Improving electrocoagulation floatation for harvesting microalgae

A - Papers appearing in refereed journals

Landels, A., Beachham, T., Evans, C., Carnovale, G., Raikova, S., Cole, I., Goddard, P., Chuck, C. and Allen, M. 2019. Improving electrocoagulation floatation for harvesting microalgae. Algal Research-Biomass Biofuels and Bioproducts. 39.

AuthorsLandels, A., Beachham, T., Evans, C., Carnovale, G., Raikova, S., Cole, I., Goddard, P., Chuck, C. and Allen, M.
Abstract

Electro-coagulation floatation (ECF) is a foam-floatation dewatering method that has been shown to be a highly effective, rapid, and scalable separation methodology. In this manuscript, an in-depth analysis of the gas and flocculant levels observed during the process is provided, with microbubbles observed in the 5–80 μm size range at a concentration of 102–103 bubbles mL−1. Electrolysis of microalgae culture was then observed, demonstrating both effective separation using aluminium electrodes (nine microalgal species tested, 1–40 μm size range, motile and non-motile, marine and freshwater), and sterilisation of culture through bleaching with inert titanium electrodes. Atomic force microscopy was used to visualise floc formation in the presence and absence of algae, showing nanoscale structures on the magnitude of 40–400 nm and entrapped microalgal cells. Improvements to aid industrial biotechnology processing were investigated: protein-doping was found to improve foam stability without inducing cell lysis, and an oxalate buffer wash regime was found to dissolve the flocculant whilst producing no observable difference in the final algal lipid or pigment profiles, leaving the cells viable at the end of the process. ECF separated microalgal culture had an algal biomass loading of 13% and as such was ideal for direct down-stream processing through hydrothermal liquefaction. High bio-crude yields were achieved, though this was reduced slightly on addition of the Al(OH)3 after ECF, with carbon being distributed away to the aqueous and solid residue phases. The amenability and compatibility of ECF to integration with, or replacement of, existing centrifugation and settling processes suggests this process may be of significant interest to the biotechnology industry.

KeywordsElectro-coagulation floatation; MicroalgaeSeparation; Microbubble; Flocculant; High speed atomic force microscopy; Hydrothermal liquefaction
Year of Publication2019
JournalAlgal Research-Biomass Biofuels and Bioproducts
Journal citation39
Digital Object Identifier (DOI)doi:10.1016/j.algal.2019.101446
Open accessPublished as non-open access
Output statusPublished
Publication dates
Online02 Mar 2019
Publication process dates
Accepted18 Feb 2019
ISSN2211-9264
PublisherElsevier Science Bv

Permalink - https://repository.rothamsted.ac.uk/item/8wvv2/improving-electrocoagulation-floatation-for-harvesting-microalgae

Restricted files

Publisher's version

Under embargo indefinitely

8 total views
1 total downloads
0 views this month
0 downloads this month