with larger datasets are 
required to check how the detected most-limiting factor using the 
boundary lines compares with that from omission trials. This will 
enhance greater understanding on the interpretation of the boundary 
line methodology utilizing the Sprengel-Liebig Law of the Minimum. 
The experimental design of omission trials can be improved by careful 
thought on what variables should be measured to pick up limitations, 
in particular to identify limitations which a particular intervention 
might address (e.g. application of fertilizer). While this approach is 
more straightforward for less mobile nutrients, pH, and water supply 
(often excluded from such studies), it poses a greater challenge for 
dynamic variables like soil N. In omission trials, it is often assumed that 
adding N fertilizer addresses potential N limitations, but the complexity 
of soil N dynamics warrants careful consideration when interpreting
results.

5. Conclusion

Our study indicates that there is consistency in the determination 
of the most-limiting factor amongst the different boundary line fitting 
methods with an overall fair to good agreement index (𝜅 > 0.4), 
underscoring the coherence of these approaches for this purpose. Sim-
ilarly, there is consistency in the critical soil nutrient concentration 
determined using different boundary line fitting methods with the 
exception of the binning method highlighting the impact of subjective 
decisions on outcomes of boundary line analysis when heuristic meth-
ods are used. These results provides a start point for the development 
of standard boundary line procedures for yield gap analysis to pro-
mote consistent interpretation and agronomic recommendations, and 
reproducible research. In contrast, our study indicates poor agreement 
between the boundary line methodology and both the nutrient omission 
experimental determination of the most-limiting factor and the RB209 
established critical soil nutrient concentrations. Although there is con-
sistency in the outputs of the different boundary line fitting methods, 
we recommend the use of the cbvn for determination of critical nutri-
ent concentration as it provides more information on the uncertainty 
of the fitted parameters and therefore, allows for further analysis 
like the determination of the probability of the critical concentration 
falling within a given index. This is vital information for decision 
makers/agronomists to provide adequate solutions to close yield gaps. 
Furthermore, we recommend more studies with larger datasets to com-
pare the most-limiting factors modelled by boundary line methods with 
those modelled experimentally to fully assess the use of boundary line 
methodology as a tool for determining the most-limiting factor.
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Appendix A. Exploratory analysis for datasets used the study

See Table  A.1.

Appendix B. Evidence for upper boundary structure in data sets

See Table  B.1.

Appendix C. Estimate of the standard deviation of measurement 
error

See Fig.  C.1. 

Appendix D. Supplementary data

Supplementary material related to this article can be found online 
at https://doi.org/10.1016/j.eja.2025.127744.

