Exploiting Co-Benefits of Increased Rice Production and Reduced Greenhouse Gas Emission through Optimized Crop and Soil Management

A - Papers appearing in refereed journals

An, N., Fan, M., Zhang, F., Christie, P., Yang, J., Huang, J., Guo, S., Shi, X., Tang, Q., Peng, J., Zhong, X., Sun, Y., Lv, S., Jiang, R. and Dobermann, A. 2015. Exploiting Co-Benefits of Increased Rice Production and Reduced Greenhouse Gas Emission through Optimized Crop and Soil Management. PLOS ONE. 10 (10), p. e0140023.

AuthorsAn, N., Fan, M., Zhang, F., Christie, P., Yang, J., Huang, J., Guo, S., Shi, X., Tang, Q., Peng, J., Zhong, X., Sun, Y., Lv, S., Jiang, R. and Dobermann, A.
Abstract

Meeting the future food security challenge without further sacrificing environmental integrity requires transformative changes in managing the key biophysical determinants of increasing agronomic productivity and reducing the environmental footprint. Here, we focus on Chinese rice production and quantitatively address this concern by conducting 403 on-farm trials across diverse rice farming systems. Inherent soil productivity, management practices and rice farming type resulted in confounded and interactive effects on yield, yield gaps and greenhouse gas (GHG) emissions (N2O, CH4 and CO2-equivalent) with both trade-offs and compensating effects. Advances in nitrogen, water and crop management (Best Management Practices—BMPs) helped closing existing yield gaps and resulted in a substantial reduction in CO2-equivalent emission of rice farming despite a tradeoff of increase N2O emission. However, inherent soil properties limited rice yields to a larger extent than previously known. Cultivating inherently better soil also led to lower GHG intensity (GHG emissions per unit yield). Neither adopting BMPs only nor improving soils with low or moderate productivity alone can adequately address the challenge of substantially increasing rice production while reducing the environmental footprint. A combination of both represents the most efficient strategy to harness the combined-benefits of enhanced production and mitigating climate change. Extrapolating from our farm data, this strategy could increase rice production in China by 18%, which would meet the demand for direct human consumption of rice by 2030. It would also reduce fertilizer nitrogen consumption by 22% and decrease CO2-equivalent emissions during the rice growing period by 7% compared with current farming practice continues. Benefits vary by rice-based cropping systems. Single rice systems have the largest food provision benefits due to its wider yield gap and total cultivated area, whereas double-rice system (especially late rice) contributes primarily to reducing GHG emissions. The study therefore provides farm-based evidence for feasible, practical approaches towards achieving realistic food security and environmental quality targets at a national scale.

Year of Publication2015
JournalPLOS ONE
Journal citation10 (10), p. e0140023
Digital Object Identifier (DOI)doi:10.1371/journal.pone.0140023
Open accessPublished as ‘gold’ (paid) open access
Publisher's version
Output statusPublished
Publication dates
Online09 Oct 2015
Publication process dates
Accepted20 Sep 2015
Copyright licenseCC BY
ISSN1932-6203
PublisherPublic Library of Science (PLOS)

Permalink - https://repository.rothamsted.ac.uk/item/8v53y/exploiting-co-benefits-of-increased-rice-production-and-reduced-greenhouse-gas-emission-through-optimized-crop-and-soil-management

17 total views
21 total downloads
1 views this month
0 downloads this month
Download files as zip