Latifa Greche

NameLatifa Greche
Job titlePhenotyping Computer Vision Scientist
Email addresslatifa.greche@rothamsted.ac.uk
DepartmentSustainable Soils and Crops
OfficeHarpenden

Research outputs

Hyperspectral imaging for phenotyping plant drought stress and nitrogen interactions using multivariate modeling and machine learning techniques in wheat

Okyere, F., Cudjoe, D., Virlet, N., Castle, M., Riche, A. B., Greche, L., Mohareb, F., Simms, D., Mhada, M. and Hawkesford, M. J. 2024. Hyperspectral imaging for phenotyping plant drought stress and nitrogen interactions using multivariate modeling and machine learning techniques in wheat. Remote Sensing. 16 (18), p. 3446. https://doi.org/10.3390/rs16183446

Modeling the spatial-spectral characteristics of plants for nutrient status identification using hyperspectral data and deep learning methods

Okyere, F., Cudjoe, D., Sadeghi-Tehran, P., Virlet, N., Riche, A. B., Castle, M., Greche, L., Simms, D., Mhada, M., Mohareb, F. and Hawkesford, M. J. 2023. Modeling the spatial-spectral characteristics of plants for nutrient status identification using hyperspectral data and deep learning methods. Frontiers in Plant Science. 14, p. 1209500. https://doi.org/10.3389/fpls.2023.1209500

Machine Learning Methods for Automatic Segmentation of Images of Field and Glasshouse Based Plants for High Throughput Phenotyping

Okyere, F., Cudjoe, D., Sadeghi-Tehran, P., Virlet, N., Riche, A. B., Castle, M., Greche, L., Mohareb, F., Simms, D. M., Mhada, M. and Hawkesford, M. J. 2023. Machine Learning Methods for Automatic Segmentation of Images of Field and Glasshouse Based Plants for High Throughput Phenotyping. Plants - Basel. 12 (10), p. 2035. https://doi.org/10.3390/plants12102035

346 total views of outputs
90 total downloads of outputs
38 views of outputs this month
5 downloads of outputs this month