Data availability

• Dataset 1: A portion of this dataset is included in the BLA R package, 
freely available on CRAN at https://CRAN.R-project.org/package=BLA
• Dataset 2: Obtained from the study ‘‘Closing the cassava yield gap: 
An analysis from smallholder farms in East Africa’’, published in Field 
Crops Research. Access to this dataset can be requested directly from 
the authors of that publication.
• Dataset 3 (TAMASA Ethiopia): Available on the CIMMYT Research 
Data & Software Repository Network (Dataverse) at https://data.cimmyt.
org/dataset.xhtml?persistentId=hdl:11529/11015, subject to terms and 
conditions.
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Table A.1
Summary statistics for variable in the datasets used for this study.
 Data Factor Transformation Power Mean Median sd Skewness O.skewness 
 1 P None – 25.96 22 14.38 1.84 0.36  
 1 P Natural log – 3.13 3.09 0.51 0.13 0.08  
 1 Mg None – 83.60 63 68.44 4.77 0.5  
 1 Mg Natural log – 4.24 4.14 0.56 0.86 0.20  
 1 K None – 198.33 183 84.52 2.36 0.21  
 1 K Natural log – 5.21 5.21 0.38 0.16 0.001  
 1 pH None – 7.56 7.74 0.65 −0.79 −0.35  
 1 pH Natural log – 2.02 2.05 0.09 −0.99 −0.40  
 1 pH Box-Cox 2 28.34 29.45 4.82 −0.63 −0.31  
 1 pH Yeo-Johnson 4.99 0 0.13 1.00 −0.27 −0.19  
 1 Yield None – 9.25 9.36 1.85 −0.48 −0.06  
 2 pH None – 5.82 5.9 0.46 −0.04 −0.15  
 2 SOC None – 1.72 1.61 0.63 1.11 0.32  
 2 SOC Natural log – 0.49 0.48 0.35 0.03 0.12  
 2 N None – 0.083 0.077 0.044 0.80 0.33  
 2 N Natural log – −2.63 −2.56 0.60 −0.89 0.02  
 2 P None – 4.93 4.03 3.25 2.35 0.40  
 2 P Natural log – 1.44 1.39 0.53 0.56 0.13  
 2 K None – 0.46 0.39 0.31 1.56 0.37  
 2 K Natural log – −0.98 −0.93 0.65 −0.03 0.01  
 2 Ca None – 2.76 1.63 2.79 0.99 0.55  
 2 Ca Natural log – 0.29 0.49 1.40 −0.43 −0.18  
 2 Mg None – 1.11 0.79 0.99 0.98 0.51  
 2 Mg Natural log – −0.41 −0.24 1.18 −0.80 −0.19  
 2 Yield None – 13.97 13.86 6.32 0.15 0.013  
 3 pH None – 5.39 5.4 0.40 0.19 0.11  
 3 OC None – 2.17 2.16 0.46 −0.06 0.08  
 3 N None – 0.22 0.23 0.05 −0.07 −0.14  
 3 P None – 5.04 3.3 4.91 2.74 0.49  
 3 P Natural log – 1.25 1.19 0.87 −0.01 0.04  
 3 Ca None – 7.77 7.4 2.25 0.65 0.28  
 3 Ca Natural log – 2.01 2.00 0.29 −0.01 0.14  
 3 Mg None – 3.24 3.2 1.01 0.96 0.07  
 3 K None – 0.98 0.99 0.41 1.12 −0.01  
 3 Yield None – 3.34 2.81 2.09 0.82 0.29  

Table B.1
The probability of observing a larger peel clustering (lower 𝑠𝑑 of euclidean distance of boundary points to centre) than that of a normal bivariate joint 
distribution on the left (𝑙) and right (𝑟) sections.
 Dataset n Variable 𝑠𝑑𝑙 𝑠𝑑𝑙 𝑝-value 𝑙 𝑠𝑑𝑟 𝑠𝑑𝑟 𝑝-value 𝑟 
 1 6010 P 1.045 1.181 0.019 1.115 1.276 0.013  
 1 6010 Mg 1.309 1.153 0.997 1.087 1.250 0.008  
 1 6010 pH 0.952 1.064 0.035 1.244 1.155 0.877  
 2 110 SOC 3.610 3.643 0.484 4.077 4.115 0.482  
 2 110 N 2.778 3.567 0.09 3.990 4.091 0.459  
 2 110 pH 3.186 3.626 0.238 3.985 4.106 0.423  
 2 110 P 3.345 3.571 0.369 4.036 4.070 0.505  
 2 110 K 2.837 3.556 0.111 4.023 3.985 0.567  
 2 110 Mg 3.2603 3.408 0.421 3.781 3.838 0.494  
 2 110 Ca 3.025 3.469 0.244 4.330 3.736 0.830  
 3 148 N 1.169 1.358 0.169 1.541 1.417 0.742  
 3 148 pH 1.410 1.135 0.841 1.506 1.411 0.679  
 3 148 SOC 1.151 1.246 0.379 1.530 1.358 0.746  
 3 148 P 1.330 1.081 0.830 1.382 1.244 0.739  
 3 148 Ca 1.464 1.206 0.837 1.496 1.409 0.658  
 3 148 Mg 1.344 1.043 0.869 1.430 1.213 0.816  
 3 148 K 1.499 1.264 0.802 1.408 1.387 0.553  
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Fig. C.1. Estimate of 𝜎me using the log-likelihood profile for (a) data set 1, (b) Dataset 2 and (c) Dataset 3. The red dashed line represents the estimate of 𝜎me.
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