DREB/CBF expression in wheat and barley using the stress-inducible promoters of HD-Zip I genes: impact on plant development, stress tolerance and yield

A - Papers appearing in refereed journals

Yang, Y., Al-Baidhani, H. H. J., Harris, J., Riboni, M., Li, Y., Mazonka, I., Bazanova, N., Chirkova, L., Hussain, S. S., Hrmova, M., Haefele, S. M., Lopato, S. and Kovalchuk, N. 2019. DREB/CBF expression in wheat and barley using the stress-inducible promoters of HD-Zip I genes: impact on plant development, stress tolerance and yield. Plant Biotechnology Journal.

AuthorsYang, Y., Al-Baidhani, H. H. J., Harris, J., Riboni, M., Li, Y., Mazonka, I., Bazanova, N., Chirkova, L., Hussain, S. S., Hrmova, M., Haefele, S. M., Lopato, S. and Kovalchuk, N.
Abstract

Networks of transcription factors regulate diverse physiological processes in plants to ensure that plants respond to abiotic stresses rapidly and efficiently. In this study, expression of two DREB/CBF genes, TaDREB3 and TaCBF5L, was modulated in transgenic wheat and barley, by using stress‐responsive promoters HDZI‐3 and HDZI‐4. The promoters were derived from the durum wheat genes encoding the γ‐clade TFs of the HD‐Zip class I subfamily. The activities of tested promoters were induced by drought and cold in leaves of both transgenic species. Differences in sensitivity of promoters to drought strength were dependent on drought tolerance levels of cultivars used for generation of transgenic lines. Expression of the DREB/CBF genes under both promoters improved drought and frost tolerance of transgenic barley, and frost tolerance of transgenic wheat seedlings. Expression levels of the putative TaCBF5L downstream genes in leaves of transgenic wheat seedlings were up‐regulated under severe drought, and up‐ or down‐regulated under frost, compared to those of control seedlings. The application of TaCBF5L driven by the HDZI‐4 promoter led to the significant increase of the grain yield of transgenic wheat, compared to that of the control wild‐type plants, when severe drought was applied during flowering; although no yield improvements were observed when plants grew under well‐watered conditions or moderate drought. Our findings suggest that the studied HDZI promoters combined with the DREB/CBF factors could be used in transgenic cereal plants for improvement of abiotic stress tolerance, and the reduction of negative influence of transgenes on plant development and grain yields.

KeywordsPenotype; Transcription factors; Transgenic barley and wheat; C-repeat binding factor 5-like protein; HDZI-4 and HDZI-3 promoters
Year of Publication2019
JournalPlant Biotechnology Journal
Digital Object Identifier (DOI)doi:10.1111/pbi.13252
Open accessPublished as ‘gold’ (paid) open access
FunderAustralian Research Council Industrial Transforming Research Hub
Biotechnology and Biological Sciences Research Council
Funder project or codeIH130200027
Publisher's version
Copyright license
CC BY
Output statusPublished
Publication dates
Online05 Sep 2019
Publication process dates
Accepted29 Aug 2019
PublisherWiley
ISSN1467-7644

Permalink - https://repository.rothamsted.ac.uk/item/95y5z/dreb-cbf-expression-in-wheat-and-barley-using-the-stress-inducible-promoters-of-hd-zip-i-genes-impact-on-plant-development-stress-tolerance-and-yield

5 total views
2 total downloads
0 views this month
0 downloads this month
Download files as zip