Comber, A., Harris, P. and Brunsdon, C. 2022. A Rejoinder to the Commentaries on “A Route Map for Successful Applications of Geographically Weighted Regression” by Comber et al. (2022). Geographical Analysis . https://doi.org/10.1111/gean.12352
Comber, A., Callaghan, M., Harris, P., Lu, B., Malleson, N. and Brunsdon, C. 2022. gwverse: A Template for a New Generic Geographically Weighted R Package. Geographical Analysis . 54 (3), pp. 685-709. https://doi.org/10.1111/gean.12337
Comber, A., Brunsdon, C., Charlton, M., Dong, G., Harris, R., Lu, B., Lu, Y., Murakami, D., Nakaya, T., Wang, Y. and Harris, P. 2021. A Route Map for Successful Applications of Geographically Weighted Regression. Geographical Analysis . https://doi.org/10.1111/gean.12316
Comber, L., Harris, P., Lu, Y., Wu, L. and Atkinson, P. M. 2019. The forgotten semantics of regression modelling in Geography. Geographical Analysis . pp. 1-22. https://doi.org/10.1111/gean.12199
Harris, P. 2019. A simulation study on specifying a regression model for spatial data: choosing between heterogeneity and autocorrelation effects. Geographical Analysis . 51 (2), pp. 151-181. https://doi.org/10.1111/gean.12163
Harris, P., Clarke, A., Juggins, S., Brunsdon, C. and Charlton, M. 2015. Enhancements to a geographically weighted principal component analysis in the context of an application to an environmental data set. Geographical Analysis . 47 (2), pp. 146-172. https://doi.org/10.1111/gean.12048
Oliver, M. A. and Webster, R. 1986. Combining nested and linear sampling for determining the scale and form of spatial variation of regionalized variables. Geographical Analysis . 18 (3), pp. 227-242. https://doi.org/10.1111/j.1538-4632.1986.tb00095.x