Mark Durenkamp

NameMark Durenkamp
Job titleScientific Technician - Analytical Chemistry
Email addressmark.durenkamp@rothamsted.ac.uk
DepartmentComputational and Analytical Sciences
Research clusterCAS: Analytical Chemistry
OfficeHarpenden

Research outputs

Pyrolysis temperature during biochar production alters its subsequent utilization by microorganisms in an acid arable soil

Luo, Y., Dungait, J. A. J., Zhao, X., Brookes, P. C., Durenkamp, M., Li, G. and Lin, Q. 2018. Pyrolysis temperature during biochar production alters its subsequent utilization by microorganisms in an acid arable soil. Land Degradation & Development. 29 (7), pp. 2183-2188.

Does repeated biochar incorporation induce further soil priming effect?

Luo, Y., Lin, Q. M., Durenkamp, M. and Kuzyakov, Y. 2018. Does repeated biochar incorporation induce further soil priming effect? Journal of Soils and Sediments. 18 (1), pp. 128-135.

Species and Genotype Effects of Bioenergy Crops on Root Production, Carbon and Nitrogen in Temperate Agricultural Soil

Gregory, A. S., Dungait, J. A. J., Shield, I. F., Macalpine, W. J., Cunniff, J., Durenkamp, M., White, R. P., Joynes, A. and Richter, G. M. 2018. Species and Genotype Effects of Bioenergy Crops on Root Production, Carbon and Nitrogen in Temperate Agricultural Soil. BioEnergy Research. 11, pp. 382-397.

Nanoparticles within WWTP sludges have minimal impact on leachate quality and soil microbial community structure and function

Durenkamp, M., Pawlett, M., Ritz, K., Harris, J. A., Neal, A. L. and McGrath, S. P. 2016. Nanoparticles within WWTP sludges have minimal impact on leachate quality and soil microbial community structure and function. Environmental Pollution. 211, pp. 399-405.

Nanomaterials in biosolids inhibit nodulation, shift microbial community composition, and result in increased metal uptake relative to bulk/dissolved metals

Judy, J. D., Mcnear, D. H. Jr., Chen, C., Lewis, R. W., Tsyusko, O. V., Bertsch, P. M., Rao, W., Stegemeier, J., Lowry, G. V., McGrath, S. P., Durenkamp, M. and Unrine, J. M. 2015. Nanomaterials in biosolids inhibit nodulation, shift microbial community composition, and result in increased metal uptake relative to bulk/dissolved metals. Environmental Science & Technology. 49, pp. 8751-8758.

Monte Carlo simulations of the transformation and removal of Ag, TiO2 and ZnO nanoparticles in wastewater treatment and land application of biosolids

Barton, L. E., Auffan, M., Durenkamp, M., McGrath, S. P., Bottero, J-Y. and Wiesner, M. R. 2015. Monte Carlo simulations of the transformation and removal of Ag, TiO2 and ZnO nanoparticles in wastewater treatment and land application of biosolids. Science of the Total Environment. 511, pp. 535-543.

Fate of zinc oxide and silver nanoparticles in a pilot wastewater treatment plant and in processed biosolids

Ma, R., Levard, C., Judy, J. D., Unrine, J. M., Durenkamp, M., Martin, B., Jefferson, B. and Lowry, G. V. 2014. Fate of zinc oxide and silver nanoparticles in a pilot wastewater treatment plant and in processed biosolids. Environmental Science & Technology. 48, pp. 104-112.

Microbial biomass growth, following incorporation of biochars produced at 350 degrees C or 700 degrees C, in a silty-clay loam soil of high and low pH

Luo, Y., Durenkamp, M., De Nobili, M., Lin, Q., Devonshire, B. J. and Brookes, P. C. 2013. Microbial biomass growth, following incorporation of biochars produced at 350 degrees C or 700 degrees C, in a silty-clay loam soil of high and low pH. Soil Biology and Biochemistry. 57, pp. 513-523.

Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH

Luo, Y., Durenkamp, M., De Nobili, M., Lin, Q. and Brookes, P. C. 2011. Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biology and Biochemistry. 43, pp. 2304-2314.

Impact of black carbon addition to soil on the determination of soil microbial biomass by fumigation extraction

Durenkamp, M., Luo, Y. and Brookes, P. C. 2010. Impact of black carbon addition to soil on the determination of soil microbial biomass by fumigation extraction. Soil Biology and Biochemistry. 42, pp. 2026-2029.

Total views of outputs: 28

Total downloads of outputs: 93

Views of outputs this month: 8

Downloads of outputs this month: 1